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Continuous-variable cluster states offer a potentially promising method of implementing a quantum com-

puter. This paper extends and further refines theoretical foundations and protocols for experimental implemen-

tation. We give a cluster-state implementation of the cubic phase gate through photon detection, which,

together with homodyne detection, facilitates universal quantum computation. In addition, we characterize the

offline squeezed resources required to generate an arbitrary graph state through passive linear optics. Most

significantly, we prove that there are universal states for which the offline squeezing per mode does not

increase with the size of the cluster. Simple representations of continuous-variable graph states are introduced

to analyze graph state transformations under measurement and the existence of universal continuous-variable

resource states.

DOI: 10.1103/PhysRevA.79.062318 PACS number�s�: 03.67.Lx, 42.50.Dv

I. INTRODUCTION

Nonstandard models of quantum computation are impor-

tant both practically and conceptually. On the one hand, they

lead to new experimental methods to realize quantum com-

puters; on the other hand, they offer additional insight on the

often counterintuitive properties of quantum information.

Continuous-variable �CV� quantum computation �1� not only

provides a framework for description of interacting quantum

fields �2� but also offers additional realizations of quantum

computers when each CV mode is assigned a suitable qubit

encoding �3,4�. Meanwhile, cluster-state computation �5�
showed that the implementation of many difficult Hamilto-

nians may be avoided by just applying single-qubit measure-

ments on a suitably prepared multiparty entangled resource

state, hence challenging traditional intuition that the imple-

mentation of a general unitary operator requires unitary evo-

lution.

CV cluster-state computation is a fusion of these protocols

�6,7�. In addition to its intrinsic conceptual interest, the for-

malism presents a potential alternative implementation of a

quantum computer. Optical CV cluster states have distinct

advantages over discrete analogs �8�. Any such cluster state

may be generated deterministically through offline squeezing

and passive linear optics �9�, while all multimode Gaussian

transformations performed through the cluster require only

homodyne detection �7�. In addition, via alternative tech-

niques, large CV clusters can be generated in a single step

using just one optical parametric oscillator �OPO� and no

interferometer �10�; some such proposals also have signifi-

cant scaling potential �11,12�. These features of CV cluster

states suggest that they offer a fertile experimental testing

ground for the principles of measurement-based computation

�13�. CV cluster states involving four optical modes have

been demonstrated experimentally �14–16�.
In this paper, we expand and extend the results given in

Ref. �7�. First, we apply the CV stabilizer formalism �4,9,17�

to give simple phase-space and algebraic representations of
CV graph states. We then apply these tools to compute how

graph states transform through quadrature measurements and

show that there exist universal graph states—cluster states—

that can be used as resource states for the implementation of

an arbitrary CV circuit.
1

Second, we extend the results in Ref. �9� by bounding the

offline squeezed resources required to construct an arbitrary

graph state to a given precision through passive linear optics.

These results are applied to several graph states of common

interest, including linear graph states and universal cluster

states. We show that the level of squeezing required per mode

does not grow with the size of the cluster state, a necessary

criterion to perform quantum computation efficiently through

offline resources. In addition, we prove that even if online

squeezing is assumed to be as readily available as its offline

counterpart, the generation of CV cluster states via offline

resources remains less costly.

Third, we detail an explicit optical implementation of a

non-Gaussian operator through photon counting and homo-

dyne measurements and thus propose an explicit measure-

ment sequence on CV cluster states that facilitates universal

quantum computation. We also present an alternative formal-

ism such that the embedding of non-Gaussian resource states

allows for universal quantum computation entirely by homo-

dyne measurements alone. Together these results refine many

of the details of the CV formalism, offer tools for further

development of CV cluster-state protocols, and present a va-

riety of potentially promising and viable experiments.

1
In this paper, a “graph state” can have an arbitrary graph, while a

“cluster state” must be a member of a family of graph states that is

universal for quantum computation. The reader should be aware

that conventions vary in the literature, and these terms are some-

times used interchangeably. We will, on occasion, use the term

“cluster” on its own, whose meaning at the time should be clear

from the context.
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The structure of the paper is as follows. Section II de-

scribes background material on CV quantum computation

and qubit cluster states that will be useful later in the paper.

Section III introduces graph states for CV modes �qumodes�
and describes their stabilizer and phase-space representa-

tions. Section IV demonstrates that such states, coupled with

single-qumode measurements, are capable of implementing

any specific unitary. Section V explores how CV graph states

transform under measurements and applies these results to

construct a CV cluster state that may be used as a resource

for universal quantum computation. In Sec. VI, the case of

imperfect CV clusters and the resulting distortions are ana-

lyzed and discussed. Section VII discusses the optical imple-

mentation of CV cluster-state computing, including the re-

source requirements for generating arbitrary CV clusters and

explicit implementation of a nonlinear gate that facilitates

universal quantum computation. Section VIII concludes the

paper.

II. PRELIMINARIES

In this section, we review some of the background knowl-

edge relevant to CV cluster-state computation and its optical

implementation. Familiarity with quantum computation and

quantum optics to the level in Refs. �18,19� is assumed. CV

cluster-state computation combines the concepts of CV quan-

tum computation and cluster states. For a more extensive

review of these topics, see Refs. �2,13�.

A. Continuous-variable quantum computation

1. CV state representations

In traditional quantum computation, which uses discrete

quantum variables, the basic unit of information is the qubit,

a system with a two-dimensional Hilbert space with

computational-basis states �0� and �1� and conjugate basis

states �+� and �−�. The two bases are related by the Hadamard

operation H.

The analog for CV quantum computation is the qumode,
2

a quantum system with an infinite-dimensional Hilbert space

spanned by a continuum of orthogonal states �s�q for each s

�R, with orthogonality condition �r�q�s�q=��r−s�. The con-

jugate basis states are labeled �s�q. The two bases are related

by a Fourier transform operation,

�s�p =
1

�2�
	

−�

�

dreirs�r�q = F�s�q,

�s�q =
1

�2�
	

−�

�

dre−irs�r�p = F†�s�p. �1�

The unitary operator F is defined by this relation. In quantum

protocols, qumodes may be used to encode qubits �e.g., the

Gottesman-Kitaev-Preskill encoding �4� or a coherent-state

encoding �3�� or they may be employed directly for CV

quantum computation �1,20�.

We may now define corresponding observables, position

q̂, and momentum p̂, such that q̂�s�q=s�s�q and p̂�s�p=s�s�p,

with �q̂ , p̂�= i where �=1. Here, p̂ is the generator of positive

translations in position, while −q̂ is the generator of positive

translations in momentum. Thus, we can write an arbitrary

position and momentum eigenstate as

�s�q = X�s��0�q, �s�p = Z�s��0�p, �2�

where X�s�=e−isp̂ and Z�s�=eisq̂ represent displacements in

the computational and conjugate bases, respectively. An ar-

bitrary pure quantum state ��� of a CV system may be de-

composed as a superposition of either �s�p or �s�q.

While the computational basis or its conjugate is uncount-

able, any physical state ��� may nevertheless be decomposed

into a countable infinite basis. For particles in a harmonic

trap or quantum optical fields we can use the Fock basis of

definite particle number 
�0� , �1� , . . .�, where n̂= â†â is the

number operator, with n̂�n�=n�n�, the usual bosonic commu-

tator �â , â†�=1, and â= �q̂+ ip̂� /�2. In the terminology of

quantum optics, q̂ and p̂ are referred to as the “position

quadrature” and ‘momentum quadrature” for a given mode,

respectively.

A qumode is in a minimum uncertainty state if the product

of the quadrature deviations �q̂ and �p̂ is minimized, i.e.,

�q̂�p̂=
1

2
. The ground or vacuum state �0� defined by â�0�

=0 is an example of particular theoretical and practical inter-

est and represents a Gaussian superposition centered about 0

in either the computational or the conjugate basis,

�0� =
1

�1/4	 dse−s2
/2�s�q =

1

�1/4	 dse−s2
/2�s�p. �3�

The vacuum state is a specific example of a Gaussian state

whose quadratures exhibit Gaussian statistics.

The state of a single qumode can be described by its

Wigner function �21�,

W�x,y� =
1

2�
	 dw�x −

w

2


q

�̂x +
w

2
�

q

eiwy . �4�

The Wigner function is a useful tool for describing arbitrary

Gaussian states, which are completely determined by the first

and second moments of the quadratures. Any state with a

Gaussian Wigner function is, by definition, a Gaussian state.

For instance, the Wigner function of the vacuum state is

e−�x2
+y

2�
/�, a multivariate Gaussian distribution with a vari-

ance of 1/2 in both quadratures. A multimode state such as a

CV cluster state is described by a multimode Wigner func-

tion, a straightforward extension of Eq. �4�. Multimode

Gaussian states are then given by a second-moment covari-

ance matrix and a first-moment vector �2�.

