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ABSTRACT Quantum confinement effect (QCE), an essen-

tial physical phenomenon of semiconductors when the size

becomes comparable to the exciton Bohr radius, typically re-

sults in quite different physical properties of low-dimensional

materials from their bulk counterparts and can be exploited to

enhance the device performance in various optoelectronic

applications. Here, taking CsPbBr3 as an example, we reported

QCE in all-inorganic halide perovskite in two-dimensional

(2D) nanoplates. Blue shifts in optical absorption and pho-

toluminescence spectra were found to be stronger in thinner

nanoplates than that in thicker nanoplates, whose thickness

lowered below ~7 nm. The exciton binding energy results

showed similar trend as that obtained for the optical absorp-

tion and photoluminescence. Meanwile, the function of in-

tegrated intensity and full width at half maximum and

temperature also showed similar results, further supporting

our conclusions. The results displayed the QCE in all-in-

organic halide perovskite nanoplates and helped to design the

all-inorganic halide perovskites with desired optical proper-

ties.

Keywords: quantum confinement effect, all-inorganic halide

perovskites, nanoplates, temperature dependence luminescence

INTRODUCTION
Over recent years, halide perovskite ABX3 (ABX3, A =
organic group or alkali cation, B = Pb2+, X = halogen
anion) was one of the hottest direct bandgap semi-
conductors with potential profound optoelectronic ap-
plications including solar cells, LEDs, lasers [1–14]. Lots
of lower dimensionality perovskites nanocrystals have
been reported, because of the advantage of nanotechnol-

ogy and the mature preparation method and probe
equipment [7,9,12,15,16]. Two-dimensional (2D) nano-
plate is one of these structures. The research upsurge of
2D halide perovskites in optics have just risen since 2014,
due to highly quantum yield, narrow full width at half
maximum (FWHM) of photoluminescence, increased
exciton binding energy, and reduced fluorescence decay
times [15–22]. Recent research showed a strong blue shift
in the absorption and photoluminescence (PL) spectra,
which indicated a strong quantum confinement effect
(QCE) in these structures [15,18,23–25]. The reports for
all-inorganic halide perovskites are extremely rare com-
pared to that for the organic-inorganic hybrid halide
perovskites. The idea behind this phenomenon is the size
of long alkyl chain, which can help the perovskites to
form a 2D structure [15,19,26–28]. However, the stability,
which is a vital index for application, of all-inorganic
halide perovskites is much better than hybrid
[7,10,12,29,30]. And the effect of substitution of organic
long chain with cesium ions on the QCE with thickness
changing is not clear.
In this paper, we considered CsPbBr3 as a typical ex-

ample, and prepared different CsPbBr3 samples with dif-
ferent thicknesses to obtain the size-dependent QCE.
Based on density functional theory (DFT) calculations, we
obtain the exciton Bohr diameter of 7 nm for CsPbBr3.
With the thickness of the nanoplates reducing, an in-
creasing QCE was identified by bandgaps Eg and exciton
binding energy Eb extracted from the absorption spectra.
Room temperature PL spectra show a stronger blue shift
in 1.8 nm nanoplates than in 3.0 nm nanoplates, in-
dicating a stronger QCE in thinner samples. The in-
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tegrated intensity versus reciprocal of temperature (1/T),
and FWHM versus temperature of temperature depen-
dence PL display similar trend that the thinner sample is,
the stronger QCE becomes. This work shows the QCE in
all-inorganic halide perovskites and could help to design
the all-inorganic halide perovskites with desired optical
properties.

EXPERIMENTAL SECTION

Fabrication

Firstly, atomically thin nanoplates were prepared as fol-
lows: 0.18 g Cs2CO3, 10 mL octadecene (ODE) and 1 mL
oleic acid (OA) were mixed in a 3-neck flask, which were
degassed under vacuum at 170°C until all the powders
were dissolved to form Cs-oleate precursor. Then, 0.735 g
PbBr2 was dissolved in 5 mL dimethyl formamide (DMF)
combined with 2.5 mL ODE, 0.25 mL OA and 0.25 mL
oleylamine (OAm), after which the mixture was stirred
for 2 min. Then, 0.2 mL Cs-oleate was added into the
mixture under stirring, 0.4 mL PbBr2 precursor was
dropped into the stirred mixture. The reaction was
quenched by acetone after 1 min. The colloid was cen-
trifuged to remove the unreactive materials in the su-
pernatant, which was finally dispersed in toluene. This
resulted in 5 layer nanoplates. To prepare 3 layer nano-
plates, additional hydrobromic acid was added (20 μL).
Secondly, the thick nanoplates were prepared as follows:
0.3 mL precursor (1 mmol CsBr and 0.5 mmol PbBr2
dissolved in 14 mL dimethylsulfoxide (DMSO) and 1 mL
acetic acid (HAc)) and 1.5 mL ligands (1 g octadecayla-
mine dissolved in 10 mL HAc) were mixed and stirred for
10 min. Then, 5 mL toluene was added and stirred for
another 10 min. The reaction was stopped by cen-
trifugation at 6,000 rpm and the precipitation was finally
washed two more times and dispersed in 5 mL of toluene.

