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Preface from 2011

These lecture notes were formed in small chunks during my “Quantum computing” course at the
University of Amsterdam, Feb-May 2011, and compiled into one text thereafter. Each chapter
was covered in a lecture of 2 × 45 minutes, with an additional 45-minute lecture for exercises and
homework. The first half of the course (Chapters 1–7) covers quantum algorithms, the second half
covers quantum complexity (Chapters 8–9), stuff involving Alice and Bob (Chapters 10–13), and
error-correction (Chapter 14). A 15th lecture about physical implementations and general outlook
was more sketchy, and I didn’t write lecture notes for it.

These chapters may also be read as a general introduction to the area of quantum computation
and information from the perspective of a theoretical computer scientist. While I made an effort
to make the text self-contained and consistent, it may still be somewhat rough around the edges; I
hope to continue polishing and adding to it. Comments & constructive criticism are very welcome,
and can be sent to rdewolf@cwi.nl

Those who want to read more (much more. . . ): see the book by Nielsen and Chuang [117].

Attribution, acknowledgments, subsequent updates

Most of the material in Chapters 1–6 [chapter numbers in this paragraph are for the 2011 ver-
sion] comes from the first chapter of my PhD thesis [138], with a number of additions: the lower
bound for Simon, the Fourier transform, the geometric explanation of Grover. Chapter 7 is newly
written for these notes, inspired by Santha’s survey [124]. Chapters 8 and 9 are largely new as
well. Section 3 of Chapter 8, and most of Chapter 10 are taken (with many changes) from my
“quantum proofs” survey paper with Andy Drucker [57]. Chapters 11 and 12 are partly taken from
my non-locality survey with Harry Buhrman, Richard Cleve, and Serge Massar [37]. Chapters 13
and 14 are new. Thanks to Giannicola Scarpa (the teaching assistant for the first two editions of
this course) for useful comments on some of the chapters.

Jan’13 : Updated and corrected a few things for the Feb-Mar 2013 version of this course, and
included exercises for each chapter. Thanks to Harry Buhrman, Florian Speelman, and Jeroen
Zuiddam for spotting some typos in the earlier version.

April’13 : More updates, clarifications and corrections; moved some material from Chapter 2 to 1;
changed and added some exercises. Thanks to Jouke Witteveen for useful comments.

April’14 : Fixed and clarified a few more things. Thanks to Maarten Wegewijs for spotting a typo
in Chapter 4.

March’15 : Updated a few small things.

July’15 : Updated and corrected a few small things, added more exercises. Thanks to Srinivasan
Arunachalam, Carla Groenland, and Koen Groenland for useful comments.

May’16 : A few more corrections, thanks to Ralph Bottesch for useful comments.

Jan’18 : Many more corrections, more exercises, a new Chapter 6 about the Hidden Subgroup Prob-
lem (the above-mentioned chapter numbers are for the earlier version of the notes), and moved the
hints about exercises to an Appendix for students who want to try the exercises first without hints.
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Chapter 1

Quantum Computing

1.1 Introduction

Today’s computers—both in theory (Turing machines) and practice (PCs, HPCs, laptops, tablets,
smartphones, . . . )—are based on classical physics. They are limited by locality (operations have
only local effects) and by the classical fact that systems can be in only one state at the time. How-
ever, modern quantum physics tells us that the world behaves quite differently. A quantum system
can be in a superposition of many different states at the same time, and can exhibit interference
effects during the course of its evolution. Moreover, spatially separated quantum systems may be
entangled with each other and operations may have “non-local” effects because of this.

Quantum computation is the field that investigates the computational power and other prop-
erties of computers based on quantum-mechanical principles. An important objective is to find
quantum algorithms that are significantly faster than any classical algorithm solving the same
problem. The field started in the early 1980s with suggestions for analog quantum computers by
Yuri Manin [108] (and appendix of [109]), Richard Feynman [65, 66], and Paul Benioff [21], and
reached more digital ground when in 1985 David Deutsch defined the universal quantum Turing
machine [54]. The following years saw only sparse activity, notably the development of the first algo-
rithms by Deutsch and Jozsa [56] and by Simon [130], and the development of quantum complexity
theory by Bernstein and Vazirani [26]. However, interest in the field increased tremendously after
Peter Shor’s very surprising discovery of efficient quantum algorithms for the problems of integer
factorization and discrete logarithms in 1994 [129]. Since most of current classical cryptography is
based on the assumption that these two problems are computationally hard, the ability to actually
build and use a quantum computer would allow us to break most current classical cryptographic
systems, notably the RSA system [121, 122]. In contrast, a quantum form of cryptography due to
Bennett and Brassard [25] is unbreakable even for quantum computers.

Let us mention three different motivations for studying quantum computers, from practical to
more philosophical:

1. The process of miniaturization that has made current classical computers so powerful and
cheap, has already reached micro-levels where quantum effects occur. Chip-makers tend to
go to great lengths to suppress those quantum effects, but instead one might also try to work
with them, enabling further miniaturization.

2. Making use of quantum effects allows one to speed- p certain computations enormously (some-
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times exponentially), and even enables some things that are impossible for classical computers.
The main purpose of these lecture notes is to explain these things (algorithms, crypto, etc.)
in detail.

3. Finally, one might state the main goal of theoretical computer science as “study the power
and limitations of the strongest-possible computational devices that Nature allows us.” Since
our current understanding of Nature is quantum mechanical, theoretical computer science
should arguably be studying the power of quantum computers, not classical ones.

Before limiting ourselves to theory, let us say a few words about practice: to what extent will
quantum computers ever be built? At this point in time, it is just too early to tell. The first
small 2-qubit quantum computer was built in 1997 and in 2001 a 5-qubit quantum computer was
used to successfully factor the number 15 [135]. Since then, experimental progress on a number of
different technologies has been steady but slow. Currently, the largest quantum computers (based
on superconducting qubits or ion-trap qubits) have a few dozen qubits.

The practical problems facing physical realizations of quantum computers seem formidable.
The problems of noise and decoherence have to some extent been solved in theory by the discov-
ery of quantum error-correcting codes and fault-tolerant computing (see, e.g., Chapter 17 in these
notes or [117, Chapter 10]), but these problems are by no means solved in practice. On the other
hand, we should realize that the field of physical realization of quantum computing is still in its
infancy and that classical computing had to face and solve many formidable technical problems
as well—interestingly, often these problems were even of the same nature as those now faced by
quantum computing (e.g., noise-reduction and error-correction). Moreover, while the difficulties
facing the implementation of a full quantum computer may seem daunting, more limited appli-
cations involving quantum communication have already been implemented with some success, for
example teleportation (which is the process of sending qubits using entanglement and classical
communication), and quantum cryptography is nowadays even commercially available.

Even if the theory of quantum computing never materializes to a real large-scale physical com-
puter, quantum-mechanical computers are still an extremely interesting idea which will bear fruit in
other areas than practical fast computing. On the physics side, it may improve our understanding
of quantum mechanics. The emerging theory of entanglement has already done this to some extent.
On the computer science side, the theory of quantum computation generalizes and enriches classical
complexity theory and may help resolve some of its problems (see Section 13.3 for an example).

1.2 Quantum mechanics

Here we give a brief and abstract introduction to quantum mechanics. In short: a quantum state is
a superposition of classical states, written as a vector of amplitudes, to which we can apply either
a measurement or a unitary operation. For the required linear algebra and Dirac notation we refer
to Appendix A.

1.2.1 Superposition

Consider some physical system that can be in N different, mutually exclusive classical states.
Because we will typically start counting from 0 in these notes, we call these states |0〉, |1〉, . . . , |N−1〉.
Roughly, by a “classical” state we mean a state in which the system can be found if we observe it.

2



A pure quantum state (usually just called state) |φ〉 is a superposition of classical states, written

|φ〉 = α0|0〉+ α1|1〉+ · · ·+ αN−1|N − 1〉.

Here αi is a complex number that is called the amplitude of |i〉 in |φ〉. Intuitively, a system in
quantum state |φ〉 is in all classical states at the same time, each state having a certain amplitude.
It is in state |0〉 with amplitude α0, in state |1〉 with amplitude α1, and so on. Mathematically,
the states |0〉, . . . , |N − 1〉 form an orthonormal basis of an N -dimensional Hilbert space (i.e., an
N -dimensional vector space equipped with an inner product). A quantum state |φ〉 is a vector in
this space, usually written as an N -dimensional column vector of its amplitudes:

|φ〉 =




α0
...

αN−1


 .

We can combine different Hilbert spaces using tensor product: if |0〉, . . . , |N−1〉 are an orthonormal
basis of space HA and |0〉, . . . , |M − 1〉 are an orthonormal basis of space HB, then the tensor
product space H = HA⊗HB is an NM -dimensional space spanned by the set of states {|i〉⊗|j〉 | i ∈
{0, . . . , N−1}, j ∈ {0, . . . ,M−1}}. An arbitrary state in H is of the form

∑N−1
i=0

∑M−1
j=0 αij |i〉⊗|j〉.

Such a state is called bipartite. Similarly we can have tripartite states that “live” in a Hilbert space
that is the tensor product of three smaller Hilbert spaces, etc.

There are two things we can do with a quantum state: measure it or let it evolve unitarily
without measuring it. We will deal with measurement first.

1.2.2 Measurement

Measurement in the computational basis

Suppose we measure state |φ〉. We cannot “see” a superposition itself, but only classical states.
Accordingly, if we measure state |φ〉 we will see one and only one classical state |j〉. Which specific
|j〉 will we see? This is not determined in advance; the only thing we can say is that we will
see state |j〉 with probability |αj |2, which is the squared norm of the corresponding amplitude αj .
This is known as “Born’s rule.” Accordingly, observing a quantum state induces a probability
distribution on the classical states, given by the squared norms of the amplitudes. This implies∑N−1

j=0 |αj |2 = 1, so the vector of amplitudes has (Euclidean) norm 1. If we measure |φ〉 and get

outcome j as a result1, then |φ〉 itself has “disappeared,” and all that is left is |j〉. In other words,
observing |φ〉 “collapses” the quantum superposition |φ〉 to the classical state |j〉 that we saw, and
all “information” that might have been contained in the amplitudes αi is gone. Note that the
probabilities of the various measurement outcomes are exactly the same when we measure |φ〉 or
when we measure state eiθ|φ〉; because of this we sometimes say that the “global phase” eiθ has no
physical significance.

Projective measurement

For most of the topics in these notes, the above “measurement in the computational (or standard)
basis” suffices. However, somewhat more general kinds of measurement than the above are possible

1Don’t use the ambiguous “we measure j” in this case, since it’s not clear in that phrasing whether |j〉 is the state
you’re measuring or the outcome of the measurement.

3



and sometimes useful. The following may be skipped on a first reading, but will become more
relevant in the second half of these notes.

A projective measurement is described by projectors P1, . . . , Pm which sum to identity. These
projectors are then pairwise orthogonal, meaning that PiPj = 0 if i 6= j. The projector Pj projects
on some subspace Vj of the total Hilbert space V , and every state |φ〉 ∈ V can be decomposed in a
unique way as |φ〉 =

∑m
j=1 |φj〉, with |φj〉 = Pj |φ〉 ∈ Vj . Because the projectors are orthogonal, the

subspaces Vj are orthogonal as well, as are the states |φj〉. When we apply this measurement to
the pure state |φ〉, then we will get outcome j with probability ‖|φj〉‖2 = Tr(Pj |φ〉〈φ|) = 〈φ|Pj |φ〉
and the measured state will then “collapse” to the new state |φj〉/‖|φj〉‖ = Pj |φ〉/‖Pj |φ〉‖.

For example, a measurement in the computational basis is the specific projective measurement
where m = N and Pj = |j〉〈j|. That is, Pj projects onto the computational basis state |j〉 and
the corresponding subspace Vj is the 1-dimensional space spanned by |j〉. Consider the state

|φ〉 =
∑N−1

j=0 αj |j〉. Note that Pj |φ〉 = αj |j〉, so applying our measurement to |φ〉 will give outcome

j with probability ‖αj |j〉‖2 = |αj |2, and in that case the state collapses to αj |j〉/‖αj |j〉‖ =
αj

|αj | |j〉.
The norm-1 factor

αj

|αj | may be disregarded because it has no physical significance, so we end up

with the state |j〉 as we saw before.
Instead of the standard orthonormal basis consisting of the basis states |0〉, . . . , |N − 1〉, we

may consider any other orthonormal basis B of states |ψ0〉, . . . , |ψN−1〉, and consider the projective
measurement defined by the projectors Pj = |ψj〉〈ψj |. This is called “measuring in basis B.”
Applying this measurement to state |φ〉 gives outcome j with probability 〈φ|Pj |φ〉 = |〈φ|ψj〉|2.
Note that if |φ〉 equals one of the basis vectors |ψj〉, then the measurement will give that outcome j
with probability 1.

In the previous two examples the projectors had rank 1 (i.e., project on 1-dimensional sub-
spaces), but this is not necessary. For example, a measurement that distinguishes between |j〉
with j < N/2 and |j〉 with j ≥ N/2 corresponds to the two projectors P1 =

∑
j<N/2 |j〉〈j| and

P2 =
∑

j≥N/2 |j〉〈j|, each of rank N/2 (assume N is even here). Applying this measurement to

the state |φ〉 = 1√
3
|1〉 +

√
2
3 |N〉 gives outcome 1 with probability ‖P1|φ〉‖2 = 1/3, in which case

the state collapses to |1〉. It gives outcome 2 with probability ‖P2|φ〉‖2 = 2/3, and the state then
collapses to |N〉.

Observables

A projective measurement with projectors P1, . . . , Pm and associated distinct outcomes λ1, . . . , λm ∈
R, can be written as one matrix M =

∑m
i=1 λiPi, which is called an observable. This is a succinct

way of writing down the projective measurement as one matrix, and has the added advantage
that the expected value of the outcome can be easily calculated: if we are measuring a state |φ〉,
the probability of outcome λi is ‖Pi|φ〉‖2 = Tr(Pi|φ〉〈φ|), so the expected value of the outcome is∑m

i=1 λiTr(Pi|φ〉〈φ|) = Tr(
∑m

i=1 λiPi|φ〉〈φ|) = Tr(M |φ〉〈φ|). Note that M is Hermitian: M = M∗.
Conversely, since every Hermitian M has a spectral decomposition M =

∑m
i=1 λiPi, there is a

one-to-one correspondence between observables and Hermitian matrices.
The Pauli matrices I,X, Y, Z (see Appendix A.9) are examples of 2-dimensional observables,

with eigenvalues ±1. For example, Z = |0〉〈0| − |1〉〈1| corresponds to measurement in the compu-
tational basis (with measurement outcomes +1 and −1 for |0〉 and |1〉, respectively).

Separately measuring observables A and B on a bipartite state is different from measuring the
joint observable A⊗B: the separate measurement gives two outcomes while the joint measurement
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gives only one, and the distribution on the post-measurement state may be different. What is
true, however, is that the measurement statistics of the product of outcomes is the same as the
measurement statistics of the outcome of the joint measurement. For example consider the case
when A = B = Z (these correspond to measurement in the computational basis), and the state is
|ψ〉 = 1√

2
(|00〉 + |11〉). With the separate measurements, the outcomes will be ++ or −− (note

that in both cases the product of the two outcomes is +1) and the state |ψ〉 will collapse to either
|00〉 or |11〉. Yet |ψ〉 remains undisturbed by a joint measurement with ±1-valued observable
Z ⊗ Z = (|00〉〈00|+ |11〉〈11|)− (|01〉〈01|+ |10〉〈10|), because |ψ〉 is a +1-eigenstate of Z ⊗ Z.

POVM measurement

If we only care about the final probability distribution on the m outcomes, not about the resulting
post-measurement state, then the most general thing we can do is a so-called positive-operator-
valued measure (POVM). This is specified by m positive semidefinite matrices E1, . . . , Em that
sum to identity. When measuring a state |φ〉, the probability of outcome i is given by Tr(Ei|φ〉〈φ|).
A projective measurement is the special case of a POVM where the measurement elements Ei are
projectors.2 Even though POVMs generalize projective measurements, one can show that every
POVM can be “simulated” by a projective measurement on a slightly larger space that yields the
exact same distribution over measurement outcomes (this follows from Neumark’s theorem).

1.2.3 Unitary evolution

Instead of measuring |φ〉, we can also apply some operation to it, i.e., change the state to some

|ψ〉 = β0|0〉+ β1|1〉+ · · ·+ βN−1|N − 1〉.

Quantum mechanics only allows linear operations to be applied to quantum states. What this
means is: if we view a state like |φ〉 as an N -dimensional vector (α0, . . . , αN−1)

T , then applying an
operation that changes |φ〉 to |ψ〉 corresponds to multiplying |φ〉 with an N × N complex-valued
matrix U :

U




α0
...

αN−1


 =




β0
...

βN−1


 .

Note that by linearity we have |ψ〉 = U |φ〉 = U (
∑

i αi|i〉) =
∑

i αiU |i〉.
Because measuring |ψ〉 should also give a probability distribution, we have the constraint∑N−1

j=0 |βj |2 = 1. This implies that the operation U must preserve the norm of vectors, and

hence must be a unitary transformation. A matrix U is unitary if its inverse U−1 equals its
conjugate transpose U∗. This is equivalent to saying that U always maps a vector of norm 1 to
a vector of norm 1. Because a unitary transformation always has an inverse, it follows that any
(non-measuring) operation on quantum states must be reversible: by applying U−1 we can always
“undo” the action of U , and nothing is lost in the process. On the other hand, a measurement is
clearly non-reversible, because we cannot reconstruct |φ〉 from the observed classical state |j〉.

2Note that if Ei is a projector, then Tr(Ei|φ〉〈φ|) = Tr(E2
i |φ〉〈φ|) = Tr(Ei|φ〉〈φ|Ei) = ‖Ei|φ〉‖2, using the fact

that Ei = E2
i and the cyclic property of the trace.
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1.3 Qubits and quantum memory

In classical computation, the unit of information is a bit, which can be 0 or 1. In quantum compu-
tation, this unit is a quantum bit (qubit), which is a superposition of 0 and 1. Consider a system
with 2 basis states, call them |0〉 and |1〉. We identify these basis states with the two orthogonal

vectors

(
1
0

)
and

(
0
1

)
, respectively. A single qubit can be in any superposition

α0|0〉+ α1|1〉, |α0|2 + |α1|2 = 1.

Accordingly, a single qubit “lives” in the vector space C2.
Similarly we can think of systems of more than 1 qubit, which “live” in the tensor product

space of several qubit systems. For instance, a 2-qubit system has 4 basis states: |0〉⊗ |0〉, |0〉⊗ |1〉,
|1〉 ⊗ |0〉, |1〉 ⊗ |1〉. Here for instance |1〉 ⊗ |0〉 means that the first qubit is in its basis state |1〉 and
the second qubit is in its basis state |0〉. We will often abbreviate this to |1〉|0〉, |1, 0〉, or even |10〉.

More generally, a register of n qubits has 2n basis states, each of the form |b1〉⊗ |b2〉⊗ . . .⊗|bn〉,
with bi ∈ {0, 1}. We can abbreviate this to |b1b2 . . . bn〉. We will often abbreviate 0 . . . 0 to 0n. Since
bitstrings of length n can be viewed as integers between 0 and 2n − 1 (see Appendix B.2), we can
also write the basis states as numbers |0〉, |1〉, |2〉, . . . , |2n − 1〉. Note that the vector corresponding
to n-qubit basis state |x〉 is the 2n-dimensional vector that has a 1 at the x-th position and 0s
elsewhere (here we view x as an integer in {0, . . . , 2n − 1} and we count the positions in the vector
starting from position 0). This implies that two n-qubit basis states |x〉 and |y〉 are orthogonal iff
x 6= y. A different way to see this orthogonality is to use the rules of tensor product (Appendix A.6):

〈x|y〉 = 〈x1|y1〉 ⊗ · · · ⊗ 〈xn|yn〉 = 〈x1|y1〉 · · · 〈xn|yn〉.

Since 〈xk|yk〉 = δxk,yk , we see that basis states |x〉 and |y〉 will be orthogonal as soon as there is at
least one position k at which the bits of x and y differ.

A quantum register of n qubits can be in any superposition

α0|0〉+ α1|1〉+ · · ·+ α2n−1|2n − 1〉,
2n−1∑

j=0

|αj |2 = 1.

Measuring this in the computational basis, we obtain the n-bit state state |j〉 with probability |αj |2.
Measuring just the first qubit of a state would correspond to the projective measurement that

has the two projectors P0 = |0〉〈0| ⊗ I2n−1 and P1 = |1〉〈1| ⊗ I2n−1 . For example, applying this

measurement to the state 1√
3
|0〉|φ〉+

√
2
3 |1〉|ψ〉 gives outcome 0 with probability 1/3; the state then

becomes |0〉|φ〉. We get outcome 1 with probability 2/3; the state then becomes |1〉|ψ〉. Similarly,
measuring the first n qubits of an (n +m)-qubit state in the computational basis corresponds to
the projective measurement that has 2n projectors Pj = |j〉〈j| ⊗ I2m for j ∈ {0, 1}n.

An important property that deserves to be mentioned is entanglement, which refers to quantum
correlations between different qubits. For instance, consider a 2-qubit register that is in the state

1√
2
|00〉+ 1√

2
|11〉.

Such 2-qubit states are sometimes called EPR-pairs in honor of Einstein, Podolsky, and Rosen [61],
who examined such states and their seemingly paradoxical properties. Initially neither of the two
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qubits has a classical value |0〉 or |1〉. However, if we measure the first qubit and observe, say, a
|0〉, then the whole state collapses to |00〉. Thus observing the first qubit immediately fixes also
the second, unobserved qubit to a classical value. Since the two qubits that make up the register
may be far apart, this example illustrates some of the non-local effects that quantum systems can
exhibit. In general, a bipartite state |φ〉 is called entangled if it cannot be written as a tensor
product |φA〉 ⊗ |φB〉 where |φA〉 lives in the first space and |φB〉 lives in the second.

At this point, a comparison with classical probability distributions may be helpful. Suppose
we have two probability spaces, A and B, the first with 2n possible outcomes, the second with 2m

possible outcomes. A probability distribution on the first space can be described by 2n numbers
(non-negative reals summing to 1; actually there are only 2n − 1 degrees of freedom here) and a
distribution on the second by 2m numbers. Accordingly, a product distribution on the joint space
can be described by 2n + 2m numbers. However, an arbitrary (non-product) distribution on the
joint space takes 2n+m real numbers, since there are 2n+m possible outcomes in total. Analogously,
an n-qubit state |φA〉 can be described by 2n numbers (complex numbers whose squared moduli
sum to 1), an m-qubit state |φB〉 by 2m numbers, and their tensor product |φA〉 ⊗ |φB〉 by 2n +2m

numbers. However, an arbitrary (possibly entangled) state in the joint space takes 2n+m numbers,
since it lives in a 2n+m-dimensional space. We see that the number of parameters required to
describe quantum states is the same as the number of parameters needed to describe probability
distributions. Also note the analogy between statistical independence3 of two random variables A
and B and non-entanglement of the product state |φA〉 ⊗ |φB〉. However, despite the similarities
between probabilities and amplitudes, quantum states are much more powerful than distributions,
because amplitudes may have negative (or even complex) parts which can lead to interference
effects. Amplitudes only become probabilities when we square them. The art of quantum computing
is to use these special properties for interesting computational purposes.

1.4 Elementary gates

A unitary that acts on a small number of qubits (say, at most 3) is often called a gate, in analogy
to classical logic gates like AND, OR, and NOT; more about that in the next chapter. The Pauli
matrices I,X, Y, Z (Appendix A.9) are examples of 1-qubit gates. For example, the bitflip gate X
(a.k.a. NOT-gate) negates the bit, i.e., swaps |0〉 and |1〉. The phaseflip gate Z puts a − in front
of |1〉. Represented as 2× 2 unitary matrices, these are

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

Another important 1-qubit gate is the phase gate Rφ, which merely rotates the phase of the |1〉-state
by an angle φ:

Rφ|0〉 = |0〉
Rφ|1〉 = eiφ|1〉

This corresponds to the unitary matrix

Rφ =

(
1 0
0 eiφ

)
.

3Two random variables A and B are independent if their joint probability distribution can be written as a product
of individual distributions for A and for B: Pr[A = a ∧B = b] = Pr[A = a] · Pr[B = b] for all possible values a, b.
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Note that Z is a special case of this: Z = Rπ, because e
iπ = −1. The Rπ/4-gate is often just called

the T -gate.

Possibly the most important 1-qubit gate is the Hadamard transform, specified by:

H|0〉 = 1√
2
|0〉+ 1√

2
|1〉

H|1〉 = 1√
2
|0〉 − 1√

2
|1〉

As a unitary matrix, this is represented as

H =
1√
2

(
1 1
1 −1

)
.

If we apply H to initial state |0〉 and then measure, we have equal probability of observing |0〉 or
|1〉. Similarly, applying H to |1〉 and observing gives equal probability of |0〉 or |1〉. However, if we
apply H to the superposition 1√

2
|0〉+ 1√

2
|1〉 then we obtain

H(
1√
2
|0〉+ 1√

2
|1〉) = 1√

2
H|0〉+ 1√

2
H|1〉 = 1

2
(|0〉+ |1〉) + 1

2
(|0〉 − |1〉) = |0〉.

The positive and negative amplitudes for |1〉 have canceled each other out! This effect is called
interference, and is analogous to interference patterns between light or sound waves.

An example of a 2-qubit gate is the controlled-not gate CNOT. It negates the second bit of its
input if the first bit is 1, and does nothing if the first bit is 0:

CNOT|0〉|b〉 = |0〉|b〉
CNOT|1〉|b〉 = |1〉|1− b〉

The first qubit is called the control qubit, the second the target qubit. In matrix form, this is

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

More generally, if U is some single-qubit gate (i.e., 2×2 unitary matrix), then the 2-qubit controlled-
U gate corresponds to the following 4× 4 unitary matrix:




1 0 0 0
0 1 0 0
0 0 U11 U12

0 0 U21 U22


 .

1.5 Example: quantum teleportation

In the next chapter we will look in more detail at how we can use and combine such elementary
gates, but as an example we will here already explain teleportation [22]. Suppose there are two
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parties, Alice and Bob. Alice has a qubit α0|0〉+α1|1〉 that she wants to send to Bob via a classical
channel. Without further resources this would be impossible, but Alice also shares an EPR-pair

1√
2
(|00〉+ |11〉)

with Bob (say Alice holds the first qubit and Bob the second). Initially, their joint state is

(α0|0〉+ α1|1〉)⊗
1√
2
(|00〉+ |11〉).

The first two qubits belong to Alice, the third to Bob. Alice performs a CNOT on her two qubits
and then a Hadamard transform on her first qubit. Their joint state can now be written as

1
2 |00〉(α0|0〉+ α1|1〉) +
1
2 |01〉(α0|1〉+ α1|0〉) +
1
2 |10〉(α0|0〉 − α1|1〉) +
1
2 |11〉︸︷︷︸
Alice

(α0|1〉 − α1|0〉)︸ ︷︷ ︸
Bob

.

Alice then measures her two qubits in the computational basis and sends the result (2 random
classical bits ab) to Bob over a classical channel. Bob now knows which transformation he must
do on his qubit in order to regain the qubit α0|0〉 + α1|1〉. First, if b = 1 then he applies a bitflip
(X-gate) on his qubit; second if a = 1 then he applies a phaseflip (Z-gate). For instance, if Alice
sent ab = 11, then Bob knows that his qubit is α0|1〉 − α1|0〉. A bitflip followed by a phaseflip
will give him Alice’s original qubit α0|0〉+ α1|1〉. In fact, if Alice’s qubit had been entangled with
some other qubits, then teleportation preserves this entanglement: Bob then receives a qubit that
is entangled in the same way as Alice’s original qubit was.

Note that the qubit on Alice’s side has been destroyed: teleporting moves a qubit from Alice to
Bob, rather than copying it. In fact, copying an unknown qubit is impossible [139], see Exercise 7.

Exercises

1. (a) What is the inner product between the real vectors (0, 1, 0, 1) and (0, 1, 1, 1)?

(b) What is the inner product between the states |0101〉 and |0111〉?

2. Compute the result of applying a Hadamard transform to both qubits of |0〉⊗ |1〉 in two ways
(the first way using tensor product of vectors, the second using tensor product of matrices),
and show that the two results are equal:

H|0〉 ⊗H|1〉 = (H ⊗H)(|0〉 ⊗ |1〉).

3. Show that a bitflip operation, preceded and followed by Hadamard transforms, equals a
phaseflip operation: HXH = Z.

4. Show that surrounding a CNOT gate with Hadamard gates switches the role of the control-bit
and target-bit of the CNOT: (H ⊗ H)CNOT(H ⊗ H) is the 2-qubit gate where the second
bit controls whether the first bit is negated (i.e., flipped).
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5. Simplify the following: (〈0| ⊗ I)(α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉).

6. Prove that an EPR-pair 1√
2
(|00〉+ |11〉) is an entangled state, i.e., that it cannot be written

as the tensor product of two separate qubits.

7. (H) Prove the quantum no-cloning theorem: there does not exist a 2-qubit unitary U that
maps

|φ〉|0〉 7→ |φ〉|φ〉

for every qubit |φ〉.

8. Show that unitaries cannot “delete” information: there is no 1-qubit unitary U that maps
|φ〉 7→ |0〉 for every 1-qubit state |φ〉.

9. Suppose Alice and Bob are not entangled. If Alice sends a qubit to Bob, then this can
give Bob at most one bit of information about Alice.4 However, if they share an EPR-pair,
|ψ〉 = 1√

2
(|00〉+ |11〉), then they can transmit two classical bits by sending one qubit over the

channel; this is called superdense coding. This exercise will show how this works.

(a) They start with a shared EPR-pair, 1√
2
(|00〉 + |11〉). Alice has classical bits a and b.

Suppose she does an X-gate on her half of the EPR-pair if a = 1, followed by a Z-gate
if b = 1 (she does both if ab = 11, and neither if ab = 00). Write the resulting 2-qubit
state for the four different cases that ab could take.

(b) Suppose Alice sends her half of the state to Bob, who now has two qubits. Show that
Bob can determine both a and b from his state, using Hadamard and CNOT gates,
followed by a measurement in the computational basis.

10. Alice and Bob share an EPR-pair, |ψ〉 = 1√
2
(|00〉+ |11〉).

(a) Let C be a 2× 2 matrix. Show that Tr((C ⊗ I)|ψ〉〈ψ|) = 1
2Tr(C).

(b) (H) Alice could apply one of the 4 Pauli matrices (I,X, Y, Z) to her qubit. Use part (a)
to show that the 4 resulting 2-qubit states form an orthonormal set.

(c) Suppose Alice applies one of the 4 Pauli matrices to her qubit and then sends that qubit
to Bob. Give the 4 projectors of a 4-outcome projective measurement that Bob could
do on his 2 qubits to find out which Pauli matrix Alice actually applied.

11. Let θ ∈ [0, 2π), Uθ =

(
cos θ − sin θ
sin θ cos θ

)
, |φ〉 = Uθ|0〉 and |φ⊥〉 = Uθ|1〉.

(a) Show that ZX|φ⊥〉 = |φ〉.
(b) Show that an EPR-pair, 1√

2
(|00〉+ |11〉), can also be written as 1√

2
(|φ〉|φ〉+ |φ⊥〉|φ⊥〉).

(c) Suppose Alice and Bob start with an EPR-pair. Alice applies U−1
θ to her qubit and then

measures it in the computational basis. What pure state does Bob have if her outcome
was 0, and what pure state does he have if her outcome was 1?

4This is actually a deep statement, a special case of Holevo’s theorem. More about this may be found in Chapter 13.
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(d) Suppose Alice knows the number θ but Bob does not. Give a protocol that uses one
EPR-pair and 1 classical bit of communication where Bob ends up with the qubit |φ〉
(in contrast to general teleportation of an unknown qubit, which uses 1 EPR-pair and 2
bits of communication).
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Chapter 2

The Circuit Model and Deutsch-Jozsa

2.1 Quantum computation

Below we explain how a quantum computer can apply computational steps to its register of qubits.
Two models exist for this: the quantum Turing machine [54, 26] and the quantum circuit model [55,
141]. These models are equivalent, in the sense that they can simulate each other in polynomial
time, assuming the circuits are appropriately “uniform.” We only explain the circuit model here,
which is more popular among researchers.

2.1.1 Classical circuits

In classical complexity theory, a Boolean circuit is a finite directed acyclic graph with AND, OR,
and NOT gates. It has n input nodes, which contain the n input bits (n ≥ 0). The internal
nodes are AND, OR, and NOT gates, and there are one or more designated output nodes. The
initial input bits are fed into AND, OR, and NOT gates according to the circuit, and eventually
the output nodes assume some value. We say that a circuit computes some Boolean function
f : {0, 1}n → {0, 1}m if the output nodes get the right value f(x) for every input x ∈ {0, 1}n.

A circuit family is a set C = {Cn} of circuits, one for each input size n. Each circuit has one
output bit. Such a family recognizes or decides a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n if, for every
n and every input x ∈ {0, 1}n, the circuit Cn outputs 1 if x ∈ L and outputs 0 otherwise. Such
a circuit family is uniformly polynomial if there is a deterministic Turing machine that outputs
Cn given n as input, using space logarithmic in n.1 Note that the size (number of gates) of the
circuits Cn can then grow at most polynomially with n. It is known that uniformly polynomial
circuit families are equal in power to polynomial-time deterministic Turing machines: a language
L can be decided by a uniformly polynomial circuit family iff L ∈ P [118, Theorem 11.5], where P
is the class of languages decidable by polynomial-time Turing machines.

Similarly we can consider randomized circuits. These receive, in addition to the n input bits,
also some random bits (“coin flips”) as input. A randomized circuit computes a function f if it
successfully outputs the right answer f(x) with probability at least 2/3 for every x (probability taken
over the values of the random bits; the 2/3 may be replaced by any 1/2 + ε). Randomized circuits
are equal in power to randomized Turing machines: a language L can be decided by a uniformly

1Logarithmic space implies time that’s at most polynomial in n, because such a machine will have only poly(n)
different internal states, so it either halts after poly(n) steps or cycles forever.
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polynomial randomized circuit family iff L ∈ BPP, where BPP (“Bounded-error Probabilistic
Polynomial time”) is the class of languages that can efficiently be recognized by randomized Turing
machines with success probability at least 2/3.

2.1.2 Quantum circuits

A quantum circuit (also called quantum network or quantum gate array) generalizes the idea of
classical circuit families, replacing the AND, OR, and NOT gates by elementary quantum gates . A
quantum gate is a unitary transformation on a small (usually 1, 2, or 3) number of qubits. We saw
a number of examples already in the previous chapter: the bitflip gate X, the phaseflip gate Z,
the Hadamard gate H. The main 2-qubit gate we have seen is the controlled-NOT (CNOT) gate.
Adding another control register, we get the 3-qubit Toffoli gate, also called controlled-controlled-
not (CCNOT) gate. This negates the third bit of its input if both of the first two bits are 1. The
Toffoli gate is important because it is complete for classical reversible computation: any classical
computation can be implemented by a circuit of Toffoli gates. This is easy to see: using auxiliary
wires with fixed values, Toffoli can implement AND (fix the 3rd ingoing wire to 0) and NOT (fix the
1st and 2nd ingoing wire to 1). It is known that AND and NOT-gates together suffice to implement
any classical Boolean circuit, so if we can apply (or simulate) Toffoli gates, we can implement any
classical computation in a reversible manner.

Mathematically, such elementary quantum gates can be composed into bigger unitary operations
by taking tensor products (if gates are applied in parallel to different parts of the register), and
ordinary matrix products (if gates are applied sequentially). We have already seen a simple example
of such a circuit of elementary gates in the previous chapter, namely to implement teleportation.

For example, if we apply the Hadamard gate H to each bit in a register of n zeroes, we obtain

1√
2n

∑

j∈{0,1}n
|j〉,

which is a superposition of all n-bit strings. More generally, if we apply H⊗n to an initial state |i〉,
with i ∈ {0, 1}n, we obtain

H⊗n|i〉 = 1√
2n

∑

j∈{0,1}n
(−1)i·j |j〉, (2.1)

where i · j =∑n
k=1 ikjk denotes the inner product of the n-bit strings i, j ∈ {0, 1}n. For example:

H⊗2|01〉 = 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉 − |1〉) = 1

2

∑

j∈{0,1}2
(−1)01·j |j〉.

Note that Hadamard happens to be its own inverse (it’s unitary and Hermitian, hence H = H∗ =
H−1), so applying it once more on the right-hand side of the above equation would give us back
|01〉. The n-fold Hadamard transform will be very useful for the quantum algorithms explained
later.

As in the classical case, a quantum circuit is a finite directed acyclic graph of input nodes,
gates, and output nodes. There are n nodes that contain the input (as classical bits); in addition
we may have some more input nodes that are initially |0〉 (“workspace”). The internal nodes of the
quantum circuit are quantum gates that each operate on at most two or three qubits of the state.
The gates in the circuit transform the initial state vector into a final state, which will generally be
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a superposition. We measure some dedicated output bits of this final state in the computational
basis in order to (probabilistically) obtain an output.

To draw such circuits, we typically let time progress from left to right: we start with the initial
state on the left. Each qubit is pictured as a wire, and the circuit prescribes which gates are to
be applied to which wires. Single-qubit gates like X and H just act on one wire, while multi-qubit
gates such as the CNOT act on multiple wires simultaneously.2 When one qubit “controls” the
application of a gate to another qubit, then the controlling wire is drawn with a dot linked vertically
to the gate that is applied to the target qubit. This happens for instance with the CNOT, where
the applied single-qubit gate is X (sometimes drawn as ‘⊕’). Figure 2.1 gives a simple example on
two qubits, initially in basis state |00〉: first apply H to the 1st qubit, then CNOT to both qubits
(with the first qubit acting as the control), and then Z to the last qubit. The resulting state is
1√
2
(|00〉 − |11〉).

|0〉 H •

|0〉 Z

Figure 2.1: Simple circuit for turning |00〉 into an entangled state

In analogy to the classical class BPP, we will define BQP (“Bounded-error Quantum Poly-
nomial time”) as the class of languages that can efficiently be computed with success probability
at least 2/3 by (a family of) quantum circuits whose size grows at most polynomially with the
input length. We will study this quantum complexity class and its relation with various classical
complexity classes in more detail in Chapter 12.

2.2 Universality of various sets of elementary gates

Which set of elementary gates should we allow? There are several reasonable choices.

(1) The set of all 1-qubit operations together with the 2-qubit CNOT gate is universal,
meaning that any other unitary transformation can be built from these gates.

Allowing all 1-qubit gates is not very realistic from an implementational point of view, as there are
continuously many of them, and we cannot expect experimentalists to implement gates to infinite
precision. However, the model is usually restricted, only allowing a small finite set of 1-qubit gates
from which all other 1-qubit gates can be efficiently approximated.

(2) The set consisting of CNOT, Hadamard, and the phase-gate T = Rπ/4 is universal
in the sense of approximation, meaning that any other unitary can be arbitrarily well
approximated using circuits of only these gates. The Solovay-Kitaev theorem [117,
Appendix 3] says that this approximation is quite efficient: we can approximate any
gate on 1 or 2 qubits up to error ε using a number of gates (from our small set) that
is only polylog(1/ε), i.e., polynomial in the logarithm of 1/ε; in particular, simulating
arbitrary gates up to exponentially small error costs only a polynomial overhead.

2Note that the number of wires (qubits) going into a unitary must equal the number of wires going out because
a unitary is always invertible (reversible). This differs from the case of classical circuits, where non-reversible gates
like AND have more wires going in than out.
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It is often convenient to restrict to real numbers and use an even smaller set of gates:

(3) The set of Hadamard and Toffoli (CCNOT) is universal for all unitaries with real
entries in the sense of approximation, meaning that any unitary with only real entries
can be arbitrarily well approximated using circuits of only these gates.

2.3 Quantum parallelism

One uniquely quantum-mechanical effect that we can use for building quantum algorithms is quan-
tum parallelism. Suppose we have a classical algorithm that computes some function f : {0, 1}n →
{0, 1}m. Then we can build a quantum circuit U (consisting only of Toffoli gates) that maps
|z〉|0〉 → |z〉|f(z)〉 for every z ∈ {0, 1}n. Now suppose we apply U to a superposition of all inputs z
(which is easy to build using n Hadamard transforms):

U


 1√

2n

∑

z∈{0,1}n
|z〉|0〉


 =

1√
2n

∑

z∈{0,1}n
|z〉|f(z)〉.

We applied U just once, but the final superposition contains f(z) for all 2n input values z! However,
by itself this is not very useful and does not give more than classical randomization, since observing
the final superposition will give just one uniformly random |z〉|f(z)〉 and all other information will
be lost. As we will see below, quantum parallelism needs to be combined with the effects of
interference and entanglement in order to get something that is better than classical.

2.4 The early algorithms

The two main successes of quantum algorithms so far are Shor’s factoring algorithm from 1994 [129]
and Grover’s search algorithm from 1996 [74], which will be explained in later chapters. In this
section we describe some of the earlier quantum algorithms that preceded Shor’s and Grover’s.

Virtually all quantum algorithms work with queries in some form or other. We will explain
this model here. It may look contrived at first, but eventually will lead smoothly to Shor’s and
Grover’s algorithm. We should, however, emphasize that the query complexity model differs from
the standard model described above, because the input is now given as a “black-box” (also some-
times called an “oracle”). This means that the exponential quantum-classical separations that we
describe below (like Simon’s) do not by themselves give exponential quantum-classical separations
in the standard model.

To explain the query setting, consider an N -bit input x = (x0, . . . , xN−1) ∈ {0, 1}N . Usually we
will have N = 2n, so that we can address bit xi using an n-bit index i. One can think of the input
as an N -bit memory which we can access at any point of our choice (a Random Access Memory).
A memory access is via a so-called “black-box,” which is equipped to output the bit xi on input i.
As a quantum operation, this would be the following unitary mapping on n+ 1 qubits:

Ox : |i, 0〉 → |i, xi〉.

The first n qubits of the state are called the address bits (or address register), while the (n+ 1)st
qubit is called the target bit. Since this operation must be unitary, we also have to specify what
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happens if the initial value of the target bit is 1. Therefore we actually let Ox be the following
unitary transformation:

Ox : |i, b〉 → |i, b⊕ xi〉,

here i ∈ {0, 1}n, b ∈ {0, 1}, and ⊕ denotes exclusive-or (addition modulo 2). In matrix representa-
tion, Ox is now a permutation matrix and hence unitary. Note that a quantum computer can apply
Ox on a superposition of various i, something a classical computer cannot do. One application of
this black-box is called a query, and counting the required number of queries to compute this or
that function of x is something we will do a lot in the first half of these notes.

Given the ability to make a query of the above type, we can also make a query of the form
|i〉 7→ (−1)xi |i〉 by setting the target bit to the state |−〉 = 1√

2
(|0〉 − |1〉) = H|1〉:

Ox (|i〉|−〉) = |i〉 1√
2
(|xi〉 − |1− xi〉) = (−1)xi |i〉|−〉.

This ±-kind of query puts the output variable in the phase of the state: if xi is 1 then we get a −1 in
the phase of basis state |i〉; if xi = 0 then nothing happens to |i〉.3 This “phase-oracle” is sometimes
more convenient than the standard type of query. We sometimes denote the corresponding n-qubit
unitary transformation by Ox,±.

2.4.1 Deutsch-Jozsa

Deutsch-Jozsa problem [56]:
For N = 2n, we are given x ∈ {0, 1}N such that either
(1) all xi have the same value (“constant”), or
(2) N/2 of the xi are 0 and N/2 are 1 (“balanced”).
The goal is to find out whether x is constant or balanced.

The algorithm of Deutsch and Jozsa is as follows. We start in the n-qubit zero state |0n〉, apply
a Hadamard transform to each qubit, apply a query (in its ±-form), apply another Hadamard to
each qubit, and then measure the final state. As a unitary transformation, the algorithm would be
H⊗nOx,±H⊗n. We have drawn the corresponding quantum circuit in Figure 2.2 (where time again
progresses from left to right). Note that the number of wires going into the query is n, not N ; the
basis states on this sequence of wires specify an n-bit address.

|0〉

|0〉

|0〉

measure

H

H

H

H

H

H

Ox,±

Figure 2.2: The Deutsch-Jozsa algorithm for n = 3

3Note that for |+〉 = 1√
2
(|0〉+ |1〉), we have Ox (|i〉|+〉) = |i〉|+〉 irrespective of what x is.
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Let us follow the state through these operations. Initially we have the state |0n〉. By Equa-
tion (2.1) on page 14, after the first Hadamard transforms we have obtained the uniform superpo-
sition of all i:

1√
2n

∑

i∈{0,1}n
|i〉.

The Ox,±-query turns this into
1√
2n

∑

i∈{0,1}n
(−1)xi |i〉.

Applying the second batch of Hadamards gives (again by Equation (2.1)) the final superposition

1

2n

∑

i∈{0,1}n
(−1)xi

∑

j∈{0,1}n
(−1)i·j |j〉,

where i · j =
∑n

k=1 ikjk as before. Since i · 0n = 0 for all i ∈ {0, 1}n, we see that the amplitude of
the |0n〉-state in the final superposition is

1

2n

∑

i∈{0,1}n
(−1)xi =





1 if xi = 0 for all i,
−1 if xi = 1 for all i,
0 if x is balanced.

Hence the final observation will yield |0n〉 if x is constant and will yield some other state if x
is balanced. Accordingly, the Deutsch-Jozsa problem can be solved with certainty using only 1
quantum query and O(n) other operations (the original solution of Deutsch and Jozsa used 2
queries, the 1-query solution is from [51]).

In contrast, it is easy to see that any classical deterministic algorithm needs at least N/2 + 1
queries: if it has made only N/2 queries and seen only 0s, the correct output is still undetermined.
However, a classical algorithm can solve this problem efficiently if we allow a small error probability:
just query x at two random positions, output “constant” if those bits are the same and “balanced”
if they are different. This algorithm outputs the correct answer with probability 1 if x is constant
and outputs the correct answer with probability 1/2 if x is balanced. Thus the quantum-classical
separation of this problem only holds if we consider algorithms without error probability.

2.4.2 Bernstein-Vazirani

Bernstein-Vazirani problem [26]:
For N = 2n, we are given x ∈ {0, 1}N with the property that there is some unknown a ∈ {0, 1}n
such that xi = (i · a) mod 2. The goal is to find a.