2. Gaussian transformations

In quantum optics, the Hamiltonians corresponding to the

experimentally most feasible interactions are at most qua-

dratic in q̂ and p̂. Such interactions transform Gaussian states

to Gaussian states and are referred to as Gaussian transfor-

mations or linear unitary Bogoliubov transformations. If we

collect the quadrature operators into an operator-valued vec-2
We use the terms “mode” and “qumode” interchangeably.
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tor v̂= �q̂1 , q̂2 , . . . , p̂1 , p̂2 , . . .�T, then a general Gaussian trans-

formation Û transforms v̂ according to

Û†v̂Û = Lv̂ + c, Det�L� = 1, �5�

where L is a 2n�2n symplectic matrix and c is a vector of

2n constants that represent quadrature displacements. We list

a number of standard single-mode Gaussian transformations

that will be used in this paper along with their associated

Heisenberg action on the quadrature operators.

�a� Rotations: R�	�=ei	�q̂2
+p̂

2�/2 rotates a state counter-

clockwise in phase space by an angle 	. Rotations are also

referred to as phase shifts. Here

�q̂

p̂
� → �cos 	 − sin 	

sin 	 cos 	
��q̂

p̂
� = MR�	��q̂

p̂
� , �6�

where MR�	� is the rotation matrix describing the linear

Heisenberg action on the quadrature operators. Note that

R�� /2�=F.

�b� Quadrature displacements: Z�s�=eisq̂ displaces a state

in phase space by s in momentum. Here

�q̂

p̂
� → �q̂

p̂
� + �0

s
� . �7�

Similarly, X�s�=e−isp̂ displaces a state in phase space by s in

position. Note the sign in the exponential of each.

�c� Squeezing: S�s�=e−i ln�s��q̂p̂+p̂q̂�/2 squeezes the position

quadrature by a factor of s while stretching the conjugate

quadrature by 1 /s. Here

�q̂

p̂
� → �s 0

0 1/s
��q̂

p̂
� = MS�s��q̂

p̂
� ,

where MS�s� is the squeeze matrix describing the linear

Heisenberg action on the quadrature operators.

�d� Shearing: D2,q̂�s�=eisq̂
2
/2 shears a state with respect to

the q̂ axis by a gradient of s. The shearing operator eisq̂
2
/2 is

also referred to as the phase gate. Here

�q̂

p̂
� → �1 0

s 1
��q̂

p̂
� = MD�s��q̂

p̂
� ,

where MD�s� is the shearing matrix describing the linear

Heisenberg action on the quadrature operators.

Operations �a� and �b� correspond to the most readily

available single-mode Gaussian transformations, requiring

only phase shifts and coherent-state sources. To access all

possible single-mode Gaussian transformations, we will need

squeezing interactions to stretch and compress phase-space

uncertainties. Two such operations are given by �c� and �d�.
In experimental quantum optics, such interactions require

nonlinear optical processes �while the Heisenberg in-out re-

lations remain linear�. Typical methods involve optical para-

metric amplification, which allows one to generate squeezed

vacuum states S�s��0�. We refer to such processes as offline

squeezing, solely involving the preparation of squeezed

vacuum states.

Offline squeezing contrasts with the online squeezing,

where the squeezing operator is applied “online” to an arbi-

trary state of the electromagnetic field. In experimental quan-

tum optics, it is common to refer to S�s��0� as a state with

10 log10�s2� dB of squeezing, alluding to the view that

squeezing can be regarded as a physical resource �2�. While

the generation of reasonably high levels �10 dB� of offline

squeezing can be experimentally achieved �22�, online

squeezing �23� is far more demanding and is currently only

experimentally viable for modest values of s, for instance,

online squeezing of 2.5 dB �24� utilizing offline squeezed

ancilla states �25�.
An arbitrary single-mode Gaussian transformation may be

decomposed into �a� rotations, �b� quadrature displacements,

and either �c� squeezing or �d� shearing operations. The ad-

dition of a two-mode Gaussian gate, such as a beam splitter

or CZ=eiq̂� q̂, allows for arbitrary multimode Gaussian trans-

formations. To account for imperfect Gaussian transforma-

tions, e.g., affected by photon losses and thermal excess

noises, Gaussian unitary gates are generalized to Gaussian

operations �Gaussian completely positively maps� �26�.
These also include Gaussian measurements such as homo-

dyne detection. Any quantum evolution consisting solely of

Gaussian operations on Gaussian states may be efficiently

simulated on a classical computer �20�. Therefore, some sort

of non-Gaussian element is required for universal quantum

computation. In fact, at least in principle, any such element

will do �1�.

3. Universal gate set

We follow the definition of universal CV quantum com-

putation outlined in Ref. �1�. A system is universal if it can

simulate the action of a Hamiltonian consisting of a general

polynomial of p̂ and q̂ to any fixed accuracy.

For a single qumode, all Gaussian operations together

with any single nonlinear �non-Gaussian, at least cubic� in-

teraction are capable of universality �1�. For example, the set

of gates Dk,q̂�s�=exp�isq̂k
/k�, for k=1,2 ,3 for all s�R, to-

gether with the Fourier transform F, is sufficient for univer-

sal single-mode quantum computation �that is, this set can be

used to implement any single-mode unitary operation up to

arbitrary accuracy�. Here D1,q̂�s� is a displacement, D2,q̂�s� is

a shear, and D3,q̂�s� is the cubic phase gate �4�. Adding to this

set any nontrivial two-mode interaction allows for universal

quantum computation. For theoretical simplicity, here we

shall use the CZ gate �defined above� to complete the univer-

sal set, while another possibility is a simple beam splitter

interaction.

It should be noted that such statements about universality

do not account for noise. Presently, all general error correc-

tion codes require discretization at some level. Hence, cur-

rently CV quantum computation is only known to be pos-

sible for discretized encodings of CVs.

B. Cluster-state computation

In the qubit-based cluster-state model �5�, quantum com-

putation is implemented by a series of single-qubit measure-

ments on a specially prepared entangled state of many qu-
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bits, most generally, referred to as a graph state �27�. Such

states may be conveniently described by graphs. A graph

G= �V ,E� consists of a vertex set V= 
vi�i=1
n and a set of

edges E. We say that two vertices, vi and v j, are neighbors if

there exists an edge �vi ,v j��E that connects them. For an

introduction to graphs, see Ref. �28�.
For any undirected unweighted graph G= �V ,E� having no

self-loops, we can construct a corresponding graph state as

follows. For each vertex of G, we initialize a qubit in the

state �+�=
1
�2

��0�+ �1��. For every edge in G linking two ver-

tices, we apply a CSIGN gate �which is sometimes called the

CPHASE gate� to the two corresponding qubits. Any unitary

operation can be implemented on a tailor-made graph state

using an appropriate sequence of single-qubit measurements.

The stabilizer formalism �29� offers an efficient way to

represent any graph state. A state ��� is stabilized by an

operator K if it is an eigenstate of K with unit eigenvalue,

i.e., K���= ���. The set of stabilizers forms an Abelian group

under operator multiplication. If such a set exists for a given

state, then we call that state a stabilizer state, and we may use

the generators of its stabilizer group to uniquely specify it.

The stabilizers for qubit graph states are well known. Given

that ��� is an n-qubit graph state with associated graph G

= �V ,E�, it is stabilized by

Ki = Xi �
j�N�i�

Z j , �8�

where N�i� denotes the set of indices that defines the set of

vertices in neighbor vi, i.e., N�i�= 
j � �v j ,vi��E�. The opera-

tors X and Z are the usual Pauli operators for qubits.

There exist universal families of graph states that may be

used to implement any unitary operation solely through the

choice of single-qubit measurements made on it. Originally,

such states are called cluster states, and cluster-state compu-

tation involves the implementation of arbitrary algorithms

solely by an adaptive local measurement scheme. The

scheme involves only single-qubit measurements and is

called “adaptive” because the choice of measurement bases

depends both on the algorithm to be implemented and, in

general, on the measurement outcomes during a cluster com-

putation. Cluster states, when combined with adaptive local

measurements, are thus universal resources for quantum

computation �5�. For more recent developments on possible

resource states for universal quantum computation and their

requirements, see Refs. �30–33�.

III. CONTINUOUS-VARIABLE GRAPH STATES

The concepts of qubit cluster-state computation can be

extended to the continuous-variable regime. We outline CV

graph states �6�, which can be used as resource states for

universal CV quantum computation �7�. We then introduce

nullifiers, a variation in the CV stabilizer formalism �4,9,17�,
and use them to compute how CV graph states transform

under quadrature measurements.