Measurement and characterization

X-ray diffraction (XRD) patterns were recorded on a
multipurpose XRD system D8 Advance from Bruker. UV/
vis absorption spectra were obtained using a Shimadzu
3600 UV/vis spectrophotometer and PL spectra were
measured with a Varian Cary Eclipse instrument. The
temperature dependent PL spectra were measured at
Horiba luminescence spectrometer (HR 320) with a laser
excitation (442 nm) at different temperatures in a closed-
circuit liquid helium system. The light source was focused
onto the sample substrate by an immersion-oil objective
and the PL signal of single-particle was collected by the
same objective and a charge-coupled device camera.

Meanwhile, the PL signal was sent through a beam splitter
tube to two avalanche photodiodes in a Hanbury Brown-
Twiss configuration for the PL decay measurement.

RESULTS AND DISCUSSION

Few-layer CsPbBr3 models and samples

As compared to typical Cd-based quantum dots, halide
perovskites have narrower luminescence peaks, broader
color gamut, lower cost and higher quantum yield. Hence,
halide perovskites have great potentials for applications in
the new generation of light emitting devices. It has been
demonstrated that the performances of LEDs could be
greatly improved due to the QCE in semiconductors.
Here, we take QCE in CsPbBr3 as an example to represent
QCE in all-inorganic halide perovskites. Firstly, the ex-
citon Bohr diameter of CsPbBr3 was evaluated to be about
7 nm based on DFT calculations, which is in good
agreement with previous study [11], (seen in Supple-
mentary information) i.e., QCE becomes important in
CsPbBr3 if its size or thickness is comparable to 7 nm, as
shown in Fig. 1.
Then, the cubic CsPbBr3 nanoplates samples with dif-

ferent thicknesses and sizes were prepared using the hot
injection method. The prepared CsPbBr3 nanoplates with
thicknesses of 1.8, 3.0 and 30 nm exhibit strong (002)
diffraction peaks according to the XRD patterns, as shown
in Fig. 2. These thicknesses correspond to 3, 5 and more
than 50 layers, respectively (the interplanar spacing of
(002) plane is 0.58 nm). We can see that the nanoplates
with thinner thicknesses stand vertically and arrange
regularly due to the high concentration and residual li-
gands while larger sheets assemble flat on the Cu grid.

Band gap and exciton binding energy evolutions with 2D

thickness reductions

Numerous previous studies showed that the blue shift of

Thickness <7 nm

3D 2D

Cs+ Pb2+ Br�

Figure 1 Excitons in bulk CsPbBr3 have a diameter of about 7 nm
(according to the DFT simulations). 2D structures are defined as ma-
terial sizes reduced and comparable with about 7 nm in one dimension.
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absorption and PL spectra is a basic characteristics of
QCE [7,15]. Fig. 3 shows that the peaks of absorption and
PL spectra of CsPbBr3 are also exceptionally dependent on
the size of nanoplates. In nanoplates, the gradually in-
creasing QCE results in a significant blue shift of the
excitonic absorption peaks from 2.42 eV to 3.00 eV by
decreasing the thickness from 30 to 1.8 nm. Meanwhile,
the excitonic absorption peaks become more dominant
while decreasing the thickness, which implies a significant
increase of exciton binding energy [31]. In another aspect,
the absorption step is a very important feature in 2D
materials, which is caused by discrete energy levels. The
steps would become increasingly close with the thickness
increasing, until they merge into the bulk absorption,
which is continuous and has no steps. We see from Fig.
3b, c that the nanoplate absorptions are indeed a series of
steps, and the steps in 3.0 nm thickness nanoplate ab-
sorption become closer compared with that in 1.8 nm
thickness absorption.
PL is another essential evidence to evaluate the QCE.

For bulk CsPbBr3, the PL peak at about 522 nm (corre-
sponding to 2.37 eV) is in good agreement with previous
studies [7,9,12]. The blue shift in PL peaks from 467 to
437 nm in CsPbBr3 nanoplates corresponds to the de-

creased thickness from 3.0 to 1.8 nm, indicating the
strong QCE as the thickness decreases. This trend is in
line with previous studies [18].
The bandgaps and exciton binding energy were ex-

tracted by fitting the absorption spectra with the following
Equation (1) [32].
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where A is a constant related to the transition matrix
element, B is a constant related to the transition matrix
element and sample thickness. ω is the frequency of light,
θ is the step function, Eg is the bandgap, x is defined as

E1=2

b
=ðℏω�EgÞ

1=2, where Eb is the exciton binding energy, i

is the principal quantum number and δ denotes the delta

Figure 2 (a–c) Transmission electron microscopy (TEM) image of 30, 3.0, and 1.8 nm thickness CsPbBr3 nanoplates, respectively. (d) XRD patterns
of different thickness CsPbBr3 nanoplates.
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function. The first and second terms account for the
continuum absorption corresponding to the bandgap and
discrete absorption peak arising from the excitonic states,
respectively. We modeled the absorption accounting for
inhomogeneous broadening by convolving the step and
delta function with a Gaussian function, as shown in Fig.
4. We found the least squares fitting values of Eb for 1.8,
3.0, and 30 nm thickness samples to be 180, 130, and 38
meV, respectively, with bandgap values of 2.98, 2.77, and
2.44 eV, respectively.