The Bernstein-Vazirani algorithm is exactly the same as the Deutsch-Jozsa algorithm, but now
the final observation miraculously yields a. Since (−1)xi = (−1)(i·a) mod 2 = (−1)i·a, we can write
the state obtained after the query as:

1√
2n

∑

i∈{0,1}n
(−1)xi |i〉 = 1√

2n

∑

i∈{0,1}n
(−1)i·a|i〉.

Since Hadamard is its own inverse, applying a Hadamard to each qubit of the above state will turn
it into the classical state |a〉 and hence solves the Bernstein-Vazirani problem with 1 query and
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O(n) other operations. In contrast, any classical algorithm (even a randomized one with small error
probability) needs to ask n queries for information-theoretic reasons: the final answer consists of n
bits and one classical query gives at most 1 bit of information.

Bernstein and Vazirani also defined a recursive version of this problem, which can be solved
exactly by a quantum algorithm in poly(n) steps, but for which every classical randomized algorithm
needs nΩ(logn) steps.

Exercises

1. Is the controlled-NOT operation C Hermitian? Determine C−1.

2. Show that every unitary 1-qubit gate with real entries can be written as a rotation matrix,
possibly preceded and followed by Z-gates. In other words, show that for every 2 × 2 real
unitary U , there exist signs s1, s2, s3 ∈ {1,−1} and angle θ ∈ [0, 2π) such that

U = s1

(
1 0
0 s2

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
1 0
0 s3

)
.

3. Construct a CNOT from two Hadamard gates and one controlled-Z (the controlled-Z gate
maps |11〉 7→ −|11〉 and acts like the identity on the other basis states).

4. A SWAP-gate interchanges two qubits: it maps basis state |a, b〉 to |b, a〉. Implement a
SWAP-gate using a few CNOTs.

5. Let U be a 1-qubit unitary that we would like to implement in a controlled way, i.e., we
want to implement a map |c〉|b〉 7→ |c〉U c|b〉 for all c, b ∈ {0, 1}. Suppose there exist 1-qubit
unitaries A, B, and C, such that ABC = I and AXBXC = U (remember that X is the
NOT-gate). Give a circuit that acts on two qubits and implements a controlled-U gate, using
CNOTs and (uncontrolled) A, B, and C gates.

6. (H) It is possible to avoid doing any intermediate measurements in a quantum circuit, using
one auxiliary qubit for each 1-qubit measurement that needs to be delayed until the end of
the computation. Show how.

7. (a) Give a circuit that maps |0n, b〉 7→ |0n, 1 − b〉 for b ∈ {0, 1}, and that maps |i, b〉 7→
|i, b〉 whenever i ∈ {0, 1}n\{0n}. You are allowed to use every type of elementary gate
mentioned in the lecture notes (incl. Toffoli gates), as well as auxiliary qubits that are
initially |0〉 and that should be put back to |0〉 at the end of the computation.

You can draw a Toffoli gate similar to a CNOT gate: a bold dot on each of the two
control wires, and a ‘⊕’ on the target wire.

(b) Suppose we can make queries of the type |i, b〉 7→ |i, b ⊕ xi〉 to input x ∈ {0, 1}N , with
N = 2n. Let x′ be the input x with its first bit flipped (e.g., if x = 0110 then x′ = 1110).
Give a circuit that implements a query to x′. Your circuit may use one query to x.

(c) Give a circuit that implements a query to an input x′′ that is obtained from x (analo-
gously to (b)) by setting its first bit to 0. Your circuit may use one query to x.
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8. In Section 2.4 we showed that a standard query, which maps |i, b〉 7→ |i, b ⊕ xi〉 (where
i ∈ {0, . . . , N − 1} and b ∈ {0, 1}), can be used to implement a phase-query to x, i.e., one of
the type |i〉 7→ (−1)xi |i〉.

(a) Show that a standard query can be implemented using controlled phase-queries to x
(which map |c, i〉 7→ (−1)cxi |c, i〉, so the phase is added only if the control bit is c = 1),
and possibly some auxiliary qubits and other gates.

(b) Can you also implement a standard query using uncontrolled phase-queries to x, and
possibly some auxiliary qubits and other gates? If yes, show how. If no, prove why not.

9. Suppose we have a 2-bit input x = x0x1 and a phase query that maps

Ox,± : |b〉 7→ (−1)xb |b〉 for b ∈ {0, 1}.

(a) Suppose we run the 1-qubit circuit HOx,±H on initial state |0〉 and then measure (in
the computational basis). What is the probability distribution on the output bit, as a
function of x?

(b) Now suppose the query leaves some workspace in a second qubit, which is initially |0〉:

O′
x,± : |b, 0〉 7→ (−1)xb |b, b〉 for b ∈ {0, 1}.

Suppose we just ignore the workspace and run the algorithm of (a) on the first qubit
with O′

x,± instead of Ox,± (and H ⊗ I instead of H, and initial state |00〉). What is now
the probability distribution on the output bit (i.e., if we measure the first of the two
bits)?
Comment: This exercise illustrates why it’s important to “clean up” (i.e., set back to |0〉) workspace

qubits of some subroutine before running it on a superposition of inputs: the unintended entanglement

between the address and workspace registers can thwart the intended interference effects.

10. Give a randomized classical algorithm (i.e., one that can flip coins during its operation) that
makes only two queries to x, and decides the Deutsch-Jozsa problem with success probability
at least 2/3 on every possible input. A high-level description is enough, no need to write out
the classical circuit.

11. Suppose our N -bit input x satisfies the following promise:
either (1) the first N/2 bits of x are all 0 and the second N/2 bits are all 1; or (2) the number
of 1s in the first half of x plus the number of 0s in the second half, equals N/2. Modify the
Deutsch-Jozsa algorithm to efficiently distinguish these two cases (1) and (2).

12. (H) Let N = 2n. A parity query to input x ∈ {0, 1}N corresponds to the (N + 1)-qubit
unitary map Qx : |y, b〉 7→ |y, b⊕ (x · y)〉, where x · y =

∑N−1
i=0 xiyi mod 2. For a fixed function

f : {0, 1}N → {0, 1}, give a quantum algorithm that computes f(x) using only one such query
(i.e., one application of Qx), and as many elementary gates as you want. You do not need to
give the circuit in full detail, an informal description of the algorithm is good enough.
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Chapter 3

Simon’s Algorithm

The Deutsch-Jozsa problem showed an exponential quantum improvement over the best determin-
istic classical algorithms; the Bernstein-Vazirani problem shows a polynomial improvement over
the best randomized classical algorithms that have error probability ≤ 1/3. In this chapter we will
combine these two features: we will see a problem where quantum computers are exponentially
more efficient than bounded-error randomized algorithms.

3.1 The problem

Let N = 2n, and identify the set {0, . . . , N − 1} with {0, 1}n. Let j⊕ s be the n-bit string obtained
by bitwise adding the n-bit strings j and s mod 2.

Simon’s problem [130]:
For N = 2n, we are given x = (x0, . . . , xN−1), with xi ∈ {0, 1}n, with the property that there is
some unknown nonzero s ∈ {0, 1}n such that xi = xj iff (i = j or i = j ⊕ s). The goal is to find s.

Note that x, viewed as a function from {0, . . . , N − 1} to {0, . . . , N − 1}, is a 2-to-1 function,
where the 2-to-1-ness is determined by the unknown mask s. The queries to the input here are
slightly different from before: the input x = (x0, . . . , xN−1) now has variables xi that themselves
are n-bit strings, and one query gives such a string completely (|i, 0n〉 7→ |i, xi〉). However, we can
also view this problem as having n2n binary variables that we can query individually. Since we can
simulate one xi-query using only n binary queries (just query all n bits of xi), this alternative view
will not affect the number of queries very much.

3.2 The quantum algorithm

Simon’s algorithm starts out very similar to Deutsch-Jozsa: start in a state of 2n zero qubits
|0n〉|0n〉 and apply Hadamard transforms to the first n qubits, giving

1√
2n

∑

i∈{0,1}n
|i〉|0n〉.
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At this point, the second n-qubit register still holds only zeroes. A query turns this into

1√
2n

∑

i∈{0,1}n
|i〉|xi〉.

Now the algorithm measures the second n-bit register (see Exercise 1; this measurement is actually
not necessary, but it facilitates analysis). The measurement outcome will be some value xi and the
first register will collapse to the superposition of the two indices having that xi-value:

1√
2
(|i〉+ |i⊕ s〉)|xi〉.

We will now ignore the second register and apply Hadamard transforms to the first n qubits. Using
Equation (2.1) and the fact that (i⊕ s) · j = (i · j)⊕ (s · j), we can write the resulting state as

1√
2n+1


 ∑

j∈{0,1}n
(−1)i·j |j〉+

∑

j∈{0,1}n
(−1)(i⊕s)·j |j〉


 =

1√
2n+1


 ∑

j∈{0,1}n
(−1)i·j

(
1 + (−1)s·j

)
|j〉


 .

Note that |j〉 has nonzero amplitude iff s · j = 0 mod 2. Measuring the state gives a uniformly
random element from the set {j | s ·j = 0 mod 2}. Accordingly, we get a linear equation that gives
information about s. We repeat this algorithm until we have obtained n − 1 independent linear
equations involving s. The solutions to these equations will be 0n and the correct s, which we can
compute efficiently by a classical algorithm (Gaussian elimination modulo 2). This can be done by
means of a classical circuit of size roughly O(n3).

Note that if the j’s you have generated at some point span a space of size 2k, for some k < n−1,
then the probability that your next run of the algorithm produces a j that is linearly independent
of the earlier ones, is (2n−1 − 2k)/2n−1 ≥ 1/2. Hence an expected number of O(n) runs of the
algorithm suffices to find n − 1 linearly independent j’s. Simon’s algorithm thus finds s using an
expected number of O(n) xi-queries and polynomially many other operations.

3.3 Classical algorithms for Simon’s problem

3.3.1 Upper bound

Let us first sketch a classical randomized algorithm that solves Simon’s problem using O(
√
2n)

queries, based on the so-called “birthday paradox.” Our algorithm will make T randomly chosen
distinct queries i1, . . . , iT , for some T to be determined later. If there is a collision among those
queries (i.e., xik = xiℓ for some k 6= ℓ), then we are done, because then we know ik = iℓ ⊕ s,
equivalently s = ik ⊕ iℓ. How large should T be such that we are likely to see a collision in case
s 6= 0n? (there won’t be any collisions if s = 0n.) There are

(
T
2

)
= 1

2T (T − 1) ≈ T 2/2 pairs in our
sequence that could be a collision, and since the indices are chosen randomly, the probability for a
fixed pair to form a collision is 1/(2n − 1). Hence by linearity of expectation, the expected number
of collisions in our sequence will be roughly T 2/2n+1. If we choose T =

√
2n+1, we expect to have

roughly 1 collision in our sequence, which is good enough to find s. Of course, an expected value of
1 collision does not mean that we will have at least one collision with high probability, but a slightly
more involved calculation shows the latter statement as well.
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3.3.2 Lower bound

Simon [130] proved that any classical randomized algorithm that finds s with high probability needs
to make Ω(

√
2n) queries, so the above classical algorithm is essentially optimal. This was the first

proven exponential separation between quantum algorithms and classical bounded-error algorithms
(let us stress again that this does not prove an exponential separation in the usual circuit model,
because we are counting queries rather than ordinary operations here). Simon’s algorithm inspired
Shor to his factoring algorithm, which we describe in Chapter 5.

We will prove the classical lower bound for a decision version of Simon’s problem:

Given: input x = (x0, . . . , xN−1), where N = 2n and xi ∈ {0, 1}n
Promise: ∃s ∈ {0, 1}n such that: xi = xj iff (i = j or i = j ⊕ s)
Task: decide whether s = 0n

Consider the input distribution µ that is defined as follows. With probability 1/2, x is a uniformly
random permutation of {0, 1}n; this corresponds to the case s = 0n. With probability 1/2, we pick
a nonzero string s at random, and for each pair (i, i ⊕ s), we pick a unique value for xi = xi⊕s at
random. If there exists a randomized T -query algorithm that achieves success probability ≥ 2/3
under this input distribution µ, then there also is deterministic T -query algorithm that achieves
success probability ≥ 2/3 under µ (because the behavior of the randomized algorithm is an average
over a number of deterministic algorithms). Now consider a deterministic algorithm with error
≤ 1/3 under µ, that makes T queries to x. We want to show that T = Ω(

√
2n).

First consider the case s = 0n. We can assume the algorithm never queries the same point
twice. Then the T outcomes of the queries are T distinct n-bit strings, and each sequence of T
strings is equally likely.

Now consider the case s 6= 0n. Suppose the algorithm queries the indices i1, . . . , iT (this sequence
depends on x) and gets outputs xi1 , . . . , xiT . Call a sequence of queries i1, . . . , iT good if it shows
a collision (i.e., xik = xiℓ for some k 6= ℓ), and bad otherwise. If the sequence of queries of the
algorithm is good, then we can find s, since ik ⊕ iℓ = s. On the other hand, if the sequence is bad,
then each sequence of T distinct outcomes is equally likely—just as in the s = 0n case! We will
now show that the probability of the bad case is very close to 1 for small T .

If i1, . . . , ik−1 is bad, then we have excluded at most
(
k−1
2

)
possible values of s (namely all values

ij ⊕ ij′ for all distinct j, j′ ∈ [k − 1]), and all other values of s are equally likely. The probability
that the next query ik makes the sequence good, is the probability that xik = xij for some j < k,
equivalently, that the set S = {ik ⊕ ij | j < k} happens to contain the string s. But S has only

k − 1 members, while there are 2n − 1 −
(
k−1
2

)
equally likely remaining possibilities for s. This

means that the probability that the sequence is still bad after query ik is made, is very close to 1.
In formulas:

Pr[i1, . . . , iT is bad] =
T∏

k=2

Pr[i1, . . . , ik is bad | i1, . . . , ik−1 is bad]

=

T∏

k=2

(
1− k − 1

2n − 1−
(
k−1
2

)
)

≥ 1−
T∑

k=2

k − 1

2n − 1−
(
k−1
2

) .
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Here we used the fact that (1 − a)(1 − b) ≥ 1 − (a + b) if a, b ≥ 0. Note that
∑T

k=2(k − 1) =

T (T − 1)/2 ≈ T 2/2, and 2n − 1−
(
k−1
2

)
≈ 2n as long as k ≪

√
2n. Hence we can approximate the

last formula by 1− T 2/2n+1. Accordingly, if T ≪
√
2n then with probability nearly 1 (probability

taken over the distribution µ) the algorithm’s sequence of queries is bad. If it gets a bad sequence,
it cannot “see” the difference between the s = 0n case and the s 6= 0n case, since both cases result
in a uniformly random sequence of T distinct n-bit strings as answers to the T queries. This shows
that T has to be Ω(

√
2n) in order to enable the algorithm to get a good sequence of queries with

high probability.

Exercises

1. Give the projectors of the 2-outcome 2n-qubit projective measurement that is applied in
Simon’s algorithm after the query.

2. Analyze the different steps of Simon’s algorithm if s = 0n (so all xi-values are distinct), and
show that the final output j is uniformly distributed over {0, 1}n.

3. Suppose we run Simon’s algorithm on the following input x (with N = 8 and hence n = 3):

x000 = x111 = 000
x001 = x110 = 001
x010 = x101 = 010
x011 = x100 = 011

Note that x is 2-to-1 and xi = xi⊕111 for all i ∈ {0, 1}3, so s = 111.

(a) Give the starting state of Simon’s algorithm.

(b) Give the state after the first Hadamard transforms on the first 3 qubits.

(c) Give the state after applying the oracle query.

(d) Give the state after measuring the second register (suppose the measurement gave |001〉).
(e) Using H⊗n|i〉 = 1√

2n

∑
j∈{0,1}n(−1)i·j |j〉, give the state after the final Hadamards.

(f) Why does a measurement of the first 3 qubits of the final state give information about s?

(g) Suppose the first run of the algorithm gives j = 011 and a second run gives j = 101.
Show that, assuming s 6= 000, those two runs of the algorithm already determine s.

4. Consider the following generalization of Simon’s problem: the input is x = (x0, . . . , xN−1),
with N = 2n and xi ∈ {0, 1}n, with the property that there is some unknown subspace V ⊆
{0, 1}n (where {0, 1}n is the vector space of n-bit strings with entrywise addition modulo 2)
such that xi = xj iff there exists a v ∈ V such that i = j⊕ v. The usual definition of Simon’s
problem corresponds to the case where the subspace V = {0, s} has dimension at most 1 (i.e.,
V = {0, s}).
Show that one run of Simon’s algorithm now produces a j ∈ {0, 1}n that is orthogonal to the
whole subspace (i.e., j · v = 0 mod 2 for every v ∈ V ).
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5. (a) Suppose x is an N -bit string. What happens if we apply a Hadamard transform to each

qubit of the N -qubit state
1√
2N

∑

y∈{0,1}N
(−1)x·y|y〉?

(b) Give a quantum algorithm that uses T queries to N -bit string x, and that maps |y〉 7→
(−1)x·y|y〉 for every y ∈ {0, 1}N that contains at most T 1s (i.e., for every y of Hamming
weight ≤ T ). You can argue on a high level, no need to write out circuits in detail.

(c) (H) Give a quantum algorithm that with high probability outputs x, using at most
N/2 + 2

√
N queries to x.

(d) Argue that a classical algorithm needs at least N − 1 queries in order to have success
probability at least 1/2 of outputting the correct x.
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Chapter 4

The Fourier Transform

4.1 The classical discrete Fourier transform

The Fourier transform occurs in many different versions throughout classical computing, in areas
ranging from signal-processing to data compression to complexity theory.

For our purposes, the Fourier transform is going to be an N ×N unitary matrix, all of whose
entries have the same magnitude. For N = 2, it’s just our familiar Hadamard transform:

F2 = H =
1√
2

(
1 1
1 −1

)
.

Doing something similar in 3 dimensions is impossible with real numbers: we can’t give three
orthogonal vectors in {+1,−1}3. However, using complex numbers allows us to define the Fourier
transform for any N . Let ωN = e2πi/N be an N -th root of unity (“root of unity” means that ωk

N = 1
for some integer k, in this case k = N). The rows of the matrix will be indexed by j ∈ {0, . . . , N−1}
and the columns by k ∈ {0, . . . , N − 1}. Define the (j, k)-entry of the matrix FN by 1√

N
ωjk
N (the

exponent jk is the usual product of two integers):

FN =
1√
N




...

· · · ωjk
N · · ·
...




Note that FN is a unitary matrix, since each column has norm 1, and any two columns (say those
indexed by k and k′) are orthogonal:

N−1∑

j=0

1√
N

(ωjk
N )∗

1√
N
ωjk′

N =
1

N

N−1∑

j=0

ω
j(k′−k)
N =

{
1 if k = k′

0 otherwise

Since FN is unitary and symmetric, the inverse F−1
N = F ∗

N only differs from FN by having minus
signs in the exponent of the entries. For a vector v ∈ RN , the vector v̂ = FNv is called the Fourier
transform of v.1 Its entries are given by v̂j =

1√
N

∑N−1
k=0 ω

jk
N vk.

1The literature on Fourier analysis usually talks about the Fourier transform of a function rather than of a vector,
but on finite domains that’s just a notational variant of what we do here: a vector v ∈ RN can also be viewed as a
function v : {0, . . . , N − 1} → R defined by v(i) = vi. Also, in the classical literature people sometimes use the term
“Fourier transform” for what we call the inverse Fourier transform.
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4.2 The Fast Fourier Transform

The naive way of computing the Fourier transform v̂ = FNv of v ∈ RN just does the matrix-
vector multiplication to compute all the entries of v̂. This would take O(N) steps (additions and
multiplications) per entry, and O(N2) steps to compute the whole vector v̂. However, there is a
more efficient way of computing v̂. This algorithm is called the Fast Fourier Transform (FFT, due
to Cooley and Tukey in 1965 [52]), and takes only O(N logN) steps. This difference between the
quadratic N2 steps and the near-linear N logN is tremendously important in practice when N is
large, and is the main reason that Fourier transforms are so widely used.

We will assume N = 2n, which is usually fine because we can add zeroes to our vector to make
its dimension a power of 2 (but similar FFTs can be given also directly for most N that aren’t a
power of 2). The key to the FFT is to rewrite the entries of v̂ as follows:

v̂j =
1√
N

N−1∑

k=0

ωjk
N vk

=
1√
N

( ∑

even k

ωjk
N vk + ωj

N

∑

odd k

ω
j(k−1)
N vk

)

=
1√
2

(
1√
N/2

∑

even k

ω
jk/2
N/2 vk + ωj

N

1√
N/2

∑

odd k

ω
j(k−1)/2
N/2 vk

)

Note that we’ve rewritten the entries of the N -dimensional Fourier transform v̂ in terms of two
N/2-dimensional Fourier transforms, one of the even-numbered entries of v, and one of the odd-
numbered entries of v.

This suggest a recursive procedure for computing v̂: first separately compute the Fourier trans-
form v̂even of the N/2-dimensional vector of even-numbered entries of v and the Fourier transform
v̂odd of the N/2-dimensional vector of odd-numbered entries of v, and then compute the N entries

v̂j =
1√
2
(v̂evenj + ωj

N v̂oddj).

Strictly speaking this is not well-defined, because v̂even and v̂odd are just N/2-dimensional vectors.
However, if we define v̂evenj+N/2 = v̂evenj (and similarly for v̂odd) then it all works out.

The time T (N) it takes to implement FN this way can be written recursively as T (N) =
2T (N/2) + O(N), because we need to compute two N/2-dimensional Fourier transforms and do
O(N) additional operations to compute v̂. This recursion works out to time T (N) = O(N logN),
as promised. Similarly, we have an equally efficient algorithm for the inverse Fourier transform
F−1
N = F ∗

N , whose entries are 1√
N
ω−jk
N .

4.3 Application: multiplying two polynomials

Suppose we are given two real-valued polynomials p and q, each of degree at most d:

p(x) =
d∑

j=0

ajx
j and q(x) =

d∑

k=0

bkx
k
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We would like to compute the product of these two polynomials, which is

(p · q)(x) =




d∑

j=0

ajx
j



(

d∑

k=0

bkx
k

)
=

2d∑

ℓ=0

(
2d∑

j=0

ajbℓ−j

︸ ︷︷ ︸
cℓ

)xℓ,

where implicitly we set aj = bj = 0 for j > d and bℓ−j = 0 if j > ℓ. Clearly, each coefficient cℓ by
itself takes O(d) steps (additions and multiplications) to compute, which suggests an algorithm for
computing the coefficients of p ·q that takes O(d2) steps. However, using the fast Fourier transform
we can do this in O(d log d) steps, as follows.

The convolution of two vectors a, b ∈ RN is a vector a ∗ b ∈ RN whose ℓ-th entry is defined
by (a ∗ b)ℓ = 1√

N

∑N−1
j=0 ajbℓ−jmodN . Let us set N = 2d + 1 (the number of nonzero coefficients

of p · q) and make the above (d + 1)-dimensional vectors of coefficients a and b N -dimensional by
adding d zeroes. Then the coefficients of the polynomial p · q are proportional to the entries of the
convolution: cℓ =

√
N(a ∗ b)ℓ. It is easy to show that the Fourier coefficients of the convolution of

a and b are the products of the Fourier coefficients of a and b: for every ℓ ∈ {0, . . . , N − 1} we have(
â ∗ b

)
ℓ
= âℓ ·b̂ℓ. This immediately suggests an algorithm for computing the vector of coefficients cℓ:

apply the FFT to a and b to get â and b̂, multiply those two vectors entrywise to get â ∗ b, apply
the inverse FFT to get a∗b, and finally multiply a∗b with

√
N to get the vector c of the coefficients

of p · q. Since the FFTs and their inverse take O(N logN) steps, and pointwise multiplication of
two N -dimensional vectors takes O(N) steps, this algorithm takes O(N logN) = O(d log d) steps.

Note that if two numbers ad · · · a1a0 and bd · · · b1b0 are given in decimal notation, then we can
interpret their digits as coefficients of single-variate degree-d polynomials p and q, respectively:
p(x) =

∑d
j=0 ajx

j and q(x) =
∑d

k=0 bkx
k. The two numbers will now be p(10) and q(10). Their

product is the evaluation of the product-polynomial p · q at the point x = 10. This suggests that
we can use the above procedure (for fast multiplication of polynomials) to multiply two numbers in
O(d log d) steps, which would be a lot faster than the standard O(d2) algorithm for multiplication
that one learns in primary school. However, in this case we have to be careful since the steps of the
above algorithm are themselves multiplications between numbers, which we cannot count at unit
cost anymore if our goal is to implement a multiplication between numbers! Still, it turns out that
implementing this idea carefully allows one to multiply two d-digit numbers in O(d log d log log d)
elementary operations. This is known as the Schönhage-Strassen algorithm [125] (slightly improved
further by Fürer [70] and Harvey and van der Hoeven [81]), and is one of the ingredients in Shor’s
algorithm in the next chapter. We’ll skip the details.

4.4 The quantum Fourier transform

Since FN is an N ×N unitary matrix, we can interpret it as a quantum operation, mapping an N -
dimensional vector of amplitudes to another N -dimensional vector of amplitudes. This is called the
quantum Fourier transform (QFT). In case N = 2n (which is the only case we will care about), this
will be an n-qubit unitary. Notice carefully that this quantum operation does something different
from the classical Fourier transform: in the classical case we are given a vector v, written on a piece
of paper so to say, and we compute the vector v̂ = FNv, and also write the result on a piece of
paper. In the quantum case, we are working on quantum states; these are vectors of amplitudes, but

29



we don’t have those written down anywhere—they only exist as the amplitudes in a superposition.
We will see below that the QFT can be implemented by a quantum circuit using O(n2) elementary
gates. This is exponentially faster than even the FFT (which takes O(N logN) = O(2nn) steps),
but it achieves something different: computing the QFT won’t give us the entries of the Fourier
transform written down on a piece of paper, but only as the amplitudes of the resulting state.

4.5 An efficient quantum circuit

Here we will describe the efficient circuit for the n-qubit QFT. The elementary gates we will allow
ourselves are Hadamards and controlled-Rs gates, where

Rs =

(
1 0

0 e2πi/2
s

)
.

Note that R1 = Z =

(
1 0
0 −1

)
, R2 =

(
1 0
0 i

)
. For large s, e2πi/2

s
is close to 1 and hence

the Rs-gate is close to the identity-gate I. We could implement Rs-gates using Hadamards and
controlled-R1/2/3 gates, but for simplicity we will just treat each Rs as an elementary gate.

Since the QFT is linear, it suffices if our circuit implements it correctly on n-qubit basis states
|k〉, i.e., it should map

|k〉 7→ FN |k〉 = 1√
N

N−1∑

j=0

ωjk
N |j〉.

The key to doing this efficiently is to rewrite FN |k〉, which turns out to be a product state (so FN

does not introduce entanglement when applied to a basis state |k〉). Let |k〉 = |k1 . . . kn〉, k1 being
the most significant bit. Note that for integer j = j1 . . . jn, we can write j/2n =

∑n
ℓ=1 jℓ2

−ℓ. For
example, binary 0.101 is 1 ·2−1+0 ·2−2+1 ·2−3 = 5/8. We have the following sequence of equalities:

FN |k〉 =
1√
N

N−1∑

j=0

e2πijk/2
n |j〉

=
1√
N

N−1∑

j=0

e2πi(
∑n

ℓ=1 jℓ2
−ℓ)k|j1 . . . jn〉

=
1√
N

N−1∑

j=0

n∏

ℓ=1

e2πijℓk/2
ℓ |j1 . . . jn〉

=
n⊗

ℓ=1

1√
2

(
|0〉+ e2πik/2

ℓ |1〉
)
.

Note that e2πik/2
ℓ
= e2πi0.kn−ℓ+1...kn : the n− ℓ most significant bits of k don’t matter for this value.

As an example, for n = 3 we have the 3-qubit product state

F8|k1k2k3〉 =
1√
2
(|0〉+ e2πi0.k3 |1〉)⊗ 1√

2
(|0〉+ e2πi0.k2k3 |1〉)⊗ 1√

2
(|0〉+ e2πi0.k1k2k3 |1〉).

This example suggests what the circuit should be. To prepare the first qubit of the desired state
F8|k1k2k3〉, we can just apply a Hadamard to |k3〉, giving state 1√

2
(|0〉+(−1)k3 |1〉) and observe that
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(−1)k3 = e2πi0.k3 . To prepare the second qubit of the desired state, apply a Hadamard to |k2〉, giving
1√
2
(|0〉+ e2πi0.k2 |1〉), and then conditioned on k3 (before we apply the Hadamard to |k3〉) apply R2.

This multiplies |1〉 with a phase e2πi0.0k3 , producing the correct qubit 1√
2
(|0〉+e2πi0.k2k3 |1〉). Finally,

to prepare the third qubit of the desired state, we apply a Hadamard to |k1〉, apply R2 conditioned
on k2, and R3 conditioned on k3. This produces the correct qubit

1√
2
(|0〉+e2πi0.k1k2k3 |1〉). We have

now produced all three qubits of the desired state F8|k1k2k3〉, but in the wrong order : the first
qubit should be the third and vice versa. So the final step is just to swap qubits 1 and 3. Figure 4.1
illustrates the circuit in the case n = 3. Here the black circles indicate the control-qubits for each
of the controlled-Rs operations, and the operation at the end of the circuit swaps qubits 1 and 3.
The general case works analogously: starting with ℓ = 1, we apply a Hadamard to |kℓ〉 and then
“rotate in” the additional phases required, conditioned on the values of the later bits kℓ+1 . . . kn.
Some swap gates at the end then put the qubits in the right order.2

Figure 4.1: The circuit for the 3-qubit QFT

Since the circuit involves n qubits, and at most n gates are applied to each qubit, the overall
circuit uses at most n2 gates. In fact, many of those gates are phase gates Rs with s≫ log n, which
are very close to the identity and hence don’t do much anyway. We can actually omit those from the
circuit, keeping only O(log n) gates per qubit and O(n log n) gates overall. Intuitively, the overall
error caused by these omissions will be small (Exercise 4 asks you to make this precise). Finally,
note that by inverting the circuit (i.e., reversing the order of the gates and taking the adjoint U∗

of each gate U) we obtain an equally efficient circuit for the inverse Fourier transform F−1
N = F ∗

N .

4.6 Application: phase estimation

Suppose we can apply a unitary U and we are given an eigenvector |ψ〉 of U (U |ψ〉 = λ|ψ〉), and
we would like to approximate the corresponding eigenvalue λ. Since U is unitary, λ must have
magnitude 1, so we can write it as λ = e2πiφ for some real number φ ∈ [0, 1); the only thing that
matters is this phase φ. Suppose for simplicity that we know that φ = 0.φ1 . . . φn can be written
with n bits of precision. Then here’s the algorithm for phase estimation:

1. Start with |0n〉|ψ〉

2. For N = 2n, apply FN to the first n qubits to get 1√
2n

∑N−1
j=0 |j〉|ψ〉

(in fact, H⊗n ⊗ I would have the same effect)

2We can implement a SWAP-gate using CNOTs (Exercise 2.4); CNOTs can in turn be constructed from Hadamard
and controlled-R1 (= controlled-Z) gates, which are in the set of elementary gates we allow here.
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3. Apply the map |j〉|ψ〉 7→ |j〉U j |ψ〉 = e2πiφj |j〉|ψ〉. In other words, apply U to the second
register for a number of times given by the first register.

4. Apply the inverse Fourier transform F−1
N to the first n qubits and measure the result.

Note that after step 3, the first n qubits are in state 1√
N

∑N−1
j=0 e2πiφj |j〉 = FN |2nφ〉, hence the

inverse Fourier transform is going to give us |2nφ〉 = |φ1 . . . φn〉 with probability 1.

In case φ cannot be written exactly with n bits of precision, one can show that this procedure
still (with high probability) spits out a good n-bit approximation to φ. We’ll omit the calculation.

Exercises

1. For ω = e2πi/3 and F3 =
1√
3




1 1 1
1 ω ω2

1 ω2 ω


, calculate F3




0
1
0


 and F3




1
ω2

ω




2. Prove that the Fourier coefficients of the convolution of vectors a and b are the product of
the Fourier coefficients of a and b. In other words, prove that for every a, b ∈ RN and every

ℓ ∈ {0, . . . , N − 1} we have
(
â ∗ b

)
ℓ
= âℓ · b̂ℓ. Here the Fourier transform â is defined as the

vector FNa, and the ℓ-entry of the convolution-vector a∗ b is (a∗ b)ℓ = 1√
N

∑N−1
j=0 ajbℓ−jmodN .

3. (H) The total variation distance between two probability distributions P and Q on the same
set, is defined as dTV D(P,Q) = 1

2

∑
i |P (i)−Q(i)|. An equivalent alternative way to definite

this: dTV D(P,Q) is the maximum, over all events E, of |P (E) − Q(E)|. Hence dTV D(P,Q)
is small iff all events have roughly the same probability under P and under Q.

The Euclidean distance between two states |φ〉 =
∑

i αi|i〉 and |ψ〉 =
∑

i βi|i〉 is defined as
‖|φ〉 − |ψ〉‖ =

√∑
i |αi − βi|2. Assume the two states are unit vectors with (for simplicity)

real amplitudes. Suppose the Euclidean distance is small: ‖|φ〉 − |ψ〉‖ = ǫ. If we measure |φ〉
in the computational basis then the probability distribution over the outcomes is given by
the ‖αi|2, and if we measure |ψ〉 the probabilities are |βi|2. Show that these distributions are
close: the total variation distance 1

2

∑
i

∣∣α2
i − β2i

∣∣ is ≤ ǫ.

4. (H) The operator norm of a matrix A is defined as ‖A‖ = max
v:‖v‖=1

‖Av‖.
The distance between two matrices A and B is defined as ‖A−B‖.

(a) What is the distance between the 2× 2 identity matrix and the phase-gate

(
1 0
0 eiφ

)
?

(b) What is the distance between the 4× 4 identity matrix and the controlled version of the
phase gate of (a)?

(c) What is the distance between the 2n × 2n identity matrix I2n and the controlled phase
gate of (b) tensored with I2n−2?

(d) Suppose we have a product of n-qubit unitaries U = UTUT−1 · · ·U1 (for instance, each Ui

could be an elementary gate on a few qubits, tensored with identity on the other qubits).
Suppose we drop the j-th gate from this sequence: U ′ = UTUT−1 · · ·Uj+1Uj−1 · · ·U1.
Show that ‖U ′ − U‖ = ‖I − Uj‖.
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(e) Now we also drop the k-th unitary: U ′′ = UTUT−1 · · ·Uj+1Uj−1 · · · · · ·Uk+1Uk−1 · · ·U1.
Show that ‖U ′′ − U‖ ≤ ‖I − Uj‖+ ‖I − Uk‖.

(f) Give a quantum circuit with O(n log n) elementary gates that has distance less than 1/n
from the Fourier transform F2n .

5. Suppose a ∈ RN is a vector (indexed by ℓ = 0, . . . , N − 1) which is r-periodic in the following
sense: there exists an integer r such that aℓ = 1 whenever ℓ is an integer multiple of r, and
aℓ = 0 otherwise. Compute the Fourier transform FN a of this vector, i.e., write down a
formula for the entries of the vector FNa. Assuming r divides N , write down a simple closed
form for the formula for the entries. Assuming also r ≪ N , what are the entries with largest
magnitude in the vector FN a?
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Chapter 5

Shor’s Factoring Algorithm

5.1 Factoring

Probably the most important quantum algorithm so far is Shor’s factoring algorithm [129]. It can
find a factor of a composite number N in roughly (logN)2 steps, which is polynomial in the length
logN of the input. On the other hand, there is no known classical (deterministic or randomized)
algorithm that can factor N in polynomial time. The best known classical randomized algorithms
run in time roughly

2(logN)α ,

where α = 1/3 for a heuristic upper bound [98] and α = 1/2 for a rigorous upper bound [99].
In fact, much of modern cryptography is based on the conjecture that no fast classical factoring
algorithm exists [122]. All this cryptography (for example RSA) would be broken if Shor’s algorithm
could be physically realized. In terms of complexity classes: factoring (rather, the decision problem
equivalent to it) is provably in BQP but is not known to be in BPP. If indeed factoring is not
in BPP, then the quantum computer would be the first counterexample to the “strong” Church-
Turing thesis, which states that all “reasonable” models of computation are polynomially equivalent
(see [62] and [118, p.31,36]).

5.2 Reduction from factoring to period-finding

The crucial observation of Shor was that there is an efficient quantum algorithm for the problem
of period-finding and that factoring can be reduced to this, in the sense that an efficient algorithm
for period-finding implies an efficient algorithm for factoring.

We first explain the reduction. Suppose we want to find factors of the composite number N > 1.
We may assume N is odd and not a prime power, since those cases can easily be filtered out by a
classical algorithm. Now randomly choose some integer x ∈ {2, . . . , N − 1} which is coprime1 to
N . If x is not coprime to N , then the greatest common divisor of x and N is a nontrivial factor
of N , so then we are already done. From now on consider x and N are coprime, so x is an element

1The greatest common divisor of two integers a and b is the largest positive integer c that divides both a and b.
If gcd(a, b) = 1, then a and b are called coprime. The gcd can be computed efficiently (in time roughly linear in the
number of bits of a and b) on a classical computer by Euclid’s algorithm.
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of the multiplicative group Z∗
N . Consider the sequence

1 = x0 (mod N), x1 (mod N), x2 (mod N), . . .

This sequence will cycle after a while: there is a least 0 < r ≤ N such that xr = 1 (mod N). This
r is called the period of the sequence (a.k.a. the order of the element x in the group Z∗

N ). Assuming
N is odd and not a prime power (those cases are easy to factor anyway), it can be shown that with
probability ≥ 1/2, the period r is even and xr/2 + 1 and xr/2 − 1 are not multiples of N .2 In that
case we have:

xr ≡ 1 mod N ⇐⇒
(xr/2)2 ≡ 1 mod N ⇐⇒

(xr/2 + 1)(xr/2 − 1) ≡ 0 mod N ⇐⇒
(xr/2 + 1)(xr/2 − 1) = kN for some k.

Note that k > 0 because both xr/2 + 1 > 0 and xr/2 − 1 > 0 (x > 1). Hence xr/2 + 1 or xr/2 − 1
will share a factor with N . Because xr/2 + 1 and xr/2 − 1 are not multiples of N this factor will
be < N , and in fact both these numbers will share a non-trivial factor with N . Accordingly, if we
have r then we can compute the greatest common divisors gcd(xr/2 + 1, N) and gcd(xr/2 − 1, N),
and both of these two numbers will be non-trivial factors of N . If we are unlucky we might have
chosen an x that does not give a factor (which we can detect efficiently), but trying a few different
random x gives a high probability of finding a factor.

Thus the problem of factoring reduces to finding the period r of the function given by modular
exponentiation f(a) = xa mod N . In general, the period-finding problem can be stated as follows:

The period-finding problem:
We are given some function f : N → {0, . . . , N − 1} with the property that there is some unknown
r ∈ {0, . . . , N − 1} such that f(a) = f(b) iff a = b mod r. The goal is to find r.

We will show below how we can solve this problem efficiently, using O(log logN) evaluations of
f and O(log logN) quantum Fourier transforms. An evaluation of f can be viewed as analogous
to the application of a query in the previous algorithms. Even a somewhat more general kind of
period-finding can be solved by Shor’s algorithm with very few f -evaluations, whereas any classical
bounded-error algorithm would need to evaluate the function Ω(N1/3/

√
logN) times in order to

find the period [48].
How many steps (elementary gates) does Shor’s algorithm take? For a = NO(1), we can com-

pute f(a) = xa mod N in O((logN)2 log logN log log logN) steps by the “square-and-multiply”
method, using known algorithms for fast integer multiplication mod N , see Exercise 1.

2For those familiar with basic number theory, here is a proof for the special case where N = p1p2 is the product
of two distinct primes p1 and p2; for the general case see [117, Theorem A4.13]. By the Chinese remainder theorem,
choosing a uniformly random x mod N is equivalent to choosing, independently and uniformly at random, an x1
mod p1 and an x2 mod p2. Let r be the period of the sequence (xa mod N)a, and (for i ∈ {1, 2}) let ri be the period
of the sequence (xai mod pi)a. Because (xi, 1) generates a size-ri subgroup of the size-r group generated by (x1, x2),
Lagrange’s Theorem implies that ri divides r. Hence if r is odd then both r1 and r2 must be odd. The probability
that ri is odd is 1/2, because the group of numbers mod pi is cyclic and of even size, so half of its elements are squares.
Hence the probability that r is odd, is at most (1/2)2 = 1/4. If r is even, then xr/2 6= 1 mod N , for otherwise the
period would be at most r/2. If xr/2 = −1 mod N , then xr/2 = −1 mod p1 and mod p2, which has probability at
most (1/2)2 = 1/4. Hence Pr[r is odd or xr/2 = 1 or xr/2 = −1] ≤ Pr[r is odd] + Pr[xr/2 = −1] ≤ 1

4
+ 1

4
= 1

2
.
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Moreover, as explained in the previous chapter, the quantum Fourier transform can be im-
plemented using O((logN)2) steps. Accordingly, Shor’s algorithm finds a factor of N using an
expected number of O((logN)2(log logN)2 log log logN) gates, which is only slightly worse than
quadratic in the input length.

5.3 Shor’s period-finding algorithm

Now we will show how Shor’s algorithm finds the period r of the function f , given a “black-box” that
maps |a〉|0n〉 7→ |a〉|f(a)〉. We can always efficiently pick some q = 2ℓ such that N2 < q ≤ 2N2.
Then we can implement the Fourier transform Fq using O((logN)2) gates. Let Of denote the
unitary that maps |a〉|0n〉 7→ |a〉|f(a)〉, where the first register consists of ℓ qubits, and the second
of n = ⌈logN⌉ qubits.

|0〉
...

|0〉

|0〉

|0〉

measure

measure

...Fq

...
...

Of

Fq

Figure 5.1: Shor’s period-finding algorithm

Shor’s period-finding algorithm is illustrated in Figure 5.1.3 Start with |0ℓ〉|0n〉. Apply the
QFT (or just ℓ Hadamard gates) to the first register to build the uniform superposition

1√
q

q−1∑

a=0

|a〉|0n〉.

The second register still consists of zeroes. Now use the “black-box” to compute f(a) in quantum
parallel:

1√
q

q−1∑

a=0

|a〉|f(a)〉.

Observing the second register gives some value f(s), with s < r. Let m be the number of elements
of {0, . . . , q − 1} that map to the observed value f(s). Because f(a) = f(s) iff a = s mod r, the
a of the form a = jr + s (0 ≤ j < m) are exactly the a for which f(a) = f(s). Thus the first
register collapses to a superposition of |s〉, |r+ s〉, |2r+ s〉, |3r+ s〉, . . .; this superposition runs until
the last number of the form jr + s that is < q, let’s define m to be the number of elements in
this superposition, i.e., the number of integers j such that jr+ s ∈ {0, . . . , q− 1} (depending on s,

3Notice the resemblance of the basic structure (Fourier, f -evaluation, Fourier) with the basic structure of Simon’s
algorithm (Hadamard, query, Hadamard).
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this m will be ⌈q/r⌉ or ⌊q/r⌋). The second register collapses to the classical state |f(s)〉. We can
now ignore the second register, and have in the first:

1√
m

m−1∑

j=0

|jr + s〉.

Applying the QFT again gives

1√
m

m−1∑

j=0

1√
q

q−1∑

b=0

e
2πi

(jr+s)b
q |b〉 = 1√

mq

q−1∑

b=0

e
2πi sb

q




m−1∑

j=0

e
2πi jrb

q


 |b〉.

We want to see which |b〉 have amplitudes with large squared absolute value—those are the b we are
likely to see if we now measure. Using that

∑m−1
j=0 zj = (1−zm)/(1−z) for z 6= 1 (see Appendix B),

we compute:

m−1∑

j=0

e
2πi jrb

q =
m−1∑

j=0

(
e
2πi rb

q

)j
=





m if e
2πi rb

q = 1

1−e
2πimrb

q

1−e
2πi rbq

if e
2πi rb

q 6= 1
(5.1)

Easy case: r divides q. Let us do an easy case first. Suppose r divides q, so the whole period
“fits” an integer number of times in the domain {0, . . . , q− 1} of f , and m = q/r. For the first case
of Eq. (5.1), note that e2πirb/q = 1 iff rb/q is an integer iff b is a multiple of q/r. Such b will have
squared amplitude equal to (m/

√
mq)2 = m/q = 1/r. Since there are exactly r such b, together

they have all the amplitude. Thus we are left with a superposition where only the b that are integer
multiples of q/r have nonzero amplitude. Observing this final superposition gives some random
multiple b = cq/r, with c a random number 0 ≤ c < r. Thus we get a b such that

b

q
=
c

r
,

where b and q are known to the algorithm, and c and r are not. There are φ(r) ∈ Ω(r/ log log r)
numbers smaller than r that are coprime to r [79, Theorem 328], so c will be coprime to r with
probability Ω(1/ log log r). Accordingly, an expected number of O(log logN) repetitions of the
procedure of this section suffices to obtain a b = cq/r with c coprime to r.4 Once we have such a
b, we can obtain r as the denominator by writing b/q in lowest terms.

Hard case: r does not divide q. Because our q is a power of 2, it is actually quite likely that
r does not divide q. However, the same algorithm will still yield with high probability a b which
is close to a multiple of q/r. Note that q/r is no longer an integer, and m = ⌊q/r⌋, possibly +1.
All calculations up to and including Eq. (5.1) are still valid. Using |1 − eiθ| = 2| sin(θ/2)|, we can
rewrite the absolute value of the second case of Eq. (5.1) to

|1− e
2πimrb

q |
|1− e

2πi rb
q |

=
| sin(πmrb/q)|
| sin(πrb/q)| .

4The number of required f -evaluations for period-finding can actually be reduced from O(log logN) to O(1).
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The right-hand side is the ratio of two sine-functions of b, where the numerator oscillates much
faster than the denominator because of the additional factor of m. Note that the denominator is
close to 0 (making the ratio large) iff b is close to an integer multiple of q/r. For most of those b,
the numerator won’t be close to 0. Hence, roughly speaking, the ratio will be small if b is far from
an integer multiple of q/r, and large for most b that are close to a multiple of q/r. Doing the
calculation precisely, one can show that with high probability the measurement yields a b such that

∣∣∣∣
b

q
− c

r

∣∣∣∣ ≤
1

2q
.