The basic premise of CV graph states may be obtained by

replacing elements of qubit cluster-state computation with

their CV analogs: �+� becomes �0�p, X measurements are re-

placed by measurements of p̂ �and Z with q̂�, and the CSIGN

interaction is replaced by the CZ=eiq̂iq̂j gate, which is used to

entangle nodes i and j. Each CV graph state can also be

defined by a graph G= �V ,E�, where the set of vertices V

corresponds to the individual qumodes and the edge set E

determines which qumodes interact via the CZ operation.

It should be mentioned that one way to generalize the idea

of a CV graph state is to use weighted edges for the graph.

The edge weights specify the strength of the CZ interaction

between the connected nodes: CZ�t�=eitq̂� q̂, where t is the

edge weight. CV weighted graph states have a variety of uses

�10,34,35�, but in this paper we will confine further discus-

sion to unweighted graphs �or, equivalently, graphs whose

edge weights are all +1�.

A. Stabilizers and nullifiers

Analogous to the case for qubit graph states, the stabilizer

formalism for CV systems �4,9,17� can be used to specify

any CV graph state completely �34�. We say that a zero-

momentum eigenstate �0�p is stabilized by X�s� for all s since

it is a +1 eigenstate of those operators. This holds even

though X�s�, being non-Hermitian, is not an observable. No-

tice that if K stabilizes ���, then UKU† stabilizes U���. This

observation, together with the relation eiq̂1q̂2p̂1e−iq̂1q̂2 = p̂1− q̂2,

allows us to write the stabilizers for an arbitrary CV graph

state ��� on n qumodes with graph G= �V ,E�,

Ki�s� = Xi�s� �
j�N�i�

Z j�s�, i = 1, . . . ,n �9�

for all s�R, where N�i� is defined as before in Eq. �8� and

the subscript indicates which qumode the displacement acts

on.

This group is conveniently defined by its Lie algebra, the

space of operators H such that H���=0. We refer to any

element of this algebra as a nullifier of ��� and the entire

algebra as the nullifier space of ���. Being Hermitian, every

nullifier is an observable. Any ideal graph state has a simple

nullifier representation.

Theorem 1. The nullifier space of an n-qumode graph state

��� with graph G= �V ,E� is an n-dimensional vector space

spanned by the following Hermitian operators:

Hi = p̂i − �
j�N�i�

q̂ j , i = 1, . . . ,n . �10�

That is, any linear superposition H=�iciHi satisfies H���
=0. Note that �Hi ,H j�=0 for all �i , j�.

Proof. Every stabilizer from Eq. �9� is the exponential of a

nullifier in this space. Specifically, Ki�s�=e−isHi for all s�R,

with i=1, . . . ,n. �

In Fig. 1, we illustrate this formalism. Note that the nul-

lifier space for a given state does not have a unique set of

nullifiers �a basis� that defines it since linear combinations of

nullifiers give another nullifier. Nevertheless, Eq. �10� is a

standard set that can easily be obtained from a given graph.

B. Wigner representation

The Wigner function can be useful as an extension to the

nullifier formalism. It encapsulates the simplicity of the nul-
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lifier formalism while maintaining the intuition afforded by

an explicit representation of the state and, importantly, con-

tinues to be useful for nonideal CV cluster states. Since the

arguments of a Wigner function behave identically to the

nullifiers under Gaussian transformations, they may also be

written by inspection.

The Wigner function of an ideal n-qumode graph state ���
with graph G= �V ,E� is a function of 2n variables on the

scalar-valued vectors q= �q1 , . . . ,qn� and p= �p1 , . . . , pn�. Ex-

plicitly,

W�q,p� = �
i=1

n


�qi���Hi� , �11�

where Hi, i=1, . . . ,n, are the standard nullifiers of ��� �with

each of the operators q̂i and p̂i replaced by scalar variables qi

and pi, respectively�, ��x� is the Dirac delta distribution, and


�x� is the infinite uniform distribution. Ideal CV graph states

are highly singular, so for all practical purposes, ��x� and


�x� should be considered limits of a normalized Gaussian

whose variance vanishes and extends to infinity, respectively.

For example, the Wigner function of Fig. 1�a� is


�q1�
�q2�
�q3���p1−q2���p2−q1−q3���p3−q2�.
Wigner functions can also be used to define an extended

class of generalized graph states. Whereas an ideal graph

state with associated graph G may be defined by the action of

appropriate CZ gates on n momentum eigenstates, a general-

ized graph state replaces each momentum eigenstate with

some arbitrary quantum state ��i�. If ��i� has a corresponding

Wigner function Wi�qi , pi�, then the Wigner representation of

the resulting generalized graph state is given by

W�q,p� = �
i=1

n

Wi�qi,Hi� . �12�

Such states are used extensively when we perform computa-

tions with graph states and when we extend the graph state

formalism to realistic situations where momentum eigen-

states need to be approximated.

IV. QUANTUM COMPUTATION ON CV GRAPH STATES

CV graph states are a resource for CV quantum computa-

tion. For any given CV unitary U and any given input ���,
there exists an appropriate graph state such that by entan-

gling the graph state locally with ��� and applying an appro-

priate sequence of single-qumode measurements, U��� is

computed.

To justify this statement, we first show that there exists a

���-dependent quantum state on a system of qumodes that

collapses into U��� �modulo known single-qumode Gaussian

operations� when an appropriate sequence of single-qumode

measurements is applied. We then demonstrate that this

���-dependent quantum state can be efficiently constructed

using an appropriate graph state as a resource.

A. Measurement-based CV quantum computation

To implement any unitary operation on k qumodes, we

apply the following algorithm. We first introduce a graph

G= �V ,E�. We designate k vertices of G as input vertices and

another �possibly overlapping� set as output. We call these

sets Vin and Vout. The following algorithm computes U���:
�1� The qumodes corresponding to the vertices in Vin en-

code the input state ���, while the qumodes corresponding to

the other vertices are each initialized in the state �0�p.

�2� For each edge �v j ,vk��E, apply CZ=eiq̂jq̂k between

vertices j and k. Since all CZ operations commute, their order

does not matter.

�3� Measure each vertex vi for all vi�Vout in a basis of

the form Mi=e−if i�q̂�p̂eif i�q̂�, where f i�q̂� is, in general, a poly-

nomial of q̂. The exact form of each f i is dictated by the

unitary we wish to implement and the result of measure-

ments on prior modes. Without loss of generality, we can

label the vertices such that they are measured in numerical

order.

�4� The remaining unmeasured qumodes encode U���,
modulo known single-mode rotations and translations.

The above algorithm may be implemented by using an

appropriate graph state as a resource. This algorithm is uni-

versal. Given any unitary U, there always exists an appropri-

ate graph G= �V ,E� and designations Vin, Vout�V such that

the above algorithm implements U.

B. Proof of universality

To prove the above procedure is universal, we need to

show that it can implement �a� single-mode Gaussian opera-

tions, �b� the cubic phase gate, and �c� the CZ gate. First

observe that �c� may be implemented trivially by a two-

vertex graph where both vertices are designated as both input

and output. No measurements are required.

The implementation of �a� and �b� also each involves a

two-vertex graph. We designate one vertex as input and the

other as output. Consider first the case where the input mode

is measured in the p̂ basis,

���

�0�p

m

X�m�F��� .

•
����p̂

•

FIG. 1. �Color online� Nullifiers give an efficient description of

ideal graph states. The nullifier space of the linear graph state on

three nodes �a� is spanned by p̂1− q̂2, p̂2− q̂1− q̂3, and p̂3− q̂2. The

infinite two-dimensional lattice �b� is nullified by Hi,j = p̂i,j − q̂i−1,j

− q̂i+1,j − q̂i,j−1− q̂i,j+1 for each coordinate �i , j�.
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Given an input ��� � �0�p=�dsf�s��s�q�0�p, the state of the

system after the application of the CZ gate is

CZ���� � �0�p� =	 dsf�s��s�q�s�p. �13�

Measurement of p̂ on the first mode with associated result m,

as shown, collapses this state to

���out �	 dsf�s���m�p�s�q��s�p �	 dsf�s�e−ism�s�p,

���out = e−imp̂	 dsf�s��s�p = X�m�F��� . �14�

The effect of this circuit is to apply the identity operation,

modulo a known quadrature rotation and displacement.

