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Quantum Control and Entanglement using Periodic Driving Fields
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We propose a scheme for producing directed motion in a lattice system by applying a periodic driving
potential. By controlling the dynamics by means of the effect known as coherent destruction of tunneling,
we demonstrate a novel ratchetlike effect that enables particles to be coherently manipulated and steered
without requiring local control. Entanglement between particles can also be controllably generated, which
points to the attractive possibility of using this technique for quantum information processing.
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Introduction.—Controlling the time evolution of quan-
tum states and engineering entanglement between quantum
particles are two of the major tasks required for quantum
information processing. Although the majority of experi-
mental demonstrations of entanglement distribution have
so far employed photons, future practical implementations
of quantum computers will almost certainly be based on
condensed matter systems. Efforts in this direction include
controlling electronic charge or spin (‘‘spintronic’”) de-
grees of freedom in coupled quantum dots [1], manipulat-
ing the dynamics of Josephson junctions [2], and using spin
chains [3] as quantum communication channels. Recently
bosons held in optical lattice potentials have also been
suggested as possible candidates, using controlled colli-
sions [4] or the dipole-dipole interaction [5] to manipulate
the system.

In this work we demonstrate how particles in a lattice
potential can be controlled by applying an oscillatory
driving field. Control is achieved by using the effect termed
‘“‘coherent destruction of tunneling”” (CDT) [6] to generate
a ratchetlike motion. Unlike the majority of ratchets which
depend on the presence of dissipation to operate, this
motion results solely from the breaking of spatial and
time symmetries in the system, and so preserves the quan-
tum coherence of the system. Using this scheme, a pair of
particles can be brought together and allowed to interact—
thereby becoming entangled—and then subsequently
separated again to create entanglement between distinct
spatial locations. We are thus able to both selectively move
and entangle quantum particles using only the global op-
eration of varying the parameters of the driving field, thus
avoiding any need for the individual addressing of lattice
sites.

Model.—The specific physical system that we consider
consists of ultracold bosonic atoms, confined in a one-
dimensional optical lattice potential created by the super-
position of counterpropagating laser beams. This form of
confinement provides an extremely clean and controllable
lattice potential, and in addition their high degree of iso-
lation from the environment gives these systems rather
long decoherence times, making them ideal for studying
quantum coherent phenomena.
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The single-particle dynamics of the system can be de-
scribed extremely well by the Hamiltonian [7]

H= Z[Jija;faj + Hec.] + Ksinthx,»n,-, (1)
o i

where a;/ a;r are the standard bosonic destruction (crea-
tion) operators and the tunneling amplitudes J; ; connect
nearest-neighbor sites (i, j). Without loss of generality we
shall henceforth take J;; = J. The amplitude and fre-
quency of the time-dependent driving field are described
by the parameters K and w, and x; is the spatial location of
the ith lattice site. This form of linear potential has already
been used in cold atom experiments [8] to induce CDT, and
can be straightforwardly implemented in an optical lattice
by introducing a periodic phase modulation to one of the
laser fields providing the standing wave potential.

Since the Hamiltonian (1) is invariant under discrete
translations in time of the drive-period, H(t) =
H(t + nT), the Floquet theorem allows us to write solu-
tions of the Schrodinger equation as |, (1)) = |u,(z)) X
exp[ —ite, |, where |u, (1)) is a T-periodic function called
the Floquet function, and €, is termed the quasienergy.
When two quasienergies approach degeneracy, the time
scale to observe tunneling between the associated
Floquet states diverges, and accordingly the tunneling
between them appears suppressed. In the limit of high
frequency (when w is the dominant energy scale of the
problem) it may be indeed shown [6,9—11] that the driven
system behaves like the undriven one, but with renormal-
ized tunneling amplitudes. For sinusoidal driving this re-
normalization takes the form J. = J7((Kx/w), where
Jo is the zeroth Bessel function of the first kind and x is
the intersite separation. Thus when Kx/w is equal to a zero
of J the system’s tunneling dynamics are frozen, produc-
ing CDT.

This way of regulating the tunneling between sites has
been recently proposed to control the Mott-insulator tran-
sition in Bose-Einstein condensates [12,13]. To obtain a
ratchet effect, however, it is necessary to distinguish be-
tween motion to the left and motion to the right. This may
be achieved by noting that the argument of the Bessel
function depends on the potential difference between
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neighboring sites, and thus on their spatial separation.
Accordingly we consider a bipartite lattice of the form
ABABAB, as shown in Fig. 1, in which the AB separation
is not equal to that between BA. One possible realization of
this would be a chain of coupled double-well potentials
[14]. Consider placing a single particle in the center of this
lattice [Fig. 1(a)]. In the absence of a driving field it will
rapidly disperse by tunneling to both its neighbors. If,
however, the system is driven by a high-frequency sinusoi-
dal potential such that Jy(Kx;/w) = 0, then tunneling
between sites separated by x; is destroyed and the lattice
divides into a set of disconnected dimers (AB)(AB)(AB). In
this case the particle is unable to spread over the lattice,
and is restricted to making a Rabi oscillation [Fig. 1(b)]
between its initial location and its neighbor to the right.
The frequency of this oscillation is determined by the value
of the renormalized tunneling for this process J. =
JJo(Kx,/w), which will in general be nonzero.
Conversely, if the parameters of the driving field are chosen
such that Jy(Kx,/w) = 0, then the lattice dimerizes as
(BA)(BA)(BA) as shown in Fig. 1(c), and the Rabi oscil-
lation will occur between the initial site and its neighbor to
the left.
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FIG. 1. We consider a bipartite lattice with two spacings: x;