As in the easy case, b and q are known to us while c and r are unknown.
Two distinct fractions, each with denominator ≤ N , must be at least 1/N2 > 1/q apart.5

Therefore c/r is the only fraction with denominator ≤ N at distance ≤ 1/2q from b/q. Applying a
classical method called “continued-fraction expansion” to b/q efficiently gives us the fraction with
denominator ≤ N that is closest to b/q (see the next section). This fraction must be c/r. Again,
with good probability c and r will be coprime, in which case writing c/r in lowest terms gives us r.

5.4 Continued fractions

Let [a0, a1, a2, . . .] (finite or infinite) denote the real number

a0 +
1

a1 +
1

a2+
1
...

This is called a continued fraction (CF). The ai are the partial quotients. We assume these to be
positive natural numbers ([79, p.131] calls such CF “simple”). [a0, . . . , an] is the n-th convergent of
the fraction. [79, Theorem 149 & 157] gives a simple way to compute numerator and denominator
of the n-th convergent from the partial quotients:

If
p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2

q0 = 1, q1 = a1, qn = anqn−1 + qn−2

then [a0, . . . , an] =
pn
qn

. Moreover, this fraction is in lowest terms.

Note that qn increases at least exponentially with n (qn ≥ 2qn−2). Given a real number x, the
following “algorithm” gives a continued fraction expansion of x [79, p.135]:

a0 := ⌊x⌋, x1 := 1/(x− a0)
a1 := ⌊x1⌋, x2 := 1/(x1 − a1)
a2 := ⌊x2⌋, x3 := 1/(x2 − a2)
. . .

Informally, we just take the integer part of the number as the partial quotient and continue with the
inverse of the decimal part of the number. The convergents of the CF approximate x as follows [79,
Theorem 164 & 171]:

5Consider two fractions z = x/y and z′ = x′/y′ with integer x, x′, y, y′ and y, y′ ≤ N . If z 6= z′ then |xy′−x′y| ≥ 1,
and hence |z − z′| = |(xy′ − x′y)/yy′| ≥ 1/|yy′| ≥ 1/N2.
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If x = [a0, a1, . . .] then

∣∣∣∣x− pn
qn

∣∣∣∣ <
1

q2n
.

Recall that qn increases exponentially with n, so this convergence is quite fast. Moreover, pn/qn
provides the best approximation of x among all fractions with denominator ≤ qn [79, Theorem 181]:

If n > 1, q ≤ qn, p/q 6= pn/qn, then

∣∣∣∣x− pn
qn

∣∣∣∣ <
∣∣∣∣x− p

q

∣∣∣∣.

Exercises

1. This exercise is about efficient classical implementation of modular exponentiation.

(a) (H) Given n-bit numbers x and N , compute the whole sequence
x0 mod N, x1 mod N , x2 mod N , x4 mod N , x8 mod N ,x16 mod N, . . . , x2

n−1
mod N ,

using O(n2 log(n) log log(n)) steps.

(b) Suppose n-bit number a can be written as a = an−1 . . . a1a0 in binary. Express xa mod
N as a product of the numbers computed in part (a).

(c) Show that you can compute f(a) = xa mod N in O(n2 log(n) log log(n)) steps.

2. Consider the function f(a) = 7a mod 10.

(a) What is the period r of f?

(b) Show how Shor’s algorithm finds the period of f , using a Fourier transform over q = 128
elements. Write down all intermediate superpositions of the algorithm for this case
(don’t just copy the general expressions from the notes, but instantiate them with actual
numbers as much as possible, incl. with the value of the period found in (a)). You may
assume you’re lucky, meaning the first run of the algorithm already gives a measurement
outcome b = cq/r with c coprime to r.

3. (H) This exercise explains basic RSA encryption. Suppose Alice wants to allow other people
to send encrypted messages to her, such that she is the only one who can decrypt them.
She believes that factoring an n-bit number can’t be done efficiently (efficient = in time
polynomial in n). So in particular, she doesn’t believe in quantum computing.

Alice chooses two large random prime numbers, p and q, and computes their product N =
p · q (a typical size is to have N a number of n = 1024 bits, which corresponds to both
p and q being numbers of roughly 512 bits). She computes the so-called Euler φ-function:
φ(N) = (p − 1)(q − 1); she also chooses an encryption exponent e, which doesn’t share any
nontrivial factor with φ(N) (i.e., e and φ(N) are coprime). Group theory guarantees there is
an efficiently computable decryption exponent d such that de = 1 mod φ(N). The public key
consists of e and N (Alice puts this on her homepage), while the secret key consists of d and N .
Any number m ∈ {1, . . . , N − 1} that is coprime to N , can be used as a message. There are
φ(N) such m, and these numbers form a group under the operation of multiplication mod N .
The number of bits n = ⌈log2N⌉ of N is the maximal length (in bits) of a message m and
also the length (in bits) of the encryption. The encryption function is defined as C(m) = me

mod N , and the decryption function is D(c) = cd mod N .
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(a) Give a randomized algorithm by which Alice can efficiently generate the secret and public
key.

(b) Show that Bob can efficiently compute the encoding C(m) of the message m that he
wants to send to Alice, knowing the public key but not the private key.

(c) Show that D(C(m)) = m for all possible messages.

(d) Show that Alice can efficiently decrypt the encryption C(m) she receives from Bob.

(e) Show that if Charlie could factor N , then he could efficiently decrypt Bob’s message.
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Chapter 6

Hidden Subgroup Problem

6.1 Hidden Subgroup Problem

6.1.1 Group theory reminder

A group G consists of a set of elements (which is usually denoted by G as well) and an operation
◦ : G×G→ G (often written as addition or multiplication), such that

1. the operation is associative: g ◦ (h ◦ k) = (g ◦ h) ◦ k for all g, h, k ∈ G;

2. there is an identity element e ∈ G satisfying e ◦ g = g ◦ e = g for every g ∈ G;

3. and every g ∈ G has an inverse g−1 ∈ G, such that g ◦ g−1 = g−1 ◦ g = e (if the group
operation is written as addition, then g−1 is written as −g).

We often abbreviate g ◦h to gh. The group is Abelian (or commutative) if gh = hg for all g, h ∈ G.
Simple examples of finite additive Abelian groups are G = {0, 1}n with bitwise addition mod 2
as the group operation, and G = ZN , the “cyclic group” of integers mod N . The set G = Z∗

N is
the multiplicative group consisting of all integers in {1, . . . , N − 1} that are coprime to N , with
multiplication mod N as the group operation.1 An important example of a non-Abelian group is
the “symmetric group” Sn, which is the group of n! permutations of n elements, using composition
as the group operation.

A subgroup H of G, denoted H ≤ G, is a subset of G that is itself a group, i.e., it contains e
and is closed under taking products and inverses. A (left) coset of H is a set gH = {gh | h ∈ H},
i.e., a translation of H by the element g. All cosets of H have size |H|, and it is easy to show that
two cosets gH and g′H are either equal or disjoint, so the set of cosets partitions G into equal-sized
parts.2 Note that g and g′ are in the same coset of H iff g−1g′ ∈ H.

If T ⊆ G, then we use 〈T 〉 to denote the set of elements of G that we can write as products of
elements from T and their inverses. This H = 〈T 〉 is a subgroup of G, and T is called a generating
set of H. Note that adding one more element t 6∈ 〈T 〉 to T at least doubles the size of the generated
subgroup, because H and tH are disjoint and H ∪ tH ⊆ 〈T ∪ {t}〉. This implies that every H ≤ G

1Note that for prime p, the multiplicative group Z∗
p is isomorphic to the additive group Zp−1. However, for

general N , Z∗
N need not be isomorphic to Zφ(N) (where Euler’s φ-function counts the elements of {1, . . . , N − 1} that

are coprime to N).
2This also proves Lagrange’s theorem for finite groups: if H ≤ G then |H| divides |G|.
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has a generating set of size ≤ log |H| ≤ log |G|. We abbreviate 〈{γ}〉 to 〈γ〉, which is the cyclic
group generated by γ; every cyclic group of size N is isomorphic to ZN .

6.1.2 Definition and some instances of the HSP

The Hidden Subgroup Problem is the following:

Given a known group G and a function f : G→ S where S is some finite set.
Suppose f has the property that there exists a subgroup H ≤ G such that f is constant
within each coset, and distinct on different cosets: f(g) = f(g′) iff gH = g′H.
Goal: find H.

We assume f can be computed efficiently, meaning in time polynomial in log |G| (the latter is the
number of bits needed to describe an input g ∈ G for f). Since H may be large, “finding H”
typically means finding a generating set for H.

This looks like a rather abstract algebraic problem, but many important problems can be written
as an instance of the HSP. We will start with some examples where G is Abelian.

Simon’s problem. This is a very natural instance of HSP. Here G is the additive group Zn
2 =

{0, 1}n of size 2n, H = {0, s} for a “hidden” s ∈ {0, 1}n, and f satisfies f(x) = f(y) iff x− y ∈ H.
Clearly, finding the generator of H (i.e., finding s) solves Simon’s problem.

Period-finding. As we saw in Chapter 5, we can factor a large number N if we can solve the
following: given an x that is coprime toN and associated function f : Z → Z∗

N by f(a) = xa modN ,
find the period r of f .3 Since 〈x〉 is a size-r subgroup of the group Z∗

N , the period r divides
|Z∗

N | = φ(N). Hence we can restrict the domain of f to Zφ(N).

Period-finding is an instance of the HSP as follows. Let G = Zφ(N) and consider its subgroup
H = 〈r〉 of all multiples of r up to φ(N) (i.e., H = rZφ(N) = {0, r, 2r, . . . , φ(N) − r}). Note that
because of its periodicity, f is constant on each coset s+H of H, and distinct on different cosets.
Also, f is efficiently computable by repeated squaring. Since the hidden subgroup H is generated
by r, finding the generator of H solves the period-finding problem.

Discrete logarithm. Another problem often used in classical public-key cryptography is the
discrete logarithm problem: given a generator γ of a cyclic multiplicative group C of size N (so
C = {γa | a ∈ {0, . . . , N − 1}}), and A ∈ C, can we find the unique a ∈ {0, 1, . . . , N − 1} such that
γa = A? This a is called the discrete logarithm of A (w.r.t. generator γ). It is generally believed
that classical computers need time roughly exponential in logN to compute a from A (and one
can actually prove this in a model where we can only implement group operations via some “black-
box”). This assumption underlies for instance the security of Diffie-Hellman key exchange (where
C = Z∗

p for some large prime p, see Exercise 3), as well as elliptic-curve cryptography.

Discrete log is an instance of the HSP as follows. We take G = ZN × ZN and define function
f : G → C by f(x, y) = γxA−y, which is efficiently computable by repeated squaring. For group
elements g1 = (x1, y1), g2 = (x2, y2) ∈ G we have

f(g1) = f(g2) ⇐⇒ γx1−ay1 = γx2−ay2 ⇐⇒ (x1 − x2) = a(y1 − y2) mod N ⇐⇒ g1 − g2 ∈ 〈(a, 1)〉.
3This r is also known as the order of the element x in the group Z∗

N , so this problem is also known as order-finding.

44



Let H be the subgroup of G generated by the element (a, 1), then we have an instance of the HSP.
Finding the generator of the hidden subgroup H gives us a, solving the discrete log problem.

6.2 An efficient quantum algorithm if G is Abelian

In this section we show that HSPs where G (and hence H) is Abelian, and where f is efficiently
computable, can be solved efficiently by a quantum algorithm. This generalizes Shor’s factoring
algorithm, and will also show that discrete logarithms can be computed efficiently.

6.2.1 Representation theory and the quantum Fourier transform

We start by explaining the basics of representation theory. The idea here is to replace group
elements by matrices, so that linear algebra can be used as a tool in group theory. A d-dimensional
representation of a multiplicative group G is a map ρ : g 7→ ρ(g) from G to the set of d×d invertible
complex matrices, satisfying ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G. The latter property makes the map ρ
a homomorphism. It need not be an isomorphism; for example, the constant-1 function is a trivial
representation of any group. The character corresponding to ρ is the map χρ : G → C defined by
χρ(g) = Tr(ρ(g)).

Below we restrict attention to the case where G is Abelian (and usually finite). In this case
we may assume the dimension d to be 1 without loss of generality, so a representation ρ and the
corresponding character χρ are just the same function. Also, it is easy to see that the complex
values χρ(g) have modulus 1, because |χρ(g

k)| = |χρ(g)|k for all integers k. The “Basis Theorem” of
group theory says that every finite Abelian group G is isomorphic to a direct product ZN1×· · ·×ZNk

of cyclic groups. First consider just one cyclic group ZN , written additively. Consider the discrete
Fourier transform (Chapter 4), which is an N × N matrix. Ignoring the normalizing factor of

1/
√
N , its k-th column may be viewed as a map χk : ZN → C defined by χk(j) = ωjk

N , where
ωN = e2πi/N . Note that χk(j + j′) = χk(j)χk(j

′), so χk is actually a 1-dimensional representation
(i.e., a character function) of ZN . In fact, the N characters corresponding to the N columns of
the Fourier matrix are all the characters of ZN . For Abelian groups G that are (isomorphic to) a
product ZN1 ×· · ·×ZNk

of cyclic groups, the |G| = N1 · · ·Nk characters are just the products of the
characters of the individual cyclic groups ZNj . Note that the characters are pairwise orthogonal.

The set of all characters of G forms a group Ĝ with the operation of pointwise multiplication.
This is called the dual group of G. If H ≤ G, then the following is a subgroup of Ĝ of size |G|/|H|:

H⊥ = {χk | χk(h) = 1 for all h ∈ H}.

Let us interpret the quantum Fourier transform in terms of the characters. For k ∈ ZN , define the
state whose entries are the (normalized) values of χk:

|χk〉 =
1√
N

N−1∑

j=0

χk(j)|j〉 =
1√
N

N−1∑

j=0

ωjk
N |j〉.

With this notation, the QFT just maps the standard (computational) basis of CN to the orthonor-
mal basis corresponding to the characters:

FN : |k〉 7→ |χk〉.
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As we saw in Chapter 4, this map can be implemented by an efficient quantum circuit if N is a
power of 2. The QFT corresponding to a group G that is isomorphic to ZN1 × · · · ×ZNk

is just the
tensor product of the QFTs for the individual cyclic groups. For example, the QFT corresponding
to Z2 is the Hadamard gate H, so the QFT corresponding to Zn

2 is H⊗n (which is of course very
different from the QFT corresponding to Z2n).

6.2.2 A general algorithm for Abelian HSP

The following is an efficient quantum algorithm for solving the HSP for some Abelian group G
(written additively) and function f : G → S. This algorithm, sometimes called the “standard
algorithm” for HSP, was first observed by Kitaev [91] (inspired by Shor’s algorithm) and worked
out further by many, for instance Mosca and Ekert [113].

1. Start with |0〉|0〉, where the two registers have dimension |G| and |S|, respectively.

2. Create a uniform superposition over G in the first register:
1√
|G|

∑

g∈G
|g〉|0〉.

3. Compute f in superposition:
1√
|G|

∑

g∈G
|g〉|f(g)〉.

4. Measure the second register. This yields some value f(s) for unknown s ∈ G. The first
register collapses to a superposition over the g with the same f -value as s (i.e., the coset

s+H):
1√
|H|

∑

h∈H
|s+ h〉.

5. Apply the QFT corresponding to G to this state, giving
1√
|H|

∑

h∈H
|χs+h〉.

6. Measure and output the resulting g.

The key to understanding this algorithm is to observe that step 5 maps the uniform superposition
over the coset s+H to a uniform superposition over the labels of H⊥:

1√
|H|

∑

h∈H
|χs+h〉 =

1√
|H||G|

∑

h∈H

∑

g∈G
χs+h(g)|g〉

=
1√

|H||G|
∑

g∈G
χs(g)

∑

h∈H
χh(g)|g〉 =

√
|H|
|G|

∑

g:χg∈H⊥

χs(g)|g〉,

where the last equality follows from the orthogonality of characters of the group H (note that χg

restricted to H is a character of H, and it’s the constant-1 character iff χg ∈ H⊥):

∑

h∈H
χh(g) =

∑

h∈H
χg(h) =

{
|H| if χg ∈ H⊥

0 if χg 6∈ H⊥

The phases χs(g) do not affect the probabilities of the final measurement, since |χs(g)|2 = 1. The
above algorithm thus samples uniformly from the (labels of) elements of H⊥. Each such element
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χg ∈ H⊥ gives us a constraint on H because χg(h) = 1 for all h ∈ H.4 Generating a small number
of such elements will give sufficient information to find the generators of H itself. Consider our
earlier examples of Abelian HSP:

Simon’s problem. Recall that G = Zn
2 = {0, 1}n and H = {0, s} for the HSP corresponding to

Simon’s problem. Setting up the uniform superposition over G can be done by applying H⊗n to the
initial state |0n〉 of the first register. The QFT corresponding to G is just H⊗n. The 2n character
functions are χg(x) = (−1)x·g. The algorithm will uniformly sample from labels of elements of

H⊥ = {χg | χg(h) = 1 for all h ∈ H} = {χg | g · s = 0}.

Accordingly, the algorithm samples uniformly from the g ∈ {0, 1}n such that g · s = 0 (mod 2).
Doing this an expected O(n) times gives n− 1 linearly independent equations about s, from which
we can find s using Gaussian elimination.

Period-finding. For the HSP corresponding to period-finding, G = Zφ(N) and H = 〈r〉, and

H⊥ = {χb | e2πibh/φ(N) = 1 for all h ∈ H} = {χb | br/φ(N) ∈ {0, . . . , r − 1}}.

Accordingly, the output of the algorithm is an integer multiple b = cφ(N)/r of φ(N)/r, for uniformly
random c ∈ {0, . . . , r − 1}.

Notice that the algorithm doesn’t actually know φ(N), which creates two problems. First, of
the 4 numbers b, c, φ(N), r involved in the equation b = cφ(N)/r we only know the measurement
outcome b, which is not enough to compute r. Second, step 5 of the algorithm wants to do a
QFT corresponding to the group Zφ(N) but it doesn’t know φ(N) (and even if we knew φ(N),
we’ve only seen how to efficiently do a QFT over Zq when q is a power of 2). Fortunately, if we
actually use the QFT over Zq for q a power of 2 that is roughly N2 (and in step 1 set up a uniform
superposition over Zq instead of G), then one can show that the above algorithm still works, with
high probability yielding a number b that’s close to an integer multiple of q/r.5 This is basically
just Shor’s algorithm as described in Chapter 5.

Discrete logarithm. For the HSP corresponding to the discrete log problem, whereG = ZN×ZN

and H = 〈(a, 1)〉, a small calculation shows that H⊥ = {χ(c,−ac) | c ∈ ZN} (see Exercise 2). Hence

sampling from H⊥ yields some label (c,−ac) ∈ G of an element of H⊥, from which we can compute
the discrete logarithm a. The QFT corresponding to G is FN ⊗ FN , which we don’t know how to
implement efficiently, but which we can replace by Fq ⊗ Fq for some power-of-2 q somewhat larger
than N .

In the above algorithm we assumed G is a finite Abelian group. These techniques have been much
extended to the case of infinite groups such as G = Z and even Rd, to obtain efficient quantum
algorithms for problems like Pell’s equation [76], and computing properties in number fields [30].

4This is a linear constraint mod N . For example, say G = ZN1 × ZN2 , and g = (g1, g2) is the label of an element
of H⊥. Then 1 = χg(h) = ωg1h1

N1
ωg2h2
N2

for all h = (h1, h2) ∈ H, equivalently g1h1N2 + g2h2N1 = 0 mod N .
5There is something to be proved here, but we will skip the details. In fact one can even use a Fourier transform

for q = O(N) instead of O(N2) [75]. Note that this also reduces the number of qubits used by Shor’s algorithm from
roughly 3 logN to roughly 2 logN .
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6.3 General non-Abelian HSP

6.3.1 The symmetric group and the graph isomorphism problem

The Abelian HSP covers a number of interesting computational problems, including period-finding
and discrete log. However, there are also some interesting computational problems that can be cast
as an instance of HSP with a non-Abelian G. Unfortunately we do not have an efficient algorithm
for most non-Abelian HSPs.

A good example is the graph isomorphism (GI) problem: given two undirected n-vertex graphs
G1 and G2, decide whether there exists a bijection taking the vertices of G1 to those of G2 that
makes the two graphs equal. No efficient classical algorithm is known for GI, so it would be great
if we could solve this efficiently on a quantum computer.6

How can we try to solve this via the HSP? Let G be the 2n-vertex graph that is the disjoint
union of the two graphs G1 and G2. Let G = S2n. Let f map π ∈ S2n to π(G), which means that
edge (i, j) becomes edge (π(i), π(j)). Let H be the automorphism group Aut(G) of G, which is the
set of all π ∈ S2n that map G to itself. This gives an instance of the HSP, and solving it would give
us a generating set of H = Aut(G).

Assume for simplicity that each of G1 and G2 is connected. If G1 and G2 are not isomorphic,
then the only automorphisms of G are the ones that permute vertices inside G1 and inside G2:
Aut(G) = Aut(G1) × Aut(G2). However, if the two graphs are isomorphic, then Aut(G) will also
contain a permutation that swaps the first n with the second n vertices. Accordingly, if we were
able to find a generating set of the hidden subgroup H = Aut(G), then we can just check whether
all generators are in Aut(G1)×Aut(G2) and decide graph isomorphism.

6.3.2 Non-Abelian QFT on coset states

One can try to design a quantum algorithm for general, non-Abelian instances of the HSP along
the lines of the earlier standard algorithm: set up a uniform superposition over a random coset
of H, apply the QFT corresponding to G, measure the final state, and hope that the result gives
useful information about H. QFTs corresponding to non-Abelian G are much more complicated
than in the Abelian case, because the representations ρ can have dimension d > 1 and hence do
not coincide with the corresponding character χρ. For completeness, let’s write down the QFT

anyway. Let Ĝ denote the set of “irreducible” representations of G, and dim(ρ) be the dimension of
a particular ρ ∈ Ĝ. We can assume without loss of generality that the dim(ρ)×dim(ρ) matrices ρ(g)
are unitary. The QFT corresponding to G is defined as follows:

|g〉 7−→
∑

ρ∈Ĝ

√
dim(ρ)

|G| |ρ〉
dim(ρ)∑

i,j=1

ρ(g)ij |i, j〉,

where |ρ〉 denotes a name or label of ρ. It can be shown that this map is unitary. In particular,
|G| =

∑
ρ∈Ĝ dim(ρ)2, which implies that the dimensions on the left and the right are the same,

and that the right-hand state has norm 1. In many cases this QFT can still be implemented
with an efficient quantum circuit, including for the symmetric group G = S2n that is relevant for

6For a long time, the best algorithm for GI took time roughly 2
√
n [15], but in a recent breakthrough Babai gave a

“quasi-polynomial” algorithm, which is n(logn)O(1)

[14]. That’s not yet polynomial time, but a lot faster than before.
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graph isomorphism [17, 111]. However, that is not enough for an efficient algorithm: the standard
algorithm does not always yield much information about the hidden H ≤ S2n [73, 112, 77].

There are some special cases of non-Abelian HSP that can be computed efficiently, for instance
for normal subgroups [78], solvable groups [136], and nil-2 groups [86].

6.3.3 Query-efficient algorithm

While we do not have a general efficient quantum algorithm for the non-Abelian HSP, there does
exist an algorithm that needs to compute f only a few times, i.e., a query-efficient algorithm. We
will sketch this now. Consider steps 1–4 of the standard algorithm for the Abelian case. Even in the
general non-Abelian case, this produces a coset state, i.e., a uniform superposition over the elements
of a uniformly random coset of H. Suppose we do this m times, producing a state |ψH〉 which is
the tensor product of m random coset states.7 One can show that the states corresponding to
different hidden subgroups are pairwise almost orthogonal: |〈ψH |ψH′〉| is exponentially small in m.
The hidden subgroup H is generated by a set of ≤ log |G| elements. Hence the total number of

possible H that we want to distinguish is at most
( |G|
log |G|

)
≤ 2(log |G|)2 . This allows us to define a

POVM measurement {EH} (see Section 1.2.2), with one element for each possible hidden subgroup
H, such that if we measure |ψH〉 with this POVM, then we are likely to get the correct outcome H
(see Exercise 4 for the idea). Choosing m some polynomial in log |G| suffices for this. While this
POVM need not be efficiently implementable, at least the number of times we need to query the
function f is only m. Ettinger et al. [63] even showed that m = O(log |G|) suffices.

For those interested in more HSP results, a good source is Childs’s lecture notes [44, Chapter 4–14].

Exercises

1. Show that the Deutsch-Jozsa problem for n = 1 (i.e., where f : {0, 1} → {0, 1}) is an instance
of the HSP. Explicitly say what G, f , H, and H⊥ are, and how sampling from H⊥ allows you
to solve the problem.

2. Show that for the HSP corresponding to discrete log, we indeed haveH⊥ = {χ(c,−ac) | c ∈ ZN}
as claimed near the end of Section 6.2.2.

3. This exercise explains Diffie-Hellman key exchange, which is secure under the assumption
that the adversary cannot efficiently compute discrete logarithms. Alice and Bob choose a
public key consisting of a large prime p (say, of 1000 or 2000 bits) and generator γ of the
group Z∗

p, which has size φ(p) = p − 1. To agree on a shared secret key K, Alice chooses a
uniformly random a ∈ {0, . . . , p− 2} and sends Bob the group element A = γa; Bob chooses
a uniformly random b ∈ {0, . . . , p−2} and sends Alice B = γb. Alice and Bob use K = γab as
their secret key, which they can use for instance to encrypt messages using a one-time pad.

(a) Show that both Alice and Bob can efficiently compute K given the communication.

(b) Show that an adversary who can efficiently compute discrete logarithms, can compute
K from the public key and the communication tapped from the channel (i.e., A, B, p
and γ, but not a and b).

7Strictly speaking we should consider the tensor product of m copies of the mixed state ρH that is the uniform
average over all (pure) coset states of H (see Section 13.1 for the notion of a mixed state).
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4. Suppose we are given an unknown state |ψi〉 from a known set of K states {|ψj〉 | j ∈ [K]}.

(a) Suppose the states are pairwise orthogonal: 〈ψj |ψk〉 = δjk. Give a projective measure-
ment that determines i with probability 1.

(b) (H) Suppose the states are pairwise almost orthogonal: |〈ψj |ψk〉| ≪ 1/K2 for all distinct

j, k ∈ [K]. Define Ei =
2
3 |ψi〉〈ψi|. Show that I −

∑K
i=1Ei is positive semidefinite.

(c) Under the same assumption as (b), give a POVM that determines i with success prob-
ability at least 2/3.

5. (H) Suppose we have an efficient algorithm to produce, from a given undirected n-vertex
graph G, the following n2-qubit state, where the basis states correspond to n × n adjacency
matrices:

aG
∑

π∈Sn

|π(G)〉.

Here aG is a scalar that makes the norm equal to 1. Use this procedure to efficiently decide
(with high success probability) whether two given graphs G1 and G2 are isomorphic or not.
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Chapter 7

Grover’s Search Algorithm

The second-most important quantum algorithm after Shor’s, is Grover’s quantum search problem
from 1996 [74]. While it doesn’t provide an exponential speed-up, it is much more widely applicable
than Shor’s algorithm.

7.1 The problem

The search problem:
For N = 2n, we are given an arbitrary x ∈ {0, 1}N . The goal is to find an i such that xi = 1 (and
to output ‘no solutions’ if there are no such i).

This problem may be viewed as a simplification of the problem of searching an N -slot unordered
database. Classically, a randomized algorithm would need Θ(N) queries to solve the search problem.
Grover’s algorithm solves it in O(

√
N) queries, and O(

√
N logN) other gates.

7.2 Grover’s algorithm

Let Ox,±|i〉 = (−1)xi |i〉 denote the ±-type oracle for the input x, and R be the unitary transfor-
mation that puts a −1 in front all basis states |i〉 where i 6= 0n, and that does nothing to the other
basis states |0n〉.1 The Grover iterate is G = H⊗nRH⊗nOx,±. Note that 1 Grover iterate makes 1
query.

Grover’s algorithm starts in the n-bit state |0n〉, applies a Hadamard transformation to each
qubit to get the uniform superposition |U〉 = 1√

N

∑
i |i〉 of all N indices, applies G to this state k

times (for some k to be chosen later), and then measures the final state. Intuitively, what happens
is that in each iteration some amplitude is moved from the indices of the 0-bits to the indices of
the 1-bits. The algorithm stops when almost all of the amplitude is on the 1-bits, in which case a
measurement of the final state will probably give the index of a 1-bit. Figure 7.1 illustrates this.

To analyze this, define the following “good” and “bad” states:

|G〉 = 1√
t

∑

i:xi=1

|i〉 and |B〉 = 1√
N − t

∑

i:xi=0

|i〉.

1This R is independent of the input x, and can be implemented using O(n) elementary gates (see Exercise 2.7).
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Figure 7.1: Grover’s algorithm, with k Grover iterates

Then the uniform state over all indices edges can be written as

|U〉 = 1√
N

N−1∑

i=0

|i〉 = sin(θ)|G〉+ cos(θ)|B〉, for θ = arcsin(
√
t/N).

The Grover iterate G is actually the product of two reflections2 (in the 2-dimensional space spanned
by |G〉 and |B〉): Ox,± is a reflection through |B〉, and

H⊗nRH⊗n = H⊗n(2|0n〉〈0n| − I)H⊗n = 2|U〉〈U | − I

is a reflection through |U〉. Here is Grover’s algorithm restated, assuming we know the fraction of
solutions is ε = t/N :

1. Set up the starting state |U〉 = H⊗n|0〉

2. Repeat the following k = O(1/
√
ε) times:

(a) Reflect through |B〉 (i.e., apply Ox,±)

(b) Reflect through |U〉 (i.e., apply H⊗nRH⊗n)

3. Measure the first register and check that the resulting i is a solution

Geometric argument: There is a fairly simple geometric argument why the algorithm works.
The analysis is in the 2-dimensional real plane spanned by |B〉 and |G〉. We start with

|U〉 = sin(θ)|G〉+ cos(θ)|B〉.

The two reflections (a) and (b) increase the angle from θ to 3θ, moving us towards the good state,
as illustrated in Figure 7.2.

The next two reflections (a) and (b) increase the angle with another 2θ, etc. More generally,
after k applications of (a) and (b) our state has become

sin((2k + 1)θ)|G〉+ cos((2k + 1)θ)|B〉.
2A reflection through a subspace V is a unitary A such that Av = v for all vectors v ∈ V , and Aw = −w for

all w orthogonal to V . In the two reflections used in one Grover iteration, the subspace V will be 1-dimensional,
corresponding to |B〉 and to |U〉, respectively.
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Figure 7.2: The first iteration of Grover: (left) start with |U〉, (middle) reflect through |B〉 to get
Ox,±|U〉, (right) reflect through |U〉 to get G|U〉

If we now measure, the probability of seeing a solution is Pk = sin((2k + 1)θ)2. We want Pk to be
as close to 1 as possible. Note that if we can choose k̃ = π/4θ − 1/2, then (2k̃ + 1)θ = π/2 and
hence Pk̃ = sin(π/2)2 = 1. An example where this works is if t = N/4, for then θ = π/6 and k̃ = 1.

Unfortunately k̃ = π/4θ − 1/2 will usually not be an integer, and we can only do an integer
number of Grover iterations. However, if we choose k to be the integer closest to k̃, then our final
state will still be close to |G〉 and the failure probability will still be small (assuming t≪ N):

1− Pk = cos((2k + 1)θ)2 = cos((2k̃ + 1)θ + 2(k − k̃)θ)2

= cos(π/2 + 2(k − k̃)θ)2 = sin(2(k − k̃)θ)2 ≤ sin(θ)2 =
t

N
,

where we used |k − k̃| ≤ 1/2. Since arcsin(θ) ≥ θ, the number of queries is k ≤ π/4θ ≤ π
4

√
N
t .

Algebraic argument: For those who don’t like geometry, here’s an alternative (but equivalent)
algebraic argument. Let ak denote the amplitude of the indices of the t 1-bits after k Grover
iterates, and bk the amplitude of the indices of the 0-bits. Initially, for the uniform superposition
|U〉 we have a0 = b0 = 1/

√
N . Using that H⊗nRH⊗n = [2/N ] − I, where [2/N ] is the N × N

matrix in which all entries are 2/N , we find the following recursion:

ak+1 =
N − 2t

N
ak +

2(N − t)

N
bk

bk+1 =
−2t

N
ak +

N − 2t

N
bk

The following formulas, due to Boyer et al. [31], provide a closed form for ak and bk (which may be
verified by substituting them into the recursion). With θ = arcsin(

√
t/N) as before, define

ak =
1√
t
sin((2k + 1)θ)

bk =
1√
N − t

cos((2k + 1)θ)

Accordingly, after k iterations the success probability (the sum of squares of the amplitudes of the
locations of the t 1-bits) is the same as in the geometric analysis

Pk = t · a2k = (sin((2k + 1)θ))2.
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Accordingly, we have a bounded-error quantum search algorithm with O(
√
N/t) queries, assuming

we know t. We now list (without full proofs) a number of useful variants of grover:

• If we know t exactly, then the algorithm can be tweaked to end up in exactly the good state.
Roughly speaking, you can make the angle θ slightly smaller, such that k̃ = π/4θ − 1/2
becomes an integer (see Exercise 7).

• If we do not know t, then there is a problem: we do not know which k to use, so we do
not know when to stop doing the Grover iterates. Note that if k gets too big, the success
probability Pk = (sin((2k + 1)θ))2 goes down again! However, a slightly more complicated
algorithm due to [31] (basically running the above algorithm with systematic different guesses
for k) shows that an expected number of O(

√
N/t) queries still suffices to find a solution if

there are t solutions. If there is no solution (t = 0), then we can easily detect that by checking
xi for the i that the algorithm outputs.

• If we know a lower bound τ on the actual (possibly unknown) number of solutions t, then the
above algorithm uses an expected number of O(

√
N/τ) queries. If we run this algorithm for up

to three times its expected number of queries, then (by Markov’s inequality) with probability
at least 2/3 it will have found a solution. This way we can turn an expected runtime into a
worst-case runtime.

• If we do not know t but would like to reduce the probability of not finding a solution to some
small ε > 0, then we can do this using O(

√
N log(1/ε)) queries (see Exercise 8).

NB: The important part here is that the log(1/ε) is inside the square-root; usual error-
reduction by O(log(1/ε)) repetitions of basic Grover would give the worse upper bound of
O(

√
N log(1/ε)) queries.

7.3 Amplitude amplification

The analysis that worked for Grover’s algorithm is actually much more generally applicable (we
will also see it again in the next chapter). Let χ : Z → {0, 1} be any Boolean function; inputs
z ∈ Z satisfying χ(z) = 1 are called solutions. Suppose we have an algorithm to check whether z
is a solution. This can be written as a unitary Oχ that maps |z〉 7→ (−1)χ(z)|z〉. Suppose also we
have some (quantum or classical) algorithm A that uses no intermediate measurements and has
probability p of finding a solution when applied to starting state |0〉. Classically, we would have
to repeat A roughly 1/p times before we find a solution. The amplitude amplification algorithm
below (from [33]) only needs to run A and A−1 O(1/

√
p) times:

1. Setup the starting state |U〉 = A|0〉

2. Repeat the following O(1/
√
p) times:

(a) Reflect through |B〉 (i.e., apply Oχ)

(b) Reflect through |U〉 (i.e., apply ARA−1)

3. Measure the first register and check that the resulting element x is marked.
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Defining θ = arcsin(
√
p) and good and bad states |G〉 and |B〉 in analogy with the earlier geometric

argument for Grover’s algorithm, the same reasoning shows that amplitude amplification indeed
finds a solution with high probability. This way, we can speed up a very large class of classical
heuristic algorithms: any algorithm that has some non-trivial probability of finding a solution
can be amplified to success probability nearly 1 (provided we can efficiently check solutions, i.e.,
implement Oχ).

Note that the Hadamard transform H⊗n can be viewed as an algorithm with success probability
p = t/N for a search problem of size N with t solutions, because H⊗n|0n〉 is the uniform superpo-
sition over all N locations. Hence Grover’s algorithm is a special case of amplitude amplification,
where Oχ = Ox,± and A = H⊗n.

7.4 Application: satisfiability

Grover’s algorithm has many applications: basically any classical algorithm that has some search-
component can be improved using Grover’s algorithm as a subroutine. This includes many basic
computer applications such as finding shortest paths and minimum spanning trees, various other
graph algorithms, etc.

We can also use it to speed up the computation of NP-complete problems (see Chapter 12 for
the complexity class NP), albeit only quadratically, not exponentially. As an example, consider
the satisfiability problem: we are given a Boolean formula φ(i1, . . . , in) and want to know if it has
a satisfying assignment, i.e., a setting of the bits i1, . . . , in that makes φ(i1, . . . , in) = 1. A classical
brute-force search along all 2n possible assignments takes time roughly 2n.

To find a satisfying assignment faster, define the N = 2n-bit input to Grover’s algorithm by
xi = φ(i), where i ∈ {0, 1}n. For a given assignment i = i1 . . . in it is easy to compute φ(i)
classically in polynomial time. We can write that computation as a reversible circuit (using only
Toffoli gates), corresponding to a unitary Uφ that maps |i, 0, 0〉 7→ |i, φ(i), wi〉, where the third
register holds some classical workspace the computation may have needed. To apply Grover we
need an oracle that puts the answer in the phase and doesn’t leave workspace around (as that
would mess up the interference effects). Define Ox as the unitary that first applies Uφ, then applies
a Z-gate to the second register, and then applies U−1

φ to “clean up” the workspace again. This has
the form we need for Grover: Ox,±|i〉 = (−1)xi |i〉, where we omitted the workspace qubits, which
start and end in |0〉. Now we can run Grover and find a satisfying assignment with high probability
if there is one, using a number of elementary operations that is

√
2n times some polynomial factor.

If brute-force search is basically the best thing we can do classically to solve some particularNP-
hard problem, then that computation can be sped up quadratically on a quantum computer using
Grover search like above. However, there are also NP-hard problems where we know algorithms
that still run in exponential time, but that are much faster than brute-force search. For example,
consider the famous Traveling Salesman Problem (TSP): given an n-vertex graph with weights
(distances) on the edges, find the shortest tour in this graph that visits every node exactly once.
Since there are (n− 1)! many different tours, classical brute-force search would take time (n− 1)!,
times some polynomial in n. Grover’s algorithm could speed this up quadratically. However, there
are much more clever classical algorithms for TSP. In particular, the Bellman-Held-Karp dynamic
programming algorithm solves TSP in time 2n, times a polynomial in n. This algorithm is much
faster than O(

√
n!) (which is roughly (n/e)n/2), and is not amenable to a straightforward speed-

up using Grover. Nevertheless, it turns out quantum computers can still solve TSP polynomially
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faster than the best known classical algorithms, albeit in a much more complicated way than by
just applying Grover [9].

Exercises

1. (a) Suppose n = 2, and x = x00x01x10x11 = 0001. Give the initial, intermediate, and final
superpositions in Grover’s algorithm, for k = 1 queries. What is the success probability?

(b) Give the final superposition for the above x after k = 2 iterations. What is now the
success probability?

2. Show that if the number of solutions is t = N/4, then Grover’s algorithm always finds a
solution with certainty after just one query. How many queries would a classical algorithm
need to find a solution with certainty if t = N/4? And if we allow the classical algorithm
error probability 1/10?

3. (H) Let x = x0 . . . xN−1 be a sequence of distinct integers, where N = 2n. We can query
these in the usual way, i.e., we can apply unitary Ox : |i, 0〉 7→ |i, xi〉, as well as its inverse.
The minimum of x is defined as min{xi | i ∈ {0, . . . , N−1}}. Give a quantum algorithm that
finds (with probability ≥ 2/3) an index achieving the minimum, using at most O(

√
N logN)

queries to the input, and prove that this algorithm works.

Bonus: give a quantum algorithm that uses O(
√
N) queries.

4. Let x = x0 . . . xN−1, where N = 2n and xi ∈ {0, 1}n, be an input that we can query in the
usual way. We are promised that this input is 2-to-1: for each i there is exactly one other j
such that xi = xj .

3 Such an (i, j)-pair is called a collision.

(a) Suppose S is a uniformly randomly chosen set of s ≤ N/2 elements of {0, . . . , N − 1}.
What is the probability that there exists a collision in S?

(b) (H) Give a classical randomized algorithm that finds a collision (with probability ≥ 2/3)
using O(

√
N) queries to x.

(c) (H) Give a quantum algorithm that finds a collision (with probability ≥ 2/3) using
O(N1/3) queries.

5. Suppose we have a database with N = 2n binary slots, containing t ones (solutions) and N−t
zeroes. You may assume you know the number t.

(a) Show that we can use Grover’s algorithm to find the positions of all t ones, using an
expected number of O(t

√
N) queries to the database. You can argue on a high level, no

need to draw actual quantum circuits.

(b) (H) Show that this can be improved to an expected number of O(
√
tN) queries.

6. Consider an undirected graph G = (V,E), with vertex set V = {1, . . . , n} and edge-set E.
We say G is connected if, for every pair of vertices i, j ∈ V , there is a path between i and
j in the graph. The adjacency matrix of G is the n × n Boolean matrix M where Mij = 1

3The 2-to-1 inputs for Simon’s algorithm are a very special case of this, where xi equals xj if i = j ⊕ s for fixed
but unknown s ∈ {0, 1}n.
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iff (i, j) ∈ E (note that M is a symmetric matrix because G is undirected). Suppose we are
given input graph G in the form of a unitary that allows us to query whether an edge (i, j)
is present in G or not:

OM : |i, j, b〉 7→ |i, j, b⊕Mij〉.

(a) Assume G is connected. Suppose we have a set A of edges which we already know to be
in the graph (so A ⊆ E; you can think of A as given classically, you don’t have to query
it). Let GA = (V,A) be the subgraph induced by only these edges, and suppose GA is
not connected, so it consists of c > 1 connected components. Call an edge (i, j) ∈ E
“good” if it connects two of these components. Give a quantum algorithm that finds a
good edge with an expected number of O(n/

√
c− 1) queries to M .

(b) Give a quantum algorithm that uses at most O(n3/2) queries to M and decides (with
success probability at least 2/3) whether G is connected or not.

(c) Show that classical algorithms for deciding (with success probability at least 2/3) whether
G is connected, need to make Ω(n2) queries to M .

7. At the end of Section 7.2 we claimed without proof that Grover’s algorithm can be tweaked
to work with probability 1 if we know the number of solutions exactly. For N = 2n, this
question will ask you to provide such an exact algorithm for an N -bit database x ∈ {0, 1}N
with a unique solution (so we are promised that there is exactly one i ∈ {0, 1}n with xi = 1,
and our goal is to find this i).

(a) Give the success probability of the basic version of Grover’s algorithm after k iterations.

(b) Suppose the optimal number of iterations k̃ = π
4 arcsin(1/

√
N)

− 1
2 is not an integer. Show

that if we round k̃ up to the nearest integer, doing ⌈k̃⌉ iterations, then the algorithm
will have success probability strictly less than 1.

(c) Define a new 2N -bit database y ∈ {0, 1}2N , indexed by (n+1)-bit strings j = j1 . . . jnjn+1,
by setting

yj =

{
1 if xj1...jn = 1 and jn+1 = 0,
0 otherwise.

Show how you can implement the following (n+ 1)-qubit unitary

Sy : |j〉 7→ (−1)yj |j〉,

using one query to x (of the usual form Ox : |i, b〉 7→ |i, b ⊕ xi〉) and a few elementary
gates.

(d) Let γ ∈ [0, 2π) and let Uγ =

(
cos γ − sin γ
sin γ cos γ

)
be the corresponding rotation matrix.

Let A = H⊗n ⊗ Uγ be an (n+ 1)-qubit unitary. What is the probability (as a function
of γ) that measuring the state A|0n+1〉 in the computational basis gives a solution
j ∈ {0, 1}n+1 for y (i.e., such that yj = 1)?

(e) (H) Give a quantum algorithm that finds the unique solution in database x with prob-
ability 1 using O(

√
N) queries to x.
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8. Given query access to x ∈ {0, 1}N , with unknown Hamming weight t = |x|, we want to find
a solution, i.e., an index i ∈ {0, . . . , N − 1} such that xi = 1. If x = 0N then our search
algorithm should output “no solution.”

(a) (H) Suppose we know an integer s such that t ∈ {1, . . . , s}. Give a quantum algorithm
that finds a solution with probability 1, using O(

√
sN) queries to x.

(b) Suppose we know that t ∈ {s + 1, . . . , N}. Give a quantum algorithm that finds a
solution with probability at least 1− 2−s, using O(

√
sN) queries to x.

(c) For given ε > 2−N , give a quantum algorithm that solves the search problem with
probability ≥ 1− ε using O(

√
N log(1/ε)) queries, without assuming anything about t.

9. (H) Here we will approximately count the number of 1s in a string x ∈ {0, 1}N . Let t = |x|
denote that (unknown) number.

(a) Given an integer m ∈ {1, . . . , N}, describe a quantum algorithm that makes O(
√
N/m)

queries to x and decides between the cases t ≤ m/2 and t ∈ [m, 2m] with probability
at least 2/3. That is, the algorithm has to output 0 with probability ≥ 2/3 whenever
t ≤ m/2, has to output 1 with probability ≥ 2/3 whenever t ∈ [m, 2m], and can output
whatever it wants for other values of t.

(b) Give a quantum algorithm that uses O(
√
N log logN) queries to x and that outputs an

integer m such that, with probability ≥ 2/3, the unknown t lies between m/2 and 2m.
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Chapter 8

Quantum Walk Algorithms

8.1 Classical random walks

Consider an undirected graph G with N vertices. Suppose at least an ε-fraction of the vertices are
“marked,” and we would like to find a marked vertex. One way to do this is with a random walk :

Start at some specific vertex y of the graph.
Repeat the following a number of times: Check if y is marked, and if not then choose
one of its neighbors at random and set y to be that neighbor.

This may seem like a stupid algorithm, but it has certain advantages. For instance, it only needs
space O(logN), because you only need to keep track of the current vertex y, and maybe a counter
that keeps track of how many steps you’ve already taken.1 Such an algorithm can for example
decide whether there is a path from a specific vertex y to a specific vertex x using O(logN) space.
We’d start the walk at y and only x would be marked; one can show that if there exists a path
from y to x in G, then we will reach x in poly(N) steps.