Obviously, a transformed input state of Dq̂���, for any Dq̂

=eif�q̂� diagonal in the computational basis, would result in

output X�m�FDq̂���. However, this same transformation can

be induced by an appropriate measurement. We can see this

immediately by writing out the associated circuit. Since Dq̂

commutes with CZ, the circuit

���

�0�p

Dq̂ − p̂ = m

X�m�FDq̂���

• Dq̂
����p̂

•

must have the desired output. The application of Dq̂ followed

by a p̂ measurement has an identical effect to a measurement

in the rotated basis p̂ f�q̂�=Dq̂
†
p̂Dq̂. Hence, any unitary diago-

nal in the computational basis can be implemented by a

single measurement of p̂ f�q̂�. Measurements on two qumodes

of a three-qumode cluster equate to a repeated application of

this circuit, resulting in the output

���out = X�m2�FDq̂X�m1�FDq̂���

= X�m2�FX�m1�D�q̂+m1�FDq̂���

= X�m2�FX�m1�FD�−p̂+m1�Dq̂��� , �15�

where D
v̂
=eif�v̂� for any operator v̂, and we have used the

relations

X�− m�q̂X�m� = q̂ + m , �16�

Z�− m�p̂Z�m� = p̂ + m , �17�

F†�− q̂�F = p̂ , �18�

F†p̂F = q̂ , �19�

the last two of which give

F†Z�m�F = X�m� , �20�

F†X�m�F = Z�− m� . �21�

If, instead of p̂ f�q̂� as shown above, we had measured the

second mode in the outcome-dependent basis p̂ f�−q̂−m1�, the

output would instead be ���out=X�m2�FX�m1�FDp̂Dq̂���.
Thus, the ability to measure the second mode in the basis

p̂ f�−q̂−m1� allows deterministic implementation of Dp̂.

By concatenating this circuit a sufficient number of times,

any single-mode operation can be implemented deterministi-

cally by alternating application of Dq̂ and Dp̂ �with generally

different D’s each time� �1�. Note that the measurements re-

quired to implement these gates �beyond the first one� are

necessarily adaptive—that is, our choice of the measurement

basis is generally dependent on previous measurement re-

sults. Also notice that the final result is modified by a

measurement-dependent Gaussian operation �X�m2�FX�m1�F
in the simple case illustrated�. This need not be corrected. As

long as we keep track of it, it can instead be considered as

just a change in basis for the final state.

Another useful way of approaching the question of uni-

versality in the CV context is to consider implementing

Gaussian operations and then, separately, non-Gaussian op-

erations. Single-mode Gaussian operations require the ability

to implement eisq̂ �quadrature displacements� and eisq̂
2
/2

�shears� for all s�R plus the Fourier transform F.

The Fourier transform is obtained for free simply through

the Gaussian correction applied with each measurement. Dis-

placements eisq̂ are easily implemented as well: just measure

p̂sq̂= p̂+s, which is the same as measuring p̂ and adding s to

the result.
3

In this case, dependence on previous measure-

ment outcomes is trivial since p̂s�q̂+m� is also equal to p̂+s,

and thus, no adaptation is required at all.

Shearing transformations eisq̂
2
/2 correspond to measure-

ments in the basis p̂sq̂2/2= p̂+sq̂. In the case that adaptation

for previous measurements is required, the new measurement

basis would be of the form p̂s�q̂ + m�2/2= p̂+sq̂+ms, which dif-

fers from the original basis only by a measurement-

dependent constant. This can be accounted for trivially by

measuring in the original basis and adding ms to the result.

Since the “adaptation” required for previous measurement

outcomes is trivial for all measurements necessary to imple-

ment Gaussian operations, such measurements may be made

in any order—or simultaneously. This property is known as

parallelism �7�. Qubit cluster-state computation has an analo-

gous property with the same name, whereby measurements

that implement Clifford group operations can be performed

in any order �13�.
The above measurements allow for any Gaussian opera-

tion to be implemented. But universality requires non-

Gaussian operations as well �20�. The cubic phase gate eisq̂
3
/3

allows implementation of all single-mode non-Gaussian op-

erations �1� and may be implemented via a measurement in

the basis p̂sq̂3/3= p̂+sq̂2. The difference with this gate is that

when an adaptive implementation is required, the physical

basis is now different, p̂s�q̂ + m�3/3= p̂+sq̂2+
2

3
msq̂+

1

3
m2s, due

to the presence of the noncommuting m-dependent term
2

3
msq̂. Accounting for this difference requires physically

changing the basis of measurement �unlike the last term

3
There is a sign error in the corresponding derivation in Ref. �7�.
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1

3
m2s, which can be eliminated simply by shifting the result�.

As with qubit quantum computation, a general CV quantum

computation will require adaptive measurements for the non-

Gaussian �non-Clifford� part of the computation. What these

measurements are in an experimental context will depend on

the choice of the physical implementation. In Sec. VII, we

propose one possible method that uses photon counting.

A sequence of single-qumode unitaries and wires is

implemented by a sequence of measurements on a linear

graph state. CZ gates are implemented by edges between lin-

ear clusters �Fig. 2�. Thus, we may apply the algorithm de-

scribed to implement any given CV unitary on an arbitrary

input state. This proves universality.

C. Graph states as resources

Observe that steps 1 and 2 generate a special class of

generalized CV graph states. Each of the input qumodes is

initially set to encode the inputs of the desired quantum com-

putation rather than the standard momentum eigenstates. The

resulting cluster has the Wigner representation

W�q,p� = �
i�I

Wi�qi,Hi��
j�I


�q j���H j� , �22�

where I= 
i �vi�Vin� is the set of indices that corresponds to

the input qumodes.

To see that the standard graph state with graph G�V ,E�
may be used as a resource for the algorithm, we show that it

may be used to efficiently generate clusters of the form given

by Eq. �22�. Let the input state be initially encoded on k

qumodes, which we label 
u1 ,u2 , . . . ,uk�, and the input ver-

tices of the graph state given by Vin= 
v1 ,v2 , . . . ,vk�. We pro-

ceed as follows:

�1� Apply a CZ operation between each qumode pair,

�ui ,vi�, for each i=1, . . .k.

�2� Measure each of the modes ui, resulting in measure-

ment results mi, i=1, . . . ,k.

The resulting cluster state is identical to Eq. �22�, modulo

known single-mode quadrature displacements and rotations

on each vi that can be accounted for throughout the remain-

der of the computation.

Thus, the circuit of Fig. 2�a� may be implemented by

using a standard graph state with the graph shown in Fig.

2�b�. We refer to such graph states as CV brickwork states,

alluding to similar results in qubit cluster-state computation

�36�.

V. UNIVERSAL CLUSTER STATES

So far, we have discussed the construction of specific

graph states tailored for a specific quantum computation.

Like qubit clusters, there exist classes of universal CV graph

states that may be used to implement an arbitrary CV opera-

tion. This is of more than theoretical interest since it facili-

tates the development of physical systems that are tailored to

generate one particular state. This state can then be used as a

universal resource.

To prove the existence of such universal resources, we

explore how CV graph states transform under single-mode

quadrature measurements. These tools are then applied to

show that there exists a universal CV graph state, which,

when appropriate quadrature measurements are applied, col-

lapses to the specific CV brickwork state that implements

any given quantum circuit. Such universal graph states are

called CV cluster states.

A. Graph state transformations

The nullifier formalism is ideal for computing how graph

states transform through quadrature measurements. In this

formalism, we describe a measurement p̂i on the ith qumode,

with measurement result mi, as follows. We first rewrite

the nullifiers in a basis such that only one element, say Hi,

does not commute with our basis of measurement. Hi is

then replaced with p̂i−mi, and in all other nullifiers, p̂i is

replaced with mi. Measurements in the q̂i basis are treated

analogously. The details of this formalism are outlined in

Appendix.

FIG. 2. �Color online� �a� Any unitary on multiple qumodes

may be written as a quantum circuit consisting of CZ and single-

qumode unitaries diagonal in either the position or momentum basis

�1�. �b� Any such circuit may be directly translated into an appro-

priate graph state. Here the arrowed qumodes are measured in the

appropriate basis that implements their corresponding single-

qumode unitary. All other nonoutput qumodes are measured in the p̂

basis.
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1. Vertex removal

A computational-basis measurement on a qumode re-

moves it, along with all edges that connect it, from the clus-

ter. Consider a measurement q̂i on the ith mode of ���. Equa-

tion �10� indicates that Hi is the only noncommuting basis

element. Therefore a measurement with result mi transforms

Hi into q̂i−mi and replaces q̂i with mi in all others. Explicitly,

for each j� i,

H j → H j�q̂i→mi
= � p̂ j − �

�vj,vk��E,k�i

q̂k − mi if �v j,vi� � E

p̂ j − �
�vj,vk��E

q̂k if �v j,vi� � E .�
�23�

The resulting state corresponds to the graph state of G with

vertex vi removed, modulo known quadrature displacements.

This operation is useful for creating a CV graph state that

corresponds to the subgraph of some original resource state.

In addition, it functions as a handy “delete” button and can

be used to “amputate” corrupted parts of a cluster state. To

summarize, if ��� is the graph state defined by a graph G

= �V ,E�, a q̂ measurement on a mode i results in the graph

state with associated graph G \ 
vi�, modulo known correc-

tions, i.e., the graph resulting from removal of vertex vi

along with all edges connecting to vi. Thus, a computational

measurement removes a given node from the cluster.