and x,. Permitted tunneling processes are shown by the arrows.
(a) In the absence of a driving field, a particle initialized in a
given lattice site (the filled circle) can tunnel to either of its
neighbors (empty circles). From there it can spread over the
entire lattice. (b) If the lattice is sinusoidally driven with a field
such that Jy(Kx;/®) = 0 then the tunneling processes between
sites separated by x; are suppressed, and the particle can only
tunnel to its right neighbor. (c) Conversely, if the driving field
satisfies Jo(Kx,/w) = 0, then tunneling is only permitted be-
tween sites separated by x;, and the particle can only tunnel to its
left neighbor.

Results.—To verify this effect, we show in Fig. 2(a) the
results of a numerical simulation of a single particle in a
16-site system with x; = 1 and x, = 0.75. The frequency
of the driving is set to a high value of w = 32J to ensure
that the system is in the high-frequency regime, while its
amplitude satisfies Kx, /@ = 2.4048—the first zero of 7.
As the analysis predicts, the particle indeed simply oscil-
lates between its initial location and one of its neighbors
(that separated by a distance of x,), since tunneling be-
tween sites separated by x; has been suppressed.

The crispness of the Rabi oscillation immediately sug-
gests a scheme to produce directed motion. If we denote
the period of this oscillation by T, then at t = T,/2 the
particle has completely tunneled from its initial location i
to its neighbor i + 1. If at this time the parameters of the
field are altered so that Kx,/w = 2.4048, then this tunnel-
ing process is suppressed and the particle instead begins to
make a Rabi oscillation with period T'; between sites i + 1
and i + 2. When a time interval of T, /2 has elapsed the
particle has completely tunneled to site i + 2. The driving
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FIG. 2 (color online). Simulation of a single boson in a 16-site
system. (a) Under a periodic driving field of amplitude Kx, /@ =
2.4048 we obtain the situation illustrated in Fig. 1(b)—tunneling
between sites separated by x; is suppressed. Consequently the
particle makes a Rabi oscillation to just one of its neighbors.
(b) Under the driving field shown in Fig. 3 the x; and x,
tunneling processes are periodically opened and closed, produc-
ing a ratchetlike motion of the particle. (c) Interchanging the
order of the modulation of the driving field produces motion in
the opposite direction. (d) Shortening the duration of the initial
modulation means that the first tunneling process will be incom-
plete. If the initial modulation time is halved the particle splits
into two equal parts, and under the driving field each part
propagates in different directions.
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field can then be switched back to its original values and
the procedure repeated. This has the effect of stepping the
particle through the lattice in a sequence of discrete moves.

An example of a driving field that can produce this effect
is shown schematically in Fig. 3. It can be thought of as a
high-frequency ““carrier wave” whose amplitude is modu-
lated by a squarewave envelope. The lower amplitude
segment suppresses tunneling between sites separated by
x and has a duration such that the particle tunnels exactly
to its other neighbor (separated by x,): the reverse is true
for the higher amplitude segments. Figure 2(b) shows the
response of the single-particle system to this field. Instead
of the two-site Rabi oscillation seen previously, the particle
now advances to the left in a series of well-defined steps.
Conversely, if the order of the modulation is interchanged,
the particle will propagate solely to the right as shown in
Fig. 2(c). It is interesting to note that the direction of the
particle’s propagation also depends on which site of the
double well it is initialized; particles started in the left well
will move in the opposite direction to those placed in the
right. The direction of motion thus depends on both the
parity of the lattice site and the order of modulation, in a
way not seen in standard dissipative ratchets. This flexibil-
ity requires, however, excellent control over the localiza-
tion of the initial state.

We have so far considered the extreme cases in which
propagation occurs in only one direction. If, however, the
duration of the initial modulation is not exactly half a Rabi-
period, the initial tunneling process will not be complete.
Consequently, the particle will divide into two parts, and
under the subsequent influence of the driving field one part
will propagate to the left while the other moves to the right.
In Fig. 2(d) we show that if the initial modulation has a
duration of T, /4 the particle splits in half. In this way, the
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FIG. 3 (color online). The driving field producing the ratchet-
like motion seen in Fig. 2 consists of a high-frequency sinusoidal
oscillation with a modulated amplitude. The two values of the
modulation satisfy K/w = 2.4048/x;, and act to suppress the
tunneling between sites separated by distances of x;, respec-
tively. The time intervals 7 and 7, are the Rabi periods for the
renormalized tunneling processes between sites separated by x;
and x,.

driving field can not only be used to control the motion of a
particle, but also as a quantum beam splitter to divide a
particle into a given superposition of left and right prop-
agating components.