Let us restrict attention to d-regular graphs without self-loops, so each vertex has exactly d
neighbors. A random walk on such a graph G corresponds to an N × N symmetric matrix P ,
where Px,y = 1/d if (x, y) is an edge in G, and Px,y = 0 otherwise. This P is the normalized
adjacency matrix of G. If v ∈ RN is a vector with a 1 at position y and 0s elsewhere, then Pv is
a vector whose x-th entry is (Pv)x = 1/d if (x, y) is an edge, and (Pv)x = 0 otherwise. In other
words, Pv is the uniform probability distribution over the neighbors of y, which is what you get by
taking one step of the random walk starting at y. More generally, if v is a probability distribution
on the vertices, then Pv is the new probability distribution on vertices after taking one step of the
random walk, and P kv is the probability distribution after taking k steps.

Suppose we start with some probability-distribution vector v (which may or may not be con-
centrated at one vertex y). We will assume G is connected and not bipartite. Then P kv will
converge to the uniform distribution over all vertices, and the speed of convergence is determined
by the “gap” between the first eigenvalue of P and all other eigenvalues. This can be seen as
follows. Let λ1 ≥ λ2 ≥ · · · ≥ λN be the eigenvalues of P , ordered by size, and v1, . . . , vN be
corresponding orthogonal eigenvectors.2 The largest eigenvalue is λ1 = 1, and corresponds to the

1Here we’re assuming the neighbors of any one vertex are efficiently computable, so you don’t actually need to
keep the whole graph in memory. This will be true for all graphs we consider here.

2Analyzing graphs by looking at the eigenvalues of their adjacency matrix is called “algebraic graph theory” or
“spectral graph theory,” see for instance [36].
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eigenvector v1 = u = (1/N) which is the uniform distribution over all vertices. One can show that
our assumption that G is connected implies λ2 < 1, and our assumption that G is not bipartite
implies λN > −1. Hence all eigenvalues λi for i ∈ {2, . . . , N} will be in (−1, 1); the corresponding
eigenvector vi will be orthogonal to the uniform vector u, so the sum of its entries is 0. Let δ > 0
be the difference between λ1 = 1 and maxi≥2 |λi| (hence |λi| ≤ 1− δ for all i ≥ 2). This δ is called
the “spectral gap” of the graph.

Now decompose the starting distribution v as v =
∑N

i=1 αivi. Since the sum of v’s entries is 1,
and the sum of v1’s entries is 1, while each other eigenvector vi (i ≥ 2) has entries summing to 0, it
follows that α1 = 1. Now let us see what happens if we apply the random walk for k steps, starting
from v:

P kv = P k

(∑

i

αivi

)
=
∑

i

αiλ
k
i vi = u+

∑

i≥2

αiλ
k
i vi.

Consider the squared norm of the difference between P kv and u:

∥∥∥P kv − u
∥∥∥
2
=

∥∥∥∥∥∥
∑

i≥2

αiλ
k
i vi

∥∥∥∥∥∥

2

=
∑

i≥2

|αi|2|λi|2k ≤ ‖v‖2(1− δ)2k.

Since v is a probability distribution, we have ‖v‖2 ≤ 1. By choosing k = ln(1/η)/δ, we get∥∥P kv − u
∥∥ ≤ η. In particular, if δ is not too small, then we get quick convergence of the random

walk to the uniform distribution u, no matter which distribution v we started with.3 Once we are
close to the uniform distribution, we have probability roughly ε of hitting a marked vertex. Of
course, the same happens if we just pick a vertex uniformly at random, but that may not always
be an option if the graph is given implicitly.

Suppose it costs S to set up an initial state v; it costs U to update the current vertex, i.e., to
perform one step of the random walk; and it costs C to check whether a given vertex is marked.
“Cost” is left undefined for now, but typically it will count number of queries to some input, or
number of elementary operations. Consider a classical search algorithm that starts at v, and then
repeats the following until it finds a marked vertex: check if the current vertex is marked, and if
not run a random walk for roughly 1/δ steps to get close to the uniform distribution. Ignoring
constant factors, the expected cost before this procedure finds a marked item, is on the order of

S +
1

ε

(
C +

1

δ
U

)
. (8.1)

8.2 Quantum walks

We will now modify the classical random walk algorithm preceding Eq. (8.1) to a quantum algo-
rithm, where the distribution-preserving matrix P is changed to a norm-preserving matrix W (P )
(i.e., a unitary). This is due to Magniez et al. [106], inspired by Szegedy [131]; our presentation is
mostly based on Santha’s survey paper [124], to which we refer for more details and references.

While the basis state of a classical random walk is the current vertex we are at, a basis state
of a quantum walk has two registers, the first corresponding to the current vertex and the second

3Convergence in total variation distance can be derived from this by Cauchy-Schwarz, choosing η ≪ 1/
√
N .
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corresponding to the previous vertex. Equivalently, a basis state of a quantum walk corresponds
to an edge of the graph.

Our resulting quantum walk algorithm for search will actually be quite analogous to Grover’s
algorithm. We’ll call a basis state |x〉|y〉 “good” if x is a marked vertex, and “bad” otherwise.
Define |px〉 =

∑
y

√
Pxy|y〉 to be the uniform superposition over the neighbors of x. As for Grover,

define “good” and “bad” states as the superpositions over good and bad basis states:

|G〉 = 1√
|M |

∑

x∈M
|x〉|px〉 and |B〉 = 1√

N − |M |
∑

x 6∈M
|x〉|px〉,

where M denotes the set of marked vertices. Note that |G〉 is just the uniform superposition over
all edges (x, y) where the first coordinate is marked, and |B〉 is just the uniform superposition over
all edges (x, y) where the first coordinate is not marked.

If ε = |M |/N and θ := arcsin(
√
ε) then the uniform state over all edges can be written as

|U〉 = 1√
N

∑

x

|x〉|px〉 = sin(θ)|G〉+ cos(θ)|B〉.

Here is the algorithm for searching a marked vertex if an ε-fraction is marked4:

1. Setup the starting state |U〉

2. Repeat the following O(1/
√
ε) times:

(a) Reflect through |B〉
(b) Reflect through |U〉

3. Measure the first register and check that the resulting vertex x is marked.

We’ll explain in a moment how to implement (a) and (b). Assuming we know how to do that,
the proof that this algorithm finds a marked vertex is the same as for Grover and for amplitude
amplification (Chapter 7). We start with |U〉 = sin(θ)|G〉 + cos(θ)|B〉. The two reflections (a)
and (b) increase the angle from θ to 3θ, moving us towards the good state (as for Grover, draw a
2-dimensional picture with axes |B〉 and |G〉 to see this). More generally, after k applications of
(a) and (b) our state has become

sin((2k + 1)θ)|G〉+ cos((2k + 1)θ)|B〉.

Choosing k ≈ π
4θ = O(1/

√
ε), we will have sin((2k + 1)θ) ≈ 1, at which point measuring the first

register will probably yield a marked vertex x.

(a) Reflect through |B〉. Reflecting through |B〉 is relatively straightforward: we just have to
“recognize” whether the first register contains a marked x, and put a −1 if so.

4As in Grover, if we don’t know ε then we just run the algorithm repeatedly with exponentially decreasing guesses
for ε (1/2, 1/4, 1/8, . . . ). If at the end we still haven’t found a marked item, we’ll conclude that probably none exists.

61



(b) Reflect through |U〉. This is where the quantum walk comes in. Let A be the subspace
span{|x〉|px〉} and B be span{|py〉|y〉}. Let ref(A) denote the unitary which is a reflection through A
(i.e., ref(A)v = v for all vectors v ∈ A, and ref(A)w = −w for all vectors w orthogonal to A) and
ref(B) be a reflection through B. Define W (P ) = ref(B)ref(A) to be the product of these two
reflections. This is the unitary analogue of P , and may be called “one step of a quantum walk.”
Suppose we are able to implement the following two operations (even in a controlled manner):

(1) |x〉|0〉 7→ |x〉|px〉
(2) |0〉|y〉 7→ |py〉|y〉

Since (1) and (2) prepare a uniform superposition over the neighbors of x and y, respectively, one
can think of them as taking one classical walk step “in superposition.” Note that ref(A) can be
implemented by applying the inverse of (1), putting a minus if the second register is not |0〉, and
applying (1). We can similarly implement ref(B) using (2) and its inverse. Hence we can think of
W (P ) = ref(B)ref(A) as corresponding to four steps of the classical walk in superposition.

To do the reflection through |U〉, we now want to construct a unitary R(P ) that maps |U〉 7→ |U〉
and |ψ〉 7→ −|ψ〉 for all |ψ〉 that are orthogonal to |U〉 (and that are in the span of the eigenvectors of
W (P )). We will do that by means of phase estimation on W (P ) (see Section 4.6). The eigenvalues
of W (P ) can be related to the eigenvalues λ1, λ2, . . . of P as follows. Let θj ∈ [0, π/2] be such that
|λj | = cos(θj). We won’t prove it here, but it turns out that the eigenvalues of W (P ) are of the
form e±2iθj . W (P ) has one eigenvalue-1 eigenvector, which is |U〉, corresponding to θ1 = 0. The
spectral gap of P is δ. Hence all other eigenvectors of W (P ) correspond to an eigenvalue e±2iθj

where θj ≥
√
2δ, because 1− δ ≥ |λj | = cos(θj) ≥ 1− θ2j/2.

The procedure R(P ) will add a second auxiliary register (initially |0〉) and do phase estimation
with precision

√
δ/2 to detect the unique eigenvalue-1 eigenvector |U〉. This precision requires

O(1/
√
δ) applications of W (P ). Let us analyze this on some eigenvector |w〉 of W (P ), with cor-

responding eigenvalue e±2iθj . Assume for simplicity that phase estimation gives (in the auxiliary
second register) an estimate θ̃j of θj that is within precision

√
δ/2.5 Because the nonzero θj are at

least
√
2δ, approximating them within

√
δ/2 is good enough to determine whether the correct value

θj itself is 0 or not. If |θ̃j | >
√
δ/2, then R(P ) “infers” that θj 6= 0 and puts a minus in front of the

state. Finally, it reverses the phase estimation to set the auxiliary second register back to |0〉. In
formulas, R(P ) maps

|w〉|0〉 PE7→ |w〉|θ̃j〉 7→ (−1)θ̃j 6=0|w〉|θ̃j〉 PE
−1

7→ (−1)[θ̃j 6=0]|w〉|0〉.

This has the desired effect: R(P ) maps |U〉 7→ |U〉, and |ψ〉 7→ −|ψ〉 for all |ψ〉 orthogonal to |U〉.
Now that we know how to implement the algorithm, let us look at its complexity. Consider the

following setup, update, and checking costs:

• Setup cost S: the cost of constructing |U〉

• Checking cost C: the cost of the unitary map |x〉|y〉 7→ mx|x〉|y〉, where mx = −1 if x is
marked, and mx = 1 otherwise

• Update cost U : the cost of one step of the quantum walk, i.e., of W (P )

5Phase estimation will actually give a superposition over estimates θ̃j , with small but nonzero amplitudes on bad
estimates, but we’ll skip the technical details that are needed to deal with this.
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The cost of part (a) of the algorithm is C. Since R(P ) uses O(1/
√
δ) applications of W (P ), and

a few other gates, the cost of part (b) of the algorithm is essentially O(U/
√
δ). Ignoring constant

factors, the total cost of the algorithm is then

S +
1√
ε

(
C +

1√
δ
U

)
. (8.2)

Compare this with the classical cost of Eq. (8.1): quantum search square-roots both ε and δ.

8.3 Applications

There are a number of interesting quantum walk algorithms that beat the best classical algorithms.
We’ll give three examples here. More can be found in [124].

8.3.1 Grover search

Let us first derive a quantum algorithm for search. Suppose we have an N -bit string x of weight t,
and we know t/N ≥ ε. Consider the complete graph G on N vertices. Then the matrix P for the
random walk on G has 0s on its diagonal, and its off-diagonal entries are all equal to 1/(N − 1).
This can be written as P = 1

N−1J − 1
N−1I, where J is the all-1 matrix and I is the identity. It is

easy to see that λ1 = N/(N − 1) − 1/(N − 1) = 1 (corresponding to the uniform vector) and all
other eigenvalues are −1/N . Hence δ is very large here: δ = 1 − 1/N . We’ll mark a vertex i iff
xi = 1. Then, measuring cost by number of queries, a quantum walk on G will have S = U = 0 and
C = 1. Plugging this into Eq. (8.2), it will probably find a marked vertex in time O(1/

√
ε). The

worst case is ε = 1/N , in which case we’ll use O(
√
N) queries. Not surprisingly, we’ve essentially

rederived Grover’s algorithm.

8.3.2 Collision problem

Consider the following collision problem:

Input: x = x0, . . . , xn−1, where each xi is an integer.6

Goal: find distinct i and j such that xi = xj if these exist, otherwise output “all elements
are distinct.”

The decision version of this problem (deciding if there exists at least one collision) is also known
as element distinctness.

Consider the graph whose vertices correspond to the sets R ⊆ {0, . . . , n− 1} of r elements. The
total number of vertices is N =

(
n
r

)
. We’ll put an edge between the vertices for R and R′ iff these

two sets differ in exactly two elements; in other words, you can get from R to R′ by removing one
element i from R and replacing it by a new element j. The resulting graph J(n, r) is known as
the Johnson graph. It is r(n − r)-regular, since every R has r(n − r) different neighbors R′. Its
spectral gap is known to be δ = n

r(n−r) [36, Sec. 12.3.2]; we won’t prove that here, just note that if

r ≪ n, then δ ≈ 1/r. For each set R we also keep track of the corresponding sequence of x-values,
xR = (xi)i∈R. Hence the full “name” of a vertex is the pair (R, xR).

6Say, all xi ≤ n2 to avoid having to use too much space to store these numbers.
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We’ll call a vertex in J(n, r) marked if it contains a collision, i.e., the corresponding set R
contains distinct i, j such that xi = xj . In the worst case there is exactly one colliding pair i, j
(more collisions only make the problem easier). The probability that i and j are both in a random
r-set R, is ε = r

n
r−1
n−1 . Hence the fraction of marked vertices is at least ε ≈ (r/n)2.

We will now determine the setup, checking, and update costs. The setup cost (measured in
terms of queries) is S = r + 1: we have to create a uniform superposition |U〉 over all edges R,R′,
and for each such basis state query all r + 1 elements of R ∪ R′ to add the information xR and
xR′ . Checking whether a given vertex R, xR contains a collision doesn’t take any queries because
we already have xR, hence C = 0. To determine the update cost, note that mapping the second
register of |R, xR〉|0〉 to a superposition of all neighbors R′, xR′ requires querying (in superposition
for all neighbors R′) the value xj of the element j that was added to get R′. Hence U = O(1).
Plugging this into Eq. (8.2), the cost of a quantum walk algorithm for collision-finding is

S +
1√
ε

(
C +

1√
δ
U

)
= O(r + n/

√
r).

This is O(n2/3) if we set r = n2/3. This O(n2/3) turns out to be the optimal query complexity for the
collision problem [2]. By some more work involving efficient data structures, the time complexity
(= total number of elementary quantum gates) can be brought down to n2/3(log n)O(1) [7].

8.3.3 Finding a triangle in a graph

Consider the following triangle-finding problem:

Input: the adjacency matrix of a graph H on n vertices.
Goal: find vertices u, v, w that form a triangle (i.e., (u, v), (v, w), (w, u) are all edges in
the graph), if they exist.

We’ll assume we have query access to the entries of the adjacency matrix of H, which tells us
whether (u, v) is an edge or not. There are

(
n
2

)
bits in this oracle, one for each potential edge

of H. It is not hard to see that a classical algorithm needs Ω(n2) queries before it can decide
with good probability whether a graph contains a triangle or not. For example, take a bipartite
graph consisting of 2 sets of n/2 vertices each, such that any pair of vertices from different sets is
connected by an edge. Such a graph is triangle-free, but adding any one edge will create a triangle.
A classical algorithm would have to query all those edges separately.

Let us try a quantum walk approach. Again consider the Johnson graph J(n, r). Each vertex
will correspond to a set R ⊆ {0, . . . , n − 1} of r vertices, annotated with the result of querying
all possible

(
r
2

)
edges having both endpoints in R. We will call the vertex for set R marked if it

contains one edge of a triangle. If there is at least one triangle in the graph, the fraction of marked
vertices is at least ε ≈ (r/n)2.

The setup cost will be S =
(
r
2

)
. The update cost will be U = 2r − 2, because if we remove one

vertex i from R then we have to remove information about r − 1 edges in H, and if we add a new
j to R we have to query r − 1 new edges in H.

Getting a good upper bound for the checking cost C requires some more work—namely Grover
search plus another quantum walk! Suppose we are given a set R of r vertices. How do we decide
whether R contains an edge of a triangle? If we can efficiently decide, for a given u and R, whether
R contains vertices v, w such that u, v, w form a triangle in H, then we could combine this with a
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Grover search over all n possible vertices u of H. Given u and R, let us design a subroutine based on
another quantum walk, this time on the Johnson graph J(r, r2/3). Each vertex of this Johnson graph
corresponds to a subset R′ ⊆ R of r′ = r2/3 vertices. Its spectral gap is δ′ = r/r′(r − r′) ≈ 1/r2/3.
We’ll mark R′ if it contains vertices v, w such that u, v, w form a triangle. If there is at least one
triangle involving u and some v, w ∈ R, then the fraction of marked vertices R′ in J(r, r2/3) is at
least ε′ ≈ (r′/r)2 = 1/r2/3. For this subroutine, the setup cost is O(r2/3) (for each v ∈ R, query
whether (u, v) is an edge in H); the update cost is O(1) (if we replace v in R by w, then we need
to “unquery” edge (u, v) and query edge (u,w)); and the checking cost is 0. Plugging this into
Eq. (8.2), we can decide whether a fixed u forms a triangle with two vertices in R′, using O(r2/3)
queries. Let’s ignore the small error probability of the latter subroutine (it can be dealt with, but
that’s technical). Then we can combine it with Grover search over all n vertices u to get checking
cost C = O(

√
nr2/3).

Plugging these S, U , and C into Eq. (8.2), the overall cost of a quantum walk algorithm for
triangle-finding is

S +
1√
ε

(
C +

1√
δ
U

)
= O

(
r2 +

n

r
(
√
nr2/3 + r3/2)

)
.

This is O(n13/10) if we set r = n3/5 [107]. The exponent 13/10 can be slightly improved further [20,
97, 87], and the current best exponent is 5/4 [96]. It is an open question what the optimal quantum
query complexity for triangle-finding is; the best lower bound is only Ω(n). Also, the optimal
quantum time complexity of this problem is still wide open.

Exercises

1. Let P be the projector on a d-dimensional subspace V ⊆ Rn that is spanned by orthonormal
vectors v1, . . . , vd. This means that Pv = v for all v ∈ V , and Pw = 0 for all w that are
orthogonal to V .

(a) Show that P can be written in Dirac notation as P =
∑d

i=1 |vi〉〈vi|.
(b) Show that R = 2P − I is a reflection through the subspace corresponding to P , i.e.,

Rv = v for all v in the subspace, and Rw = −w for all w that are orthogonal to the
subspace.

2. Let G be a d-regular graph that is bipartite, so its vertex set V = [N ] can be partitioned into
disjoint sets A and B, and all its edges are in A×B. Give an eigenvector with eigenvalue 1 of
the associated N×N normalized adjacency matrix P , and another eigenvector with eigenvalue
−1.

3. This exercise is about obtaining a quantum algorithm for the collision problem with a slightly
different quantum walk. Consider the problem of Section 8.3.2: we can query elements of
the sequence of integers x0, . . . , xn−1, and want to find distinct i and j such that xi = xj
(or report that there are no collisions). Again consider the Johnson graph J(n, r), for some
r to be optimized over later. Deviating from Section 8.3.2, now call a vertex R marked if
there exist i ∈ R and j ∈ [n] \ R such that xi = xj . Show that we can find a marked vertex
in this graph with high probability using O(n2/3) queries to x. You may ignore small error
probabilities, for example when using Grover’s algorithm. Be explicit about what data you
store about x at each vertex R.
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4. (H) Let A, B, and C be n× n matrices with real entries. We’d like to decide whether or not
AB = C. Of course, you could multiply A and B and compare the result with C, but matrix
multiplication is expensive (the current best algorithm takes time roughly O(n2.38)).

(a) Give a classical randomized algorithm that verifies whether AB = C (with success prob-
ability at least 2/3) using O(n2) steps, using the fact that matrix-vector multiplication
can be done in O(n2) steps.

(b) Show that if we have query-access to the entries of the matrices (i.e., oracles that map
i, j, 0 7→ i, j, Ai,j and similarly for B and C), then any classical algorithm with small
error probability needs at least n2 queries to detect a difference between AB and C.

(c) Give a quantum walk algorithm that verifies whether AB = C (with success probability
at least 2/3) using O(n5/3) queries to matrix-entries.

5. A 3-SAT instance φ over n Boolean variables x1, . . . , xn is a formula which is the AND of a
number of clauses, each of which is an OR of 3 variables or their negations. For example,
φ(x1, . . . , x4) = (x1 ∨ x2 ∨ x3)∧ (x2 ∨ x3 ∨ x4) is a 3-SAT formula with 2 clauses. A satisfying
assignment is a setting of the n variables such that φ(x1, . . . , xn) = 1 (i.e, TRUE). You may
assume the number of clauses is at most some polynomial in n. In general it is NP-hard
to find a satisfying assignment to such a formula. Brute force would try out all 2n possible
truth-assignments, but something better can be done by a classical random walk. Consider
the following simple algorithm of Schöning [126], which is a classical random walk on the set
of all N = 2n truth assignments:

Start with a uniformly random x ∈ {0, 1}n.
Repeat the following at most 3n times: if φ(x) = 1 then STOP, else find the leftmost
clause that is false, randomly choose one of its 3 variables and flip its value.

One can show that this algorithm has probability at least (3/4)n of finding a satisfying
assignment (if φ is satisfiable). You may assume this without proof.

(a) Use the above to give a classical algorithm that finds a satisfying assignment with high
probability in time (4/3)n · p(n), where p(n) is some polynomial factor (no need to use
the C,U, S-framework of the chapter here; the answer is much simpler).

(b) (H) Give a quantum algorithm that finds one (with high probability) in time
√

(4/3)n ·
p(n).
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Chapter 9

Hamiltonian Simulation

9.1 Hamiltonians

Thus far, we have viewed the dynamics of quantum systems from the perspective of unitary trans-
formations: apart from measurement, the only way a quantum state (i.e., a vector of amplitudes)
can change is by multiplication with a unitary matrix, for instance a 2-qubit gate tensored with
identities on the other qubits. But which unitary will actually occur in a given physical system?
This is determined by the Hamiltonian of the system, which is the observable corresponding to the
total energy in the system. Typically, this total energy is the sum of several different terms, corre-
sponding to kinetic energy, potential energy, etc. Also typically, it is the sum of many local terms
that each act on only a few of the particles (qubits) of the system, for example if all interactions
are between pairs of particles.

One can think of the Hamiltonian H as describing the physical characteristics of the system.
These do not determine the initial state |ψ(0)〉 of the system, but they do determine the evolution of
the state in time, i.e., the state |ψ(t)〉 as a function of the time-parameter t, given initial state |ψ(0)〉.
This is governed by the most important equation in quantum mechanics: the Schrödinger equation.
It is a linear differential equation that relates the time-derivative of the current state to that state
itself and to the Hamiltonian:

i~
d|ψ(t)〉
dt

= H|ψ(t)〉.

Here ~ is a very small yet important physical constant: Planck’s constant divided by 2π. We can set
it to 1 by choosing appropriate units, and hence will ignore it from now on. In general H may itself
change with t, but for simplicity we will only consider here the case where H is time-independent.
Then, if we start in some state |ψ(0)〉, the solution to this differential equation is the following
unitary evolution of the state:1

|ψ(t)〉 = U |ψ(0)〉, where U = e−iHt.

So t time-steps of evolution induced by Hamiltonian H, corresponds to applying the unitary matrix
e−iH t times. Note, however, that t need not be integer here: this evolution is continuous in time,
in contrast to the discrete picture one gets from the circuit model with elementary quantum gates.

1Applying a function, for instance f(x) = e−ix, to a normal matrix means applying f to its eigenvalues: if A has
diagonalization V −1DV then f(A) = V −1f(D)V , where f(D) is the diagonal matrix obtained by applying f to the
diagonal entries of D. For example, if A =

∑

j λjaja
T
j and f(x) = e−ix, then f(A) =

∑

j e
−iλjaja

T
j . Note that if A

is Hermitian, then eiA is unitary.
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In areas like quantum chemistry (i.e., the study of properties of molecules) and material sciences,
it is often important to figure out how a quantum system will evolve from some given initial state,
for instance a basis state.2 This is typically hard to do on classical computers, since the number of
parameters (amplitudes) is exponential in the number of particles. However, a quantum computer is
like a universal quantum system, and should be able to efficiently simulate every efficient quantum
process, in the same way that a classical universal Turing machine can efficiently simulate other
(classical) physical processes.3 In fact, this was the main reason why Feynman invented quantum
computers: as a controllable quantum system that can be used to simulate other quantum systems.
In order to realize that idea, we need methods to efficiently implement the unitary evolution that
is induced by a given Hamiltonian. In other words, we need methods to implement U = e−iHt as
a quantum circuit of gates (say, up to some small error ε in operator norm), and to apply this to
a given initial state |ψ〉. This is known as the problem of “Hamiltonian simulation.”

In this chapter we will cover several methods for Hamiltonian simulation. For simplicity we’ll
ignore the minus sign in Hamiltonian simulation, implementing U = eiHt rather than e−iHt. We
will also assume that our quantum system consists of n qubits. Some physical systems, for instance
electron spins, naturally correspond to qubits. More complicated Hilbert spaces, for instance with
basis states labeled by the positions (x, y, z coordinates) of all particles involved, can be encoded
(approximately) in binary to reduce them to the case of qubits. This encoding can be done in many
ways; much of the art in quantum chemistry is in how best to do this for specific systems, but we
won’t study that here (see [42]).

Word of warning : this chapter will be denser and more complicated than most of the other chapters
in these notes. On the other hand, unlike those chapters it explains some very recent, cutting-edge
results.

9.2 Method 1: Lie-Suzuki-Trotter methods

Note that an n-qubit Hamiltonian is a 2n×2n matrix, which is huge even for moderate n. Typically
in Hamiltonian simulation we are dealing with very structured Hamiltonians that have a much
shorter classical description. Suppose our Hamiltonian is of the form H =

∑m
j=1Hj , where m is

not too big (say, polynomial in n) and each Hj acts only on a few of the n qubits. For concreteness
assume each Hj acts non-trivially on only two of the qubits.4 Such a Hamiltonian is called 2-local.
Note that, for fixed t, the unitary eiHjt is really just a 2-qubit gate, acting like identity on the other
n− 2 qubits; this 2-qubit gate could in turn be constructed from CNOTs and single-qubit gates.

2It is also very important in chemistry to be able to find out global properties of a given Hamiltonian like its lowest
energy, a.k.a. ground state energy. Unfortunately this problem seems to be hard to solve (in fact it is QMA-hard,
see Chapter 12) even for a quantum computer, even for the special case of 2-local Hamiltonians [92, 89].

3In Chapter 12 we will see that it is actually possible to classically simulate quantum computers (and hence
quantum systems more generally) with a polynomial amount of space, but our best methods still use an exponential
amount of time. If factoring a large integer is a hard problem for classical computers (which is widely believed),
then Shor’s efficient quantum factoring algorithm (Chapter 5) implies that it is impossible to simulate a quantum
computer in polynomial time on a classical computer.

4This means H can be described efficiently by m 4 × 4 matrices, rather than by a 2n × 2n matrix. A different
assumption that is often made on Hamiltonians and that we will see later, is that H is s-sparse, meaning each of the
2n columns has at most s nonzero entries, and we have some efficient “sparse access” to these nonzero entries. Note
that if H =

∑

j Hj and each Hj acts on only 2 qubits, then H is 4m-sparse. Thus, roughly speaking, the locality
assumption implies the sparsity assumption.
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Our goal is to implement U = eiHt = ei
∑

j Hjt. It is now tempting to view this exponential
of a sum of matrices as a product

∏m
j=1 e

iHjt, which is just a product of m 2-qubit gates. If all
terms Hj are diagonal, or if there is some basis in which all terms are diagonal (equivalently, if
all Hj commute), then this indeed works out. However, in general matrix exponentials do not
work that way: eA+B need not equal eAeB if A and B do not commute (see Exercise 1). The
Lie-Suzuki-Trotter decomposition gives us a way to handle this. It uses the fact that if A and B
have small operator norm, then eA+B and eAeB are approximately equal: eA+B = eAeB +E, where
the error-term E is a matrix whose operator norm is O(‖A‖ · ‖B‖).5

How can we use this to approximate U by a circuit Ũ of 2-qubit gates? Assume H, as well as
each of the terms Hj , has operator norm ≤ 1 (see Exercise 2 for why such normalization matters).
First consider the simple case m = 2, so H = H1 +H2. We can now implement U = eiHt by doing
a little bit of H1, a little bit of H2, a little bit of H1, etc. More precisely, for every integer r ≥ 1 of
our choice, we have

U = eiHt = (eiHt/r)r = (eiH1t/r+iH2t/r)r = (eiH1t/reiH2t/r + E)r.

Here the error-term E has norm ‖E‖ = O(‖iH1t/r‖ · ‖iH2t/r‖) = O(‖H1‖ · ‖H2‖t2/r2). Our
approximating circuit will be Ũ = (eiH1t/reiH2t/r)r. Since errors in a product of unitaries add

at most linearly (see Exercise 4.4), we have approximation error
∥∥∥U − Ũ

∥∥∥ ≤ r‖E‖ = O(‖H1‖ ·
‖H2‖t2/r) = O(t2/r). Choosing r = O(t2/ε), we can make this error ≤ ε. The circuit Ũ uses
2r = O(t2/ε) 2-qubit gates.

The same idea works for the general case where we have m > 2 Hamiltonian terms:

U = eiHt = (eiHt/r)r = (eiH1t/r+···+iHmt/r)r = (eiH1t/r · · · eiHmt/r + E)r,

where ‖E‖ = O(‖H‖2t2/r2) = O(t2/r2). Choosing r = O(t2/ε), we have an approximating circuit

Ũ = (eiH1t/r · · · eiHmt/r)r with mr = O(mt2/ε) 2-qubit gates, and error
∥∥∥U − Ũ

∥∥∥ ≤ ε.

This is the first-order Lie-Suzuki-Trotter approach to Hamiltonian simulation, due to Lloyd [100].
Its gate-complexity depends quadratically on the time t for which we want to simulate the evolution,
which is not optimal. One can do fancier higher-order decompositions that make the dependence
on t nearly linear, but we won’t explain those here. The dependence on ε is polynomial, which can
be improved as well.

9.3 Method 2: Linear combination of unitaries (LCU)

Here we will describe a method for Hamiltonian simulation whose complexity depends linearly on
the time t for which we want to evolve the state, and only logarithmically on the desired error ε.

Let’s start with a more general problem. Suppose we have a 2n × 2n matrix M and an n-qubit
state |ψ〉, and we would like to prepare the state M |ψ〉/‖M |ψ〉‖. Here M need not be unitary, but

5A non-rigorous but reasonably convincing way to see this is to approximate term eM by its first-order Taylor series
I+M , which is a good approximation ifM has small norm. Then eAeB−eA+B ≈ (I+A)(I+B)−(I+A+B) = AB.
The so-called Baker-Campbell-Hausdorff formula gives a much more precise expression.
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suppose we can write M as a linear combination of unitaries:6

M =
m∑

j=1

αjVj ,

with the αj being nonnegative reals (we can always absorb complex phases into the Vj). Let
‖α‖1 =

∑
j αj , and let W be a unitary acting on ⌈logm⌉ qubits that maps |0〉 7→ 1√

‖α‖1

∑
j
√
αj |j〉.

Suppose each Vj is an “easy” unitary, for instance a 2-qubit gate tensored with identity on the other
n−2 qubits, or a small circuit. Also suppose we can implement these unitaries in a controlled way:
we have access to a 2-register unitary V =

∑m
j=1 |j〉〈j| ⊗ Vj . This maps |j〉|φ〉 7→ |j〉Vj |φ〉, and we

can think of the first register as “selecting” which unitary Vj to apply to the second register.7

We want to use V andW to implementM on a given state |ψ〉. Consider the following algorithm:

1. Start with two-register state |0〉|ψ〉, where the first register has ⌈logm⌉ qubits.

2. Apply W to the first register.

3. Apply V to the whole state.

4. Apply W−1 to the first register.

A small calculation (see Exercise 4) shows that the resulting state can be written as

1

‖α‖1
|0〉M |ψ〉+

√
1− ‖M |ψ〉‖2

‖α‖21
|φ〉, (9.1)

where |φ〉 is some other normalized state that we don’t care about, but that has no support on
basis states starting with |0〉. If we were to measure the first register, the probability of outcome 0
is p = ‖M |ψ〉‖2/‖α‖21. In case of that measurement outcome, the second register would collapse to
the normalized version of M |ψ〉, as desired. The success probability p may be small, but we could
use O(1/

√
p) = O(‖α‖1/‖M |ψ〉‖) rounds of amplitude amplification to amplify the part of the

state that starts with |0〉. Thus we would prepare (the normalized version of) M |ψ〉 in the second
register. Unfortunately this usage of amplitude amplification assumes the ability to implement a
unitary (as well as its inverse) to prepare |ψ〉 from a known initial state, say |0〉. Regular amplitude
amplification won’t work if we just have one copy of the state |ψ〉 available, which is the typical
situation for instance in Hamiltonian simulation. However, Exercise 6 gives us a variant called
oblivious amplitude amplification, which circumvents this problem: it works even with just one
copy of |ψ〉, as long as M is proportional to a unitary (or close to that).

6In fact every M can be written in such a way, because the 4n n-qubit Pauli matrices (each of which is unitary)
form a basis for the linear space of all 2n × 2n matrices. See Appendix A.9.

7In the literature, this V is often called “select-V .” One might expect the cost of V to be not much higher than
the costliest Vj , just like the cost of a classical “if A then B, else C” statement is not much bigger than the largest of
the costs of B and C. However, if we measure circuit size, then the cost of V could be roughly the sum of the costs
of the Vjs because circuits for each Vj should be “included” in the circuit for V .
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9.3.1 Hamiltonian simulation via LCU

Recall that our goal is to efficiently implement the unitary eiHt that is induced by a given Hamil-
tonian H, normalized so that ‖H‖ ≤ 1. The following approach is due to Berry et al. [27, 28, 29].
Suppose, somewhat paradoxically, that we can write out the Hermitian matrix H as a linear com-
bination of unitaries: H =

∑
j αjVj . For example, if H is the sum of m 2-local terms like before,

then every 2-local term can be written as the sum of at most 16 n-qubit Pauli matrices (each of
which is unitary and acts non-trivially on only two qubits). Thus we would decompose H as a
sum of at most 16m unitaries, each acting non-trivially on only two of the n qubits. The sum of
coefficients ‖α‖1 will be O(m).

Using the Taylor series ex =
∑∞

k=0 x
k/k!, we can write the unitary we want to implement

exactly as

eiHt =
∞∑

k=0

(iHt)k

k!
=

∞∑

k=0

(it)k

k!


∑

j∈[m]

αjVj




k

=
∞∑

k=0

(it)k

k!

∑

j1,...,jk∈[m]

αj1 · · ·αjkVj1 · · ·Vjk . (9.2)

Note that if each Vj is easy to implement and k is not too big, then the unitary Vj1 · · ·Vjk is
also not too hard to implement. Exercise 7 shows that if we truncate the Taylor series at k =
O(t+ log(1/ε)), dropping the terms of higher order, then the induced error (i.e., the dropped part)
has operator norm at most ε. Accordingly, we can take the part of the right-hand side of Eq. (9.2)
for k = O(t+log(1/ε)) and then use the linear combination of unitaries approach to approximately
implement eiHt. The unitaries in this decomposition are of the form Vj1,...,jk = ikVj1 · · ·Vjk ; let
V =

∑
j1,...,jk

|j1, . . . , jk〉〈j1, . . . , jk|⊗Vj1,...,jk denote the controlled operation of the Vj1,...,jk unitaries,
each of which involves k Vj ’s. The corresponding nonnegative coefficients in this decomposition are

βj1,...,jk =
tk

k!
αj1 · · ·αjk , for k ≤ O(t+ log(1/ε)).

These β-coefficients add up to

‖β‖1 =
O(t+log(1/ε))∑

k=0

tk

k!
αj1 · · ·αjk ≤

∞∑

k=0

tk

k!
αj1 · · ·αjk =

∞∑

k=0

(t‖α‖1)k
k!

= et‖α‖1 ,

so straightforward application of the LCU method with oblivious amplitude amplification uses
O(‖β‖1) = O(et‖α1‖) applications of V and V−1.

The logarithmic error-dependence of the complexity of the above method is excellent. The
exponential dependence on t‖α1‖ is quite terrible for large t, but not too bad for very small t. So
what we’ll do if we want to do a simulation for large t, is to divide that t into b = t‖α‖1 blocks
of time τ = 1/‖α‖1 each, run the above algorithm for time τ with error ε′ = ε/b, and then glue
b time-τ simulations together. This will simulate (eiHτ )b = eiHt, with error ≤ bε′ = ε. The cost
of each time-τ simulation is O(eτ‖α‖1) = O(1) applications of V and V−1, each of which involves
O(τ + log(1/ε′)) = O(log(t‖α‖1/ε)) applications of the Vj ’s. The overall cost will be b times that,
since we’ll run b subsequent time-τ simulations in order to implement a time-t simulation.

To give a more concrete example, consider again the special case where H =
∑

iHi consists of
2-local terms, so the unitaries Vj in the induced linear combination of unitaries H =

∑m
j=1 αjVj

only act nontrivially on 2 qubits each. Then we approximate the time-τ unitary eiHτ by a linear
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combination of unitaries

M =

O(τ+log(1/ε′))∑

k=0

∑

j1,...,jk∈[m]

βj1,...,jkVj1,...,jk , (9.3)

where each Vj1,...,jk is a product of k = O(τ + log(1/ε′)) = O(log(t‖α‖1/ε)) 2-qubit gates. We can
implement this using the linear combination of unitaries approach, and repeat this b = t‖α‖1 times.
The cost of the unitary W is typically relatively small (see Exercise 5), so we can ε-approximate
the unitary eiHt using a circuit of roughly O(t‖α‖1 log(t‖α‖1/ε)) = O(mt log(mt/ε)) applications
of V and V−1, and slightly more other 2-qubit gates. Note the linear dependence of the cost on
the evolution-time t, and the logarithmic dependence on the error ε, which is much better than
Lie-Suzuki-Trotter methods.

9.4 Method 3: Transforming block-encoded matrices

In this section we’ll describe a recent approach that is very general and flexible. Suppose A is an
n-qubit matrix with operator norm ‖A‖ ≤ 1, and we know how to implement an (n + 1)-qubit
unitary

U =

(
A ·
· ·

)
. (9.4)

The ‘·’s are unspecified 2n × 2n-dimensional matrices, the only constraint on which is that U is
unitary. Such a U is called a unitary block-encoding of A. Note that

U : |0〉|ψ〉 7→ |0〉A|ψ〉+ |1〉|φ〉,

where we can’t say much about the (subnormalized) state |φ〉. Written more technically, the defining
property of such a block-encoding is (〈0| ⊗ I)U(|0〉 ⊗ I) = A, where the first register is one qubit.
More generally we can define an a-qubit block-encoding of A, which is an (a+ n)-qubit unitary U
with the property that (〈0a| ⊗ I)U(|0a〉 ⊗ I) = A.

Example 1: LCU does block-encoding. From Eq. (9.1) we can see that LCU (without the final
amplitude amplifcation) implements a ⌈logm⌉-qubit block-encoding of the matrix A =M/‖α‖1.

Example 2: Block-encoding a sparse Hermitian matrix. Let A be a 2n × 2n Hermitian
matrix of operator norm ‖A‖ ≤ 1 that is s-sparse, so each row and column of A have at most s
nonzero entries (for simplicity assume exactly s nonzero entries). Since this matrix A is still an
exponentially large object, we have to be careful how we can access such sparse matrices. First, we
assume we can query the entries of A in the usual way: we have an oracle

OA : |i, j〉|0〉 7→ |i, j〉|Aij〉,

where we assume the last register has sufficiently many qubits to write down the complex entry Aij

either exactly or with sufficient precision. Of course, since A is sparse, Aij will actually be 0 for
most (i, j). Let ν(j, ℓ) ∈ {0, . . . , N − 1} denote the location of the ℓ-th nonzero entry of the j-th
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column of A; so the s nonzero entries in the j-th column are at positions ν(j, 1), . . . , ν(j, s). We
also assume we have another oracle that allows us to find these locations:

OA,loc : |j, ℓ〉 7→ |j, ν(j, ℓ)〉.

We also assume we can run O−1
A and O−1

A,loc. Together these assumption are called having “sparse
access” to A.

We will now show how to implement a block-encoding of the matrix A/s. Exercise 8 shows how
we can implement two (2n+ 1)-qubit unitaries that create superpositions over the locations of the
nonzero entries in the j-th column and i-th row of A, respectively:

W1 : |0〉|0n〉|j〉 7→
1√
s
|0〉

∑

k:Akj 6=0

|k, j〉, W3 : |0〉|0n〉|i〉 7→
1√
s

∑

ℓ:Aiℓ 6=0

|0〉|i, ℓ〉,

using one OA,loc-query and a few other A-independent gates. We can also implement the following
unitary using one query to each of OA and O−1

A , and a few other A-independent gates (and some
auxiliary qubits that start and end in |0〉):

W2 : |0〉|k, j〉 7→ Akj |0〉|k, j〉+
√
1− |Akj |2|1〉|k, j〉.

By going through the action on initial state |0n+1j〉 step-by-step (see Exercise 8), one can show that
the (0n+1i, 0n+1j)-entry of U =W−1

3 W2W1 is exactly Aij/s. In other words, U is an (n+ a)-qubit
block-encoding of the matrix A/s for some a (this depends on how many ancilla qubits are actually
used).

How can we use a given block-encoding U of A? Suppose that for some function f : R → R we
want to implement a unitary V that looks like

V =

(
f(A) ·
· ·

)
,

using a small number of applications of the block-encoding of A. Here we don’t care what subma-
trices sit at the ‘·’ entries of U or V , as long as the upper-left block of V is f(A) and V as a whole
is unitary.

For example, in Hamiltonian simulation A would be the Hamiltonian H and f(x) would be eixt,
so that we are effectively implementing f(H) = eiHt, as is the goal in Hamiltonian simulation. In
the HHL algorithm in the next chapter, f(x) will be 1/x, so that we effectively implement A−1.

It turns out that we can implement a good approximation of V efficiently if we have a low-degree
polynomial P approximating f . The idea is that we can let P act on the eigenvalues of A, thus
transforming a block-encoding of A into one of P (A). We state without proof the following theorem
by Gilyén et al. [71, follows from Theorem 56], which extends work of Low et al. [103, 104, 102, 105].

Theorem 1 Let P : [−1, 1] → {c ∈ C | |c| ≤ 1/4} be a degree-d polynomial, and let U be a
unitary a-qubit block-encoding of Hermitian matrix A. We can implement a unitary O(a)-qubit
block-encoding V of P (A) using d applications of U and U−1, one controlled application of U , and
O(ad) other 2-qubit gates.

This theorem can be generalized to a powerful technique called “singular-value transforma-
tion” [71], where A can be an arbitrary matrix, non-Hermitian and even non-square.
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9.4.1 Hamiltonian simulation via transforming block-encoded matrices

Let’s see how we can use Theorem 1 for Hamiltonian simulation for a given sparse Hamiltonian H.
We again approximate the function f(x) = eixt using a degree-d = O(t + log(1/ε)) polynomial P
which is the first d terms of the Taylor series of f (see Exercise 7), divided by 4 to ensure that
its range satisfies the condition of Theorem 1. If H is s-sparse and we have sparse access to it,
then Example 2 of Section 9.4 shows how to efficiently implement a block-encoding U of the scaled
HamiltonianH/s, using O(1) queries toH and O(n) other gates. Note that evolving HamiltonianH
for time t is the same as evolving H/s for time st. Theorem 1 now gives us a block-encoding V of
P (H) ≈ 1

4e
iHt. This V invokes U and U−1 O(st+ log(1/ε)) times, and maps:

V : |0〉|ψ〉 7→ |0〉P (H)|ψ〉+ |φ〉,

where |φ〉 has no support on basis states starting with |0〉. Since P (H) ≈ 1
4e

iHt is essentially
proportional to a unitary, we can now apply O(1) rounds of oblivious amplitude amplification to
boost the factor 1

4 to essentially 1, using only one copy of |ψ〉.
This implements the desired unitary eiHt on one copy of |ψ〉, up to small error. The complexity

of ε-precise Hamiltonian simulation of an s-sparse Hamiltonian H of operator norm ≤ 1, then
becomes O(st+ log(1/ε)) queries to H and O(n(st+ log(1/ε))) 2-qubit gates.

Exercises

1. Compute the following five 2 × 2 unitaries: eiX , eiZ , eiXeiZ , eiZeiX , and ei(X+Z). Here X
and Z are the usual Pauli matrices.

2. Suppose we want to implement a certain unitary U , and we can do that by switching on a
Hamiltonian H for some time t: U = e−iHt. Now suppose H ′ is another Hamiltonian, with
100 times as much energy as H: H ′ = 100H. Show that using H ′ we can implement U a 100
times faster than with H.
Comment: This exercise is about time in the physical sense of the word, not about circuit size. It shows why

some kind of normalization of H is needed if we want to talk about the time it takes to implement something.

We can always “speed up” a computation by a factor k if we can multiply our Hamiltonian with a factor k.

3. Consider the simple case of the linear-combination-of-unitaries trick where m = 2 and M =
V1+V2. Describe the unitaries V and W , and track the initial state |0〉|ψ〉 through the 4-step
algorithm in Section 9.3.

4. (H) Give a calculation to justify that the 4-step algorithm in Section 9.3 indeed produces a
state of the form of Eq. (9.1).

5. Let v ∈ [−1, 1]N be a vector with real entries, of dimension N = 2n, indexed by i ∈ {0, 1}n.
Suppose we can query the entries of this vector by a unitary that maps

Ov : |i〉|0p〉 7→ |i〉|vi〉,

so where the binary representation of the i-th entry of v is written into the second register.
We assume this second register has p qubits, and the numbers vi can all be written exactly
with p bits of precision (it doesn’t matter how, but for concreteness say that the first bit
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indicates the sign of the number, followed by the p− 1 most significant bits after the decimal
dot). Our goal is to prepare the n-qubit quantum state

|ψ〉 = 1

‖v‖
∑

i∈{0,1}n
vi|i〉.