2. Wire shortening

Sometimes we may also wish to remove a given vertex

but still preserve the connections of its neighbors. This trans-

formation is useful, for example, when we wish to shorten

linear graph states. Consider p̂ measurements on the two

inner nodes of the four-node linear graph, which has nullifier

basis


p̂1 − q̂2, p̂2 − q̂1 − q̂3, p̂3 − q̂2 − q̂4, p̂4 − q̂3� . �24�

Since we will be making measurements of p̂2 and p̂3, we

want a new basis in which only one nullifier fails to com-

mute with p̂2 and only one other fails to commute with p̂3.

We construct this basis out of linear combinations of the

original basis elements, resulting in


p̂1 − q̂2, p̂2 − p̂4 − q̂1,− p̂1 + p̂3 − q̂4, p̂4 − q̂3� . �25�

Measurements of p̂2 and p̂3, with outcomes m2 and m3, re-

spectively, collapse the cluster into a new graph state with

nullifiers 
m2− p̂4− q̂1 ,m3− p̂1− q̂4�. This is equivalent to the

graph state of the two-qumode cluster, modulo a known

quadrature displacement and a reflection in phase space

about one of the nodes. Thus, measurements in the momen-

tum basis allow us to effectively “shorten” linear graph

states.

B. Universal resource state

Recall that any quantum circuit may be implemented by a

sequence of measurements on a specifically tailored brick-

work state �see Fig. 2�b��. The graph for such states is always

a subgraph of a sufficiently large two-dimensional square

lattice �see Fig. 1�b��. The two transformations outlined

above allow us to carve out an appropriate graph state for

simulating any given circuit �Fig. 3�. The graph state that

corresponds to a planar square lattice is thus a resource for

universal CV quantum computation and is therefore a CV

cluster state.

In practice, of course, lattices are always of finite size,

just as are all quantum circuits. Therefore the complexity of

the quantum computation one wishes to perform is con-

strained by the size of the original resource state. Since the

size of the required cluster grows linearly with the number of

fundamental one- and two-qumode gates and also grows lin-

early with the number of qumodes, CV cluster-state compu-

tation is efficient. As in the case of qubits, any algorithm of

polynomial gate complexity can also be implemented by a

resource state of polynomial size.

VI. EFFECTS OF FINITE SQUEEZING

The ideal framework of CV quantum computation in-

volves the use of momentum eigenstates. Such states cannot

be normalized and are thus an idealized abstraction. Any

practical implementation must necessarily approximate these

states. One way to do so is by replacing each zero-

momentum eigenstate with a vacuum state that has been fi-

nitely squeezed in the momentum quadrature. In this section,

we detail the resulting distortions imposed on any quantum

computation that uses cluster states made from these ap-

proximate states.

Suppose we use states of finite squeezing, i.e., S�s��0�
�where �0� represents the vacuum� for some large s, in place

of momentum-quadrature eigenstates. The resulting graph

state obtained will not be ideal. Formally, we say that the

resulting graph state ���s�� is of accuracy s. Such states are

generalized CV cluster states, and Eq. �12� allows us to write

down their Wigner representation,

FIG. 3. �Color online� Any CV graph state may be generated by

appropriate single-mode measurements. Computational-basis mea-

surements �blue orbs� remove unwanted nodes. Momentum-basis

measurements �green orbs� are then employed to shorten the

“wires” within the cluster.
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W�q,p� = �
j=1

n

Gs�q j�G1/s�H j� , �26�

where Gs�q�= ��s2�−1/2 exp�−q2
/s2� represents a Gaussian

distribution with variance s2
/2 and 
H j� are the nullifiers of

���s�� from Eq. �10�. Thus, these generalized CV cluster

states are Gaussian states. Observe that Gs converges to a

uniform distribution and G1/s to a �-peaked distribution in

the limit of large s, in agreement with the Wigner function

for an ideal graph state �Eq. �11��.
To analyze the resulting distortions, we first consider the

special case of simple state teleportation, where only p̂ mea-

surements are made and the input state propagates through

the cluster without any intended manipulation. This result

may then be extended to arbitrary measurements and the

implementation of universal gates.

A. Distortions in state propagation

Consider the state resulting from a p̂ measurement on a

two-qumode cluster, with input state ��� specified by the

Wigner function Win�q , p�. In terms of the circuit model, this

is represented by

���

S�s��0�

m

X�m�F����

•
����p̂

• �27�

where ���� is a distorted version of ���, which will be speci-

fied below. We can analyze this circuit as follows. After en-

tangling the input, the state of the system is given by

Win�q1,p1 − q2�Gs�q2�G1/s�p2 − q1� . �28�

A p̂1 measurement with outcome m yields the output state

P�m�Wout�q,p� = Gs�q�	 d�Win��,m − q�G1/s�p − ��

= Gs�q���Win�1G1/s��p,m − q�� , �29�

where �1 denotes a convolution with respect to the first ar-

gument of W and P�m� is the probability of measurement

outcome m. P�m� multiplies the resulting, normalized pure

state Wout to give the actual expression on the right-hand

side.

What we would like to know from this toy example is

how the imperfect squeezing affects the encoded state under

the cluster-state implementation of the identity gate. A good

way to see this effect is to undo the unitary correction X�m�F
and compare the result Win� to the original input state Win,

P�m�Win� = Gs�m − p���Win�1G1/s��q,p�� . �30�

The Wigner function Win� �q , p� corresponds to ���� in circuit

�27�. This means that with respect to the quantum informa-

tion to be teleported, the Gaussian envelope is dependent on

the measurement outcome m. Some values of m will result in

an envelope that overlaps the �non-negligible� support of

Win, while other more extreme values of m will result in a

strongly shifted envelope that cuts off large portions of the

support of Win. Thus, the actual success of any instance of

teleportation depends strongly on the measurement outcome

m.

On the other hand, we can instead talk about the average

state �a mixed state� that results from teleportation when we

average over all possible measurement results m using their

corresponding probabilities P�m�. This state is easily calcu-

lated using Eq. �30�,

Wavg = �Win� � =	 dmP�m�Win� = Win�1G1/s. �31�

Thus, the average effect on the quantum information due to

teleportation using finitely squeezed resources is just the ad-

dition of a variance of 1 / �2s2� noise units on the q̂ quadra-

ture. Repeated application gives us the resulting average dis-

tortion when a chain of p̂ measurements is used to teleport an

initial state Win down a linear cluster,

Wavg = Win�1G1/s�2G1/s�1G1/s�2 ¯ , �32�

In summary, when propagating quantum information through

a chain of finite accuracy s, in every single shot, pure con-

ditional output states are created with Gaussian envelopes

applied to the input state in alternating quadratures and with

the measurement results 
mi� determining their respective

centers. More typical, when CV quantum information is tele-

ported through a chain of finite accuracy s, on average,

1 / �2s2� units of noise are added alternately between the two

quadratures resulting, in general, in a mixed output state.

Whether a single shot or an average picture is applicable

depends on the actual experimental implementation and the

encoding of the signal states.

B. Distortions in universal gate teleportation

The distortions derived above, caused by finite squeezing,

apply to all single-qumode measurements. To see this, con-

sider the application of an arbitrary single-qumode unitary D,

diagonal in the computational basis, by measuring in the

D†p̂D basis. Since D and CZ commute, this is equivalent to

standard teleportation with input D���, i.e.,

D��� m

S�s��0�
X�m�F�D�����

•
����p̂

•

Thus, the resulting output state is again the expected output

state in the limit of ideal graph states, subjected to the dis-

tortion given by Eq. �30�. Therefore, the use of finite squeez-

ing results universally in the addition of Gaussian noise that

“blurs out” the details in the momentum and position quadra-

tures, alternating between them at each step. The magnitude

of this noise is inversely proportional to the accuracy of the

cluster and grows linearly with the length of the cluster. This

noise can potentially be reduced by the use of redundant rails

�9�. However, such redundant multiple-rail encoding requires

a larger amount of squeezing resources for creating the cor-

responding graph state. We will get back to this point in the

following sections on optical cluster-state generation and

computation.
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VII. OPTICAL CLUSTER STATES

The optical implementation of CV cluster states holds par-

ticular promise and features a number of advantages over its

discrete-variable counterpart �8,37�. With optical qubit clus-

ter states, the entangling operation that is used to generate a

cluster state is highly nonlinear, and its proposed implemen-

tations are nondeterministic. This results in significant over-

head and presents an impediment to the generation of large-

scale clusters. While challenging nonlinear operations are

still required for universal quantum computation, the genera-

tion of CV cluster states with current technology is entirely

deterministic. In particular, see the following:

�1� Any CV graph state can be prepared completely via

the interaction of squeezed vacuum states through a network

of linear optical elements. Not only we do avoid the need for

nonlinear interactions but online squeezing is also unneces-

sary.