We have so far just considered single-particle manipu-
lation. However, the ability to control the intersite tunnel-
ing also enables us to entangle particles and thereby realize
quantum gates [15]. To demonstrate this, we first consider
a two-site model occupied by two particles (a and b) that
are distinguishable. This can be realized, for example, by
using bosonic atoms [4,7] with two different internal states
[16]. For simplicity, we model the interaction between the
particles as a Hubbard interaction

U
H, = Ezni(ni - 1), (2

where U sets the interaction strength and n; = n¢ + n?
gives the total number of bosons occupying site i. The
dynamics of this system is governed by the interplay
between the kinetic energy and the interaction, and con-
sequently can exhibit a rather complicated time evolution.
If, however, U is much larger than the tunneling amplitude,
the ground state of the system will then approximately
consist of each site holding one particle, from which the
doubly occupied states will be separated by an energy gap
of ~U. In this case canonical perturbation theory can be
applied to eliminate the higher energy states, with the
result that the Hubbard interaction maps to an effective
Heisenberg term, with exchange constant given by Jy =
4J%./U. This mapping considerably simplifies analysis of
the system’s dynamics, and reveals that if the system is
initialized in the state |a, b), the two particles swap posi-
tions after a time-interval ¢ = 7/Jy, while after rg =
7/2Jy the maximally entangled state (la, b) +
ilb, a))/~/2 is produced. Applying the Heisenberg interac-
tion for a duration of z¢ thus realizes the /SWAP operation.
In Fig. 4 we show the time evolution of a 10-site lattice,
initialized with a boson of type a in the first site, and a
boson of type b in the last. To ensure the validity of the
mapping to the Heisenberg interaction, we require a high
value for U. However, the time required to entangle the
particles is proportional to U, and so to complete as many
quantum gate operations as possible within the system’s
decoherence time we would like to take U to be as small as
possible. We thus consider an intermediate value of U =
4J, and as before use a driving frequency of w = 32J to
place the system in the high-frequency regime. Under the
influence of the driving field the two bosons are progres-
sively stepped through the lattice towards the two central
sites, whereupon the amplitude of the driving is held at a
constant value to retain the two particles there. After being
held there for a time interval of ¢y, the particles are then
separated and returned to the first and last lattice sites.
From Fig. 4(a) it can be clearly seen that the particles
remain highly localized in space, and accordingly the
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FIG. 4 (color online).
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(a) Time development of the system initialized with one boson in the first lattice site, and another in the final

site. Under the influence of the driving field they are moved toward the center of the array, held there for a time-interval g, and then
restored to their original positions. (b) The pairwise concurrence present in the system. Initially this is zero since the initial state is not
entangled, but rises as the two bosons interact (via Heisenberg exchange). The interval over which the interaction occurs is chosen to
maximize the concurrence, by producing a maximally entangled state.

probability distribution is generally peaked at two sites.
This permits a simple measurement of the entanglement
present in the system by projecting the wave function onto
just these two sites, and then evaluating the two-particle
concurrence C(r) [17], plotted in Fig. 4(b). Initially the
concurrence is zero since the particles have not interacted,
and so the two-particle wave function is factorizable. This
remains true as the particles approach each other, until they
reach the two central sites. Driven by the Heisenberg
interaction, the concurrence then rises from zero following
the approximate time-dependence C(z) = |sinJyt|. The
high-frequency ripples visible in this quantity arise from
the influence of the higher energy states: if U is increased
these ripples will be quenched, but equally Jy will be
reduced, and so the time scale for entanglement to occur
will increase. When the particles are separated the degree
of entanglement remains ““frozen-in’’ at its final value. It is
thus possible to generate any desired degree of entangle-
ment by controlling the period during which the particles
interact. When this period is equal to tg, as shown in Fig. 4,
the entanglement is maximized, and the final state of the
system thus represents a mesoscopically separated, maxi-
mally entangled two-particle state.

Conclusions.—In summary, we have shown how a peri-
odic driving field can induce a novel ratchetlike motion,
which can be employed to selectively guide and divide
particles. In addition the interaction between the particles
can be used to entangle them, and thus realize fundamental
two-qubit quantum gates, such as /SWAP. In this work we
have just considered a one-dimensional geometry, but an
attractive aspect of optical lattices is the possibility of
generating a higher-dimensional [14] lattice potentials,
which would allow parallel processing of qubits, and thus
be used to greatly enhance their error tolerance. Finally,
although we have specifically considered a system of ultra-
cold bosons, the method we have described could equally

be applied to optically confined fermionic atoms [18], or to
electronic transport in systems such as coupled quantum
dots [19] or molecular wires [20].
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