(a) Show how you can implement the following 3-register map (where the third register is
one qubit) using one application of Ov and one of O−1

v , and some v-independent unitaries
(you don’t need to draw detailed circuits for these unitaries, nor worry about how to
write those in terms of elementary gates).

|i〉|0p〉|0〉 7→ |i〉|0p〉(vi|0〉+
√

1− v2i |1〉).

(b) Suppose you apply the map of (a) to a uniform superposition over all i ∈ {0, 1}n. Write
the resulting state, and calculate the probability that measuring the last qubit in the
computational basis gives outcome 0.

(c) What is the resulting 3-register state if the previous measurement gave outcome 0?

(d) Assume you know ‖v‖ exactly. Give an algorithm that prepares |ψ〉 exactly, using

O

(√
N

‖v‖

)
applications of Ov and O−1

v , and some v-independent unitaries.

6. (H) This exercise explains oblivious amplitude amplification.
Let M be an n-qubit unitary. We start from |Ψ〉 = |0a〉|ψ〉 for some unknown n-qubit state
|ψ〉, and our goal is to prepare the state |Φ〉 = |0a〉M |ψ〉 (this |Φ〉 is the analogue of the “good
state” in amplitude amplification). Let U be an (a + n)-qubit unitary, independent of |ψ〉,
such that

U |Ψ〉 = sin(θ)|Φ〉+ cos(θ)|Φ⊥〉,

where θ is some angle that’s independent of |ψ〉, while |Φ⊥〉 is some normalized state that
depends on |ψ〉 and has no support on basis states starting with 0a (this |Φ⊥〉 is the analogue
of the “bad state”). If θ is close to π/2, then we can just apply U to our starting state |Ψ〉
and measure the first register; we’ll see 0a with probability sin(θ)2 ≈ 1 and in that case end
up with the desired state |Φ〉. But suppose θ is quite small. Here we will see how we can
amplify the angle θ to roughly π/2, without assuming a unitary to prepare |Ψ〉.

(a) Let S be the 2-dimensional space spanned by |Φ〉 and |Φ⊥〉. Let R = (I − 2|0a〉〈0a|)⊗ I
be a unitary that puts a ‘−’ in front of every basis state that starts with 0a. Show that
R, restricted to S, is a reflection through |Φ⊥〉.

(b) Define |Ψ⊥〉 = U−1
(
cos(θ)|Φ〉 − sin(θ)|Φ⊥〉

)
. Show U |Ψ〉 and U |Ψ⊥〉 are orthogonal.

One can also show with a bit more work [27, Lemma 3.7] the stronger statement that
|Ψ⊥〉 has no support on basis states starting with 0a. You may assume this fact without
proof in the remainder of this exercise.

(c) Show that −URU−1, restricted to S, is a reflection through U |Ψ〉 (note the minus sign!)

(d) Show that (−URU−1R)kU |0a〉|ψ〉 = sin((2k + 1)θ)|Φ〉+ cos((2k + 1)θ)|Φ⊥〉.
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(e) How large should we take k in order to end up with (approximately) the state |Φ〉?
NB: If you know θ exactly, then you can even exactly prepare |Φ〉 (along the lines of Exercise 7.7) but

you don’t need to show that.

7. (H) Show that you can choose a sufficiently large constant c (independent of t and ε) such
that for all Hermitian H with operator norm ‖H‖ ≤ 1, we have

∥∥∥∥∥∥
eiHt −

c(t+log(1/ε))−1∑

k=0

(iHt)k

k!

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∞∑

k=c(t+log(1/ε))

(iHt)k

k!

∥∥∥∥∥∥
≤ ε.

8. This exercise looks at the details of block-encoding an s-sparse matrix A with ‖A‖ ≤ 1 from
Section 9.4. Consider the various unitaries defined there.

(a) Show how to implement W1 using an OA,loc-query and a few other A-independent gates.
For simplicity you may assume s is a power of 2 here, and you can use arbitrary single-
qubit gates, possibly controlled by another qubit.
(Note that the same method allows to implement W3.)

(b) Show how to implement W2 using an OA-query, an O−1
A -query, and a few other A-

independent gates (you may use auxiliary qubits as long as those start and end in |0〉).
Note that W2 just implements a rotation on the first qubit, by an angle that depends on
Akj . There’s no need to write out circuits fully down to the gate-level here; it suffices if
you describe the idea precisely.

(c) Show that the (0n+1i, 0n+1j)-entry of W−1
3 W1 is exactly 1/s if Aij 6= 0, and is 0 if

Aij = 0.

(d) Show that the (0n+1i, 0n+1j)-entry of W−1
3 W2W1 is exactly Aij/s.
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Chapter 10

The HHL Algorithm

10.1 The linear-systems problem

In this chapter we present the Harrow-Hassidim-Lloyd (HHL [80]) algorithm for solving large sys-
tems of linear equations. Such a system is given by an N×N matrix A with real or complex entries,
and an N -dimensional nonzero vector b. Assume for simplicity that N = 2n. The linear-system
problem is

LSP: find an N -dimensional vector x such that Ax = b.

Solving large systems of linear equations is extremely important in many computational problems
in industry, in science, in optimization, in machine learning, etc. In many applications it suffices
to find a vector x̃ that is close to the actual solution x.

We will assume A is invertible (equivalently, has rank N) in order to guarantee the existence
of a unique solution vector x, which is then just A−1b. This assumption is just for simplicity: if
A does not have full rank, then the methods below would still allow to invert it on its support,
replacing A−1 by the “Moore-Penrose pseudoinverse.”

The HHL algorithm can solve “well-behaved” large linear systems very fast (under certain
assumptions), but in a weak sense: instead of outputting the solution vector x, its goal is to output
the n-qubit state

|x〉 := 1

‖x‖

N−1∑

i=0

xi|i〉,

or some other n-qubit state close to |x〉. This is called the quantum linear-system problem:

QLSP: find an n-qubit state |x̃〉 such that ‖|x〉 − |x̃〉‖ ≤ ε and Ax = b.

Note that the QLSP is an inherently quantum problem, since the goal is to produce an n-qubit
state whose amplitude-vector (up to normalization and up to ε-error) is a solution to the linear
system. In general this is not as useful as just having the N -dimensional vector x written out on
a piece of paper, but in some cases where we only want some partial information about x, it may
suffice to just (approximately) construct |x〉.

We will assume without loss of generality that A is Hermitian (see Exercise 1). Let us state the
more restrictive assumptions that will make the linear system “well-behaved” and suitable for the
HHL algorithm:
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1. We have a unitary that can prepare the vector b as an n-qubit quantum state |b〉 = 1
‖b‖
∑

i bi|i〉
using a circuit of B 2-qubit gates. We also assume for simplicity that ‖b‖ = 1.

2. The matrix A is s-sparse and we have sparse access to it, like in Section 9.4. Such sparsity
is not essential to the algorithm, and could be replaced by other properties that enable an
efficient block-encoding of A.

3. The matrix A is well-conditioned : the ratio between its largest and smallest singular value
is at most some κ.1 For simplicity, assume the smallest singular value is ≥ 1/κ while the
largest is ≤ 1. In other words, all eigenvalues of A lie in the interval [−1,−1/κ] ∪ [1/κ, 1].
The smaller the “condition number” κ is, the better it will be for the algorithm. Let’s assume
our algorithm knows κ, or at least knows a reasonable upper bound on κ.

10.2 The basic HHL algorithm for linear systems

Let us start with some intuition. The solution vector x that we are looking for is A−1b, so we
would like to apply A−1 to b. If A has spectral decomposition A =

∑N−1
j=0 λjaja

T
j , then the map

A−1 is the same as the map aj 7→ 1
λj
aj : we just want to multiply the eigenvector aj with the scalar

1/λj . The vector b can also be written as a linear combination of the eigenvectors aj : b =
∑

j βjaj
(we don’t need to know the coefficients βj for what follows). We want to apply A−1 to b to obtain
A−1b =

∑
j βj

1
λj
aj , normalized, as an n-qubit quantum state.

Unfortunately the maps A and A−1 are not unitary (unless |λj | = 1 for all j), so we cannot just
apply A−1 as a quantum operation to state |b〉 to get state |x〉. Fortunately U = eiA =

∑
j e

iλjaja
T
j

is unitary, and has the same eigenvectors as A and A−1. We can implement U and powers of U by
Hamiltonian simulation, and then use phase estimation (Section 4.6) to estimate the λj associated
with eigenvector |aj〉 with some small approximation error (for this sketch, assume for simplicity
that the error is 0). Conditioned on our estimate of λj we can then rotate an auxiliary |0〉-qubit
to 1

κλj
|0〉 +

√
1− 1

(κλj)2
|1〉 (this is a valid state because |κλj | ≥ 1). Next we undo the phase

estimation to set the register that contained the estimate back to |0〉. Suppressing the auxiliary
qubits containing the temporary results of the phase estimation, we have now unitarily mapped

|aj〉|0〉 7→ |aj〉
(

1

κλj
|0〉+

√
1− 1

(κλj)2
|1〉
)
.

If we prepare a copy of |b〉|0〉 =
∑

j βj |aj〉|0〉 and apply the above unitary map to it, then we obtain

∑

j

βj |aj〉
(

1

κλj
|0〉+

√
1− 1

(κλj)2
|1〉
)

=
1

κ

∑

j

βj
1

λj
|aj〉

︸ ︷︷ ︸
∝|x〉

|0〉+ |φ〉|1〉,

1Note that the assumption that A is invertible is equivalent to assuming κ < ∞. We can think of the stronger
assumption that κ is small, as the assumption that A is invertible in a stable or robust way, so that small errors
either in b or in our computational steps don’t lead to massive errors in the solution vector x.
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where we don’t care about the (subnormalized) state |φ〉. Note that because
∑

j |βj/λj |2 ≥∑
j |βj |2 = 1, the norm of the part of the state ending in qubit |0〉 is at least 1/κ. Accord-

ingly, we can now apply O(κ) rounds of amplitude amplification to amplify this part of the state
to have amplitude essentially 1. This prepares state |x〉, as intended.

This rough sketch (which Exercise 2 asks you to make more precise) is the basic idea of HHL.
It leads to an algorithm that produces a state |x̃〉 that is ε-close to |x〉, using roughly κ2s/ε queries
to H and roughly κs(κn/ε+B) other 2-qubit gates.

10.3 Improving the efficiency of the HHL agorithm

The complexity of the above basic HHL algorithm can be improved further. Gilyén et al. [71] used
the singular-value transformation technique of Section 9.4 to implement A−1, improving on an LCU
construction due to Childs et al. [45]. For this we need a low-degree polynomial to approximate
the function f(x) = 1/x. Childs et al. [45, Lemmas 17-19] started from the following polynomial
of degree D = 2b− 1 for b = O(κ2 log(κ/ε)):

1− (1− x2)b

x
.

This is indeed a polynomial because all terms in the numerator have degree ≥ 1, so we can divide
out the x of the denominator. Since (1 − x2)b is close to 0 (unless |x| is small), this polynomial
is indeed close to 1/x (unless |x| is small, but we won’t care because we’ll apply this to a matrix
whose eigenvalues aren’t close to 0). More precisely, this polynomial is ε/2-close to 1/x whenever x
lies in the interval Eκ = [−1,−1/κ]∪ [1/κ, 1]. Its range on this domain is [−κ,−1]∪ [1, κ] (ignoring
the small ε for simplicity). Like every degree-D polynomial, f can be written exactly as a sum of
the first D+1 Chebyshev polynomials of the first kind.2 Childs et al. show that the coefficients in
this sum decrease quickly for larger degree, and that dropping the Chebyshev polynomials of degree
higher than d = O(κ log(κ/ε)) incurs only small error ε/2. The resulting degree-d polynomial p
ε-approximates 1/x on the interval Eκ, and its largest value (in absolute value) on this domain is κ.
Now define the polynomial P = p/(4κ). This has the same degree d as p, but a range [−1/4, 1/4]
that fits the assumption of Theorem 1 of Chapter 9 (there’s a trick to ensure the values of P are
within that range even for x very close to 0).

As we saw in Section 9.4, we can implement a block-encoding of the s-sparse matrix A/s using
O(1) sparse-access queries to A and O(n) other gates. Using a factor O(s) more work, we can
turn this into a block-encoding of A itself (alternatively, we could directly invert the matrix A/s,
whose singular values are ≥ 1/(κs)). We now apply Theorem 1 with this block-encoding of A,
and the polynomial P = p/(4κ), of degree d = O(κ log(κ/ε)). Note that all eigenvalues of A lie
in the interval Eκ, where p(x) ≈ 1/x, hence p(A) ≈ A−1 and P (A) ≈ 1

4κA
−1. Theorem 1 then

gives us a block-encoding of P (A), at the expense of running the block-encoding of A O(d) times.
Using O(κ) rounds of amplitude amplification on top of this, we can get rid of the 1/(4κ) factor
and end up with essentially the state A−1|b〉, normalized.3 This gives a quantum algorithm that

2These univariate polynomials are defined recursively as follows: T0(x) = 1, T1(x) = x, and Td+1 = 2xTd(x) −
Td−1(x). Note that Td has degree d, and maps [−1, 1] to [−1, 1]. The polynomials T0, . . . , TD are linearly independent
(even orthonormal in a certain way) and hence span the set of all univariate polynomials of degree ≤ D.

3Note that we need to assume a unitary to prepare |b〉 here, having just one copy of |b〉 is not enough. We cannot
use oblivious amplitude amplification because that assumes we have a block-encoding of a matrix that is proportional
to a unitary (or close to that), which A−1 is not.
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solves the QLSP using O(dκs) = O(κ2s log(κ/ε)) queries to A, and O(κs(κn log(κ/ε)+B)) 2-qubit
gates. Note that compared to basic HHL, the dependence on 1/ε has been improved from linear to
logarithmic. The dependence on κ can also be further improved, from quadratic to linear, using a
technique called “variable-time amplitude amplification” [8, 45, 43] that we won’t explain here.

The HHL algorithm can in some cases solve the QLSP exponentially faster than classical algo-
rithms can solve the LSP. In particular, if the sparsity s, the condition number κ, and the cost B of

preparing |b〉 are all ≤ polylog(N), and the allowed error is ε ≥ 2−polylog(N), then this improved
version of the HHL algorithm uses polylog(N) queries and gates to solve (in a quantum way) an
N -dimensional linear system.

Exercises

1. Suppose we are given an arbitrary invertible N ×N matrix A and an N -dimensional vector b.

(a) Give a Hermitian 2N × 2N matrix A′ and 2N -dimensional vector b′ (based on A and b,
respectively), such that a solution x to the linear system Ax = b can be read off from a
solution to the system A′x′ = b′.

(b) How does the condition number of your A′ relate to that of A?

2. This exercise asks you to add more details to the sketch of the basic HHL algorithm given at
the start of Section 10.2. For simplicity we will only count queries, not gates.

(a) Use Hamiltonian simulation and phase estimation to implement the following unitary
map:

|aj〉|0〉 7→ |aj〉|λ̃j〉,

where |λ̃j〉 is a superposition over estimates of λj , which (if measured) gives with prob-
ability ≥ 0.99 an estimator ℓ ∈ [−1, 1] such that |λj − ℓ| ≤ ε/κ. Your implementation
is allowed to use O(κs log(1/ε)/ε) queries to the sparse matrix A. You may invoke the
best Hamiltonian simulator for sparse matrices from Section 9.4.

(b) Show that the basic HHL algorithm can be implemented using O(κ2s log(1/ε)/ε) sparse-
access queries to A. To make your life easier, you may assume that |λ̃j〉 is just one basis
state, so one estimator which is close to λj rather than a superposition over estimators
(and hence the success probability 0.99 is actually 1). You may also assume the amplitude
amplification at the end works perfectly.
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Chapter 11

Quantum Query Lower Bounds

11.1 Introduction

Almost all the algorithms we have seen so far in this course worked in the query model. Here the goal
usually is to compute some function f : {0, 1}N → {0, 1} on a given input x = x0 . . . xN−1 ∈ {0, 1}N .
The distinguishing feature of the query model is the way x is accessed: x is not given explicitly,
but is stored in a random access memory, and we’re being charged unit cost for each query that we
make to this memory. Informally, a query asks for and receives the i-th element xi of the input.
Formally, we model a query unitarily as the following 2-register quantum operation Ox, where the
first register is N -dimensional and the second is 2-dimensional1:

Ox : |i, b〉 7→ |i, b⊕ xi〉.

In particular, |i, 0〉 7→ |i, xi〉. This only states what Ox does on basis states, but by linearity this
determines the full unitary. Note that a quantum algorithm can apply Ox to a superposition of
basis states, gaining some sort of access to several input bits xi at the same time.

A T -query quantum algorithm starts in a fixed state, say the all-0 state |0 . . . 0〉, and then in-
terleaves fixed unitary transformations U0, U1, . . . , UT with queries. The algorithm’s fixed unitaries
may act on a workspace-register, in addition to the two registers on which Ox acts. In this case we
implicitly extend Ox by tensoring it with the identity operation on this extra register, so it maps

Ox : |i, b, w〉 7→ |i, b⊕ xi, w〉.

Hence the final state of the algorithm can be written as the following matrix-vector product:

UTOxUT−1Ox · · ·OxU1OxU0|0 . . . 0〉.

This state depends on the input x only via the T queries. The output of the algorithm is obtained
by a measurement of the final state. For instance, if the output is Boolean, the algorithm could
just measure the final state in the computational basis and output the first bit of the result.

The query complexity of some function f is now the minimal number of queries needed for an
algorithm that outputs the correct value f(x) for every x in the domain of f (with error probability

1If the input x consists of non-binary items xi (as is the case for instance with the input for Simon’s algorithm)
then those can be simulated by querying individual bits of each xi.
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at most 1/3, say). Note that we just count queries to measure the complexity of the algorithm2,
while the intermediate fixed unitaries are treated as costless.

In many cases, the overall computation time of quantum query algorithms (as measured by
the total number of elementary gates, say) is not much bigger than the query complexity. This
justifies analyzing the latter as a proxy for the former. This is the model in which essentially all
the quantum algorithm we’ve seen work: Deutsch-Jozsa, Simon, Grover, the various random walk
algorithms. Even the period-finding algorithm that is the quantum core of Shor’s algorithm works
because it needs only few queries to the periodic function.

11.2 The polynomial method

From quantum query algorithms to polynomials. An N -variate multilinear polynomial p
is a function p : CN → C that can be written as

p(x0, . . . , xN−1) =
∑

S⊆{0,...,N−1}
aS
∏

i∈S
xi,

for some complex numbers aS . The degree of p is deg(p) = max{|S| : aS 6= 0}. It is easy to show
that every function f : {0, 1}N → C has a unique representation as such a polynomial; deg(f) is
defined as the degree of that polynomial (see Exercise 1). For example, the 2-bit AND function is
p(x0, x1) = x0x1, and the 2-bit Parity function is p(x0, x1) = x0 + x1 − 2x0x1. Both polynomials
have degree 2. Sometimes a lower degree suffices for a polynomial to approximate the function.
For example, p(x0, x1) =

1
3(x0 + x1) approximates the 2-bit AND function up to error 1/3 for all

inputs, using degree 1.

A very useful property of T -query algorithms is that the amplitudes of their final state are
degree-T N -variate polynomials of x [67, 18]. More precisely: consider a T -query algorithm with
input x ∈ {0, 1}N acting on an m-qubit space. Then its final state can be written

∑

z∈{0,1}m
αz(x)|z〉,

where each αz is a multilinear complex-valued polynomial in x of degree at most T .

Proof. The proof is by induction on T . The base case (T = 0) trivially holds: the algorithm’s
state U0|0 . . . 0〉 is independent of x, so its amplitudes are constants.

For the induction step, suppose we have already done T queries. Then by the induction hy-
pothesis the state after UT can be written as

∑

z∈{0,1}m
αz(x)|z〉,

where each αz is a multilinear polynomial in x of degree at most T . Each basis state |z〉 = |i, b, w〉
consists of 3 registers: the two registers |i, b〉 of the query, and a workspace register containing basis
state |w〉. The algorithm now makes another query Ox followed by a unitary UT+1. The query

2Clearly, N queries always suffice since we can just query each of the N input bits separately, thus learning x
completely, and then look up and output whatever the correct value is for that input.

82



swaps basis states |i, 0, w〉 and |i, 1, w〉 if xi = 1, and doesn’t do anything to these basis states if
xi = 0. This changes amplitudes as follows:

αi,0,w(x)|i, 0, w〉+ αi,1,w(x)|i, 1, w〉 7→
((1− xi)αi,0,w(x) + xiαi,1,w(x))|i, 0, w〉+ (xiαi,0,w(x) + (1− xi)αi,1,w(x))|i, 1, w〉.

Now the new amplitudes are of the form (1−xi)αi,0,w(x)+xiαi,1,w(x) or xiαi,0,w(x)+(1−xi)αi,1,w(x).
The new amplitudes are still polynomials in x0, . . . , xN−1. Their degree is at most 1 more than
the degree of the old amplitudes, so at most T + 1. Finally, since UT+1 is a linear map that is
independent of x, it does not increase the degree of the amplitudes further (the amplitudes after
UT+1 are linear combinations of the amplitudes before UT+1). This concludes the induction step.

Note that this construction could introduce degrees higher than 1, e.g., terms of the form x2i .
However, our inputs xi are 0/1-valued, so we have xki = xi for all integers k ≥ 1. Accordingly, we
can reduce higher degrees to 1, making the polynomials multilinear without increasing degree. ✷

Suppose our algorithm acts on an m-qubit state. If we measure the first qubit of the final state
and output the resulting bit, then the probability of output 1 is given by

p(x) =
∑

z∈{1}×{0,1}m−1

|αz(x)|2.

This is a real-valued polynomial of x of degree at most 2T , because |αz(x)|2 is the sum of the
squares of the real and imaginary parts of the amplitude αz(x), each of which is a polynomial of
degree ≤ T . Note that if the algorithm computes f with error ≤ 1/3, then p is an approximating
polynomial for f : if f(x) = 0 then p(x) ∈ [0, 1/3] and if f(x) = 1 then p(x) ∈ [2/3, 1]. This gives
a method to lower bound the minimal number of queries needed to compute f : if one can show
that every polynomial that approximates f has degree at least d, then every quantum algorithm
computing f with error ≤ 1/3 must use at least d/2 queries.

Applications of the polynomial method. For our examples we will restrict attention to sym-
metric functions.3 Those are the ones where the function value f(x) only depends on the Hamming
weight (number of 1s) in the input x. Examples are N -bit OR, AND, Parity, Majority, etc.

Suppose we have a polynomial p(x0, . . . , xN−1) that approximates f with error ≤ 1/3. Then
it is easy to see that a polynomial that averages over all permutations π of the N input bits
x0, . . . , xN−1:

q(x) =
1

N !

∑

π∈SN

p(π(x)),

still approximates f . As it turns out, we can define a single-variate polynomial r(z) of the same
degree as q, such that q(x) = r(|x|).4 This r is defined on all real numbers, and we know something

3One can also use the polynomial method for non-symmetric functions, for instance to prove a tight lower bound of
Ω(N2/3) queries for the general problem of collision-finding; this matches the quantum walk algorithm of Section 8.3.2.
However, that lower bound proof is substantially more complicated and we won’t give it here.

4To see why this is the case, note that for every degree i, all degree-i monomials in the symmetrized polynomial
q have the same coefficient ai. Moreover, on input x ∈ {0, 1}N of Hamming weight z, exactly

(

z
i

)

of the degree-i

monomials are 1, while the others are 0. Hence q(x) =
∑d

i=0 ai
(|x|

i

)

. Since
(

z
d

)

= z(z − 1) · · · (z − d + 1)/d! is a

single-variate polynomial in z of degree d, we can define r(z) =
∑d

i=0 ai
(

z
i

)

.
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about its behavior on integer points {0, . . . , N}. Thus it suffices to lower bound the degree of
single-variate polynomials with the appropriate behavior.

For an important example, consider the N -bit OR function. Grover’s algorithm can find an i
such that xi = 1 (if such an i exists) and hence can compute the OR function with error proba-
bility ≤ 1/3 using O(

√
N) queries. By the above reasoning, any T -query quantum algorithm that

computes the OR with error ≤ 1/3 induces a single-variate polynomial r satisfying

r(0) ∈ [0, 1/3], and r(t) ∈ [2/3, 1] for all integers t ∈ {1, . . . , N}.

This polynomial r(x) “jumps” between x = 0 and x = 1 (i.e., it has a derivative r′(x) ≥ 1/3
for some x ∈ [0, 1]), while it remains fairly constant on the domain {1, . . . , N}. By a classical
theorem from approximation theory (proved independently around the same time by Ehlich and
Zeller [60], and by Rivlin and Cheney [123]), such polynomials must have degree d ≥ Ω(

√
N).

Hence T ≥ Ω(
√
N) as well. Accordingly, Grover’s algorithm is optimal (up to a constant factor) in

terms of number of queries.

What about exact algorithms for OR? Could we tweak Grover’s algorithm so that it always
finds a solution with probability 1 (if one exists), using O(

√
N) queries? This turns out not to be

the case: a T -query exact algorithm for OR induces a polynomial r of degree ≤ 2T that satisfies

r(0) = 0, and r(t) = 1 for all integers t ∈ {1, . . . , N}.

It is not hard to see that such a polynomial needs degree at least N : observe that r(x) − 1 is a
non-constant polynomial with at least N roots.5 Hence T ≥ N/2. Accordingly, Grover cannot be
made exact without losing the square-root speed-up!

Using the polynomial method, one can in fact show for every symmetric function f that is
defined on all 2N inputs, that quantum algorithms cannot provide a more-than-quadratic speed-up
over classical algorithms. More generally, for every function f (symmetric or non-symmetric) that
is defined on all inputs6, quantum algorithms cannot provide a more-than-6th-root speed-up over
classical algorithms (see Exercise 10). The polynomial method has recently been strengthened by
Arunachalam et al. [12] to an optimal lower bound method, by imposing more constraints on the
polynomial (which can increase the degree, while still giving a lower bound on quantum query
complexity).

11.3 The quantum adversary method

The polynomial method has a strength which is also a weakness: it applies even to a stronger (and
less physically meaningful) model of computation where we allow any linear transformation on the
state space, not just unitary ones. As a result, it does not always provide the strongest possible
lower bound for quantum query algorithms.

Ambainis [5, 6] provided an alternative method for quantum lower bounds, the quantum adver-
sary. This exploits unitarity in a crucial way and in certain cases yields a provably better bound
than the polynomial method [6]. We will present a very simple version of the adversary method

5A “root” is an x such that r(x) = 0. It is a well-known fact from algebra that every univariate non-constant
polynomial of degree d has at most d roots (over any field). Note that this is not true for multivariate polynomials;
for example the polynomial x0 · · ·xN−1 has 2N − 1 roots in {0, 1}N but degree only N

6Note that this doesn’t include functions where the input has to satisfy a certain promise, such as Deutsch-Jozsa
and Simon’s problem.
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here. Stronger versions may be found in [85, 84]; the latter one actually gives optimal bounds for
every Boolean function [120]! Recall that a quantum query algorithm is a sequence

UTOxUT−1Ox · · ·OxU1OxU0,

applied to the fixed starting state |0 . . . 0〉, where the basic “query transformation” Ox depends
on the input x, and U0, U1, . . . , UT are arbitrary unitaries that don’t depend on x. Consider the
evolution of our quantum state under all possible choices of x; formally, we let |ψt

x〉 denote the state
at time t (i.e., after applying Ox for the t-th time) under input x. In particular, |ψ0

x〉 = |0 . . . 0〉 for
all x (and 〈ψ0

x|ψ0
y〉 = 1 for each x, y). Now if the algorithm computes the Boolean function f with

success probability 2/3 on every input, then the final measurement must accept every x ∈ f−1(0)
with probability ≤ 1/3, and accept every y ∈ f−1(1) with probability ≥ 2/3. It is not hard to
verify that this implies |〈ψT

x |ψT
y 〉| ≤ 17

18 .
7 This suggests that we find a R ⊆ f−1(0) × f−1(1) of

hard-to-distinguish (x, y)-pairs, and consider the progress measure

St =
∑

(x,y)∈R
|〈ψt

x|ψt
y〉|

as a function of t. By our observations, initially we have S0 = |R|, and in the end we must have
ST ≤ 17

18 |R|. Also, crucially, the progress measure is unaffected by each application of a unitary Ut,
since each Ut is independent of the input and unitary transformations preserve inner products.

If we can determine an upper bound ∆ on the change |St+1 − St| in the progress measure at

each step, we can conclude that the number T of queries is at least |R|
18∆ . Ambainis proved the

following. Suppose that

(i) each x ∈ f−1(0) appearing in R, appears at least m0 times in pairs (x, y) in R;

(ii) each y ∈ f−1(1) appearing in R, appears at least m1 times in pairs (x, y) in R;

(iii) for each x ∈ f−1(0) and i ∈ {0, . . . , N − 1}, there are at most ℓ0 inputs y ∈ f−1(1) such that
(x, y) ∈ R and xi 6= yi;

(iv) for each y ∈ f−1(1) and i ∈ {0, . . . , N − 1}, there are at most ℓ1 inputs x ∈ f−1(0) such that
(x, y) ∈ R and xi 6= yi.

Then for all t ≥ 0, |St+1 − St| = O
(√

ℓ0
m0

· ℓ1
m1

· |R|
)
=: ∆. We will not prove this inequality here,

though it is a reasonably straightforward generalization of the answer to Exercise 11. This upper
bound ∆ on the progress we can make per query immediately implies a lower bound on the number
of queries:

T = Ω

(√
m0

ℓ0
· m1

ℓ1

)
. (11.1)

7Remember Exercise 3 from Chapter 4 for states |φ〉 and |ψ〉: if ‖φ− ψ‖ = ε then the total variation distance
between the probability distributions you get from measuring |φ〉 and |ψ〉, respectively, is at most ε. Hence, if we
know there is a two-outcome measurement that accepts |φ〉 with probability ≤ 1/3 and accepts |ψ〉 with probability
≥ 2/3, then we must have total variation distance at least 1/3 and hence ε ≥ 1/3. Assume for simplicity that the
inner product 〈φ|ψ〉 is real. Via the equation ε2 = ‖φ− ψ‖2 = 2 − 2〈φ|ψ〉, this translates into an upper bound
|〈φ|ψ〉| ≤ 1− ε2/2 ≤ 17/18 (this upper bound can be improved to 2

√
2/3 with more careful analysis).
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Intuitively, conditions (i)-(iv) imply that |St+1 − St| is small relative to |R| by bounding the “dis-
tinguishing ability” of any query. The art in applying this technique lies in choosing the relation R
carefully to maximize this quantity, i.e., make m0 and/or m1 large, while keeping ℓ0 and ℓ1 small.

Note that for the N -bit OR function this method easily gives the optimal Ω(
√
N) lower bound,

as follows. Choose R = {(x, y) : x = 0N , y has Hamming weight 1}. Then m0 = N while m1 =
ℓ0 = ℓ1 = 1. Plugging this into Eq. (11.1) gives the right Ω(

√
N) bound.

Let us give another application, a lower bound that is much harder to prove using the polynomial
method. Suppose f : {0, 1}N → {0, 1} is a 2-level AND-OR tree, with N = k2 input bits: f is the
AND of k ORs, each of which has its own set of k inputs bits. By carefully doing 2 levels of Grover
search (search for a subtree which is 0k), one can construct a quantum algorithm that computes f
with small error probability and O(

√
k ·

√
k) = O(

√
N) queries. It was long an open problem to give

a matching lower bound on the approximate degree, and this was proved only in 2013 [127, 41]. In
contrast, the adversary method gives the optimal lower bound on the quantum query complexity
quite easily: choose the relation R as follows

R consists of those pairs (x, y) where
x has one subtree with input 0k and the other k − 1 subtrees have an arbitrary k-bit
input of Hamming weight 1 (note f(x) = 0)
y is obtained from x by changing one of the bits of the 0k-subtree to 1 (note f(y) = 1).

Then m0 = m1 = k and ℓ0 = ℓ1 = 1, and we get a lower bound of Ω
(√

m0m1
ℓ0ℓ1

)
= Ω(k) = Ω(

√
N).

Exercises

1. Consider a function f : {0, 1}N → R. Show that this function can be represented by an
N -variate multilinear polynomial of degree ≤ N , and that this representation is unique.

2. Consider a 2-bit input x = x0x1 with phase-oracle Ox,± : |i〉 7→ (−1)xi |i〉. Write out the final
state of the following 1-query quantum algorithm: HOx,±H|0〉. Give a degree-2 polynomial
p(x0, x1) that equals the probability that this algorithm outputs 1 on input x. What function
does this algorithm compute?

3. Consider polynomial p(x0, x1) = 0.3 + 0.4x0 + 0.5x1, which approximates the 2-bit OR func-
tion. Write down the symmetrized polynomial q(x0, x1) = 1

2(p(x0, x1) + p(x1, x0)). Give a
single-variate polynomial r such that q(x) = r(|x|) for all x ∈ {0, 1}2.

4. (H) Let f be the N -bit Parity function, which is 1 if its input x ∈ {0, 1}N has odd Hamming
weight, and 0 if the input has even Hamming weight (assume N is an even number).

(a) Give a quantum algorithm that computes Parity with success probability 1 on every
input x, using N/2 queries.

(b) Show that this is optimal, even for quantum algorithms that have error probability ≤ 1/3
on every input

5. Suppose we have a T -query quantum algorithm that computes the N -bit AND function with
success probability 1 on all inputs x ∈ {0, 1}N . In Section 11.2 we showed that such an
algorithm has T ≥ N/2 (we showed it for OR, but the same argument works for AND).
Improve this lower bound to T ≥ N .
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6. Consider the following 3-bit function f : {0, 1}3 → {0, 1}:
f(x0, x1, x2) = 1 if x0 = x1 = x2, and f(x0, x1, x2) = 0 otherwise

(a) How many queries does a classical deterministic algorithm need to compute f? Explain
your answer.

(b) Give a quantum algorithm that computes f with success probability 1 using 2 queries.

(c) (H) Show that 2 queries is optimal: there is no quantum algorithm that computes f
with success probability 1 using only 1 query.

7. Let f be the N -bit Majority function, which is 1 if its input x ∈ {0, 1}N has Hamming weight
> N/2, and 0 if the input has Hamming weight ≤ N/2 (assume N is even).

(a) Prove that deg(f) ≥ N/2. What does this imply for the query complexity of exact
quantum algorithms that compute majority?

(b) (H) Use the adversary method to show that every bounded-error quantum algorithm
for computing Majority, needs Ω(N) queries. Be explicit about what relation R you’re
using, and about the values of the parameters m0,m1, ℓ0, ℓ1.

8. Let k be an odd natural number, N = k2, and define the Boolean function f : {0, 1}N → {0, 1}
as the k-bit majority of k separate k-bit OR functions. In other words, the N -bit input is
x = x(1) . . . x(k) with x(i) ∈ {0, 1}k for each i ∈ [k], and f(x) is the majority value of the k
bits OR(x(1)), . . . ,OR(x(k)). Use the adversary method to prove that computing this f with
error probability ≤ 1/3 requires Ω(N3/4) quantum queries. Be explicit about what relation
R you’re using, and about the values of the parameters m0,m1, ℓ0, ℓ1.

9. (H) Consider the sorting problem: there are N numbers a1, . . . , aN and we want to sort these.
We can only access the numbers by making comparisons. A comparison is similar to a black-
box query: it takes 2 indices i, j as input and outputs whether ai < aj or not. The output
of a sorting algorithm should be the list of N indices, sorted in increasing order. It is known
that for classical computers, N log2(N) +O(N) comparisons are necessary and sufficient for
sorting. Prove that a quantum algorithm needs at least Ω(N) comparisons for sorting, even
if it is allowed an error probability ≤ 1/3.

10. Consider a total Boolean function f : {0, 1}N → {0, 1}. Given an input x ∈ {0, 1}N and
subset B ⊆ {0, . . . , N − 1} of indices of variables, let xB denote the N -bit input obtained
from x by flipping all bits xi whose index i is in B. The block sensitivity bs(f, x) of f at
input x, is the maximal integer k such that there exist disjoint sets B1, . . . , Bk satisfying
f(x) 6= f(xBi) for all i ∈ [k]. The block sensitivity bs(f) of f is maxx bs(f, x).

(a) (H) Show that the bounded-error quantum query complexity of f is Ω(
√
bs(f)).

(b) It is known that for every total Boolean function f , there is a classical deterministic
algorithm that computes it using O(bs(f)3) many queries. What can you conclude
from this and part (a) about the relation between deterministic and quantum query
complexity for total functions?

11. (H) In this exercise we will derive the quantum lower bound for the search problem in a
self-contained way, without using the polynomial or adversary method.
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Let N = 2n. Consider an input x ∈ {0, 1}N that we can query. Assume x has Hamming
weight 0 or 1, and suppose we would like to find the unique solution to the search prob-
lem (if a solution exists). Let A be any T -query quantum algorithm for this. Suppose for
simplicity that the algorithm acts on only n qubits (so there are no auxiliary qubits), and
A = UTOx,±UT−1Ox,± · · ·U1Ox,±U0, so A interleaves phase queries to x and unitaries that
are independent of x. The initial state is |0n〉. Let |φtx〉 denote the n-qubit state right after
applying Ut, when we run A on input x, so the final state is |φTx 〉. Let ei ∈ {0, 1}N be the
input that has a 1 only at position i. Assume the algorithm A is successful in finding the right
solution i after T queries in the following sense:

∥∥|φTei〉 − |i〉
∥∥ ≤ 1/4 and

∥∥|φT
0N

〉 − |i〉
∥∥ ≥ 3/4

for all i ∈ {0, . . . , N − 1} (note that the basic Grover algorithm is an example of such an A).

(a) Consider the run of algorithm A on input x = 0N , and for t ∈ {0, . . . , T − 1} let the
amplitudes αi,t be such that |φt

0N
〉 =

∑N−1
i=0 αt,i|i〉.

Prove that
∥∥|φ1

0N
〉 − |φ1ei〉

∥∥ ≤ 2|α0,i|, for all i ∈ {0, . . . , N − 1}.
(b) Prove that

∥∥|φT
0N

〉 − |φTei〉
∥∥ ≤ 2

∑T−1
t=0 |αt,i|, for all i ∈ {0, . . . , N − 1}.

(c) Prove that 1/2 ≤
∥∥|φT

0N
〉 − |φTei〉

∥∥, for all i ∈ {0, . . . , N − 1}.
(d) Prove that T ≥

√
N/4.
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Chapter 12

Quantum Complexity Theory

12.1 Most functions need exponentially many gates

As we have seen, quantum computers seem to provide enormous speed-ups for problems like fac-
toring, and square-root speed-ups for various search-related problems. Could they be used to speed
up almost all problems, at least by some amount? Here we will show that this is not the case:
as it turns out, quantum computers are not significantly better than classical computers for most
computational problems.

Consider the problem of computing a Boolean function f : {0, 1}n → {0, 1} by means of a
quantum circuit. Ideally, most such functions would be computable by efficient quantum circuits
(i.e., using at most poly(n) elementary gates). Instead, we will show by means of a simple counting
argument that almost all such functions f have circuit complexity nearly 2n. This is a variant of a
well-known counting argument for classical Boolean circuits due to Shannon.

Let us fix some finite set of elementary gates, for instance the Shor basis {H,T,CNOT} or
{H,Toffoli}. Suppose this set has k types of gates, of maximal fanout 3. Let us try to count the
number of distinct circuits that have at most C elementary gates. For simplicity we include the
initial qubits (the n input bits as well as workspace qubits, which are initially |0〉) as a (k + 1)st
type among those C gates. First we need to choose which type of elementary gate each of the C
gates is; this can be done in (k + 1)C ways. Now every gate has at most 3 ingoing and 3 outgoing
wires. For each of its 3 outgoing wires we can choose an ingoing wire into one of the gates in the
following level; this can be done in at most (3C)3 ways. Hence the total number of circuits with
up to C elementary gates is at most (k + 1)C(3C)3C = CO(C). We are clearly overcounting here,
but that’s OK because we want an upper bound on the number of circuits.

We’ll say that a specific circuit computes a Boolean function f : {0, 1}n → {0, 1} if for every
input x ∈ {0, 1}n, a measurement of the first qubit of the final state (obtained by applying the circuit
to initial state |x, 0〉) gives value f(x) with probability at least 2/3. Each of our CO(C) circuits
can compute at most one f (in fact some of those circuits don’t compute any Boolean function
at all). Accordingly, with C gates we can compute at most CO(C) distinct Boolean functions
f : {0, 1}n → {0, 1}. Hence even if we just want to be able to compute 1% of all 22

n
Boolean

functions, then we already need

CO(C) ≥ 1

100
22

n
, which implies C ≥ Ω(2n/n).

Accordingly, very few computational problems will be efficiently solvable on a quantum computer.
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Below we will try to classify those using the tools of complexity theory.

12.2 Classical and quantum complexity classes

A “complexity class” is a set of decision problems (a.k.a. “languages”) that all have similar com-
plexity in some sense, for instance the ones that can be solved with polynomial time or polynomial
space. Let us first mention some of the main classical complexity classes:

• P. The class of problems that can be solved by classical deterministic computers using
polynomial time.

• BPP. The problems that can be solved by classical randomized computers using polynomial
time (and with error probability ≤ 1/3 on every input).

• NP. The problems where the ‘yes’-instances can be verified in polynomial time if some
prover gives us a polynomial-length “witness.” Some problems in this class are NP-complete,
meaning that any other problem in NP can be reduced to it in polynomial time. Hence
the NP-complete problems are the hardest problems in NP. An example is the problem of
satisfiability: we can verify that a given n-variable Boolean formula is satisfiable if a prover
gives us a satisfying assignment, so the satisfiability-problem is in NP, but one can even show
that is NP-complete. Other examples are integer linear programming, travelling salesman,
graph-colorability, etc.

• PSPACE. The problems that can be solved by classical deterministic computers using
polynomial space.

We can consider quantum analogues of all such classes, an enterprise that was started by Bernstein
and Vazirani [26]:

• EQP. The class of problems that can be solved exactly by quantum computers using poly-
nomial time. This class depends on the set of elementary gates one allows, and is not so
interesting.

• BQP. The problems that can be solved by quantum computers using polynomial time (and
with error probability ≤ 1/3 on every input). This class is the accepted formalization of
“efficiently solvable by quantum computers.”

• “quantum NP”. In analogy with the above definition of NP, one could define quantum NP
as the class of problems where the ‘yes’-instances can be verified efficiently if some prover
gives us a “quantum witness” of a polynomial number of qubits. For every ‘yes’-instance
there should be a quantum witness that passes the verification with probability 1, while for
‘no’-instances every quantum witness should be rejected with probability 1. This class is
again dependent on the elementary gates one allows, and not so interesting.

Allowing error probability ≤ 1/3 on every input, we get a class called QMA (“quantum
Merlin-Arthur”). This is a more robust and more interesting quantum version of NP. In
particular, like NP, QMA has complete problems: problems in QMA to which every other
QMA-problem can be efficiently reduced. The most famous example of such a problem is
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deciding whether the ground state energy (i.e., lowest eigenvalue) of a given k-local Hamilto-
nian (see Chapter 9) is at most some given number a or at least a+1/poly(n). Determining
the ground state energy of a given physical system is extremely important in physics and
chemistry. It is not hard to see that the problem is in QMA: we can just let the quantum
witness be the ground state (i.e., an eigenstate for the lowest eigenvalue) and measure its
energy using the Hamiltonian, which is the observable corresponding to total energy. The
problem turns out to be QMA-complete already for k = 2 [92, 89]. Unfortunately we don’t
have time to cover this in more detail.

• QPSPACE. The problems that can be solved by quantum computers using polynomial
space. This turns out to be the same as classical PSPACE.

As explained in Appendix B, in all the above cases the error probability 1/3 can be reduced
efficiently to much smaller constant ε > 0: just run the computation O(log(1/ε)) times and take
the majority of the answers given by these runs.

We should be a bit careful about what we mean by a “polynomial time [or space] quantum
algorithm.” Our model for computation has been quantum circuits, and we need a separate quan-
tum circuit for each new input length. So a quantum algorithm of time p(n) would correspond to
a family of quantum circuits {Cn}, where Cn is the circuit that is used for inputs of length n; it
should have at most p(n) elementary gates.1

In the next section we will prove that BQP ⊆ PSPACE. We have BPP ⊆ BQP, because
a BPP-machine on a fixed input length n can be written as a polynomial-size reversible circuit
(i.e., consisting of Toffoli gates) that starts from a state that involves some coin flips. Quantum
computers can generate those coin flips using Hadamard transforms, then run the reversible circuit,
and measure the final answer bit. It is believed that BQP contains problems that aren’t in BPP,
for example factoring large integers: this problem (or rather the decision-version thereof) is in
BQP because of Shor’s algorithm, and is generally believed not to be in BPP. Thus we have the
following sequence of inclusions:

P ⊆ BPP ⊆ BQP ⊆ PSPACE.

It is generally believed that P = BPP, while the other inclusions are believed to be strict. Note
that a proof that BQP is strictly greater than BPP (for instance, a proof that factoring cannot
be solved efficiently by classical computers) would imply that P 6= PSPACE, solving what has
been one of the main open problems in computers science since the 1960s. Hence such a proof—if
it exists at all—will probably be very hard.

What about the relation between BQP and NP? It’s generally believed that NP-complete
problems are probably not in BQP. The main evidence for this is the lower bound for Grover
search: a quantum brute-force search on all 2n possible assignments to an n-variable formula gives
a square-root speed-up, but not more. This is of course not a proof, since there might be clever, non-
brute-force methods to solve satisfiability. However, neither in the classical nor in the quantum
case do we know clever methods that solve the general satisfiability problem much faster than
brute-force search.

1To avoid smuggling loads of hard-to-compute information into this definition (e.g., Cn could contain information
about whether the n-th Turing machine halts or not), we will require this family to be efficiently describable: there
should be a classical Turing machine which, on input n and j, outputs (in time polynomial in n) the j-th elementary
gate of Cn, with information about where its incoming and outcoming wires go.
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Finally, there could also be problems in BQP that are not in NP, so it may well be that BQP
and NP are incomparable. Much more can be said about quantum complexity classes; see for
instance Watrous’s survey [137].