�2� Once the cluster state is prepared, any multiqumode

Gaussian operation may be implemented entirely by quadra-

ture measurements �homodyne detection�.
�3� The addition of photon counting allows for universal

quantum computation.

Indeed, CV clusters of up to four qumodes have already

been experimentally realized �14–16�. In addition, recent re-

sults show that the network of linear optical elements may be

eliminated entirely in favor of frequency-encoded qumodes

and a single OPO �10–12�. Such a method would be able to

create a CV cluster state in just one step and in a single beam

of light. Some such proposals also have significant scaling

potential �11,12�. What follows, however, will focus on the

method described in item �1� and discussed in detail in Ref.

�9�. Item �2� suggests that once such clusters are available,

they can be immediately tested by implementing protocols

involving information distribution and other Gaussian opera-

tions. For example, this result immediately offers an experi-

mentally viable method to use offline squeezed resources to

perform squeezing operations online; such an online CV gate

operation using offline CV resource states can then be not

only “universally” applied to arbitrary optical signal states

�24,25,38� but would also no longer require adjustment of

the offline resources to achieve different squeezing gates as

the CV cluster states provide a universal resource for Gauss-

ian computation together with homodyne detectors �39�. Fi-

nally, while accurate photon counting remains experimen-

tally challenging, item �3� implies that universal quantum

computation is nevertheless possible.

A. Cluster-state generation

The naive canonical method to generate a given CV clus-

ter state would be to apply the theoretical definition directly,

i.e., apply CZ interactions to a collection of squeezed states.

While this method is conceptually simple, it is not very prac-

tical. The CZ operation does not conserve photon number and

requires the use of two single-mode online squeezers �40�.
In a more practical approach, in Ref. �9�, it was shown

that online squeezers are not needed at all. Any desired CV

graph state of accuracy s is a pure multimode Gaussian state,

and hence the only necessary online components are passive

linear optics �9,40�. To make this precise, consider the gen-

eration of a graph state ���s�� corresponding to some graph

G. Recall that ���s�� is defined by application of an appro-

priate sequence of CZ gates to a collection of squeezed states

S�s��0�.
The sequence of Gaussian transformations that take a col-

lection of vacuum states to ���s�� is represented succinctly in

the Heisenberg picture. Let v̂ denote the vector of quadrature

operators: v̂= �q̂1 , q̂2 , . . . , p̂1 , p̂2 , . . .�. In the Heisenberg pic-

ture, the quadratures are transformed according to

v̂ → CS�s�v̂ = M�s�v̂ , �33�

where S�s� represents the squeezing of each vacuum mode to

form the state S�s��0� and C represents application of CZ

operations in accordance with the desired graph. Mathemati-

cally, these operations can be defined by their action on the

quadrature operators

S�s�q̂i = sq̂i, Cq̂i = q̂i,

S�s�p̂i = p̂i/s, Cp̂i = p̂i + �
�vj,vi��E

q̂ j . �34�

Concatenation of the two operations gives an explicit form

for M�s�. We refer to M�s� as the generation matrix for

���s��, which defines the Gaussian operation that generates

���s�� from the vacuum. The singular value decomposition

for this matrix then provides an explicit recipe for how it

may be generated using only linear optics and offline squeez-

ing �40� �see Fig. 4�. We refer to this method as the decom-

positional method.
4

4
In Ref. �9�, the term “canonical” cluster states was reserved for

those states that are obtained by directly applying a network of CZ

gates onto momentum-squeezed states. These canonical states can

then also be created, after Bloch-Messiah decomposition, with of-

fline squeezing and linear optics. In this sense, the decompositional

scheme is equivalent to the canonical scheme based on online CZ

gates. In addition to those schemes resulting in the canonical cluster

states, in Ref. �9�, an alternative protocol was derived �independent

of the Bloch-Messiah reduction�, where offline squeezed states are

sent through passive linear optics under the constraint that the out-

going multimode state satisfies the quadrature nullifier conditions in

the limit of infinite squeezing. In this case, for finite squeezing,

there exist output states different from the canonical cluster states.

This larger family of cluster states was referred to as cluster-type

states, including many “noncanonical” cluster states, nonetheless

satisfying the nullifier conditions in the limit of infinite squeezing.

With regard to experiments, an important feature of these general-

ized states is that the antisqueezing components are suppressed by

construction �15�. In the present paper, in order to make a compari-

son between the scheme based on Bloch-Messiah reduction and that

using direct CZ gates, the former is here referred to as the “decom-

positional method,” while the latter shall be named the “canonical

method.” Later, in order to make this comparison, no distinction

will be made between offline and online squeezings.
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1. Simple example

We illustrate the basic principles of this process by con-

sidering the explicit generation of the two-mode graph state,

with generation matrix

M�s� =�
s 0 0 0

0 s 0 0

0 s s−1 0

s 0 0 s−1
� . �35�

The four singular values of this matrix are given by 1=2

=+, 3=4=−, where

� =
�1 + 2s4 � �1 + 4s8

�2s
. �36�

� specifies the amount of offline squeezing required to gen-

erate the two-mode graph state to an accuracy s �notice that

−=+
−1�. That is, two squeezed states of magnitude + �i.e.,

S�+��0��, together with passive linear optical elements, may

be used to generate this simple cluster state. Since we have

transferred the online squeezing of the CZ operation into ex-

tra squeezing during the preparation process, + is generally

greater than s. To generate the two-mode cluster to the same

accuracy, our initial resources must be squeezed to a greater

extent. In the case of the two-qumode cluster,

+ � �2s, s � 1. �37�

Thus in the usual case where high accuracy is desired, we

need to begin with states with a factor �2 more squeezing to

achieve a graph state of the same accuracy. This factor is

known as the squeezing overhead.

Since online squeezing generally represents a much

greater experimental challenge than its offline equivalent, the

decompositional method has a clear advantage over the ca-

nonical approach �9�. However, it is also fair to ask whether

this method is superior in all situations. To test this, we con-

sider the limiting case where offline squeezing is assumed to

be as costly as online squeezing. One answer to this �in the

affirmative� was already given in Ref. �9�, wherein it is

shown that extra local squeezing is required to obtain a ca-

nonically generated CV cluster state from an N-mode Gauss-

ian state in standard form �41�. We will revisit this result

from another angle. In this case, the measure of the resource

requirements is the total amount of squeezing required—

whether online or offline—measured additively in units of

dB.

We consider the toy case of the two-mode cluster here and

follow with the general case in Sec. VII A 2. To generate this

state up to accuracy s, the canonical method has two actions

where squeezers are required:

�a� Squeezing two vacuum states to S�s��0�, which re-

quires two squeezers 10 log�s2� dB each.

�b� Application of a single CZ gate �quantum nondemoli-

tion �QND� interaction�, which requires two online squeezers

of 4.18 dB each �40�.
In contrast, the decompositional method requires squeez-

ing in the following two steps:

�a� Squeezing two vacuum states to S�s��0�, as before.

�b� Squeezing these two states further by 10 log�2�
�3 dB each in order to account for the required squeezing

overhead of �2.

Thus the decompositional method saves �2 modes�
� �4.18 dB /mode−3 dB /mode�=2.36 dB of squeezing for

all values of s. In Sec. VII A 2, we show that the superiority

of this method extends to general cluster states.

2. Resource requirements for general graph states

The above example motivates a general question: how

much offline squeezing is required to create a graph state to

accuracy s? In the case where CZ gates are directly applied,

we would need n squeezed states of magnitude s. To generate

such a state entirely by offline squeezing up to equal accu-

racy, the initial nodes would necessarily need to feature

greater squeezing. The practicality of the decompositional

method hinges on the size of this overhead.

In this section, we show that there exist classes of univer-

sal cluster states whose squeezing overhead per mode does

not increase with the size of the cluster. In addition, as in the

case of two-mode clusters, the decompositional method re-

mains superior even if squeezing arbitrary states �online

squeezing� was as easy as squeezing the vacuum �offline

squeezing�. This is facilitated by a succinct method that com-

FIG. 4. �Color online� A CV graph state can be generated by a Gaussian unitary acting on a collection of vacuum states �9�. The

Heisenberg action of this Gaussian is given by a symplectic linear operator L acting on the phase space of quadrature operators

�q̂1 , q̂2 , . . . , p̂1 , p̂2 , . . .�. This linear action can always be decomposed into the passing of offline squeezed states through a network of passive

linear optical elements �40�.
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putes the offline squeezing required to generate any given

graph state.