Temperature-dependent PL measurement of different

thickness perovskites

Except for the regular absorption spectra and PL mea-
surement, the temperature-dependent PL (TD-PL) spec-

trum is another powerful tool to analyze QCE, since band
gap and exciton binding energy are affected by QCE [33],
which can be obtained by fitting data extracted from
emission energy versus temperature. TD-PL is shown in
Fig. 5a–c for 30, 3.0, and 1.8 nm thickness, respectively. It
is easy to find the common trend that increase in peak
intensity, and decrease in FWHM as the temperature
decreases. To observe the emission energy, integrated
intensity, and FWHM of these samples clearly, we sum-
marized the emission energy, integrated intensity, and
FWHM as a function of temperature T or 1/T in Fig. 5d–f.
As shown in Fig. 5d, with temperature lowered, the

emission energies of 30 nm thickness CsPbBr3 nanoplates
redshift. Such redshift was observed from MAPbBr3 and
other lead compound quantum dots (QDs) [34,35]. But
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Figure 3 PL and absorption evolutions with 2D thickness. Blue dots are normalized PL spectra and red dots are normalized absorption spectra.
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the emission energies for 3.0 nm nanoplates stay roughly
at the same position no matter how the temperature
changes. And the emission energies blueshift with the
temperature decreasing, which is contrary to the bulk
CsPbBr3 and consistent with the Cd-based semi-
conductors [36,37]. In fact, this physical phenomenon is
caused by the competition of the electronic properties
anomalies caused by Pb 6s electrons [38] and Varshni
effect. In other semiconductors, emission energy is fitted
by the Varshni relation (2) [39],

E T E
T

T
( ) =

+
,g g0

2

(2)

where Eg0 is the band gap at 0 K, α is the temperature
coefficient, and the value of β is close to the Debye
temperature θD of the material. According this equation,

the emission peaks should blueshift with temperature
lowered. At the same time, the lattice constants a will
contract, and this contraction gives rise to band gaps
blueshift, as shown in Figs S1–3. In bulk systems, the
electronic properties anomalies dominate the tempera-
ture-dependent emission behavior, while in 3 layer sam-
ples, the Varshni effect win the competition. As a result,
these temperature-dependent emission behaviors show
contrary trend.
Integrated intensity weakly decreases as the tempera-

ture below ~60 K, then nearly exponentially decreases
above ~60 K for three samples due to activation of some
non-radiative processes. This behavior suggests the pre-
sence of temperature-dependent nonradiative processes in
our system. Integrated intensity is fitted by the standard
expression for thermal quenching as a function of 1/T
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Figure 5 TD-PL of (a) 30 nm thickness, (b) 3.0 nm thickness, and (c) 1.8 nm thickness CsPbBr3 nanoplates. (d) Emission energy, (e) integrated
intensity and (f) FWHM of temperature-dependent PL from 30 to 200 K.
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using the Equation (3) [40] as following,

I T
I

Ae
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(0)

1+
,

E k Tint

int

/b B

(3)

where Iint(0) is the intensity at 0 K, A is a constant, Eb is
the exciton binding energy, kB is Boltzmann constant, and
T is temperature. According to equation (3), the fitted Ebs
are 36 meV, 135 mV, and 184 meV for 30, 3.0, and 1.8 nm
thickness CsPbBr3 samples, respectively. These data are in
good agreement with DFT simulation and Elliott fitted
results. The enhanced Eb indicates the process of thermal
quenching slows down with material thickness decreases,
and a strong quantum confine-ment effect exists in 2D
halide perovskites.

CONCLUSIONS
In summary, we investigated and compared the QCE of
CsPbBr3 perovskite in 2D systems through the absorption,
PL spectra and TD-PL characterization. Bandgaps Eg and
exciton binding energy Eb are estimated by fitting the
absorption spectra. Both Eg and Eb evolutions follow the
common trend of QCE that the value increases as the
thickness of nanoplates decreases. PL spectra show similar
conclusion. However, the temperature dependence emis-
sion energy extracted from TD-PL shows a contrary shift
in 1.8 nm nanoplates with respect to the 30 nm thickness
samples. The interesting physical phenomena are still not
understood. This work will help to understand the nature
of the QCE in perovskite nanoplates, and help to design
the all inorganic halide perovskites with desired optical
properties.
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