12.3 Classically simulating quantum computers in polynomial space

When Richard Feynman first came up with quantum computers [65], he motivated them by

“the full description of quantum mechanics for a large system with R particles is given by
a function q(x1, x2, . . . , xR, t) which we call the amplitude to find the particles x1, . . . , xR
[RdW: think of xi as one qubit], and therefore, because it has too many variables, it
cannot be simulated with a normal computer with a number of elements proportional
to R or proportional to N.” [. . . ]
“Can a quantum system be probabilistically simulated by a classical (probabilistic, I’d
assume) universal computer? In other words, a computer which will give the same
probabilities as the quantum system does. If you take the computer to be the classical
kind I’ve described so far (not the quantum kind described in the last section) and there
are no changes in any laws, and there’s no hocus-pocus, the answer is certainly, No!”

The suggestion to devise a quantum computer to simulate quantum physics is of course a brilliant
one, but the main motivation is not quite accurate. As it turns out, it is not necessary to keep
track of all (exponentially many) amplitudes in the state to classically simulate a quantum system.
Here we will show that it can actually be simulated efficiently in terms of space [26], though not
necessarily in terms of time.

Consider a circuit with T = poly(n) gates that acts on S qubits. Assume for simplicity that
all gates are either the 1-qubit Hadamard or the 3-qubit Toffoli gate (as mentioned before, these
two gates suffice for universal quantum computation), and that the classical output (0 or 1) of the
algorithm is determined by a measurement of the first qubit of the final state. Without loss of
generality S ≤ 3T , because T Toffoli gates won’t affect more than 3T qubits. Let Uj be the unitary
that applies the j-th gate to its (1 or 3) qubits, and applies identity to all other qubits. The entries
of this matrix are of a simple form (0, 1/

√
2, or −1/

√
2 for Hadamard; 0 or 1 for Toffoli) and easy

to compute. Let |i0〉 = |x〉|0S−n〉 be the starting state, where x ∈ {0, 1}n is the classical input, and
the second register contains the workspace qubits the algorithm uses. The final state will be

|ψx〉 = UTUT−1 · · ·U2U1|i0〉.
The amplitude of basis state |iT 〉 in this final state is

〈iT |ψx〉 = 〈iT |UTUT−1UT−2 · · ·U2U1|i0〉.
Inserting an identity matrix I =

∑
i∈{0,1}S |i〉〈i| between the gates, we can rewrite this as2

〈iT |ψx〉 = 〈iT |UT


∑

iT−1

|iT−1〉〈iT−1|


UT−1


∑

iT−2

|iT−2〉〈iT−2|


UT−2 · · ·U2

(∑

i1

|i1〉〈i1|
)
U1|x, 0〉

=
∑

iT−1,...,i1

T∏

j=1

〈ij |Uj |ij−1〉.

2For the physicists: this is very similar to a path integral.
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The number 〈ij |Uj |ij−1〉 is just one entry of the matrix Uj and hence easy to calculate. Then∏T
j=1〈ij |Uj |ij−1〉 is also easy to compute, in polynomial space (and polynomial time). If ℓ of the T

gates are Hadamards, then each such number is either 0 or ±1/
√
2ℓ.

Adding up
∏T

j=1〈ij |Uj |ij−1〉 for all iT−1, . . . , i1 is also easy to do in polynomial space if we
reuse space for each new iT−1, . . . , i1. Hence the amplitude 〈iT |ψx〉 can be computed exactly
using polynomial space.3 We assume that the BQP machine’s answer is obtained by measuring
the first qubit of the final state. Then its acceptance probability is the sum of squares of all
amplitudes of basis states starting with a 1:

∑
iT :(iT )1=1 |〈iT |ψx〉|2. Since we can compute each

〈iT |ψx〉 in polynomial space, the acceptance probability of a BQP-circuit on classical input x can
be computed in polynomial space.

Exercises

1. (H) The following problem is a decision version of the factoring problem:

Given positive integers N and k, decide if N has a prime factor p ∈ {k, . . . , N − 1}.

Show that if you can solve this decision problem efficiently (i.e., in time polynomial in the
input length n = ⌈logN⌉), then you can also find the prime factors of N efficiently.

2. (a) Let U be an S-qubit unitary which applies a Hadamard gate to the k-th qubit, and
identity gates to the other S − 1 qubits. Let i, j ∈ {0, 1}S . Show an efficient way (i.e.,
using time polynomial in S) to calculate the matrix-entry Ui,j = 〈i|U |j〉 (note: even
though U is a tensor product of 2× 2 matrices, it’s still a 2S × 2S matrix, so calculating
U completely isn’t efficient).

(b) Let U be an S-qubit unitary which applies a CNOT gate to the k-th and ℓ-th qubits,
and identity gates to the other S − 2 qubits. Let i, j ∈ {0, 1}S . Show an efficient way to
calculate the matrix-entry Ui,j = 〈i|U |j〉.

3. (H) Consider a circuit C with T = poly(n) elementary gates (only Hadamards and Toffolis)
acting on S = poly(n) qubits. Suppose this circuit computes f : {0, 1}n → {0, 1} with
bounded error probability: for every x ∈ {0, 1}n, when we start with basis state |x, 0S−n〉,
run the circuit and measure the first qubit, then the result equals f(x) with probability at
least 2/3.

(a) Consider the following quantum algorithm: start with basis state |x, 0S−n〉, run the
above circuit C without the final measurement, apply a Z gate to the first qubit, and
reverse the circuit C. Denote the resulting final state by |ψx〉. Show that if f(x) = 0
then the amplitude of basis state |x, 0S−n〉 in |ψx〉 is in the interval [1/3, 1], while if
f(x) = 1 then the amplitude of |x, 0S−n〉 in |ψx〉 is in [−1,−1/3].

(b) PP is the class of computational decision problems that can be solved by classical
randomized polynomial-time computers with success probability > 1/2 (however, the
success probability could be exponentially close to 1/2, i.e., PP is BPP without the ‘B’
for bounded-error). Show that BQP ⊆ PP.

3Of course, the calculation will take exponential time, because there are 2S(T−1) different sequences iT−1, . . . , i1
that we need to go over sequentially.
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Chapter 13

Quantum Encodings, with a
Non-Quantum Application

13.1 Mixed states and general measurements

So far, we have restricted our states to so-called pure states: unit vectors of amplitudes. In the
classical world we often have uncertainty about the state of a system, which can be expressed by
viewing the state as a random variable that has a certain probability distribution over the set
of basis states. Similarly we can define a mixed quantum state as a probability distribution (or
“mixture”) over pure states. While pure states are written as vectors, it is most convenient to write
mixed states as density matrices. A pure state |φ〉 corresponds to the density matrix |φ〉〈φ|, which
is the outer product of the vector |φ〉 with itself. For example, the pure state |φ〉 = α|0〉 + β|1〉
corresponds to the density matrix

|φ〉〈φ| =
(
α
β

)
· (α∗ β∗) =

(
|α|2 αβ∗

α∗β |β|2
)
.

A mixed state that is in pure states |φ1〉, . . . , |φℓ〉 with probabilities p1, . . . , pℓ, respectively, corre-
sponds to the density matrix ρ =

∑ℓ
i=1 pi|φi〉〈φi|. This ρ is sometimes called a “mixture” of the

states |φ1〉, . . . , |φℓ〉.1 The set of density matrices is exactly the set of positive semidefinite (PSD)
matrices of trace 1. A mixed state is pure if, and only if, it has rank 1.

Applying a unitary U to a pure state |φ〉 gives pure state U |φ〉. Written in terms of rank-1
density matrices, this corresponds to the map

|φ〉〈φ| 7→ U |φ〉〈φ|U∗.

By linearity, this actually tells us how a unitary acts on an arbitrary mixed state:

ρ 7→ UρU∗.

What about measurements? Recall from Section 1.2.2 that an m-outcome projective measurement
corresponds to m orthogonal projectors P1, . . . , Pm that satisfy

∑m
i=1 Pi = I. When applying this

measurement to a mixed state ρ, the probability to see outcome i is given by pi = Tr(Piρ). If we

1Note that applying the probabilities pi to the vectors |φi〉 (rather than to the matrices |φi〉〈φi|) does not make
sense in general, because

∑ℓ
i=1 pi|φi〉 need not be a unit vector.
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get outcome i, then the state collapses to PiρPi/pi (the division by pi renormalizes the state to have
trace 1). This may look weird, but let’s recover our familiar measurement in the computational
basis in this framework. Suppose we measure a state |φ〉 =

∑d
j=1 αj |j〉 using d projectors Pi = |i〉〈i|

(note that
∑

i Pi is the identity on the d-dimensional space). The probability to get outcome i is
given by pi = Tr(Pi|φ〉〈φ|) = |〈i|φ〉|2 = |αi|2. If we get outcome i then the state collapses to
Pi|φ〉〈φ|Pi/pi = αi|i〉〈i|α∗

i /pi = |i〉〈i|. This is exactly the measurement in the computational basis
as we have used it until now. Similarly, a measurement of the first register of a two-register state
corresponds to projectors Pi = |i〉〈i| ⊗ I, where i goes over all basis states of the first register.

If we only care about the final probability distribution on the m outcomes, not about the
resulting state, then the most general thing we can do is a POVM. This is specified by m positive
semidefinite matrices E1, . . . , Em satisfying

∑m
i=1Ei = I. When measuring a state ρ, the probability

of outcome i is given by Tr(Eiρ).

13.2 Quantum encodings and their limits

Quantum information theory studies the quantum generalizations of familiar notions from classical
information theory such as Shannon entropy, mutual information, channel capacities, etc. Here we
will discuss a few quantum information-theoretic results that all have the same flavor: they say
that a low-dimensional quantum state (i.e., a small number of qubits) cannot contain too much
accessible information.

Holevo’s Theorem: The mother of all such results is Holevo’s theorem from 1973 [83], which
predates the area of quantum computing by several decades. Its proper technical statement is
in terms of a quantum generalization of mutual information, but the following consequence of it
(derived by Cleve et al. [50]) about two communicating parties, suffices for our purposes.

Theorem 2 (Holevo, CDNT) Suppose Alice wants to communicate some classical string x to
Bob.

• If Alice sends Bob m qubits, and they did not share any prior entanglement, then Bob receives
at most m bits of information about x.

• If Alice sends Bob m qubits, and they did share some prior entangled state, then Bob receives
at most 2m bits of information about x.

• If Alice sends Bob m classical bits, and they did share some prior entangled state, then Bob
receives at most m bits of information about x.

This theorem is slightly imprecisely stated here, but the intuition should be clear: if Bob makes
any measurement on his state after the communication, then the mutual information between his
classical outcome and Alice’s x, is bounded by m or 2m. In particular, the first part of the theorem
says that if we encode some classical random variable X in an m-qubit state2, then no measurement
on the quantum state can give more thanm bits of information about X. If we encoded the classical
information in an m-bit system instead of an m-qubit system this would be a trivial statement,

2Via an encoding map x 7→ ρx; we generally use capital letters like X to denote random variables, lower case like
x to denote specific values.
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but the proof of Holevo’s theorem is quite non-trivial. Thus we see that an m-qubit state, despite
somehow “containing” 2m complex amplitudes, is no better than m classical bits for the purpose of
storing or transmitting information. Prior entanglement can improve this by a factor of 2 because
of superdense coding (see Exercise 1.9), but no more than that.

Low-dimensional encodings: Here we provide a “poor man’s version” of Holevo’s theorem due
to Nayak [114, Theorem 2.4.2], which has a simple proof and often suffices for applications. Suppose
we have a classical random variable X, uniformly distributed over [N ] = {1, . . . , N}.3 Let x 7→ ρx
be some encoding of [N ], where ρx is a mixed state in a d-dimensional space. Let E1, . . . , EN be
the POVM operators applied for decoding; these sum to the d-dimensional identity operator. Then
the probability of correct decoding in case X = x, is

px = Tr(Exρx) ≤ Tr(Ex).

The sum of these success probabilities is at most

N∑

x=1

px ≤
N∑

x=1

Tr(Ex) = Tr

(
N∑

x=1

Ex

)
= Tr(I) = d. (13.1)

In other words, if we are encoding one of N classical values in a d-dimensional quantum state, then
any measurement to decode the encoded classical value has average success probability at most d/N
(uniformly averaged over all N values that we can encode). For example, if we encode n uniformly
random bits into m qubits, we will have N = 2n, d = 2m, and the average success probability of
decoding is at most 2m/2n.

Random access codes: The previous two results dealt with the situation where we encoded a
classical random variable X in some quantum system, and would like to recover the original value
X by an appropriate measurement on that quantum system. However, suppose X = X1 . . . Xn is
a string of n bits, uniformly distributed and encoded by a map x 7→ ρx, and it suffices for us if
we are able to decode individual bits Xi from this with some probability p > 1/2. More precisely,
for each i ∈ [n] there should exist a measurement {Mi, I −Mi} allowing us to recover xi: for each
x ∈ {0, 1}n we should have Tr(Miρx) ≥ p if xi = 1 and Tr(Miρx) ≤ 1 − p if xi = 0. An encoding
satisfying this is called a quantum random access code, since it allows us to choose which bit of
X we would like to access. Note that the measurement to recover xi can change the state ρx, so
generally we may not be able to decode more than one bit of x (also, we cannot copy ρx because
of the no-cloning theorem, see Exercise 1.7).

An encoding that allows us to recover (with high success probability) an n-bit string requires
about n qubits by Holevo. Random access codes only allow us to recover each of the n bits. Can
they be much shorter? In small cases they can be: for instance, one can encode two classical bits
into one qubit, in such a way that each of the two bits can be recovered with success probability
85% from that qubit (see Exercise 2). However, Nayak [114] proved that asymptotically quantum
random access codes cannot be much shorter than classical.

Theorem 3 (Nayak) Let x 7→ ρx be a quantum random access encoding of n-bit strings into
m-qubit states such that, for each i ∈ [n], we can decode Xi from |φX〉 with success probability p

3NB: unlike in most of these lecture notes, N need not equal 2n in this chapter!
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(averaged over a uniform choice of x and the measurement randomness). Then m ≥ (1−H(p))n,
where H(p) = −p log p− (1− p) log(1− p) is the binary entropy function.

The intuition of the proof is quite simple: since the quantum state allows us to predict the bit
Xi with probability pi, it reduces the “uncertainty” about Xi from 1 bit to H(pi) bits. Hence it
contains at least 1−H(pi) bits of information about Xi. Since all n Xi’s are independent, the state
has to contain at least

∑n
i=1(1−H(pi)) bits of information about X in total.

13.3 Lower bounds on locally decodable codes

Here we will give an application of quantum information theory to a classical problem.4

The development of error-correcting codes is one of the success stories of science in the second
half of the 20th century. Such codes are eminently practical, and are widely used to protect
information stored on discs, communication over channels, etc. From a theoretical perspective,
there exist codes that are nearly optimal in a number of different respects simultaneously: they
have constant rate, can protect against a constant noise-rate, and have linear-time encoding and
decoding procedures. We refer to Trevisan’s survey [133] for a complexity-oriented discussion of
codes and their applications.

One drawback of ordinary error-correcting codes is that we cannot efficiently decode small
parts of the encoded information. If we want to learn, say, the first bit of the encoded message
then we usually still need to decode the whole encoded string. This is relevant in situations where
we have encoded a very large string (say, a library of books, or a large database), but are only
interested in recovering small pieces of it at any given time. Dividing the data into small blocks
and encoding each block separately will not work: small chunks will be efficiently decodable but
not error-correcting, since a tiny fraction of well-placed noise could wipe out the encoding of one
chunk completely. There exist, however, error-correcting codes that are locally decodable, in the
sense that we can efficiently recover individual bits of the encoded string.

Definition 1 C : {0, 1}n → {0, 1}N is a (q, δ, ε)-locally decodable code (LDC) if there is a classical
randomized decoding algorithm A such that

1. A makes at most q queries to an N -bit string y.

2. For all x ∈ {0, 1}n and i ∈ [n], and all y ∈ {0, 1}N with Hamming distance d(C(x), y) ≤ δN
we have Pr[Ay(i) = xi] ≥ 1/2 + ε.

The notation Ay(i) reflects that the decoder A has two different types of input. On the one
hand there is the (possibly corrupted) codeword y, to which the decoder has oracle access and from
which it can read at most q bits of its choice. On the other hand there is the index i of the bit that
needs to be recovered, which is known fully to the decoder.

The main question about LDCs is the tradeoff between the codelength N and the number of
queries q (which is a proxy for the decoding-time). This tradeoff is still not very well understood.
The only case where we know the answer is the case of q = 2 queries (1-query LDCs don’t exist
once n is sufficiently large [88]). For q = 2 there is the Hadamard code: given x ∈ {0, 1}n, define
a codeword of length N = 2n by writing down the bits x · z mod 2, for all z ∈ {0, 1}n. One can

4There is a growing number of such applications of quantum tools to non-quantum problems. See [57] for a survey.
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decode xi with 2 queries as follows: choose z ∈ {0, 1}n uniformly at random and query the (possibly
corrupted) codeword at indices z and z ⊕ ei, where the latter denotes the string obtained from z
by flipping its i-th bit. Individually, each of these two indices is uniformly distributed. Hence for
each of them, the probability that the returned bit is corrupted is at most δ. By the union bound,
with probability at least 1− 2δ, both queries return the uncorrupted values. Adding these two bits
mod 2 gives the correct answer:

C(x)z ⊕ C(x)z⊕ei = (x · z)⊕ (x · (z ⊕ ei)) = x · ei = xi.

Thus the Hadamard code is a (2, δ, 1/2− 2δ)-LDC of exponential length.
The only superpolynomial lower bound known on the length of LDCs is for the case of 2 queries:

there one needs an exponential codelength and hence the Hadamard code is essentially optimal.
This is shown via a quantum argument [90]—despite the fact that the result is a purely classical
result, about classical codes and classical decoders. The easiest way to present this argument is to
assume the following fact, which states a kind of “normal form” for the decoder.

Fact 1 (Katz & Trevisan [88] + folklore) For every (q, δ, ε)-LDC C : {0, 1}n → {0, 1}N , and
for each i ∈ [n], there exists a set Mi of Ω(δεN/q

2) disjoint tuples, each of at most q indices from
[N ], and a bit ai,t for each tuple t ∈ Mi, such that the following holds:

Pr
x∈{0,1}n


xi = ai,t ⊕

∑

j∈t
C(x)j


 ≥ 1/2 + Ω(ε/2q), (13.2)

where the probability is taken uniformly over x. Hence to decode xi from C(x), the decoder can just
query the indices in a randomly chosen tuple t from Mi, outputting the sum of those q bits and
ai,t.

Note that the above decoder for the Hadamard code is already of this form, with Mi consisting of
the 2n−1 pairs {z, z⊕ei}. We omit the fairly easy proof of Fact 1, which uses purely classical ideas.

Now suppose C : {0, 1}n → {0, 1}N is a (2, δ, ε)-LDC. We want to show that the codelength
N must be exponentially large in n. Our strategy is to show that the following N -dimensional
quantum encoding is a quantum random access code for x (with some success probability p > 1/2):

x 7→ |φx〉 =
1√
N

N∑

j=1

(−1)C(x)j |j〉.

Theorem 3 then implies that the number of qubits of this state (which is ⌈logN⌉) is at least
(1−H(p))n = Ω(n), and we are done.

Suppose we want to recover xi from |φx〉. We’ll do this by a sequence of two measurements, as
follows. We turn each Mi from Fact 1 into a projective measurement: for each pair (j, k) ∈ Mi

form the projector Pjk = |j〉〈j| + |k〉〈k|, and let Prest =
∑

j 6∈∪t∈Mi
t |j〉〈j| be the projector on the

remaining indices. These |Mi| + 1 projectors sum to the N -dimensional identity matrix, so they
form a valid projective measurement. Applying this to |φx〉 gives outcome (j, k) with probability
‖Pjk|φx〉‖2 = 2/N for each (j, k) ∈ Mi. There are |Mi| = Ω(δεN) different (j, k)-pairs in Mi, so
the probability to see one of those as outcome of the measurement, is |Mi| · 2/N = Ω(δε). With
the remaining probability r = 1 − Ω(δε), we’ll get “rest” as outcome of the measurement. In the
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latter case we didn’t get anything useful from the measurement, so we’ll just output a fair coin flip
as our guess for xi (then the output will equal xi with probability exactly 1/2). In case we got one
of the (j, k) as measurement outcome, the state has collapsed to the following useful superposition:

1√
2

(
(−1)C(x)j |j〉+ (−1)C(x)k |k〉

)
=

(−1)C(x)j
√
2

(
|j〉+ (−1)C(x)j⊕C(x)k |k〉

)

We know what j and k are, because it is the outcome of the measurement on |φx〉. Now do a
2-outcome projective measurement with projectors P0 and P1 corresponding to the two vectors
1√
2
(|j〉+ |k〉) and 1√

2
(|j〉 − |k〉), respectively. The measurement outcome equals the value C(x)j ⊕

C(x)k with probability 1. By Eq. (13.2), if we add the bit ai,(j,k) to this, we get xi with probability
at least 1/2 + Ω(ε). The success probability of recovering xi, averaged over all x, is

p ≥ 1

2
r +

(
1

2
+ Ω(ε)

)
(1− r) =

1

2
+ Ω(δε2).

Thus we have constructed a random access code that encodes n bits into logN qubits, and has
success probability at least p. Applying Theorem 3 and using that

1−H(1/2 + η) = Θ(η2) for η ∈ [0, 1/2],

we obtain the following:

Theorem 4 If C : {0, 1}n → {0, 1}N is a (2, δ, ε)-locally decodable code, then N ≥ 2Ω(δ2ε4n).

Exercises

1. (a) Give the density matrix that corresponds to a 50-50 mixture of |0〉 and |1〉.
(b) Give the density matrix that corresponds to a 50-50 mixture of |+〉 = 1√

2
(|0〉+ |1〉) and

|−〉 = 1√
2
(|0〉 − |1〉).

2. (a) (H) Give a quantum random access code that encodes 2 classical bits into 1 qubit, such
that each of the two classical bits can be recovered from the quantum encoding with
success probability p ≥ 0.85.

(b) Prove an upper bound of 1/2+O(1/
√
n) on the success probability p for a random access

code that encodes n classical bits into 1 qubit.

3. (H) Teleportation transfers an arbitrary unknown qubit from Alice to Bob, using 1 EPR-pair
and 2 classical bits of communication from Alice to Bob (see Section 1.5). Prove that these
2 bits of communication are necessary, i.e., you cannot teleport an arbitrary unknown qubit
using 1 EPR-pair and only 1 classical bit of communication.

4. Consider the Hadamard code C that encodes n = 2 bits x1x2 into a codeword of N = 4 bits.

(a) Give the 4-bit codeword C(11).

(b) What are the states |φx〉 that arise as quantum random access code when we apply the
LDC lower bound proof of Section 13.3 to C? Give the 4 states, not one general formula.

(c) What is the measurement used for recovering x2 from |φx〉 at the end of that proof?
You may either describe this as a sequence of two projective measurements, or as one
(combined) projective measurement.
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Chapter 14

Quantum Communication Complexity

Communication complexity was first introduced by Yao [140], and has been studied extensively
in the area of theoretical computer science and has deep connections with seemingly unrelated
areas, such as VLSI design, circuit lower bounds, lower bounds on branching programs, size of data
structures, and bounds on the length of logical proof systems, to name just a few.

14.1 Classical communication complexity

First we sketch the setting for classical communication complexity. Alice and Bob want to compute
some function f : D → {0, 1}, where D ⊆ X × Y .1 Alice receives input x ∈ X, Bob receives input
y ∈ Y , with (x, y) ∈ D. A typical situation, illustrated in Fig. 14.1, is where X = Y = {0, 1}n,
so both Alice and Bob receive an n-bit input string. As the value f(x, y) will generally depend on
both x and y, some communication between Alice and Bob is required in order for them to be able
to compute f(x, y). We are interested in the minimal amount of communication they need.

Alice

x ∈ {0, 1}n

❄

Bob

y ∈ {0, 1}n

f(x, y)

❄

❄

✲
✛

✲

communication

Inputs:

Output:

Figure 14.1: Alice and Bob solving a communication complexity problem

A communication protocol is a distributed algorithm where first Alice does some individual
computation, and then sends a message (of one or more bits) to Bob, then Bob does some compu-
tation and sends a message to Alice, etc. Each message is called a round. After one or more rounds
the protocol terminates and one of the parties (let’s say Bob) outputs some value that should be
f(x, y). The cost of a protocol is the total number of bits communicated on the worst-case input.

1If the domain D equals X×Y then f is called a total function, otherwise it is called a partial or promise function.
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A deterministic protocol for f always has to output the right value f(x, y) for all (x, y) ∈ D. In a
bounded-error protocol, Alice and Bob may flip coins and the protocol has to output the right value
f(x, y) with probability ≥ 2/3 for all (x, y) ∈ D. We could either allow Alice and Bob to toss coins
individually (local randomness, or “private coin”) or jointly (shared randomness, or “public coin”).
A public coin can simulate a private coin and is potentially more powerful. However, Newman’s
theorem [115] says that having a public coin can save at most O(log n) bits of communication,
compared to a protocol with a private coin.

To illustrate the power of randomness, let us give a simple yet efficient bounded-error protocol
for the equality problem, where the goal for Alice is to determine whether her n-bit input is the
same as Bob’s or not: f(x, y) = 1 if x = y, and f(x, y) = 0 otherwise. Alice and Bob jointly
toss a random string r ∈ {0, 1}n. Alice sends the bit a = x · r to Bob (where ‘·’ is inner product
mod 2). Bob computes b = y · r and compares this with a. If x = y then a = b, but if x 6= y then
a 6= b with probability 1/2. Repeating this a few times, Alice and Bob can decide equality with
small error probability using O(n) public coin flips and a constant amount of communication. This
protocol uses public coins, but note that Newman’s theorem implies that there exists an O(log n)-
bit protocol that uses a private coin (see Exercise 6 for an explicit protocol). Note that the correct
output of the equality function depends on all n bits of x, but Bob does not need to learn all n bits
of x in order to be able to decide equality with high success probability. In contrast, one can show
that deterministic protocols for the equality problem need n bits of communication, so then Alice
might as well just send x to Bob.

14.2 The quantum question

Now what happens if we give Alice and Bob a quantum computer and allow them to send each
other qubits and/or to make use of EPR-pairs that they share at the start of the protocol?

Formally speaking, we can model a quantum protocol as follows. The total state consists
of 3 parts: Alice’s private space, the channel, and Bob’s private space. The starting state is
|x〉|0〉|y〉: Alice gets x, the channel is initialized to 0, and Bob gets y. Now Alice applies a unitary
transformation to her space and the channel. This corresponds to her private computation as well
as to putting a message on the channel (the length of this message is the number of channel-qubits
affected by Alice’s operation). Then Bob applies a unitary transformation to his space and the
channel, etc. At the end of the protocol Alice or Bob makes a measurement to determine the
output of the protocol. This model was introduced by Yao [141].

In the second model, introduced by Cleve and Buhrman [49], Alice and Bob share an unlimited
number of EPR-pairs at the start of the protocol, but now they communicate via a classical channel:
the channel has to be in a classical state throughout the protocol. We only count the communication,
not the number of EPR-pairs used. Protocols of this kind can simulate protocols of the first kind
with only a factor 2 overhead: using teleportation, the parties can send each other a qubit using
an EPR-pair and two classical bits of communication. Hence the qubit-protocols that we describe
below also immediately yield protocols that work with entanglement and a classical channel. Note
that an EPR-pair can simulate a public coin toss: if Alice and Bob each measure their half of the
pair of qubits, they get the same random bit.

The third variant combines the strengths of the other two: here Alice and Bob start out with
an unlimited number of EPR-pairs and they are allowed to communicate qubits. This third kind
of communication complexity is in fact equivalent to the second, up to a factor of 2, again by
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teleportation.
Before continuing to study this model, we first have to face an important question: is there

anything to be gained here? At first sight, the following argument seems to rule out any significant
gain. Suppose that in the classical world k bits have to be communicated in order to compute f .
Since Holevo’s theorem says that k qubits cannot contain more information than k classical bits, it
seems that the quantum communication complexity should be roughly k qubits as well (maybe k/2
to account for superdense coding, but not less). Surprisingly (and fortunately for us), this argument
is false, and quantum communication can sometimes be much less than classical communication
complexity. The information-theoretic argument via Holevo’s theorem fails, because Alice and
Bob do not need to communicate the information in the k bits of the classical protocol; they are
only interested in the value f(x, y), which is just 1 bit. Below we will go over four of the main
examples that have so far been found of differences between quantum and classical communication
complexity.

14.3 Example 1: Distributed Deutsch-Jozsa

The first impressively large gaps between quantum and classical communication complexity were
exhibited by Buhrman, Cleve, and Wigderson [39]. Their protocols are distributed versions of
known quantum query algorithms, like the Deutsch-Jozsa and Grover algorithms. Let us start
with the first one. It is actually explained most easily in a direct way, without reference to the
Deutsch-Jozsa algorithm (though that is where the idea came from). The problem is a promise
version of the equality problem. Suppose the n-bit inputs x and y are restricted to the following
case:

Distributed Deutsch-Jozsa: either x = y, or x and y differ in exactly n/2 positions

Note that this promise only makes sense if n is an even number, otherwise n/2 would not be integer.
In fact it will be convenient to assume n a power of 2. Here is a simple quantum protocol to solve
this promise version of equality using only log n qubits:

1. Alice sends Bob the log n-qubit state 1√
n

∑n
i=1(−1)xi |i〉, which she can prepare unitarily from

x and log n |0〉-qubits.

2. Bob applies the unitary map |i〉 7→ (−1)yi |i〉 to the state, applies a Hadamard transform to
each qubit (for this it is convenient to view i as a log n-bit string), and measures the resulting
log n-qubit state.

3. Bob outputs 1 if the measurement gave |0logn〉 and outputs 0 otherwise.

It is clear that this protocol only communicates log n qubits, but why does it work? Note that the
state that Bob measures is

H⊗ logn

(
1√
n

n∑

i=1

(−1)xi+yi |i〉
)

=
1

n

n∑

i=1

(−1)xi+yi
∑

j∈{0,1}logn

(−1)i·j |j〉

This superposition looks rather unwieldy, but consider the amplitude of the |0logn〉 basis state. It
is 1

n

∑n
i=1(−1)xi+yi , which is 1 if x = y and 0 otherwise because the promise now guarantees that

x and y differ in exactly n/2 of the bits! Hence Bob will always give the correct answer.
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What about efficient classical protocols (without entanglement) for this problem? Proving
lower bounds on communication complexity often requires a very technical combinatorial analysis.
Buhrman, Cleve, and Wigderson used a deep combinatorial result from [68] to prove that every
classical errorless protocol for this problem needs to send at least 0.007n bits.

This log n-qubits-vs-0.007n-bits example was the first exponentially large separation of quantum
and classical communication complexity. Notice, however, that the difference disappears if we move
to the bounded-error setting, allowing the protocol to have some small error probability. We can
use the randomized protocol for equality discussed above or even simpler: Alice can just send a few
(i, xi) pairs to Bob, who then compares the xi’s with his yi’s. If x = y he will not see a difference,
but if x and y differ in n/2 positions, then Bob will probably detect this. Hence O(log n) classical
bits of communication suffice in the bounded-error setting, in sharp contrast to the errorless setting.

14.4 Example 2: The Intersection problem

Now consider the Intersection function, which is 1 if xi = yi = 1 for at least one i. Buhrman, Cleve,
and Wigderson [39] also presented an efficient quantum protocol for this, based on Grover’s search
algorithm (Chapter 7). We can solve Intersection if we can solve the following search problem: find
some i such that xi = yi = 1, if such an i exists.2 We want to find a solution to the search problem
on the string z = x ∧ y (which is the bit-wise AND of x and y), since zi = 1 whenever both xi = 1
and yi = 1. The idea is now to let Alice run Grover’s algorithm to search for such a solution.
Clearly, she can prepare the uniform starting state herself. She can also apply the unitaries H and
R herself. The only thing where she needs Bob’s help, is in implementing Oz,±. This they do as
follows. Whenever Alice wants to apply Oz,± to a state

|φ〉 =
n∑

i=1

αi|i〉,

she tags on her xi in an extra qubit and sends Bob the state

n∑

i=1

αi|i〉|xi〉.

Bob applies the unitary map

|i〉|xi〉 7→ (−1)xi∧yi |i〉|xi〉

and sends back the result. Alice sets the last qubit back to |0〉 (which she can do unitarily because
she has x), and now she has the state Oz,±|φ〉! Thus we can simulate Oz,± using 2 messages of
log(n) + 1 qubits each. Thus Alice and Bob can run Grover’s algorithm to find an intersection,
using O(

√
n) messages of O(log n) qubits each, for total communication of O(

√
n log n) qubits.

Later Aaronson and Ambainis [1] gave a more complicated protocol that uses O(
√
n) qubits of

communication.

What about lower bounds? It is a well-known result of classical communication complexity that
classical bounded-error protocols for the Intersection problem need about n bits of communication.

2This is sometimes called the appointment-scheduling problem: view x and y as Alice’s and Bob’s agendas, respec-
tively, with a 1 at the i-th bit indicating that timeslot i is available. Then the goal is to find a timeslot where Alice
and Bob are both available, so they can schedule an appointment.
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Thus we have a quadratic quantum-classical separation for this problem. Could there be a quantum
protocol that uses much less than

√
n qubits of communication? This question was open for quite a

few years after [39] appeared, until finally Razborov [119] showed that any bounded-error quantum
protocol for Intersection needs to communicate about

√
n qubits.

14.5 Example 3: The vector-in-subspace problem

Notice the contrast between the examples of the last two sections. For the Distributed Deutsch-
Jozsa problem we get an exponential quantum-classical separation, but the separation only holds
if we require the classical protocol to be errorless. On the other hand, the gap for the disjointness
function is only quadratic, but it holds even if we allow classical protocols to have some error
probability.

Here is a function where the quantum-classical separation has both features: the quantum
protocol is exponentially better than the classical protocol, even if the latter is allowed some error:

Alice receives a unit vector v ∈ Rm

Bob receives two m-dimensional projectors P0 and P1 such that P0 + P1 = I
Promise: either P0v = v or P1v = v.
Question: which of the two?

As stated, this is a problem with continuous input, but it can be discretized in a natural way by
approximating each real number by O(logm) bits. Alice and Bob’s input is now n = O(m2 logm)
bits long. There is a simple yet efficient 1-round quantum protocol for this problem: Alice views v
as a logm-qubit state and sends this to Bob; Bob measures with operators P0 and P1, and outputs
the result. This takes only logm = O(log n) qubits of communication.

The efficiency of this protocol comes from the fact that an m-dimensional unit vector can be
“compressed” or “represented” as a logm-qubit state. Similar compression is not possible with
classical bits, which suggests that any classical protocol will have to send the vector v more or less
literally and hence will require a lot of communication. This turns out to be true, but the proof is
quite hard [93]. It shows that any bounded-error protocol needs to send Ω(m1/3) bits.

14.6 Example 4: Quantum fingerprinting

The examples of the previous section were either exponential quantum improvements for promise
problems (Deutsch-Jozsa and vector-in-subspace) or polynomial improvements for total problems
(disjointness). We will now give an exponential improvement for the total problem of equality-
testing, but in a restricted setting called the simultaneous message passing (SMP) model. Alice
and Bob receive n-bit input x and y, respectively. They do not have any shared resources like shared
randomness or an entangled state, but they do have local randomness. They don’t communicate
with each other directly, but instead send a single message to a third party, called the Referee. The
Referee, upon receiving message mA from Alice and mB from Bob, should output the value f(x, y).
The goal is to compute f(x, y) with a minimal amount of communication from Alice and Bob to
the Referee.

We will see that for the equality problem there is an exponential savings in communication
when qubits are used instead of classical bits. Classically, the problem of the bounded-error com-
munication complexity of equality in the SMP model was first raised by Yao [140], and was open
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for almost twenty years until Newman and Szegedy [116] exhibited a lower bound of Ω(
√
n) bits.

This is tight, since Ambainis [4] constructed a bounded-error protocol for this problem where the
messages are O(

√
n) bits long (see Exercise 5). In contrast, in the quantum setting this problem

can be solved with very little communication: only O(log n) qubits suffice [38].
The quantum trick is to associate each x ∈ {0, 1}n with a short quantum state |φx〉, called

the quantum fingerprint of x. Just like with physical fingerprints, the idea is that a quantum
fingerprint is a small object that doesn’t contain very much information about the object x, but
that suffices for testing if the fingerprinted object equals some other fingerprinted object. As we
will see below, we can do such testing if the fingerprints are pairwise almost orthogonal. More
precisely, an (n,m, ε)-quantum fingerprinting scheme maps n-bit string x to m-qubit state |φx〉
with the property that for all distinct x, y ∈ {0, 1}n, we have |〈φx|φy〉| ≤ ε.

We will now show how to obtain a specific (n,m, 0.02)-quantum fingerprinting scheme from
an error-correcting code C : {0, 1}n → {0, 1}N where m = logN ≈ log n. There exist codes
where N = O(n) and any two codewords C(x) and C(y) have Hamming distance close to N/2, say
d(C(x), C(y)) ∈ [0.49N, 0.51N ] (we won’t prove this here, but for instance a random linear code
will work). Define the quantum fingerprint of x as follows:

|φx〉 =
1√
N

N∑

j=1

(−1)C(x)j |j〉.

This is a unit vector in an N -dimensional space, so it corresponds to only ⌈logN⌉ = log n + O(1)
qubits. For distinct x and y, the corresponding fingerprints will have small inner product:

〈φx|φy〉 =
1

N

N∑

j=1

(−1)C(x)j+C(y)j =
N − 2d(C(x), C(y))

N
∈ [−0.02, 0.02].

Alice: x Bob: y

|φx〉 |φy〉

Referee

❥ ✙

❄

x
?
= y

Figure 14.2: Quantum fingerprinting protocol for the equality problem

The quantum protocol is very simple (see Figure 14.2): Alice and Bob send quantum fingerprints
of x and y to the Referee, respectively. The referee now has to determine whether x = y (which
corresponds to 〈φx|φy〉 = 1) or x 6= y (which corresponds to 〈φx|φy〉 ∈ [−0.02, 0.02]). The following
test (Figure 14.3), sometimes called the SWAP-test, accomplishes this with small error probability.

This circuit first applies a Hadamard transform to a qubit that is initially |0〉, then SWAPs
the other two registers conditioned on the value of the first qubit being |1〉, then applies another
Hadamard transform to the first qubit and measures it. Here SWAP is the operation that swaps the
two registers: |φx〉|φy〉 7→ |φy〉|φx〉. The Referee receives |φx〉 from Alice and |φy〉 from Bob and ap-
plies the test to these two states. An easy calculation reveals that the outcome of the measurement
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|0〉

|φx〉

|φy〉

measureH H

SWAP

Figure 14.3: Quantum circuit to test if |φx〉 = |φy〉 or |〈φx|φy〉| is small

is 1 with probability (1−|〈φx|φy〉|2)/2. Hence if |φx〉 = |φy〉 then we observe a 1 with probability 0,
but if |〈φx|φy〉| is close to 0 then we observe a 1 with probability close to 1/2. Repeating this
procedure with several individual fingerprints can make the error probability arbitrarily close to 0.

Exercises

1. (H) Prove that classical deterministic protocols with one message (from Alice to Bob), need
to send n bits to solve the equality problem.

2. (a) (H) Show that if |φ〉 and |ψ〉 are non-orthogonal states (i.e., 〈φ|ψ〉 6= 0), then there is
no two-outcome projective measurement that perfectly distinguishes these two states, in
the sense that applying the measurement on |φ〉 always gives a different outcome from
applying the same measurement to |ψ〉.

(b) Prove that quantum protocols with one message (from Alice to Bob), need to send at
least n qubits to solve the equality problem (on n-bit inputs) with success probability 1
on every input.

(c) (H) Prove that quantum protocols with one message (from Alice to Bob), need to send
at least log n qubits to solve the distributed Deutsch-Jozsa problem with success prob-
ability 1 on every input.

3. (H) Consider one-round quantum communication complexity. Alice gets input x ∈ {0, 1}n,
Bob gets input y ∈ {0, 1}n, and they want to compute some Boolean function f(x, y) of their
inputs. Assume that all rows of the communication matrix are different, i.e., for all x and x′

there is a y such that f(x, y) 6= f(x′, y). They are allowed only one round of communication:
Alice sends a quantum message to Bob and Bob must then be able to give the right answer
with probability 1. Prove that Alice needs to send n qubits to Bob for this. You may assume
that Alice’s messages are pure states (this is without loss of generality).

4. (H) The disjointness problem of communication complexity is the following function: Alice
receives an x ∈ {0, 1}n, Bob receives y ∈ {0, 1}n, and f(x, y) = 0 if there is an i such that
xi = yi = 1, and f(x, y) = 1 otherwise (i.e., f says whether x and y represent disjoint subsets
of [n]). Suppose there exists an m-qubit one-way protocol that solves this problem, so where
Alice sends Bob m qubits and then Bob outputs f(x, y) with probability at least 2/3. Prove
the lower bound m = Ω(n) on the number of qubits sent.
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5. Consider an error-correcting code C : {0, 1}n → {0, 1}N where N = O(n), N is a square, and
any two distinct codewords are at Hamming distance d(C(x), C(y)) ∈ [0.49N, 0.51N ] (such
codes exist, but you don’t have to prove that).

(a) View the codeword C(x) as a
√
N×

√
N matrix. Show that if you choose a row uniformly

at random and choose a column uniformly at random, then the unique index i where
these row and column intersect, is uniformly distributed over i ∈ {1, . . . , N}.

(b) (H) Give a classical bounded-error SMP-protocol for the equality problem where Alice
and Bob each send O(

√
n) bits to the Referee.

6. Alice and Bob want to solve the equality problem on n-bit inputs x and y (i.e., decide
whether x = y). They do not share randomness or entanglement but can use local (private)
randomness.

(a) (H) Fix a prime number p ∈ [3n, 6n], then the set Fp of integers modulo p is a finite field
(i.e., it has a well-defined addition and multiplication). For x = (x0, . . . , xn−1) ∈ {0, 1}n,
define the univariate polynomial Px : Fp → Fp of degree < n as Px(t) =

∑n−1
i=0 xit

i (note
that the n bits of x are used as coefficients here, not as the argument of the polynomial).
Show that for distinct n-bit strings x and y, we have Prt∈Fp [Px(t) = Py(t)] ≤ 1/3, where
the probability is taken over a uniformly random t ∈ Fp.

(b) Use (a) to give a classical communication protocol where Alice sends an O(log n)-bit
message to Bob, and Bob can decide whether x = y with success probability ≥ 2/3.

(c) Use (a) to give a quantum fingerprinting scheme x 7→ |φx〉, where quantum state |φx〉
has O(log n) qubits, and |〈φx|φy〉| ∈ [0, 1/3] for all distinct n-bit strings x and y (prove
the latter property explicitly, it’s not enough to write down only the states).

7. Suppose Alice and Bob each have n-bit agendas, and they know that for exactly 25% of
the timeslots they are both free. Give a quantum protocol that finds such a timeslot with
probability 1, using only O(log n) qubits of communication.

8. The inner product problem in communication complexity is the function f : {0, 1}n ×
{0, 1}n → {0, 1} defined by f(x, y) =

∑n
i=1 xiyi mod 2. Suppose there exists a quantum

protocol P for Alice and Bob that uses q qubits of communication (possibly using multiple
messages between Alice and Bob) and computes the inner product function with success prob-
ability 1 (on every possible inputs x, y). The protocol does not assume any shared entangled
state at the start.

(a) Give a quantum protocol that uses 2q qubits of communication and implements the 2n-
qubit map |x〉A|y〉B 7→ (−1)x·y|x〉A|y〉B (possibly with some auxiliary qubits for each of
Alice and Bob; these should start and end in state |0〉).

(b) (H) Give a quantum protocol where Alice transmits x to Bob using 2q qubits of com-
munication.

(c) Derive a lower bound on q from (b) and Holevo’s theorem (Theorem 2 of Chapter 13;
be specific about which part of the theorem you invoke).

9. Consider the following problem in communication complexity. Alice’s input has two parts:
a unit vector v ∈ Rm and two orthogonal projectors P0 and P1. Bob’s input is an m × m
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unitary U . They are promised that the vector Uv either lies in the subspace corresponding to
P0 (i.e., P0Uv = v) or in the subspace corresponding to P1 (i.e., P1Uv = v), and the problem
for Alice and Bob is to find out which of these two cases holds.

(a) Give a quantum protocol that uses two messages of O(logm) qubits (one message from
Alice to Bob and one from Bob to Alice) to solve this problem with success probability 1.

(b) (H) Show that there exists a constant c > 0 such that classical protocols need to send
Ω(mc) bits of communication to solve this problem with error probability ≤ 1/3, even
when they are allowed to send many messages.

10. (H) Consider the following communication complexity problem, called the “Hidden Matching
Problem.” Alice’s input is some x ∈ {0, 1}n. Bob’s input is a matching M , i.e., a partition of
{1, . . . , n} into n/2 disjoint unordered pairs (assume n is a power of 2 for simplicity). Their
goal is that Bob outputs a pair {i, j} ∈ M together with the parity xi ⊕ xj of the two bits
indexed by that pair. It doesn’t matter which pair {i, j} ∈ M Bob outputs, as long as the
additional bit of output equals the parity of the two indexed bits of x. Show that they can
solve this problem with success probability 1 using only a message of log n qubits from Alice
to Bob (and no communication from Bob to Alice).

11. (a) Suppose you have a state 1√
2
(|0〉|φ〉+ |1〉|ψ〉), where |φ〉 and |ψ〉 are quantum states with

real amplitudes. Suppose you apply a Hadamard gate to its first qubit and then measure
that first qubit. Show that the probability of measurement outcome 0 is 1

2(1 + 〈φ|ψ〉).
(b) Suppose H is a subgroup of a finite group G, and g ∈ G some element. Show (1) if

g ∈ H then the cosets g ◦H and H are equal
and (2) if g 6∈ H then the cosets g ◦H and H are disjoint.

(c) Suppose you are given quantum state |ψH〉 = 1√
H

∑
h∈H |h〉 (for an unknown H ≤ G),

and an element g ∈ G. You may assume you have a unitary A available that implements
the group operation, A : |g, h〉 7→ |g, g ◦ h〉, and you may also apply a controlled version
of A. Give an algorithm that acts on |ψH〉 and possibly some auxiliary qubits, and that
outputs 0 with probability 1 if g ∈ H, and outputs 0 with probability ≤ 1/2 if g 6∈ H.