Theorem 2. We may generate an n-mode graph state with

graph G to an accuracy s by passing n squeezed vacuum

states—S�si��0�, with i=1, . . . ,n—through a network of lin-

ear optical gates. Let A be the adjacency matrix of G �28�. In

the limit of large squeezing �s�1�, the level of squeezing

required for each mode, si, depends linearly on s, such that

si = s�1 + ki
2, �38�

where ki are the singular values of A. Thus, the squeezing

overhead is bounded above by �1+ki
2.

Proof. Consider a particular graph state with generation

matrix M�s�. When the 1 /s terms can be neglected, the n

largest singular values of M�s� then coincide with the sin-

gular values of the block-column matrix

s�In

A
� , �39�

where In denotes the n�n identity matrix. The result fol-

lows. �

Thus, the squeezing overhead of a given graph state is

determined completely by the structure of its underlying

graph. This theorem allows us to compute the exact re-

sources required to generate any graph state. In certain situ-

ations, it is sufficient to know an upper bound on the amount

of squeezed resources required.

Theorem 3. To generate an n-mode graph state with graph

G to an accuracy s �s�1�, the maximal amount of squeezing

required for any individual resource mode is bounded above

by �Ks�, where

K = �1 + max deg2�G� �40�

and where max deg�G� denotes the maximum degree of G,

i.e., the maximum number of edges connected to a single

vertex.

Proof. Consider first the case where G is an m-regular

graph �i.e., each of its vertices has degree m�. Let A be its

adjacency matrix. Each row and column of A then sums to

m. Therefore A may be written as the sum of m permutation

matrices, P1 , P2 , . . . , Pm. Noting that the largest singular

value of a given matrix is its spectral norm �denoted � · ��, we

have

ki � �A� � �
j=1

m

�P j� � m , �41�

in agreement with Eq. �40�. Alternatively, this inequality can

be thought of as a special case of the Perron-Frobenius theo-

rem �42�. To generalize this result to an arbitrary graph state

G� with adjacency matrix A� and maximum degree m, ob-

serve that any graph of maximum degree m may be obtained

by removing edges from an m-regular graph G. The spectral

norm of an adjacency matrix strictly decreases with the re-

moval of an edge, so we have �A��� �A��m. �

This theorem immediately implies that the squeezing

overhead for universal cluster states of any fixed accuracy is

bounded. Such states have maximal degree of 4 and hence

feature a squeezing overhead of �17. Thus, to guarantee the

generation of a universal cluster to accuracy s, one would

need to �a� generate a lattice of optical modes, each of which

is squeezed up to 10 log�s2� dB and �b� proceed to squeeze

each mode by a further 12.31 dB. Meanwhile, quantum wires

would require a maximum overhead of �5 and hence an

additional 6.99 dB of squeezing.

To see that the decompositional method is superior to the

canonical method, recall that each CZ gate requires two 4.18

dB squeezers. In the case of a universal square lattice, the

ratio of edges to vertices is 2:1. Thus, while the decomposi-

tional approach requires at most an additional 12.31 dB per

vertex, the two CZ gates applied per vertex would cost 16.72

dB �since each CZ gate requires two online squeezers of

magnitude 4.18 dB�. For a square lattice of size N�N, the

decompositional method would save approximately 4.41N2

dB of squeezing. Thus, not only is it more practical to per-

form universal quantum computation through squeezed of-

fline resources but it also turns out to be more efficient, i.e.,

cheaper in terms of squeezing resources required.

A typical setup would involve the generation of n

squeezed optical modes. These are then passed through a

network of linear optical gates of which the resulting en-

tangled beams formally encode the desired cluster. Since

there exist cluster states that are universal, the setup of this

generation process does not need to be altered for different

algorithms and hence may potentially be mass produced. The

resulting beams can then be measured to perform the desired

quantum computation.

As a final remark in this section, we come back to the

question whether redundant multiple-rail encoding may sup-

press the accumulation of finite-squeezing errors in a cluster

computation �9�. According to Eq. �40�, the offline squeezing

per mode for generating a multiple-rail graph of accuracy s

with m rails �9� is bounded above by �Ks� with K=�1+m2.

Therefore the initial squeezing variances may be as small as

1 / �2s2��1 / �1+m2�, so roughly 1 / �2s2m2� for large m. This

lower bound converges to zero faster than the actual reduc-

tion in the excess noise in the cluster computation which

scales as 1 / �2s2m�. If one has access to squeezing resources

with variances of 1 / �2s2m2�, one may better use them di-

rectly without multiple-rail encoding �9�. However, note that

also here no complete proof for the effective failure of a

decompositional multiple-rail scheme is given, as the above

analysis only relies upon bounds.

B. Optical cluster-state computation

The measurement of optical modes completes the optical

implementation of CV cluster-state computation. Recall from

Sec. IV B that any multiqumode operation may be imple-

mented by measurements that generate �a� the shearing trans-

formation eisq̂
2
/2 and �b� the cubic phase gate eisq̂

3
/3 �while a

nontrivial two-mode gate only requires measuring the p̂

quadratures on a two-dimensional cluster state�.
The implementation of �a� is reasonably straightforward.

The required measurement basis, p̂+sq̂, is a rotated quadra-

ture basis. We can write it in the standard form r�sin�	�q̂
+cos�	�p̂�=rp̂	, where
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r = �1 + s2, tan�	� = s . �42�

Thus, the optical implementation involves measurement in

the rotated quadrature basis p̂	, followed by a rescaling of the

result by a factor of r. Therefore, all multiqumode Gaussian

operations may be achieved via simple quadrature measure-

ments on a sufficiently connected graph state. While such

operations are insufficient for universal quantum computa-

tion, they allow for general graph transformations, and thus

many optical experiments that test the foundations of cluster-

state quantum computation can be performed using just

quadrature measurements—i.e., homodyne detection.

The physical implementation of the cubic phase gate is

more challenging. Since the required Hamiltonian to be

implemented is no longer quadratic in the quadrature opera-

tors, a nonlinear optical element is required �1�. Two separate

strategies may be employed, involving either embedding the

nonlinear resource within the cluster �making it a non-

Gaussian state� or using photon counting on the modes of an

existing �Gaussian� graph state.

1. Quantum computation by nonlinear resources

In the standard model of cluster-state computation, all qu-

modes are initialized in the state �0�p prior to the entangling

operation. The quantum computation is entirely dictated by

our choice of measurement basis D†p̂D. However, it is also

possible to encode the computation gates D within our initial

resource. To see this, note that since D commutes with CZ,

the circuit

���

�0�p

�0�p

•
����p̂ m1

• •
����D†p̂D m2

•

is operationally equivalent to

���

D�0�p

�0�p

•
����p̂ m1

• •
����p̂ m2

• �43�

Therefore, instead of measuring in the D†p̂D basis, we may

have used instead the resource state D�0�p for creating the

initial cluster. Since the cubic phase gate D=eisq̂
3
/3 allows for

universal quantum computation, this observation suggests

that the cubic phase state, eisq̂
3
/3�0�p, will have the same ef-

fect. One method to optically generate such states is given in

Ref. �4�.
If these states be available, they may be attached at set

locations within a universal cluster state in place of the usual

�0�p. The resulting non-Gaussian cluster would be an im-

proved resource for universal quantum computation. Any CV

unitary may be implemented employing such clusters even

when one is limited to quadrature measurements only. Of

course, generating non-Gaussian quantum states remains

an experimental challenge, and the cubic phase state is no

exception.

2. Cluster-state implementation of the cubic phase gate

The previous observation suggests that if there exists a

method of generating the cubic phase state by viable single-

qumode measurements on a standard cluster state, then cubic

phase gates may be applied to arbitrary inputs.

One possible approach �4� involves photon counting on

one arm of a displaced two-mode squeezed state. This pro-

cedure may be summarized by the following quantum cir-

cuit:

S�s−1��0� n

S�s��0� � ei��n�q̂3

�0�p.

B

Z(r) ����
n̂

�44�

This circuit entangles two highly squeezed states, S�s��0� and

S�s−1��0�, with s�1, via a standard beam splitter interaction

B. A large momentum displacement Z�r�, with r�s, is ap-

plied to the resulting two-mode squeezed state. We then

make a photon counting measurement n̂ on the displaced

mode, which approximately collapses the unmeasured qu-

mode into a cubic phase state ei��n�q̂3

�0�p, dependent on the

measurement result n through ��n�= �6�2n+1�−1. This pro-

cedure is essentially a measurement-based quantum

computation—it involves the application of suitable mea-

surements on an entangled resource. Thus, we may recast it

into the form of a standard cluster-state computation. The

two-mode squeezed state generated coincides with a two-

qumode cluster state, modulo a local Fourier transform on

one of the nodes. These observations allow us to construct a

circuit that is consistent with the cluster-state formalism and

also functionally equivalent to circuit �44�, i.e.,

S�s��0� n

S�s��0� � ei��n�q̂3

�0�p.