(d) (H) Consider the following communication complexity problem. Alice and Bob both
know a finite group G, Alice gets as input some subgroup H ≤ G (for instance in the
form of a generating set for H) and Bob gets input g ∈ G. Give a one-way quantum
protocol where Alice sends to Bob a message of O(log |G|) qubits, and then Bob decides
with success probability ≥ 2/3 whether g ∈ H.
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Chapter 15

Entanglement and Non-Locality

15.1 Quantum non-locality

Entangled states are those that cannot be written as a tensor product of separate states. The most
famous one is the EPR-pair:

1√
2
(|00〉+ |11〉).

Suppose Alice has the first qubit of the pair, and Bob has the second. If Alice measures her qubit
in the computational basis and gets outcome b ∈ {0, 1}, then the state collapses to |bb〉. Similarly,
if Alice measures her qubit in some other basis, this will collapse the joint state (including Bob’s
qubit) to some state that depends on her measurement basis as well as its outcome. Somehow
Alice’s action seems to have an instantaneous effect on Bob’s side—even if the two qubits are
light-years apart! This was a great bother to Einstein, whose theory of relativity posits that
information and causation cannot travel faster than the speed of light. Einstein called such effects
of entanglement “spooky action at a distance” (in German: “spukhafte Fernwirkungen”), and
viewed it as a fundamental problem for quantum mechanics [61]. In his view, quantum mechanics
should be replaced by some “local realist” physical theory that would still have the same predictive
power as quantum mechanics. Here “local” means that information and causation act locally, not
faster than light, and “realistic” means that physical systems have definite, well-defined properties
(even if those properties may be unknown to us).

Note that the above experiment where Alice measures her half of the EPR-pair doesn’t actually
violate locality: no information is transfered from Alice and Bob. From Bob’s perspective there
is no difference between the situation where Alice measured and the situation where she didn’t.1

For this experiment, a shared coin flip between Alice and Bob is a local realist physical model
that has exactly the same observable consequences as measuring the qubits of the EPR-pair in the
computational basis: a 50-50 distribution on outcomes |00〉 and |11〉. This shared-coin-flip model
is local because no information is transfered between Alice and Bob, and it’s realist because the
coin flip has a definite outcome (even if that outcome is unknown to Alice and Bob before they
measure).

Given this example, one might hope (and Einstein expected) that any kind of behavior that
comes from entangled states can be replaced by some local realist physical model. This way,

1In fact, one can show that entanglement cannot replace communication. This follows for example from Exercise 6
of Chapter 16.
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quantum mechanics could be replaced by an alternative physical theory with less counter-intuitive
behavior. Surprisingly, in the 1960s, John Bell [19] devised entanglement-based experiments whose
behavior cannot be reproduced by any local realist theory. In other words, we can let Alice and Bob
do certain measurements on an entangled state, and the resulting distributions on their outputs pre-
dicted by quantum mechanics, cannot be obtained from any local realist theory. This phenomenon
is known as “quantum non-locality.” It could of course be that the quantum mechanical predictions
of the resulting correlations are just wrong. However, in the early 1980s, such experiments were
actually done by Aspect and others [13], and they gave the outcomes that quantum mechanics
predicted.2 Note that such experiments don’t prove quantum mechanics, but they disprove any
local realist physical theory.3

Such experiments, which realize correlations that are provably impossible to realize with local
realist models, are among the deepest and most philosophical results of 20th century physics: the
commonsense idea of local realism is most probably false! Since Bell’s seminal work, the concept of
quantum non-locality has been extensively studied, by physicists, philosophers, and more recently
by computer scientists.

In the next sections we review some interesting examples. The two-party setting of these
examples is illustrated in Fig. 15.1: Alice receives input x and Bob receives input y, and they
produce outputs a and b, respectively, that have to be correlated in a certain way (which depends
on the game). They are not allowed to communicate. In physics language, we could assume they
are “space-like separated,” which means that they are so far apart that they cannot influence each
other during the course of the experiment (assuming information doesn’t travel faster than the
speed of light). In the classical scenario they are allowed to share a random variable. Physicists
would call this the “local hidden variable” that gives properties their definite value (that value may
be unknown to the experimenter). This setting captures all local realist models. In the quantum
model Alice and Bob are allowed to share entangled states, such as EPR-pairs. The goal is to show
that entanglement-based strategies can do things that local realist strategies cannot.

Alice

x

a

❄

❄

Bob

y

b

❄

❄

Inputs:

Outputs:

Figure 15.1: The non-locality scenario involving two parties: Alice and Bob receive inputs x and y,
respectively, and are required to produce outputs a and b that satisfy certain conditions. Once the
inputs are received, no communication is permitted between the parties.

2Modulo some technical “loopholes” due to imperfect photon sources, measurement devices, Alice and Bob not
being sufficiently far apart etc. These are still hotly debated, but most people accept that Aspect’s and later
experiments are convincing, and kill any hope of a complete local-realist explanation of nature. Recently [82] an
experiment was done that simultaneously closed the two most important loopholes.

3Despite its name, non-locality doesn’t disprove locality, but rather disproves the conjunction of locality and
realism—at least one of the two assumptions has to fail.
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15.2 CHSH: Clauser-Horne-Shimony-Holt

In the CHSH game [47] Alice and Bob receive input bits x and y, and their goal is to output bits
a and b, respectively, such that

a⊕ b = x ∧ y, (15.1)

(‘∧’ is logical AND; ‘⊕’ is parity, i.e. addition mod 2) or, failing that, to satisfy this condition with
as high a probability as possible.

First consider the case of classical deterministic strategies, so without any randomness. For
these, Alice’s output bit depends solely on her input bit x, and similarly for Bob. Let a0 be the
bit that Alice outputs if her input is x = 0, and a1 the bit she outputs if x = 1. Let b0, b1 be the
outputs Bob gives on inputs y = 0 and y = 1, respectively. These four bits completely characterize
any deterministic strategy. Condition (15.1) becomes

a0 ⊕ b0 = 0,

a0 ⊕ b1 = 0,

a1 ⊕ b0 = 0,

a1 ⊕ b1 = 1. (15.2)

It is impossible to satisfy all four equations simultaneously, since summing them modulo 2 yields
0 = 1. Therefore it is impossible to satisfy Condition (15.1) perfectly. Since a probabilistic strategy
(where Alice and Bob share randomness) is a probability distribution over deterministic strategies,
it follows that no probabilistic strategy can have success probability better than 3/4 on every
possible input (the 3/4 can be achieved simultaneously for every input, see Exercise 3).4

Now consider the same problem but where Alice and Bob are supplied with a shared 2-qubit
system initialized to the entangled state

1√
2
(|00〉 − |11〉).

Such a state can easily be obtained from an EPR-pair by local operations, for instance if Alice
applies a Z-gate to her qubit. Now the parties can produce outputs that satisfy Condition (15.1)
with probability cos(π/8)2 ≈ 0.85 (higher than what is possible in the classical case), as follows.

Recall the unitary operation that rotates the qubit by angle θ: R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. If x = 0

then Alice applies R(−π/16) to her qubit; and if x = 1 she applies R(3π/16). Then Alice measures
her qubit in the computational basis and outputs the resulting bit a. Bob’s procedure is the same,
depending on his input bit y. It is straightforward to calculate that if Alice rotates by θA and Bob
rotates by θB, the state becomes

1√
2
(cos(θA + θB)(|00〉 − |11〉) + sin(θA + θB)(|01〉+ |10〉)) .

After the measurements, the probability that a ⊕ b = 0 is cos(θA + θB)
2. Note that if x ∧ y = 0

then θA + θB = ±π/8, while if x ∧ y = 1 then θA + θB = 3π/8. Hence Condition 15.1 is satisfied
with probability cos(π/8)2 for all four input possibilities, showing that quantum entanglement

4Such statements, upper bounding the optimal success probability of classical strategies for a specific game, are
known as Bell inequalities. This specific one is called the CHSH inequality.
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allows Alice and Bob to win the game with a probability that’s higher than what the best classical
strategy can achieve. Tsirelson [46] showed that cos(π/8)2 is the best that quantum strategies can
do for CHSH, even if they are allowed to use much more entanglement than one EPR-pair (see
Exercise 5).

15.3 Magic square game

Is there a game where the quantum protocol always succeeds, while the best classical success
probability is bounded below 1? A particularly elegant example is the following magic square
game [11]. Consider the problem of labeling the entries of a 3 × 3 matrix with bits so that the
parity of each row is even, whereas the parity of each column is odd. This is clearly impossible:
if the parity of each row is even then the sum of the 9 bits is 0 mod 2, but if the parity of each
column is odd then the sum of the 9 bits is 1 mod 2. The two matrices

0 0 0

0 0 0

1 1 0

0 0 0

0 0 0

1 1 1

each satisfy five out of the six constraints. For the first matrix, all rows have even parity, but only
the first two columns have odd parity. For the second matrix, the first two rows have even parity,
and all columns have odd parity.

Consider the game where Alice receives x ∈ {1, 2, 3} as input (specifying the number of a row),
and Bob receives y ∈ {1, 2, 3} as input (specifying the number of a column). Their goal is to each
produce 3-bit outputs, a1a2a3 for Alice and b1b2b3 for Bob, such that

1. They satisfy the row/column parity constraints: a1 ⊕ a2 ⊕ a3 = 0 and b1 ⊕ b2 ⊕ b3 = 1.

2. They are consistent where the row intersects the column: ay = bx.

As usual, Alice and Bob are forbidden from communicating once the game starts, so Alice does not
know y and Bob does not know x. We shall show the best classical strategy has success probability
8/9, while there is a quantum strategy that always succeeds.

An example of a deterministic strategy that attains success probability 8/9 (when the input xy
is uniformly distributed) is where Alice plays according to the rows of the first matrix above and
Bob plays according the columns of the second matrix above. This succeeds in all cases, except
where x = y = 3. To see why this is optimal, note that for any other classical strategy, it is possible
to represent it as two matrices as above but with different entries. Alice plays according to the
rows of the first matrix and Bob plays according to the columns of the second matrix. We can
assume that the rows of Alice’s matrix all have even parity; if she outputs a row with odd parity
then they immediately lose, regardless of Bob’s output. Similarly, we can assume that all columns
of Bob’s matrix have odd parity.5 Considering such a pair of matrices, the players lose at each
entry where they differ. There must be such an entry, since otherwise it would be possible to have
all rows even and all columns odd with one matrix. Thus, when the input xy is chosen uniformly
from {1, 2, 3} × {1, 2, 3}, the success probability of any classical strategy is at most 8/9.

5In fact, the game can be simplified so that Alice and Bob each output just two bits, since the parity constraint
determines the third bit.
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We now give the quantum strategy for this game. Let I, X, Y , Z be the 2 × 2 Pauli matrices
from Appendix A.9. Each is a 1-qubit observable with eigenvalues in {+1,−1}.6 That is, each can
be written as P+−P− where P+ and P− are orthogonal projectors that sum to identity, and hence
define a two-outcome measurement with outcomes +1 and −1. For example, Z = |0〉〈0| − |1〉〈1|,
corresponding to a measurement in the computational basis (with |b〉 corresponding to outcome
(−1)b). And X = |+〉〈+| − |−〉〈−|, corresponding to a measurement in the Hadamard basis. The
Pauli matrices are self-inverse, they anti-commute unless one of them is I (e.g., XY = −Y X), and
X = iZY , Y = iXZ, and Z = iY X. Consider the following table, where each entry is a tensor
product of two Paulis:

X ⊗X Y ⊗ Z Z ⊗ Y

Y ⊗ Y Z ⊗X X ⊗ Z

Z ⊗ Z X ⊗ Y Y ⊗X

Because (P+ − P−) ⊗ (Q+ − Q−) = (P+ ⊗ Q+ + P− ⊗ Q−) − (P+ ⊗ Q− + P− ⊗ Q+), each such
product is itself a {+1,−1}-valued observable. Hence each product of Pauli matrices corresponds
to a measurement on a 2-qubit space, with outcomes +1 and −1.

Note that the observables along each row commute and their product is I ⊗ I, and the ob-
servables along each column commute and their product is −I ⊗ I. This implies that for any
2-qubit state, performing the three measurements along any row results in three {+1,−1}-valued
bits whose product is +1. Also, performing the three measurements along any column results in
three {+1,−1}-valued bits whose product is −1.

We can now describe the quantum protocol. It uses two pairs of entangled qubits, each of which
is in initial state

1√
2
(|01〉 − |10〉)

(again, such states can be obtained from EPR-pairs by local operations). Alice, on input x, applies
three 2-qubit measurements corresponding to the observables in row x of the above table. For each
measurement, if the result is +1 then she outputs 0, and if the result is −1 then she outputs 1.
Similarly, Bob, on input y, applies the measurements corresponding to the observables in column y,
and converts the ±1-outcomes into bits.

We have already established that Alice and Bob’s output bits satisfy the required parity con-
straints. It remains to show that Alice and Bob’s output bits agree at the point where the row
meets the column. For that measurement, Alice and Bob are measuring with respect to the same
observable in the above table. Because all the observables in each row and in each column com-
mute, we may assume that the place where they intersect is the first observable applied. Those
bits are obtained by Alice and Bob each measuring 1

2(|01〉 − |10〉)(|01〉 − |10〉) with respect to the
observable in entry (x, y) of the table. To show that their measurements will agree for all cases of
xy, we consider the individual Pauli measurements on the individual entangled pairs of the form
1√
2
(|01〉 − |10〉). Let a′ and b′ denote the 0/1-valued outcomes of the first measurement, and a′′

and b′′ denote the outcomes of the second. The measurement associated with the tensor product of
two observables gives the same distribution over outcomes as measuring each individual observable
and then taking the product of the two results. Hence we have ay = a′ ⊕ a′′ and bx = b′ ⊕ b′′. It is

6See Section 1.2.2. In particular, a ±1-valued observable A can be written as A = P − Q, where P and Q are
projectors on two orthogonal subspaces such that P + Q = I. This corresponds to a two-outcome measurement
specified by projectors P and Q with outcomes +1 and −1, respectively.
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straightforward to verify that if the same measurement from {I,X, Y, Z} is applied to each qubit
of 1√

2
(|01〉 − |10〉) then the outcomes will be distinct: a′ ⊕ b′ = 1 and a′′ ⊕ b′′ = 1. We now have

ay = bx, because

ay ⊕ bx = (a′ ⊕ a′′)⊕ (b′ ⊕ b′′) = (a′ ⊕ b′)⊕ (a′′ ⊕ b′′) = 1⊕ 1 = 0. (15.3)

15.4 A non-local version of distributed Deutsch-Jozsa

The previous two examples used small amounts of entanglement: one EPR-pair for CHSH, two
EPR-pairs for magic square. In both cases we could show that classical protocols need at least
some communication if they want to achieve the same as what entanglement-based protocols can
achieve. We will now give a non-locality game that’s parametrized by a number n, and where
Alice and Bob’s quantum strategy uses log n EPR-pairs [32]. The advantage is that we can show
that classical protocols for this game need much classical communication rather than at least some
nonzero amount.

Non-local DJ problem: Alice and Bob receive n-bit inputs x and y that satisfy the
DJ promise: either x = y, or x and y differ in exactly n/2 positions. The task is for
Alice and Bob to provide outputs a, b ∈ {0, 1}logn such that if x = y then a = b, and if
x and y differ in exactly n/2 positions then a 6= b.

They achieve this as follows

1. Alice and Bob share log n EPR-pairs, i.e., the maximally entangled state 1√
n

∑n−1
i=0 |i〉|i〉.7

2. They both apply locally a conditional phase to obtain: 1√
n

∑n−1
i=0 (−1)xi |i〉(−1)yi |i〉.

3. They both apply a Hadamard transform, obtaining

1

n
√
n

n−1∑

i=0

(−1)xi+yi
∑

a∈{0,1}logn

(−1)i·a|a〉
∑

b∈{0,1}logn

(−1)i·b|b〉

=
1

n
√
n

∑

a,b∈{0,1}logn

(
n−1∑

i=0

(−1)xi+yi+i·(a⊕b)

)
|a〉|b〉.

4. They measure in the computational basis and output the results a and b, respectively.

For every a, the probability that both Alice and Bob obtain the same result a is:

∣∣∣∣∣
1

n
√
n

n−1∑

i=0

(−1)xi+yi

∣∣∣∣∣

2

,

7Note that k EPR-pairs
(

1√
2
(|0〉A|0〉B + |1〉A|1〉B)

)⊗k

can also be written as
1√
2k

∑

i∈{0,1}k
|i〉A|i〉B if we reorder

the qubits, putting Alice’s k qubits on the left and Bob’s on the right. While these two ways of writing the state
strictly speaking correspond to two different vectors of amplitudes, they still represent the same bipartite physical
state, and we will typically view them as equal.
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which is 1/n if x = y, and 0 otherwise. This solves the problem perfectly using prior entanglement.

What about classical protocols? Suppose there is a classical protocol that uses C bits of com-
munication. If they ran this protocol, and then Alice communicated her output a to Bob (using
an additional log n bits), he could solve the distributed Deutsch-Jozsa problem since he could then
check whether a = b or a 6= b. But we know that solving the distributed Deutsch-Jozsa problem re-
quires at least 0.007n bits of communication. Hence C+log n ≥ 0.007n, so C ≥ 0.007n−log n. Thus
we have a non-locality problem that can be solved perfectly if Alice and Bob share log n EPR-pairs,
while classically it needs not just some communication, but actually a lot of communication.

Exercises

1. Suppose Alice and Bob share an EPR-pair 1√
2
(|00〉+ |11〉).

(a) Let U be a 1-qubit unitary. Show that the following two states are the same: (1) the
state obtained if Alice applies U to her qubit of the EPR-pair;
(2) the state obtained if Bob applies the transpose UT to his qubit of the EPR-pair.

(b) (H) What state do you get if each of Alice and Bob applies a Hadamard transform to
their qubit of the EPR-pair?

2. Alice and Bob share an EPR-pair, 1√
2
(|00〉+|11〉). Suppose they each measure their qubit with

an X-observable (which corresponds to a particular projective measurement with possible
outcomes +1,−1).

(a) Show that Alice’s measurement outcome is uniformly distributed, so 50% probability of
outcome +1 and 50% probability of outcome −1.

(b) (H) Show that Alice’s and Bob’s measurement outcomes are always equal.

(c) Suppose we view X ⊗ X as one 2-qubit observable (with possible outcomes +1,−1)
instead of two 1-qubit observables. What is the probability distribution on the two
possible outcomes?

3. (H) Give a classical strategy using shared randomness for the CHSH game, such that Alice
and Bob win the game with probability at least 3/4 for every possible input x, y (note the
order of quantification: the same strategy has to work for every x, y).

4. “Mermin’s game” is the following. Consider three space-like separated players: Alice, Bob,
and Charlie. Alice receives input bit x, Bob receives input bit y, and Charlie receives input
bit z. The input satisfies the promise that x⊕ y⊕ z = 0. The goal of the players is to output
bits a, b, c, respectively, such that a⊕ b⊕ c = OR(x, y, z). In other words, the outputs should
sum to 0 (mod 2) if x = y = z = 0, and should sum to 1 (mod 2) if x+ y + z = 2.

(a) Show that every classical deterministic strategy will fail on at least one of the 4 allowed
inputs.

(b) Show that every classical randomized strategy has success probability at most 3/4 under
the uniform distribution on the four allowed inputs xyz.
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(c) Suppose the players share the following entangled 3-qubit state:

1

2
(|000〉 − |011〉 − |101〉 − |110〉).

Suppose each player does the following: if his/her input bit is 1, apply H to his/her
qubit, otherwise do nothing. Describe the resulting 3-qubit superposition.

(d) Using (c), give a quantum strategy that wins the above game with probability 1 on every
input that satisfies the promise.

5. (H) This question examines how well the best quantum protocol can do for CHSH (resulting
in the so-called “Tsirelson bound”). Consider a protocol where Alice and Bob share a 2k-
qubit state |ψ〉 = |ψ〉AB with k qubits for Alice and k for Bob (the state can be arbitrary and
need not consist of EPR-pairs). Alice has two possible ±1-valued observables A0 and A1, and
Bob has two possible ±1-valued observables B0 and B1. Each of these observables acts on k
qubits. On inputs x ∈ {0, 1} and y ∈ {0, 1}, respectively, Alice measures her half of |ψ〉 with
Ax and outputs the resulting sign a ∈ {+1,−1}, and Bob measures his half of |ψ〉 with By

and outputs the resulting sign b. Note that we treat the output bits as signs instead of 0/1
now. However, the winning condition is the same: the AND of the input bits should equal
the parity (XOR) of the output bits. So Alice and Bob win the game if (−1)xy = ab.

(a) Show that the expected value of the product ab on inputs x, y is 〈ψ|Ax ⊗By|ψ〉 (this is
the same as Tr [(Ax ⊗By)|ψ〉〈ψ|]).

(b) Define 2k-qubit operator C = A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1. Show that the
winning probability of the protocol (averaged over all 4 inputs pairs x, y) is 1

2+
1
8〈ψ|C|ψ〉.

(c) Show that C2 = 4I +(A0A1 −A1A0)⊗ (B1B0 −B0B1), where I is the 2k-qubit identity
matrix.

(d) Show that 〈ψ|C|ψ〉 ≤
√
8.

(e) What can you conclude about the best-possible winning probability among all possible
quantum protocols for CHSH?
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Chapter 16

Quantum Cryptography

16.1 Quantum key distribution

One of the most basic tasks of cryptography is to allow Alice to send a message to Bob (whom
she trusts) over a public channel, without allowing a third party Eve (for “eavesdropper”) to
get any information about M from tapping the channel. Suppose Alice wants to send message
M ∈ {0, 1}n to Bob. The goal here is not minimal communication, but secrecy. This is often done
by public-key cryptography such as RSA. Such schemes, however, are only computationally secure,
not information-theoretically secure: all the information about the private key can be computed
from the public key, it just appears to take a lot of time to compute it—assuming of course that
problems like factoring are classically hard, and that nobody builds a quantum computer. . .

In contrast, the following “one-time pad” scheme is information-theoretically secure. If Alice
and Bob share a secret key K ∈ {0, 1}n then Alice can send C =M⊕K over the channel. By adding
K to what he received, Bob learns M . On the other hand, if Eve didn’t know anything about K
then she learns nothing about M from tapping the message M ⊕ K that goes over the channel.
How can we make Alice and Bob share a secret key? In the classical world this is impossible, but
with quantum communication it can be done!

Below we describe the famous BB84 quantum key distribution (QKD) protocol of Bennett and
Brassard [25]. Consider two possible bases: basis 0 is the computational basis {|0〉, |1〉}, and basis 1
is the Hadamard basis {|+〉, |−〉}. The main property of quantum mechanics that we’ll use, is
that if a bit b is encoded in an unknown basis, then Eve cannot get information about b without
disturbing the state, and the latter can be detected by Alice and Bob.1

1. Alice chooses n random bits a1, . . . , an and n random bases b1, . . . , bn. She sends ai to Bob
in basis bi over the public quantum channel. For example, if ai = 0 and bi = 1 then the i-th
qubit that she sends is in state |+〉.

2. Bob chooses random bases b′1, . . . , b
′
n and measures the qubits he received in those bases,

1Quantum key distribution might in fact better be called “quantum eavesdropper detection.” There is another
assumption underlying BB84 that should be made explicit: we assume that the classical channel used in steps 3–5
is “authenticated,” meaning that Alice and Bob know they are talking to each other, and Eve can listen but not
change the bits sent over the classical channel (in contrast to the qubits sent during step 1 of the protocol, which Eve
is allowed to manipulate in any way she wants). One can authenticate a classical communication channel by using
some shared secret key; if this is the case, then one may think of QKD as something that allows to grow an initial
shared secret key, rather than as something that conjures up a shared random key out of nothing.
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yielding bits a′1, . . . , a
′
n.

3. Bob sends Alice all b′i (this also signals to Alice that Bob has measured the qubits he received),
and Alice sends Bob all bi. Note that for roughly n/2 of the i’s, Alice and Bob used the same
basis bi = b′i. For those i’s Bob should have a′i = ai (if there was no noise and Eve didn’t
tamper with the i-th qubit on the channel). Both Alice and Bob know for which i’s this
holds. Let’s call these roughly n/2 positions the “shared string.”

4. Alice randomly selects n/4 locations in the shared string, and sends Bob those locations as
well as the values ai at those locations. Bob then checks whether they have the same bits
in those positions. If the fraction of errors is bigger than some number p, then they suspect
some eavesdropper was tampering with the channel, and they abort.2

5. If the test is passed, then they discard the n/4 test-bits, and have roughly n/4 bits left in their
shared string. This is called the “raw key.” Now they do some classical postprocessing on the
raw key: “information reconciliation” to ensure they end up with exactly the same shared
string, and “privacy amplification” to ensure that Eve has negligible information about that
shared string.3

The communication is n qubits in step 1, 2n bits in step 3, O(n) bits in step 4, and O(n) bits in
step 5. So the required amount of communication is linear in the length of the shared secret key
that Alice and Bob end up with.

It’s quite hard to formally prove that this protocol yields (with high probability) a shared key
about which Eve has negligible information. In fact it took more than 12 years before BB84 was
finally proven secure [110, 101]. The main reason it works is that when the qubits that encode
a1, . . . , an are going over the public channel, Eve doesn’t know yet in which bases b1, . . . , bn these
are encoded (she will learn the bi later from tapping the classical communication in step 3, but
at that point this information is not of much use to her anymore). She could try to get as much
information as she can about a1, . . . , an by some measurement, but there’s an information-vs-
disturbance tradeoff : the more information Eve learns about a1, . . . , an by measuring the qubits,
the more she will disturb the state, and the more likely it is that Alice and Bob will detect her
presence in step 4.

We won’t go into the full proof details here, just illustrate the information-disturbance tradeoff
for the case where Eve individually attacks the qubits encoding each bit in step 1 of the protocol.4

In Fig. 16.1 we give the four possible states for one BB84-qubit. If Alice wants to send ai = 0,
then she sends a uniform mixture of |0〉 and |+〉 across the channel; if Alice wants to send ai = 1
she sends a uniform mixture of |1〉 and |−〉. Suppose Eve tries to learn ai from the qubit on the
channel. The best way for her to do this is to measure in the orthonormal basis corresponding to
state cos(π/8)|0〉+sin(π/8)|1〉 and − sin(π/8)|0〉+cos(π/8)|1〉. Note that the first state is halfway
between the two encodings of 0, and the second state is halfway between the two encodings of 1
(remember that |−〉 and −|−〉 are physically indistinguishable because they only differ by a global
phase). This will give her the value of ai with probability cos(π/8)2 ≈ 0.85 (remember the 2-to-1

2The number p can for instance be set to the natural error-rate that the quantum channel would have if there
were no eavesdropper.

3This can be done for instance by something called the “leftover hash lemma.”
4The more complicated situation where Eve does an n-qubit measurement on all qubits of step 1 simultaneously

can be reduced to the case of individual-qubit measurements by something called the quantum De Finetti theorem,
but we won’t go into the details here.
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quantum random access code from Exercise 2 of Chapter 13). However, this measurement will
change the state of the qubit by an angle of at least π/8, so if Bob now measures the qubit he
receives in the same basis as Alice, then his probability of recovering the incorrect value of ai is
at least sin(π/8)2 ≈ 0.15 (if Bob measured in a different basis than Alice, then the result will be
discarded anyway). If this i is among the test-bits Alice and Bob use in step 4 of the protocol
(which happens with probability 1/2), then they will detect an error. Eve can of course try a less
disturbing measurement to reduce the probability of being detected, but such a measurement will
also have lower probability of telling her ai.

|0〉

|1〉

|+〉

|−〉

✻

✲

✒

❘

Figure 16.1: The four possible states in BB84 encoding: |0〉 and |+〉 are two different encodings
of 0, and |1〉 and |−〉 are two different encodings of 1.

16.2 Reduced density matrices and the Schmidt decomposition

Suppose Alice and Bob share some pure state |φ〉. If this state is entangled, it cannot be written
as a tensor product |φA〉 ⊗ |φB〉 of separate pure states for Alice and Bob. Still, there is a way to
describe Alice’s local state as a mixed state, by tracing out Bob’s part. Formally, if C ⊗ D is a
tensor product matrix then TrB(C⊗D) = C ·Tr(D). By extending this linearly to matrices that are
not of product form, the operation TrB is well-defined on all mixed states. Note that TrB removes
Bob’s part of the state, leaving just Alice’s part of the state. If ρAB is some bipartite state (mixed
or pure, entangled or not), then ρA = TrB(ρAB) is Alice’s local density matrix. This describes all
the information she has. For example, for an EPR-pair |φ〉 = 1√

2
(|00〉 + |11〉), the corresponding

density matrix is

ρAB =
1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

=
1

2
(|0〉〈0| ⊗ |0〉〈0|+ |0〉〈1| ⊗ |0〉〈1|+ |1〉〈0| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1|),

and since Tr(|a〉〈b|) = 1 if a = b and Tr(|a〉〈b|) = 0 if |a〉 and |b〉 are orthogonal, we have

ρA = TrB(ρAB) =
1

2
(|0〉〈0|+ |1〉〈1|).

In other words, Alice’s local state is the same as a random coin flip! Similarly we can compute Bob’s
local state by tracing out Alice’s part of the space: ρB = TrA(ρAB). Note that the original 2-qubit
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density matrix ρAB is not equal to ρA ⊗ ρB, because the tracing-out operation has “removed” the
entanglement between the two qubits.

The Schmidt decomposition is a very useful way to write bipartite pure states, and allows us to
easily calculate the local density matrices of Alice and Bob. It says the following: for every bipartite
pure state |φ〉 there is a unique integer d (called the Schmidt rank of |φ〉), an orthonormal set of
states |a1〉, . . . , |ad〉 for Alice’s space, an orthonormal set of states |b1〉, . . . , |bd〉 for Bob’s space, and
positive reals λ1, . . . , λd whose squares sum to 1, such that

|φ〉 =
d∑

i=1

λi|ai〉|bi〉. (16.1)

For example, an EPR-pair has Schmidt coefficients λ1 = λ2 = 1/
√
2 and hence has Schmidt rank 2.

The Schmidt rank and the Schmidt coefficients of a state |φ〉 are unique, but there is some freedom
in the choice of bases if the λj are not all distinct. For example

1√
2
(|00〉+ |11〉) = 1√

2
(|++〉+ | − −〉)

are two distinct Schmidt decompositions of the EPR-pair.
The existence of the Schmidt decomposition is shown as follows. Let ρA = TrB(|φ〉〈φ|) be Alice’s

local density matrix. This is Hermitian, so it has a spectral decomposition ρA =
∑d

i=1 µi|ai〉〈ai|
with orthonormal eigenvectors |ai〉 and positive real eigenvalues µi. Note that d is the rank of ρA,
and

∑
i µi = Tr(ρA) = 1. Then there are cij such that

|φ〉 =
d∑

i,j=1

√
µicij |ai〉|j〉,

where the |j〉 are the computational basis states for Bob’s space. Define λi =
√
µi and |bi〉 =∑

j cij |j〉. This gives the decomposition of |φ〉 of Eq. (16.1). It only remains to show that {|bi〉} is
an orthonormal set, which we do as follows. The density matrix version of Eq. (16.1) is

|φ〉〈φ| =
d∑

i,j=1

λiλj |ai〉〈aj | ⊗ |bi〉〈bj |.

We know that if we trace out the B-part from |φ〉〈φ|, then we should get ρA =
∑

i λ
2
i |ai〉〈ai|, but

that can only happen if 〈bj |bi〉 = Tr(|bi〉〈bj |) = 1 for i = j and 〈bj |bi〉 = 0 for i 6= j. Hence the
|bi〉 form an orthonormal set. Note that from Eq. (16.1) it easily follows that Bob’s local density
matrix is ρB =

∑
i λ

2
i |bi〉〈bi|.

16.3 The impossibility of perfect bit commitment

Key distribution is just one of the many tasks cryptographers would like to solve. Another important
primitive is bit commitment. In this scenario there is no eavesdropper, but Alice and Bob don’t
trust each other. Suppose Alice has a bit b which for the time being she doesn’t want to reveal
to Bob, though she would like to somehow convince Bob that she has already made up her mind
about b and won’t change its value later. A protocol for bit commitment comes in two stages, each
of which may involve several rounds of communication:
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1. In the “commit” phase Alice gives Bob a state which is supposed to commit her to the value
of b (without informing Bob about the value of b).

2. In the “reveal” phase Alice sends b to Bob, and possibly some other information to allow him
to check that this is indeed the same value b that Alice committed to before.

A protocol is binding if Alice can’t change her mind, meaning she can’t get Bob to “open” 1 − b.
A protocol is concealing if Bob cannot get any information about b before the “reveal phase.”5

A good protocol for bit commitment would be a very useful building block for many other
cryptographic applications. For instance, it would allow Alice and Bob (who still don’t trust each
other) to jointly flip a fair coin. Maybe they’re going through a divorce, and need to decide who
gets to keep their joint car. Alice can’t just flip the coin by herself because Bob doesn’t trust her
to do this honestly, and vice versa. Instead, Alice would pick a random coin b and commit to it.
Bob would then pick a random coin c and send it to Alice. Alice then reveals b, and the outcome of
the coin flip is defined to be b⊕ c. As long as at least one of the two parties follows this protocol,
the result will be a fair coin flip.

Perfect coin flipping (and hence also perfect bit commitment) are known to be impossible in
the classical world. After BB84 there was some hope that perfect bit commitment (and hence also
perfect coin flipping) would be possible in the quantum world, and there were some seemingly-
secure proposals for quantum protocols to achieve this. Unfortunately it turns out that there is no
quantum protocol for bit commitment that is both perfectly binding and perfectly concealing.

To show that a protocol for perfect bit commitment is impossible, consider the joint pure
state |φb〉 that Alice and Bob would have if Alice wants to commit to bit-value b, and they both
honestly followed the protocol.6 If the protocol is perfectly concealing, then the reduced density
matrix on Bob’s side should be independent of b, i.e., TrA(|φ0〉〈φ0|) = TrA(|φ1〉〈φ1|). The way we
constructed the Schmidt decomposition in the previous section now implies that there exist Schmidt
decompositions of |φ0〉 and |φ1〉 with the same λi’s and the same bi’s: there exist orthonormal bases
{ai} and {a′i} such that

|φ0〉 =
d∑

i=1

λi|ai〉|bi〉 and |φ1〉 =
d∑

i=1

λi|a′i〉|bi〉

Now Alice can locally switch from |φ0〉 to |φ1〉 by just applying on her part of the state the map
|ai〉 7→ |a′i〉. Alice’s map is unitary because it takes one orthonormal basis to another orthonormal
basis. But then the protocol is not binding at all: Alice can still freely change her mind about the
value of b after the “commit” phase is over! Accordingly, if a quantum protocol for bit commitment
is perfectly concealing, it cannot be binding at all.

16.4 More quantum cryptography

Quantum cryptography is by now a pretty large subset of the area of quantum information and
computation. Here we just briefly mention a few other topics in quantum crypto (see [35]):

5A good metaphor to think about this: in the commit phase Alice locks b inside a safe which she sends to Bob.
This commits her to the value of b, since the safe is no longer in her hands. During the reveal phase she sends Bob
the key to the safe, who can then open it and learn b.

6The assumption that the state is pure rather than mixed is without loss of generality.
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• There are quantum protocols for bit commitment that are partially concealing and partially
binding—something which is still impossible in the classical world. A primitive called “weak
coin flipping” can be implemented almost perfectly in the quantum world, and cannot be
implemented at all in the classical world.

• Under assumptions on the fraction of dishonest players among a set of k parties, it is possible
to implement secure multi-party quantum computation. This is a primitive that allows the
players to compute any function of their k inputs, without revealing more information to
player i than can be inferred from i’s input plus the function value.

• One can actually do nearly perfect bit commitment, coin flipping, etc., assuming the dishonest
party has bounded quantum storage, meaning that it can’t keep large quantum states coherent
for longer times. At the present state of quantum technology this is a very reasonable as-
sumption (though a breakthrough in physical realization of quantum computers would wipe
out this approach).

• In device-independent cryptography, Alice and Bob want to solve certain cryptographic tasks
like key distribution or randomness generation without trusting their own devices (for instance
because they don’t trust the vendor of their apparatuses). Roughly speaking, the idea here
is to use Bell-inequality violations to prove the presence of entanglement, and then use this
entanglement for cryptographic purposes. Even if Alice or Bob’s apparatuses have been
tampered with, they can still only violate things like the CHSH inequality if they actually
share an entangled state.

• Experimentally it is much easier to realize quantum key distribution than general quantum
computation, because you basically just need to prepare qubits (usually photons) in either the
computational or the Hadamard basis, send them across a channel (usually an optical fibre,
but sometimes free space), and measure them in either the computational or the Hadamard
basis. Many sophisticated experiments have already been done. Somewhat surprisingly, you
can already commercially buy quantum key distribution machinery. Unfortunately the im-
plementations are typically not perfect (for instance, we don’t have perfect photon counters),
and once in a while another loophole is exposed in the implementation, which the vendor
then tries to patch, etc.

Exercises

1. Here we will consider in more detail the information-disturbance tradeoff for measuring a
qubit in one of the four BB84 states (each of which occurs with probability 25%).

(a) Suppose Eve measures the qubit in the orthonormal basis given by cos(θ)|0〉+ sin(θ)|1〉
and sin(θ)|0〉 − cos(θ)|1〉, for some parameter θ ∈ [0, π/4]. The first basis vector corre-
sponds to output 0, the second to output 1. For each of the four possible BB84 states,
give the probabilities of outcome 0 and outcome 1 (so your answer should consist of
8 numbers, each of which is a function of θ).

(b) What is the average probability that Eve’s measurement outcome equals the encoded
bit ai, as a function of θ? (average taken both over the uniform distribution over the
four BB84 states, and over the probabilities calculated in part (a))
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(c) By what angle does the state change in each of the 8 cases of (a)?

2. (a) What is the Schmidt rank of the state 1
2(|00〉+ |01〉+ |10〉+ |11〉)?

(b) Suppose Alice and Bob share k EPR-pairs. What is the Schmidt rank of their joint
state?

(c) Prove that a pure state |φ〉 is entangled if, and only if, its Schmidt rank is greater than 1.

3. Give the Schmidt decomposition of the state 1
2(|0〉A|0〉B + |0〉A|1〉B + |1〉A|1〉B + |1〉A|2〉B).

Here Alice’s space has dimension 2, and Bob’s space has dimension 3. It suffices if you write
down your Schmidt decomposition, being explicit about the values of the λi’s and what are
the states |ai〉 and |bi〉. You can add your calculation (involving local density matrices etc.)
as a justification, but you don’t have to.

4. Consider a density matrix ρ on Alice’s Hilbert space. A bipartite pure state |ψ〉AB is called a
purification of ρ, if ρ = TrB(|ψ〉〈ψ|). The B-register in |ψ〉AB is called the purifying register.

(a) Show that an EPR-pair is a purification of the 1-qubit mixed state ρ = I/2.

(b) Show that if ρ is a density matrix of rank r, then there exists a purification of ρ where
the purifying register has at most ⌈log2 r⌉ qubits.

(c) Show that if |ψ〉AB and |ψ′〉AB are purifications of the same ρ, then there exists a unitary
U on Bob’s space such that |ψ′〉AB = (I ⊗ U)|ψ〉AB.

5. Suppose Alice has a 1-qubit state ρ.

(a) Suppose Alice chooses a uniformly random Pauli matrix (see Appendix A.9) and applies
it to ρ. What is the resulting density matrix, averaged over the four cases?

(b) Suppose Alice and Bob shared a secret 2-bit string ab. How can Alice send ρ to Bob
over a public quantum channel, without leaking any information to Eve, in such a way
that Bob can recover ρ?

6. (H) Prove that Alice cannot give information to Bob by doing a unitary operation on her
part of an entangled pure state.

7. Suppose Alice sends two n-bit messages M1 and M2 with the one-time pad scheme, reusing
the same n-bit key K. Show that Eve can now get some information about M1,M2 from
tapping the classical channel.

125



126



Chapter 17

Error-Correction and Fault-Tolerance

17.1 Introduction

When Shor’s algorithm had just appeared in 1994, most people (especially physicists) were ex-
tremely skeptical about the prospects of actually building a quantum computer. In their view, it
would be impossible to avoid errors when manipulating small quantum systems, and such errors
would very quickly overwhelm the computation, rendering it no more useful than classical com-
putation. However, in the few years that followed, the theory of quantum error-correction and
fault-tolerant computation was developed. This shows, roughly speaking, that if the error-rate per
operation can be brought down to something reasonably small (say 1%), and the errors between
different qubits are not very correlated, then we can actually do near-perfect quantum computing
for as long as we want. Below we give a succinct and somewhat sketchy introduction to this im-
portant but complex area, just explaining the main ideas. See the surveys by Gottesman [72] and
Terhal [132] for more (in particular the important “surface code,” which we won’t cover here).

17.2 Classical error-correction

In the early days of classical computing, errors were all over the place: memory-errors, errors in
bits sent over a channel, incorrectly applied instructions, etc.1 Nowadays hardware is much more
reliable, but we also have much better “software solutions” for errors, in particular error-correcting
codes. Such codes take a string of data and encode it in a larger string (the “codeword”), adding
a lot of redundancy so that a small fraction of errors on the codeword won’t be able to reduce the
information about the encoded data.

The simplest example is of course the repetition code. If we want to protect a bit b, we could
repeat it three times:

b 7→ bbb.

If we want to decode the encoded bit b from the (possibly corrupted) 3-bit codeword, we just take
the majority value of the 3 bits.

Consider a very simple noise model: every bit is flipped (independently of the other bits) with
probability p. Then initially, before applying the code, b has probability p to be flipped. But if
we apply the repetition code, the probability that the majority-value of the three bits is different

1The name “bugs” actually comes from insects getting stuck inside the computer and causing errors.
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from b, is the probability of 2 or 3 bitflips, which is 3p2(1 − p) + p3 < 3p2. Hence the error-rate
has been reduced from p to less than 3p2. If the initial error-rate p0 was < 1/3, then the new
error-rate p1 < 3p20 is less than p0 and we have made progress: the error-rate on the encoded bit is
smaller than before. If we’d like it to be even smaller, we could concatenate the code with itself,
i.e., repeat each of the three bits in the code three times, so the codelength becomes 9. This would
give error-rate p2 = 3p21(1−p1)+p31 < 3p21 < 27p40, giving a further improvement. As we can see, as
long as the initial error-rate p was at most 1/3, we can reduce the error-rate to whatever we want:
k levels of concatenation encode one “logical bit” into 3k “physical bits,” but the error-rate for each
logical bit has been reduced to 1

3(3p0)
2k . This is a very good thing: if the initial error is below the

threshold of 1/3, then k levels of concatenation increases the number of bits exponentially (in k),
but reduces the error-rate double-exponentially fast !

Typically, already a small choice of k gets the error-rate down to negligible levels. For example,
suppose we want to protect some polynomial (in some n) number of bits for some polynomial
number of time-steps, and our physical error-rate is some fixed p0 < 1/3. Choosing k = 2 log log n

levels of concatenation already suffices for this, because then pk ≤ 1
3(3p0)

2k ∼ 2−(logn)2 = n− logn

goes to 0 faster than any polynomial. In that case, by the union bound, even the probability that
there exists an error anywhere among our polynomially many logical bits in polynomially many
time-steps, will be negligibly small. With this choice of k, each logical bit would be encoded in
3k = (log n)2 log2(3) physical bits, so we only increase the number of bits by a polylogarithmic factor.

17.3 Quantum errors

The need for error-correction is far greater for quantum computers than for classical computers,
because “quantum hardware” is much more fragile than classical hardware. Unfortunately, error-
correction is also substantially more difficult in the quantum world, for several reasons:

• The classical solution of just repeating a state is not available in general in the quantum
world, because of the no-cloning theorem.

• The classical world has basically only bitflip-errors, while the quantum world is continuous
and hence has infinitely many different possible errors.

• Measurements that test whether a state is correct can collapse the state, losing information.

Depending on the specific model of errors that one adopts, it is possible to deal with all of these
issues. We will consider the following simple error model. Consider quantum circuits with S
qubits, and T time-steps; in each time-step, several gates on disjoint sets of qubits may be applied
in parallel. After each time-step, at each qubit, independently from the other qubits, some unitary
error hits that qubit with probability p. Note that we assume the gates themselves to operate
perfectly; this is just a convenient technical assumption, since a perfect gate followed by errors on
its outgoing qubits is the same as an imperfect gate.

Let’s investigate what kind of (unitary) errors we could get on one qubit. Consider the four
Pauli matrices from Appendix A.9:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.
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These have an interpretation as possible errors: I corresponds to no-error, X is a bitflip-error, Z is
a phaseflip-error, and Y = iXZ is a phaseflip-error followed by a bitflip-error (and a global phase
of i, which doesn’t matter). These four matrices span the space of all possible 2 × 2 matrices, so
every possible error-operation E on a qubit is some linear combination E = α0I+α1X+α2Y +α3Z
of the 4 Pauli matrices. More generally, every 2k × 2k matrix can be written uniquely as a linear
combinations of matrices that each are the tensor product of k Pauli matrices.

Consider for example the error which puts a small phase φ on |1〉:

E =

(
1 0
0 eiφ

)
= eiφ/2 cos(φ/2)I − ieiφ/2 sin(φ/2)Z.

Note that for small φ most of the weight in this linear combination sits on I, which corresponds to
the fact that E is close to I. The sum of squared moduli of the two coefficients is 1 in this case.
That’s not a coincidence: whenever we write a unitary as a linear combination of Pauli matrices,
the sum of squares of the coefficients will be 1 (see Exercise 1).

The fact that all 1-qubit errors are linear combinations of I,X, Y, Z, together with the linearity
of quantum mechanics, implies that if we can correct bitflip-errors, phaseflip-errors, and their
product, then we can correct all possible unitary errors on a qubit.2 So typically, quantum error-
correcting codes are designed to correct bitflip and phaseflip-errors (their product is then typically
also correctable), and all other possible errors are then also handled without further work.

Our noise model does not explicitly consider errors on multiple qubits that are not a product
of errors on individual qubits. However, even such a joint error on, say, k qubits simultaneously
can still be written as a linear combination of products of k Pauli matrices. So also here the main
observation applies: if we can just correct bitflip and phaseflip-errors on individual qubits, then we
can correct all possible errors!