• X(r) ����
n̂

• �45�

In this circuit, the initial entangled resource is a standard

two-qumode cluster arranged in a linear configuration. The

quadratures of this state are rotated with respect to the prepa-

ration using a simple beam splitter, so a position displace-

ment is applied to the first qumode, followed by a photon

counting measurement. Just as in circuit �44�, the second

qumode is then collapsed to an approximate measurement-

dependent cubic phase state.

If the above circuit be attached to the second qumode of

circuit �43�, we may apply the cubic phase gate ei��n�q̂3

to an

arbitrary input state. A cubic phase gate eiaq̂
3

, for any a, may

be decomposed into a combination of ei��n�q̂3

and two

squeezers that depend on both n and a �4�,

S†„t�n�…ei��n�q̂3

S„t�n�… = eiaq̂3

, t�n� = �a/��n��1/3.

The addition of these squeezers to circuit �43� gives a

measurement-based scheme to implement eiaq̂
3

for any de-

sired a �modulo measurement-dependent shifts in phase

space�,
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���

ei��n�q̂3

�0�p

�0�p

m1

m2

eiaq̂3

��� .

S(t(n)) •
����p̂

• •
����p̂

• S†(t(n), m1)
�46�

Notice that the second squeezing operation depends on

the measurement result m1 �43�, which breaks the parallelism

normally attributed to homodyne detection since the squeez-

ing operation to be implemented now depends on the previ-

ous measurement results. In addition to this required adap-

tiveness, the actual value of a required may also depend

on previous results. Still, any further corrections—including

the squeezing operations shown in the circuit—are Gaussian

operations and thus can always be implemented by a suitable

sequence of quadrature measurements on a linear cluster

state. Combining this circuit with circuit �45� leads to a

cluster-state implementation of the cubic phase gate �see Fig.

5�. For more details of this construction, see Ref. �43�.
Observe that since the squeezing strength t�n� is depen-

dent on the outcome n of the photon counting measurement

�in addition to the fixed parameter a�, implementation of the

squeezers must be done after the photon counting. As with

non-Clifford group operations on qubit clusters, adaptive

measurements are involved, and hence the order of the mea-

surements now matters.

VIII. DISCUSSION AND CONCLUSION

Quantum information processing through the use of CV

cluster states is a recent development in the field of quantum

computation. While its basic principles have already been

introduced in Ref. �7�, here we fleshed out the details of the

protocol in a way that we hope will facilitate further under-

standing of CV cluster states along with their potential opti-

cal implementation.

The Schrödinger representation of CV graph states used
in Ref. �7� becomes unwieldy as we explore graph states of
nontrivial size. In such cases, Heisenberg nullifiers and
Wigner functions are potentially useful tools. We showed
how these representations may be utilized to derive rules of
thumb on how graph states transform under measurements,
as well as the existence of a CV cluster state that can be used
as a resource for arbitrary CV operations.

The optical implementation of CV cluster states has also
been further explored. When the decompositional method
was initially introduced in Ref. �9�, one of the primary con-
cerns was that the price we pay for avoiding the need to
perform online squeezing was an excessively large overhead
in the extra offline squeezing required. Our results alleviate
this concern. We proved that the squeezing overhead per
mode, when only offline squeezing is used for a given accu-
racy of the CV cluster, does not increase with the size of a
universal CV cluster state. The upper bounds derived on the

necessary amount of offline squeezing indicate that the de-

compositional approach has significant advantages over the

direct approach through QND interactions �7� even in cases

where online squeezing is no more costly than its offline

counterpart. While universal quantum computation using CV

cluster states may be no less challenging than its qubit coun-

terpart, the generation of CV clusters—either using the de-

compositional method �9� or through one-step generation us-

ing a single OPO �11�—is potentially more viable than in

corresponding optical qubit schemes �8�.
To perform universal quantum computation, we adapted

the experimental generation of the cubic phase gate as given

in Ref. �4� to the cluster-state formalism. In addition, by

extending the CV cluster-state framework to include the use

of non-Gaussian resource states, we showed that possession

of a suitable non-Gaussian state is sufficient for universal

quantum computation within the cluster-state framework

even when only Gaussian operations, i.e., homodyne detec-

tions are employed during the cluster computation. This

leads to promising possibilities for universal CV cluster-state

computation. One could, for example, envision that difficult

nonlinear measurements are used to generate non-Gaussian

resource states offline, which may then be distributed to con-

sumers who are limited only to simpler measurements—i.e.,

quadrature homodyne detections. The consumers can never-

theless use the non-Gaussian states as resources for universal

quantum computation.

In theory, all the ingredients for universal CV cluster-state

computation have been developed. In particular, since the

necessary squeezing resources for creating a cluster of given

accuracy have been shown to be independent of the size of a

universal cluster state, scalability would only depend on the

ability of suppressing the accumulation of errors at every

measurement step during the cluster computation. At least

for homodyne detections with near-unit efficiency, these er-

rors mainly originate from the finite squeezing and they grow

linearly with the length of the cluster. This could be compen-

sated by increasing the accuracy of the cluster, hence making

the squeezing per mode again dependent on the size of the

cluster and the computation. Alternatively, some form of er-

ror correction may achieve full scalability in a strict sense,

similar to fault tolerant schemes for qubit quantum compu-

FIG. 5. �Color online� A proposed cluster-state implementation

of the cubic phase gate eiaq̂3
applied to an arbitrary input state ���.

The displaced number-state measurement on node C implements

circuit �45�, resulting in the generation of a cubic phase state at D.

This nonlinear resource state, together with subclusters that gener-

ate the n-dependent squeezing corrections at B and E �where the

squeezing operation at E is now additionally dependent on the pre-

vious measurement result m1�, allows us to apply a cubic phase gate

of any specified strength.
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tation. To find an efficient method for CV quantum error

correction, combined with a practical scheme for incorporat-

ing a non-Gaussian element into the Gaussian CV cluster-

state framework, remains the main challenge to scalability

and universality of the CV approach. Nonetheless, our results

here are an important step toward small-scale proof-of-

principle demonstrations of CV cluster computation.
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APPENDIX: THE NULLIFIER FORMALISM

FOR QUADRATURE MEASUREMENTS

Graph state transformations through quadrature measure-

ments have an efficient nullifier description. Consider a mea-

surement p̂i on a graph state ��� nullified by a vector space

with basis elements 
H1 ,H2 , . . . ,Hn�. There are only two dis-

tinct cases:

�1� p̂i commutes with all basis elements H j. Then, ���
must be an eigenstate of p̂i with some eigenvalue mi.

�2� There exists exactly one basis element that does not

commute with p̂i; we call this as element Hi.

This is because if there were to exist two or more basis

elements that do not commute with p̂i, say Hi and H j, then

there exists a constant k such that �p̂i ,Hi+kH j�=0. Thus, it is
always possible to construct a basis such that only one ele-
ment does not commute with p̂i, with �p̂i ,Hi�=−i.

In case �1�, Hkp̂i���= p̂iHk���=0 for each nullifier and
thus p̂i���=mi��� for some mi. Hence �p̂i−mi���� must be a
nullifier of ��� for some mi. The measurement of p̂i yields mi

and the state remains undisturbed.
In case �2�, we write Hi as q̂i+� jc jp̂ j +� j�id jq̂ j +c0 for

some constants c j and d j. Let the measurement result be mi.
Then, the transformed nullifier algebra is obtained by replac-
ing Hi with p̂i−mi. Since the ith mode is now disentangled
from the cluster and no longer interesting, we may discard it
by choosing a basis such that all but one of the elements
�namely, p̂i−mi� acts as the identity on the ith mode. Mea-
surement in the computational basis q̂ can be analyzed analo-
gously. More general quadrature measurements of the form
p̂sq̂2/2= p̂+sq̂ can be treated in this formalism by application

of the unitary eisq̂
2
/2, followed by a standard momentum mea-

surement.

We demonstrate this formalism on the case where p̂ mea-

surements are made on the first two qumodes �with measure-

ment results m1 and m2� of a linear three-qumode cluster,

defined by the three nullifiers,


H1,H2,H3� = 
p̂1 − q̂2, p̂2 − q̂1 − q̂3, p̂3 − q̂2� . �A1�

p̂1 commutes with all nullifiers except H2, so we replace H2

with p̂1−m1, giving the nullifiers 
p̂1− q̂2 , p̂1−m , p̂3− q̂2�,
which defines the same state as 
q̂2−m1 , p̂3−m1� after dis-

carding the measured mode.

Repeating this procedure for the measurement of p̂2 re-

sults in the nullifier of the output state being p̂3−m1. Thus

the remaining unmeasured node is in the state �m1�p, in

agreement with Eq. �15�.
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