17.4 Quantum error-correcting codes

Quantum error-correcting codes encode a number of “logical qubits” into a larger number of “phys-
ical qubits,” in such a way that errors on some number of its qubits can be corrected. The first and
simplest is Peter Shor’s 9-qubit code [128], which encodes 1 logical qubit into 9 physical qubits,
and can correct an error on any one of the 9 physical qubits. Here are the codewords for the two
logical basis states:

|0〉 7→ |0〉 = 1√
8
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1〉 7→ |1〉 = 1√
8
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

These two quantum codewords |0〉 and |1〉 span a 2-dimensional space {α|0〉 + β|1〉}. This 2-
dimensional subspace of the overall 29-dimensional space is called the “codespace.”

Suppose an error happens on one of these 9 qubits. We would like to have a procedure that
maps the resulting state back to the codespace. By linearity, it suffices if we can do this for the
basis states |0〉 and |1〉. First consider bitflip and phaseflip-errors.

2We can even correct the non-unitary errors that arise from undesired interaction between qubits of our circuit
with the environment, but we won’t talk about such errors here.

129



Detecting a bitflip-error. If a bitflip-error occurs on one the first 3 qubits, we can detect its
location by noting which of the 3 positions is the minority bit. We can do this for each of the
three 3-qubit blocks. Hence there is a unitary that writes down in 4 auxiliary qubits (which are all
initially |0〉) a number eb ∈ {0, 1, . . . , 9}. Here eb = 0 means that no bitflip-error was detected, and
eb ∈ {1, . . . , 9} means that a bitflip-error was detected on qubit number eb. Note that we don’t
specify what should happen if more than one bitflip-error occurred.

Detecting a phaseflip-error. To detect a phaseflip-error, we can consider the relative phase
for each of the three blocks |000〉 ± |111〉, and if they are not all the same, unitarily write down
in 2 more auxiliary qubits (again, initially |0〉) a number ep ∈ {0, 1, 2, 3}. Here ep = 0 means that
no phaseflip-error was detected, and ep ∈ {1, 2, 3} means that a phaseflip-error was detected in the
ep-th block.3

Together the above two procedures form one unitary U (i.e., one circuit) that acts on 9+4+2 = 15
qubits, and that “writes down” both eb and ep in auxiliary qubits. For example, suppose we have
the state |0〉. If Xi denotes a bitflip-error on the i-th qubit and Zj denotes a phaseflip-error on the
j-th qubit (let j′ denote the number of the block in which qubit j lies). Then after these errors our
state is XiZj |0〉. After fresh auxiliary qubits |04〉|02〉 are added, U maps

XiZj |0〉|04〉|02〉 7→ XiZj |0〉|i〉|j′〉.

Together, eb = i and ep = j′ form the “error syndrome”; this tells us which error occurred where.
The error-correction procedure can now measure this syndrome in the computational basis, and
take corrective action depending on the classical outcomes eb and ep: apply an X to qubit eb (or
no X if eb = 0), and apply a Z to one qubit in the ep-th block (or no Z if ep = 0). The case of a
Y -error on the i-th qubit corresponds to the case where i = j (i.e., the i-th qubit is hit by both a
phaseflip and a bitflip); our procedure still works in this case. Hence we can perfectly correct one
Pauli-error on any one of the 9 codeword qubits.

As we argued before, the ability to correct Pauli-errors suffices to correct all possible errors.
Let’s see in more detail how this works. Consider for instance some 9-qubit unitary error E. Assume
it can be decomposed as a linear combination of 9-qubit products of Paulis, each having at most
one bitflip-error and one phaseflip-error:

E = (α0I +
9∑

i=1

αiXi)(β0I +
9∑

j=1

βjZj).

Suppose this error occurs on |0〉:

E|0〉 = (α0I +
9∑

i=1

αiXi)(β0I +
9∑

j=1

βjZj)|0〉 =
9∑

i,j=0

αiβjXiZj |0〉,

where we denote X0 = Y0 = I.

3Note that we are not discovering exactly on which of the 9 qubits the phaseflip-error happened (in contrast to
the case of bitflips), but that’s OK: we can correct the phaseflip-error by applying a Z-gate to any one of the 3 qubits
in the block where the affected qubit sits.
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If we now add auxiliary qubits |04〉|02〉 and apply the above unitary U , then we go into a
superposition of error syndromes:

U(E ⊗ I⊗6)|0〉|04〉|02〉 =
9∑

i,j=0

αiβjXiZj |0〉|i〉|j′〉.

Measuring the 6 auxiliary qubits will now probabilistically give us one of the syndromes |i〉|j′〉, with
i ∈ {0, 1, . . . , 9} and j′ ∈ {0, 1, 2, 3}, and it will collapse the state to

XiZj |0〉|i〉|j′〉.

In a way, this measurement of the syndrome “discretizes” the continuously many possible errors to
the finite set of Pauli-errors. Once the syndrome has been measured, we can apply a corrective X
and/or Z to the first 9 qubits to undo the specific error corresponding to the specific syndrome we
got as outcome of our measurement. It is also possible that the measurement outcome is 04, 02; in
that case the state has collapsed to |0〉|04〉|02〉, so the syndrome measurement itself already removed
the error!

So now we can correct an error on one qubit. To achieve this, however, we have substantially
increased the number of locations where such an error could occur: the number of qubits has gone
from 1 to 9 (even to 15 if we count the auxiliary qubits as well), and we need a number of time-steps
to compute and measure the syndrome, and to correct a detected error. Hence this procedure only
gains us something if the error-rate p is so small that the probability of 2 or more errors on the larger
encoded system is smaller than the probability of 1 error in the unencoded qubit. We will get back
to this issue below, when talking about the threshold theorem. Note also that each new application
of the correction-procedure need a new, fresh 6-qubit register initialized to |04〉|02〉. After one run
of the error-correction procedure these auxiliary qubits will contain the measured error syndrome,
and we can just discard this. In a way, error correction acts like a refrigerator: a fridge pumps heat
out of its system and dumps it into the environment, and error-correction pumps noise out of its
system and dumps it in the environment in the form of the discarded auxiliary qubits.

The above 9-qubit code is just one example of a quantum error-correcting code. Better codes
exist, and a lot of work has gone into simultaneously optimizing the different parameters: we want
to encode a large number of logical qubits into a not-much-larger number of physical qubits, while
being able to correct as many errors as possible. The shortest code that encodes one logical qubit
and protects against one error, has five physical qubits. There are also “asymptotically good”
quantum error-correcting codes; these encode k logical qubits into O(k) physical qubits and can
correct errors on a constant fraction of the physical qubits (rather than just an error on one of the
qubits).

17.5 Fault-tolerant quantum computation

Encoding a quantum state in a quantum error-correcting code to protect it against noise is good, but
not enough: we also need to be able to do operations on the encoded qubits (Hadamards, CNOTs,
etc.). One way is to decode the logical qubits, do the operation on them, and then re-encode them.
This, however, is a recipe for disaster: if an error occurs between the decoding and subsequent
encoding, we’re unprotected. Accordingly, we need to be able to do operations on the logical qubits
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while they are encoded. Additionally, we need operations for regular stages of error-correction, i.e.,
measuring the syndrome and correcting. These operations may also introduce errors.4

There is a 7-qubit code (due to Andrew Steane) which is used often because it has nice prop-
erties: a Hadamard on the logical qubit corresponds to H⊗7 on the physical qubits, and a CNOT
between two logical qubits corresponds to applying CNOTs between the 7 pairs of the two blocks
of physical qubits (i.e., between the 1st qubit of one block and the 1st qubit of the other block,
etc.). Adding the gate that maps |b〉 7→ eibπ/4|b〉 to this suffices for universal quantum computation;
unfortunately, implementing this gate fault-tolerantly takes a lot more work, and we won’t go into
that here (see Exercise 7, though).

When designing schemes for fault-tolerant computing, it is very important to ensure that errors
do not spread too quickly. Consider for instance a CNOT: if its control-bit is erroneous, then after
doing the CNOT also its target bit will be erroneous. The trick is to keep this under control in such
a way that regular stages of error-correction don’t get overwhelmed by the errors. In addition, we
need to be able to fault-tolerantly prepare states, and measure logical qubits in the computational
basis. We won’t go into the (many) further details of fault-tolerant quantum computing (see
Exercise 7 for one approach, and [72] for more).

17.6 Concatenated codes and the threshold theorem

The idea to concatenate a code with itself, described at the end of Section 17.2, also applies to
quantum codes. Suppose we have some code that encodes one qubit into C qubits, that can correct
one error on one of its C qubits, and uses D time-steps per stage of error-correcting (each time-step
may involve a number of elementary gates in parallel). Instead of only 1, we now have CD locations
where an error could occur! Assuming error-rate p per-qubit-per-timestep, the probability for the
code to fail on a specific logical qubit at a specific time (i.e., to have more than 1 physical error on
its CD locations) is p′ =

∑CD
i=2

(
CD
i

)
pi(1− p)CD. If p is a sufficiently small constant, then this sum

is dominated by the term for i = 2, and we have p′ ≈ (CD)2p2. Accordingly, if the initial error-rate
p is below some magical constant ≈ 1/(CD)2, then p′ < p and hence each level of error-correction
reduces the error-rate.

More generally, suppose we concatenate this code k times with itself. Then every “logical
qubit” gets encoded into Ck qubits, but (by the same calculation as in Section 17.2) the error-

rate for each logical qubit gets reduced to O((CDp)2
k
). Suppose we want to be able to “survive”

T = poly(n) time-steps without any error on the logical qubits; that is what we would need to
run an efficient quantum algorithm on faulty quantum hardware. Then it suffices if we reduce the
error rate to ≪ 1/T , for which k = O(log log T ) levels of concatenation are enough. These layers
of error-correction increase the number of qubits and the computation time by a factor which is
exponential in k, but that is still only a polylogarithmic overhead, since 2O(log log T ) = (log T )O(1).5

The above sketch (when implemented precisely) gives us the famous “threshold theorem” [3, 94]:
if the initial error-rate of the quantum hardware can be brought down below some magical constant
(known as the “fault-tolerance threshold”), then we can use software-solutions like quantum error-
correcting codes and fault-tolerant computing to ensure that we can quantum compute for long
periods of time without serious errors. Much research has gone into finding the best value for this

4It’s like being inside a leaky boat on the open seas, using a leaky bucket to scoop out water all the time to prevent
the boat from filling up with water and sinking. It’s doable, but not easy.

5Recently it was shown that one can even bring the overhead down to O(1) [64].
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fault-tolerance threshold. The more efficient our basic quantum error-correcting codes are (i.e.,
the smaller C and D), the higher (= better) the value of the threshold is. Currently the best
rigorous estimates for the threshold are around 0.1%, but there is numerical evidence that even a
few percent would be tolerable. This is actually one of the most important results in the area of
quantum computing, and is the main answer to the skeptics mentioned at the start of the chapter:
as long as experimentalists manage to implement basic operations within a few percent of error
in a scalable way, then we should be able to build large-scale quantum computers.6 Currently
there seems to be no fundamental reason why we cannot do this; it is, however, an extremely hard
engineering problem.

Exercises

1. (H) Let E be an arbitrary 1-qubit unitary. We know that it can be written as

E = α0I + α1X + α2Y + α3Z,

for some complex coefficients αi. Show that
∑3

i=0 |αi|2 = 1.

2. (a) Write the 1-qubit Hadamard transform H as a linear combination of the four Pauli
matrices.

(b) Suppose an H-error happens on the first qubit of α|0〉 + β|1〉 using the 9-qubit code.
Give the various steps in the error-correction procedure that corrects this error.

3. Give a quantum circuit for the encoding of Shor’s 9-qubit code, i.e., a circuit that maps
|008〉 7→ |0〉 and |108〉 7→ |1〉. Explain why the circuit works.

4. Shor’s 9-qubit code allows to correct a bit flip and/or a phase flip on one of its 9 qubits.
Below we give a 4-qubit code which allows to detect a bitflip and/or a phaseflip. By this we
mean that after the detection procedure we either have the original uncorrupted state back,
or we know that an error occurred (though we do not know which one). The logical 0 and 1
are encoded as:

|0〉 = 1
2(|00〉+ |11〉)⊗ (|00〉+ |11〉)

|1〉 = 1
2(|00〉 − |11〉)⊗ (|00〉 − |11〉)

(a) Give a procedure (either as a circuit or as sufficiently-detailed pseudo-code) that detects
a bitflip error on one of the 4 qubits of α|0〉+ β|1〉.

(b) Give a procedure (either as a circuit or as sufficiently-detailed pseudo-code) that detects
a phaseflip error on one of the 4 qubits of α|0〉+ β|1〉.

(c) Does that mean that we can now detect any unitary 1-qubit error on one of the 4 qubits?
Explain your answer.

5. (H) Show that there cannot be a quantum code that encodes one logical qubit into 2k physical
qubits while being able to correct errors on up to k of the physical qubits.

6This is of course assuming our simple model of independent noise on each physical qubit is not too far off; if the
noise can be correlated in devious ways it becomes much harder (though often still possible) to protect against.
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6. Suppose we have a qubit whose density matrix is ρ = α0I + α1X + α2Y + α3Z, where
α0, α1, α2, α3 are real coefficients and I,X, Y, Z are the Pauli matrices.

(a) Show that α0 = 1/2.

(b) Depolarizing noise (of strength p ∈ [0, 1]) acts on a qubit as follows: with probability
1− p nothing happens to the qubit, and with probability p the qubit is replaced by the
“completely mixed state” of a qubit, whose density matrix is I/2.

Show that depolarizing noise on the above qubit doesn’t change the coefficient α0, but
shrinks each of α1, α2, α3 by a factor of 1− p.

7. Suppose we have a qubit |φ〉 = α|0〉+β|1〉 to which we would like to apply a T =

(
1 0

0 eiπ/4

)

gate, but for some reason we cannot. However, we have a second qubit available in state

1√
2
(|0〉+ eiπ/4|1〉), and we can apply a CNOT gate and an S =

(
1 0
0 i

)
gate.

(a) What state do we get if we apply a CNOT to the first and second qubit?

(b) Suppose we measure the second qubit in the computational basis. What are the proba-
bilities of outcomes 0 and 1, respectively?

(c) Suppose the measurement yields 0. Show how we can get T |φ〉 in the first qubit.

(d) Suppose the measurement yields 1. Show how we can get T |φ〉 in the first qubit, up to
an (irrelevant) global phase.

Comment: This way of implementing the T -gate is very helpful in fault-tolerant computing, where often

CNOT and S are easy to do on encoded states but T is not. What this exercise shows is that we can prepare

(encodings of) the so-called “magic state” 1√
2
(|0〉+ eiπ/4|1〉) beforehand (offline, assuming we can store them

until we need them), and use those to indirectly implement a T -gate using only CNOT and S-gates.

8. Consider a quantum-error correcting code that encodes k qubits (and n − k |0〉s) into an
n-qubit codeword state, via the unitary encoding map

U : |x, 0n−k〉 7→ |C(x)〉, where x ∈ {0, 1}k, and |C(x)〉 need not be a basis state.

A “weight-w Pauli error” is the tensor product of n Pauli matrices, of which at most w are
not identity (e.g., something like X⊗ I⊗Z⊗ I⊗ I if w = 2 and n = 5). Suppose that there is
a unitary map S on 3n qubits that can identify every weight-w Pauli error E on a codeword,
by writing the name of E (the “error syndrome”, which we can think of as a 2n-bit string
”E”, for example writing 00 for I, 10 for X, 01 for Z, 11 for Y ) in a second register that’s
initially 02n. In other words, for every x ∈ {0, 1}k and weight-w Pauli error E, this S maps

S : (E|C(x)〉)|02n〉 7→ (E|C(x)〉)|”E”〉.
(a) Show that if x and y are k-bit strings, and E and F are weight-w Pauli errors, then the

n-qubit states E|C(x)〉 and F |C(y)〉 are orthogonal unless both x = y and E = F .

(b) Prove the inequality 2k
w∑

i=0

(
n

i

)
3i ≤ 2n.

Comment: This inequality implies a lower bound on the required number of qubits n, in terms of the

number of encoded qubits k and the weight w of errors that you can correct, but you don’t need to

derive that consequence.
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Appendix A

Some Useful Linear Algebra

In this appendix we quickly introduce the basic elements of linear algebra, most of which will be
used somewhere or other in these notes.

A.1 Vector spaces

A vector space V over a field F is a set of objects (called vectors) satisfying that if v, w ∈ V , then
cv + dw ∈ V for all c, d ∈ F. In other words, V is closed under addition and scalar multiplication.
A (linear) subspace W is a subset W ⊆ V which is itself a vector space (i.e., closed under addition
and scalar multiplication). For example, V = Cd is the d-dimensional complex vector space, which
is the set of all column vectors of d complex numbers. The set W ⊆ V of vectors whose first two
entries are 0 is a subspace of V . As another example, the set V = {0, 1}d of d-bit vectors, with
entrywise addition modulo 2, is a linear space. The field here is F2 = {0, 1}. The set W ⊆ V of
vectors whose first two entries are equal is a subspace of V .

A set of vectors v1, . . . , vm ∈ V is linearly independent if the only way to get
∑m

i=1 aivi equal
to the zero-vector 0, is to set a1 = · · · = am = 0. The span (over field F) of a set of vectors
S = {v1, . . . , vm} ⊆ V is the set span(S) of vectors that can be written as a linear combination∑d

i=1 aivi (with coefficients a1, . . . , am ∈ F). A basis for V is a linearly independent set S of vectors
such that span(S) = V . One can show that all bases of V have the same size; this size is called the
dimension of V .

A.2 Matrices

Matrices represent linear maps between two vector spaces with particular bases. We assume famil-
iarity with the basic rules of matrix addition and multiplication. We use Aij for the (i, j)-entry of
a matrix A and AT for its transpose, which has AT

ij = Aji. We use Id to denote the d× d identity
matrix, which has 1s on its diagonal and 0s elsewhere; we usually omit the subscript d when the
dimension is clear from context. If A is square and there is a matrix B such that AB = BA = I,
then we use A−1 to denote this B, which is called the inverse of A (and is unique if it exists). Note
that (AB)−1 = B−1A−1.

In the remainder of this appendix we will mostly consider the complex field. If A is a matrix
(not necessarily square), then A∗ denotes its conjugate transpose (or adjoint): the matrix obtained
by transposing A and taking the complex conjugates of all entries. Note that (AB)∗ = B∗A∗.
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Physicists often write A† instead of A∗, but in these notes we will stick with the A∗ notation that
is common in mathematics.

A.3 Inner product

For vectors v, w, we use 〈v|w〉 = v∗w =
∑

i v
∗
iwi for their inner product.1 The combination of the

vector space V with this inner product is called a Hilbert space. Two vectors v, w are orthogonal
if 〈v|w〉 = 0. A set {vi} of vectors is called orthogonal if all vectors are pairwise orthogonal:
〈vi|vj〉 = 0 if i 6= j. If additionally the vectors all have norm 1, then the set is called orthonormal.

The inner product induces a vector norm ‖v‖ =
√
〈v|v〉 =

√∑
i |vi|2. This is the usual

Euclidean norm (or “length”). The norm in turn induces a distance ‖v − w‖ between vectors v
and w. Note that distance and inner product are closely related:

‖v − w‖2 = 〈v − w|v − w〉 = ‖v‖2 + ‖w‖2 − 〈v|w〉 − 〈w|v〉.

In particular, for unit vectors v and w the real part of their inner product equals 1 − 1
2‖v − w‖2.

Hence unit vectors that are close together have an inner product close to 1, and vice versa. The
Cauchy-Schwarz inequality gives |〈v|w〉| ≤ ‖v‖ · ‖w‖ (see also Appendix B).

The outer product of v and w is the matrix vw∗.

A.4 Unitary matrices

Below we will restrict attention to square matrices, unless explicitly mentioned otherwise.

A matrix A is unitary if A−1 = A∗. The following conditions are equivalent:

1. A is unitary

2. A preserves inner product: 〈Av|Aw〉 = 〈v|w〉 for all v, w

3. A preserves norm: ‖Av‖ = ‖v‖ for all v

4. ‖Av‖ = 1 if ‖v‖ = 1

(1) implies (2) because if A is unitary then A∗A = I, and hence 〈Av|Aw〉 = (v∗A∗)Aw = 〈v|w〉. (2)
implies (1) as follows: if A is not unitary then A∗A 6= I, so then there is a w such that A∗Aw 6= w
and, hence, a v such that 〈v|w〉 6= 〈v|A∗Aw〉 = 〈Av|Aw〉, contradicting (2). Clearly (2) implies (3).
Moreover, it is easy to show that (3) implies (2) using the following identity:

‖v + w‖2 = ‖v‖2 + ‖w‖2 + 〈v|w〉+ 〈w|v〉.

The equivalence of (3) and (4) is obvious. Note that by (4), the eigenvalues of a unitary matrix
have absolute value 1.

1Here we follow a physics convention: mathematicians usually define 〈v|w〉 = vw∗.
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A.5 Diagonalization and singular values

The complex number λ is an eigenvalue of (square) matrix A if there is some nonzero vector v
(called an eigenvector) such that Av = λv.

Matrices A and B are similar if there is an invertible matrix S such that A = SBS−1. Note that
if Av = λv, then BS−1v = λS−1v, so similar matrices have the same eigenvalues. Schur’s lemma
states that every matrix A is similar to an upper triangular matrix: A = U−1TU for some unitary
U and upper triangular T . Since similar matrices have the same eigenvalues and the eigenvalues of
an upper triangular matrix are exactly its diagonal entries, the eigenvalues of A form the diagonal
of T .

A matrix D is diagonal if Dij = 0 whenever i 6= j. Let S be some matrix satisfying AS = SD
for some diagonal matrix D. Let vi be the i-th column of S and λi be the i-th entry on the diagonal
of D, then 



...
...

Av1 · · · Avd
...

...




︸ ︷︷ ︸
AS

=




...
...

λ1v1 · · · λdvd
...

...




︸ ︷︷ ︸
SD

,

and we see that vi is an eigenvector of A associated with eigenvalue λi. Conversely, if v1, . . . , vd are
eigenvectors of A with eigenvalues λ1, . . . , λd, then we have AS = SD, where S has the vi as columns
and D is the diagonal matrix of λi. We call a square matrix A diagonalizable if it is similar to some
diagonal matrix D: A = SDS−1. This D then has A’s eigenvalues λi on its diagonal, some of which
may be zero. Note that A is diagonalizable iff it has a linearly independent set of d eigenvectors.
These eigenvectors will form the columns of S, giving AS = SD, and linear independence ensures
that S has an inverse, giving A = SDS−1. A matrix A is unitarily diagonalizable iff it can be
diagonalized via a unitary matrix U : A = UDU−1. If the columns of U are the vectors ui, and the
diagonal entries of D are λi, then we can also write A =

∑
i λiuiu

∗
i ; this is sometimes called the

spectral decomposition of A. By the same argument as before, A will be unitarily diagonalizable iff
it has an orthonormal set of d eigenvectors.

A matrix A is normal if it commutes with its conjugate transpose (A∗A = AA∗). For example,
unitary matrices are normal. If A is normal and A = U−1TU for some upper triangular T (which
must exist because of Schur’s lemma), then T = UAU−1 and T ∗ = UA∗U−1, so TT ∗ = UAA∗U−1 =
UA∗AU−1 = T ∗T . Hence T is normal and upper triangular, which implies (with a little work) that
T is diagonal. This shows that normal matrices are unitarily diagonalizable. Conversely, if A is
diagonalizable as U−1DU , then AA∗ = U−1DD∗U = U−1D∗DU = A∗A, so then A is normal. Thus
a matrix is normal iff it is unitarily diagonalizable. If A is not normal, it may still be diagonalizable
via a non-unitary S, for example:

(
1 1
0 2

)

︸ ︷︷ ︸
A

=

(
1 1
0 1

)

︸ ︷︷ ︸
S

·
(

1 0
0 2

)

︸ ︷︷ ︸
D

·
(

1 −1
0 1

)

︸ ︷︷ ︸
S−1

.

If A = UDU−1 then A∗ = UD∗U−1, so the eigenvalues of A∗ are the complex conjugates of the
eigenvalues of A.

An important class of normal (and hence unitarily diagonalizable) matrices are the Hermitian
matrices, which are the ones satisfying A = A∗. Note that the previous paragraph implies that
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the eigenvalues of Hermitian matrices are real. A Hermitian matrix is called positive definite
(resp. positive semidefinite) if all its eigenvalues are positive (resp. non-negative). If all eigenvalues
are 0 or 1, then A is called a projection (or projection matrix or projector). This is equivalent to
requiring A2 = A.

Not all matrices are diagonalizable, for instance A =

(
0 1
0 0

)
. However, every matrix A has

a singular value decomposition, as follows. It is easy to see that the matrix A∗A has the same
eigenvectors as A and that its eigenvalues are the squared absolute values of the eigenvalues of
A. Since A∗A is Hermitian and hence normal, we have A∗A = UDU−1 for some U and some
non-negative real diagonal matrix D. The entries of Σ =

√
D are called the singular values of A.

Every A has a singular value decomposition A = UΣV −1, with U, V unitary. This implies that A
can be written as A =

∑
i λiuiv

∗
i , with ui the columns of U and vi the columns of V .

A.6 Tensor products

If A = (Aij) is anm×nmatrix and B anm′×n′ matrix, then their tensor product (a.k.a. Kronecker
product) is the mm′ × nn′ matrix

A⊗B =




A11B · · · A1nB
A21B · · · A2nB

. . .

Am1B · · · AmnB


 .

For example:

(
1√
2

1√
2

1√
2

− 1√
2

)
⊗
(

0 1
−1 0

)
=




0 1√
2

0 1√
2

− 1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2

− 1√
2

0 1√
2

0


 .

Note that the tensor product of two numbers (i.e., 1× 1 matrices) is just a number.
The following properties of the tensor product are easily verified:

• c(A⊗B) = (cA)⊗B = A⊗ (cB) for all scalars c

• (A⊗B)∗ = A∗⊗B∗, and similarly for inverse and transpose (note that the order of the tensor
factors doesn’t change).

• A⊗ (B + C) = (A⊗B) + (A⊗ C)

• A⊗ (B ⊗ C) = (A⊗B)⊗ C

• (A⊗B)(C ⊗D) = (AC)⊗ (BD)

Different vector spaces can also be combined using tensor products. If V and V ′ are vector spaces of
dimension d and d′ with basis {v1, . . . , vd} and {v′1, . . . , v′d′}, respectively, then their tensor product
space is the d · d′-dimensional space W = V ⊗ V ′ spanned by {vi ⊗ v′j | 1 ≤ i ≤ d, 1 ≤ j ≤ d′}.
Applying a linear operation A to V and B to V ′ corresponds to applying the tensor product A⊗B
to the tensor product space W .
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A.7 Trace

The trace of a matrix A is the sum of its diagonal entries: Tr(A) =
∑

iAii. Some important and
easily verified properties of Tr(A) are:

• Tr(A+B) = Tr(A) + Tr(B)

• Tr(AB) = Tr(BA), which is known as the “cyclic property” of the trace.
For example, Tr(Avv∗) = v∗Av.

• Tr(A) is the sum of the eigenvalues of A.
(This follows from Schur and the previous item: Tr(A) = Tr(UTU−1) = Tr(U−1UT ) =
Tr(T ) =

∑
i λi)

• Tr(A⊗B) = Tr(A)Tr(B)

A.8 Rank

The rank of a matrix A (over a field F) is the size of a largest linearly independent set of rows
of A (linear independence taken over F). Unless mentioned otherwise, we take F to be the field
of complex numbers. We say that A has full rank if its rank equals its dimension. The following
properties are all easy to show:

• rank(A) = rank(A∗)

• rank(A) equals the number of nonzero eigenvalues of A (counting multiplicity)

• rank(A+B) ≤ rank(A) + rank(B)

• rank(AB) ≤ min{rank(A), rank(B)}

• rank(A⊗B) = rank(A) · rank(B)

• A has an inverse iff A has full rank

A.9 The Pauli matrices

The four Pauli matrices are:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
.

Note that each Pauli matrix P is both unitary and Hermitian, and hence self-inverse: P−1 = P .
This implies that their eigenvalues are in {−1, 1}. Non-identity Paulis anti-commute: if P,Q ∈
{X,Y, Z} are distinct then PQ = −QP . Note that Y = iXZ. Also, products of distinct Pauli
matrices have trace 0.

Define the Hilbert-Schmidt inner product on the space of d×d matrices as 〈A,B〉 = 1
dTr(A

∗B).
With respect to this inner product (for d = 2), the four Pauli matrices form an orthonormal set.
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This implies that every complex 2× 2 matrix A can be written as a linear combination of the Pauli
matrices:

A = α0I + α1X + α2Y + α3Z,

with complex coefficients αi. If A is Hermitian, then these coefficients will be real.
We can also consider the n-qubit Paulis, which are n-fold tensor products of the above 2 × 2

Paulis. For example X ⊗ Z ⊗ I ⊗ Y ⊗ Z is a 5-qubit Pauli. There are 4n n-qubit Paulis, since we
have 4 possibilities for each of the n tensor factors, and these 4n matrices form an orthonormal set
w.r.t. Hilbert-Schmidt inner product. Accordingly, every 2n×2n matrix A can be written uniquely
as a linear combination of the 4n n-qubit Paulis. Again, if A is Hermitian, then the 4n coefficients
will be real.

A.10 Dirac notation

Physicists often write their linear algebra in Dirac notation, and we will follow that custom for
denoting quantum states. In this notation we write |v〉 = v and 〈v| = v∗. The first is called a ket,
the second a bra. Some points about this notation:

• 〈v|w〉 = 〈v||w〉: inner products are bra-ket (“bracket”) products.

• If matrix A is unitarily diagonalizable, then A =
∑

i λi|vi〉〈vi| for some orthonormal set of
eigenvectors {vi}

• |v〉〈v| ⊗ |w〉〈w| = (|v〉 ⊗ |w〉)(〈v| ⊗ 〈w|), the latter is often abbreviated to |v〉 ⊗ |w〉〈v| ⊗ 〈w|.
Abbreviating the latter further by omitting the tensor product leads to dangerous ambiguity,
though sometimes it’s still clear from context.

• (U |v〉)∗ = 〈v|U∗ and (|u〉 ⊗ |v〉)∗ = 〈u| ⊗ 〈v| (the ordering of tensor factors doesn’t change).

• Don’t write kets inside of bras: the notation 〈α|v〉+ β|w〉| doesn’t really make sense.
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Appendix B

Some other Useful Math and CS

Here we collect various basic but useful facts and definitions needed in parts of the lecture notes.

B.1 Some notation, equalities and inequalities

• We use [n] to denote the set {1, . . . , n}, and δa,b ∈ {0, 1} to indicate whether a = b or not.

• A complex number is of the form c = a + bi, where a, b ∈ R, and i is the imaginary unit,
which satisfies i2 = −1. Such a c can also be written as c = reiφ where r = |c| =

√
a2 + b2

is the magnitude (a.k.a. modulus or norm) of c, and φ ∈ [0, 2π) is the angle that c makes
with the positive horizontal axis when we view it as a point (a, b) in the plane. Note that
complex numbers of magnitude 1 lie on the unit circle in this plane. We can also write those
as eiφ = cos(φ) + i sin(φ). The complex conjugate c∗ is a− ib, equivalently c∗ = re−iφ.

• The Cauchy-Schwarz inequality: for a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn

n∑

i=1

aibi ≤

√√√√
n∑

i=1

a2i

√√√√
n∑

i=1

b2i .

Equivalently, written in terms of inner products and norms of vectors: |〈a, b〉| ≤ ‖a‖ · ‖b‖.
Proof: for every real λ we have 0 ≤ 〈a− λb, a− λb〉 = ‖a‖2 + λ2‖b‖2 − 2λ〈a, b〉. Now set λ = ‖a‖/‖b‖ and

rearrange (a slightly more complicated proof works if a, b ∈ Cn).

•
m−1∑

j=0

zj =

{
m if z = 1
1−zm

1−z if z 6= 1

Proof: The case z = 1 is obvious; for the case z 6= 1, observe (1−z)(
∑m−1

j=0 zj) =
∑m−1

j=0 zj−
∑m

j=1 z
j = 1−zm.

For example, if z = e2πir/N is a root of unity, with r an integer in {1, . . . , N − 1}, then∑N−1
j=0 zj = 1−e2πir

1−e2πir/N .

• The ratio in the previous line can be rewritten using the identity |1 − eiθ| = 2| sin(θ/2)|;
this identity can be seen by drawing the numbers 1 and eiθ as vectors from the origin in the
complex plane, and dividing their angle θ in two. Some other useful trigonometric identities:
cos(θ)2 + sin(θ)2 = 1, sin(2θ) = 2 sin(θ) cos(θ).
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• 1 + x ≤ ex for all real numbers x (positive as well as negative).

• If εj ∈ [0, 1] then 1−
k∑

j=1

εj ≤
k∏

j=1

(1− εj) ≤ e−
∑k

j=1 εj .

Proof: The upper bound comes from the preceding item. The lower bound follows easily by induction, using

the fact that (1− ε1)(1− ε2) = 1− ε1 − ε2 + ε1ε2 ≥ 1− ε1 − ε2.

B.2 Algorithms and probabilities

• When we do not care about constant factors, we’ll often use big-Oh notation: T (n) = O(f(n))
means there exist constants c, d ≥ 0 such that for all integers n, we have T (n) ≤ cf(n) + d.
Similarly, big-Omega notation is used for lower bounds: T (n) = Ω(f(n)) means there exist
constants c, d ≥ 0 such that T (n) ≥ cf(n) − d for all n. T (n) = Θ(f(n)) means that
simultaneously T (n) = O(f(n)) and T (n) = Ω(f(n)). Such notation is often used to write
upper and/or lower bounds on the running time of algorithms as a function of their input
length n.

• For N = 2n, we can identify the integers {0, . . . , N−1} with their n-bit binary representations
as follows: the bitstring x = xn−1 . . . x1x0 ∈ {0, 1}n corresponds to the integer

∑n−1
i=0 xi2

i.
The leftmost bit xn−1 is called the most significant bit of x (since it corresponds to the
largest power of two, 2n−1), and the rightmost bit x0 is its least significant bit (it corresponds
to 20 = 1, so determines if x is even or odd). For example, if n = 3 then the bitstring
x = x2x1x0 = 101 corresponds to the integer x2 · 4+ x1 · 2+ x0 · 1 = 4+ 1 = 5. The integer 0
corresponds to the bitstring 0n (if we use 0 to denote a bitstring of 0s, then the value of n
should be clear from context).

We can also use binary notation for non-integral numbers, with the bits to the right of the
decimal dot corresponding to negative powers of two (1/2, 1/4, 1/8, etc.). For example,
0.1 denotes 1/2 and 10.101 denotes 2 + 1/2 + 1/8 = 21/8. Note that multiplying by two
corresponds to shifting the dot to the right, and dividing by two corresponds to shifting the
dot to the left.

• Three basic upper bounds on the tails of probability distributions:

Markov: if X is a nonnegative random variable with expectation µ, then Pr[X ≥ kµ] ≤ 1/k.
Proof: Since X is nonnegative, µ ≥ Pr[X ≥ kµ] · kµ.
Chebyshev: if X is a random variable with expectation µ and standard deviation σ, then
Pr[|X − µ| ≥ kσ] ≤ 1/k2.
Proof: Apply Markov to the random variable |X − µ|2, whose expectation is σ2.

Chernoff/Hoeffding: if X =
∑n

i=1Xi is the sum of n independent, identically distributed
random variables Xi ∈ {0, 1}, each with expectation Pr[Xi = 1] = p, then X has expectation
µ = np, and exponentially decreasing tail bound Pr[|X − µ| ≥ αn] ≤ 2e−2α2n.
Proof idea: For all parameters λ, we have Pr[X − µ ≥ t] = Pr[eλX ≥ eλ(t+µ)]. Upper bound the latter

probability by applying Markov to the random variable eλX . This is a product of n independent random

variables eλXi , so its expectation is easy to analyze. Then choose λ to minimize the upper bound.

• A randomized algorithm is a classical algorithm that can flip random coins during its op-
eration, meaning its behavior is partially determined by chance and its output is not a de-
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terministic function of its input. One can think of a randomized algorithm as a probability
distribution over deterministic algorithms (one deterministic algorithm for each setting of the
coins).

• When we say a (randomized) algorithm has error probability ≤ 1/3, this typically means in
the worst case: for every possible input, the algorithm produces the correct answer with prob-
ability ≥ 2/3, where the probability is taken over the random coin flips during its operation.
Such statements do not refer to “most” inputs under some input distribution unless stated
explicitly.

• If a (classical or quantum) algorithm produces the correct answer in expected running time T ,
then we can convert that into an algorithm with worst-case running time 3T and error prob-
ability ≤ 1/3, as follows. Run the original algorithm for 3T steps, and just cut it off if it
hasn’t terminated by itself. The probability of non-termination within 3T steps is at most
1/3 by Markov’s inequality. Hence with probability ≥ 2/3 we will have the correct answer.

• If a (classical or quantum) algorithm with 0/1-outputs has error probability ≤ 1/3, then
we can cheaply reduce this error probability to small ε > 0, as follows. Choose odd n =
O(log(1/ε)) such that 2e−2α2n ≤ ε for α = 1/6. Run the original algorithm n times and
output the majority among the n output bits. The probability that this majority is wrong
(i.e., that the number of correct output bits is more than αn below its expectation), is at
most ε by the Chernoff bound. Hence we output the correct answer with probability ≥ 1− ε.
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Appendix C

Hints for Exercises

Chapter 1

7. Consider what U has to do when |φ〉 = |0〉, when |φ〉 = |1〉, and when |φ〉 is a superposition of
these two.
10.b. Use the facts that Tr(D|ψ〉〈ψ|) = 〈ψ|D|ψ〉 and that products of 2 distinct Paulis have trace 0.
This exercise is just superdense coding in disguise.

Chapter 2

6. Instead of measuring the qubit, apply a CNOT that “copies” it to a new |0〉-qubit, which is then
left alone until the end of the computation. Analyze what happens.
12. Use Bernstein-Vazirani.

Chapter 3

5.c. Approximate the state of part (a) using the subroutine of part (b), and see what happens if

you apply Hadamards to the approximate state. Use the fact that 1
2N

∑N/2+2
√
N

w=0

(
n
w

)
is nearly 1.

Chapter 4

3. Use |α2
i − β2i | = |αi − βi| · |αi + βi| and the Cauchy-Schwarz inequality.

4.e. Use triangle inequality.
4.f. Drop all phase-gates with small angles φ < 1/n3 from the O(n2)-gate circuit for F2n explained
in Section 4.5. Calculate how many gates are left in the circuit, and analyze the distance between
the unitaries corresponding to the new circuit and the original circuit.

Chapter 5

1.a. You may invoke here (without proof) the Schönhage-Strassen algorithm for fast multiplica-
tion [125, 95]. This allows you to multiply two n-bit integers mod N using O(n2 log(n) log log(n))
steps (where n = ⌈log2N⌉).1
3.a. The prime number theorem implies that Ω(N/ lnN) of the numbers between 1 and N are

1Shor used Schönhage-Strassen in his original paper. We could also invoke the more recent improvement of Harvey
and van der Hoeven [81], who remove the log log n factor.
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prime; also there is an efficient classical algorithm to test if a given number is prime. You may use
these facts, but be explicit in how many bits your primes p and q will have.
3.b. Use the result of Exercise 1 (no need to rederive that here).
3.c. The set of all possible messages forms a group of size φ(N). Euler’s Theorem says that in any
group G, we have a|G| = 1 for all a ∈ G (here ‘1’ is the identity element in the group).

Chapter 6

4.b. Show that ‖M‖2 =
∥∥M2

∥∥ ≤ 2
3‖M‖+ a small constant.

5. Use the SWAP test from Section 14.6.

Chapter 7

3. Start with m = xi for a random i, and repeatedly use Grover’s algorithm to find an index j such
that xj < m and update m = xj . Continue this until you can find no element smaller than m, and
analyze the number of queries of this algorithm. You are allowed to argue about this algorithm on
a high level (i.e., things like “use Grover to search for a j such that. . . ” are OK), no need to write
out complete circuits. You do, however, have to take into account that the various runs of Grover
each have their own error probability
4.b. What is the probability in (a) if s ∼

√
N?

4.c. Choose a set S of size s = O(N1/3), and classically query all its elements. First check if S
contains a collision. If yes, then you’re done. If not, then use Grover to find a j 6∈ S that collides
with an i ∈ S.
5.b. Recall that if there are i solutions, then one variant of Grover’s algorithm finds a solution
using an expected number of O(

√
N/i) queries.

7.e. Choose γ in (d) such that applying ⌈k̃⌉ rounds of amplitude amplification to A results in a
solution for y with probability 1.
8.a. Try running the exact version of Grover (see end of Section 7.2) with different guesses for what
the actual t is.
9.a. Run the basic Grover search with a cleverly chosen number of iterations.
9.b. Use binary search on top of (a).

Chapter 8

4.a. Choose a uniformly random vector v ∈ {0, 1}n, calculate ABv and Cv, and check whether
these two vectors are the same.
4.b. Consider the case A = I.
4.c. Modify the algorithm for collision-finding: use a random walk on the Johnson graph J(n, r),
where each vertex corresponds to a set R ⊆ [n], and that vertex is marked if there are i, j ∈ R such
that (AB)i,j 6= Ci,j . Optimize over r.
5.b. View the 3n-step random walk algorithm as a deterministic algorithm with an additional input
r ∈ {0, 1}n×{1, 2, 3}3n, where the first n bits determine x, and the last 3n entries determine which
variable of the leftmost false clauses will be flipped in the 3n steps of the random walk. Use Grover
search on the space of all such r (no need to write out complete circuits here).
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Chapter 9

4. Calculate the subnormalized second-register state (〈0| ⊗ I)(W−1 ⊗ I)V (W ⊗ I)|0〉|ψ〉.
6.d. Like in the analysis of Grover’s algorithm and regular amplitude amplification (Chapter 7),
the product of two reflections on S is a rotation of S.
7. Use triangle inequality, ‖H‖ ≤ 1, and the fact that k! ≥ (k/e)k.

Chapter 10

No hints, sorry!

Chapter 11

4.a. Use Exercise 2.
4.b. Show that the symmetrized approximate polynomial r induced by the algorithm has degree
at least N .
6.c. Use the result of Exercise 5 for N = 2.
7.b. When defining the relation R, consider that the hardest task for this algorithm is to distinguish
inputs of weight N/2 from inputs of weight N/2 + 1.
9. Show how you can use sorting to solve the Majority-problem and then use the lower bound
from Exercise 7 to get an Ω(N) lower bound on sorting. (It is actually known that sorting takes
Ω(N logN) comparisons even on a quantum computer, but you don’t have to show that.)
10.a. Reduce the bs(f)-bit OR function (restricted to inputs of weight 0 or 1) to f and invoke the
lower bound that we know for OR.
11.b. Use induction on T and triangle inequality.
11.d. Add up the inequalities of (b) and (c) over all i, and use the Cauchy-Schwarz inequality.

Chapter 12

1. Use binary search, running the algorithm with different choices of k to “zoom in” on the largest
prime factor.
3.a. Write |θx〉 = α|0〉|φ0〉+ β|1〉|φ1〉, and consider the inner product between (Z ⊗ I)|θx〉 and |θx〉.
3.b. Use part (a). Analyze the amplitude of |x, 0S−n〉 in the final state |ψx〉, using ideas from the
proof of BQP ⊆ PSPACE in Section 12.3. Note that in contrast to that proof, you cannot use
more than polynomial time for this exercise.

Chapter 13

2.a. It suffices to use pure states with real amplitudes as encoding. Try to “spread out” the 4
encodings |φ00〉, |φ01〉, |φ10〉, |φ11〉 in the 2-dimensional real plane as well as possible.
3. Use the fact that 1 classical bit of communication can only send 1 bit of information, no matter
how much entanglement Alice and Bob share. Combine this fact with superdense coding.

Chapter 14

1. Argue that if Alice sends the same message for distinct inputs x and x′, then Bob doesn’t know
what to output if his input is y = x.
2.a. Argue that if P is a projector then we can’t have both P |φ〉 = |φ〉 and P |ψ〉 = 0.
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2.c. Observe that among Alice’s possible n-bit inputs are the n codewords of the Hadamard code
that encodes log n bits (see Section 13.3); each pair of distinct Hadamard codewords is at Hamming
distance exactly n/2. Use part (a) to argue that Alice needs to send pairwise orthogonal states for
those n inputs, and hence her message-space must have dimension at least n.
3. Use the fact that 2 non-orthogonal states cannot be distinguished perfectly (Exercise 2), and
that a set of 2n vectors that are pairwise orthogonal must have dimension 2n.
4. Invoke the quantum random access lower bound, Theorem 3 of Section 13.2.
5.b. Let Alice send a random row of C(x) (with the row-index) and let Bob send a random column
of C(y) (with the column-index).
6.a. Two distinct polynomials, each of degree ≤ d, are equal on at most d points of the domain Fp.
8.b. Run the protocol of part (a) on an initial state where Bob has a well-chosen superposition
over many |y〉.
9.b. You can derive this from one of the communication lower bounds mentioned in this chapter,
you don’t need to prove this from scratch.
10. The matchingM induces a projective measurement that Bob can do on the message he receives.
11.d. Alice could send a uniform superposition over all h ∈ H.

Chapter 15

1.b. You could write this out, but you can also get the answer almost immediately from part (a)
and the fact that HT = H−1.
2.b. It’s helpful here to write the EPR-pair in the basis |+〉 = 1√

2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉).

3. For every fixed input x, y, there is a classical strategy that gives a wrong output only on that
input, and that gives a correct output on all other possible inputs. Use the shared randomness to
randomly choose one of those deterministic strategies.
5.b. Argue that 1

4〈ψ|C|ψ〉 = Pr[win]− Pr[lose].
5.c. Use that A2

x and B2
y are the k-qubit identity matrix.

5.d. Use Cauchy-Schwarz to show (〈ψ|C|ψ〉)2 ≤ 〈ψ|C2|ψ〉, and then upper bound the latter.
5.e. cos(π/8)2 = 1

2 + 1√
8
.

Chapter 16

6. Show that a unitary on Alice’s side of the state won’t change Bob’s local density matrix ρB.

Chapter 17

1. Compute the trace Tr(E∗E) in two ways, and use the fact that Tr(AB) = 0 if A and B are
distinct Paulis, and Tr(AB) = Tr(I) = 2 if A and B are the same Pauli.
5. Given an unknown qubit α|0〉+ β|1〉 encoded using this code, you could split the 2k qubits into
two sets of k qubits each, and use each to recover a copy of the unknown qubit.
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