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Abstract. In this paper we analyze the Lyapunov trajectory tracking of the

Schrödinger equation for a coupling control operator containing both a linear

(dipole) and a quadratic (polarizability) term. We show numerically that the

contribution of the quadratic part cannot be exploited by standard trajectory

tracking tools and propose two improvements: discontinuous feedback and

periodic (time-dependent) feedback. For both cases we present theoretical results

and support them by numerical illustrations.
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1. Introduction

In this work we consider the evolution of a quantum system with wavefunction 9(t) under the

external influence of a laser field; the system satisfies the time-dependent Schrödinger equation

(TDSE)

i
d

dt
9(t) = H(t)9(t), (1)

with H(t) a Hermitian operator; the control is realized by selecting a convenient laser intensity

u(t). When the laser is shut off H(t) is the internal Hamiltonian of the system, denoted H0;

when the laser is present H(t) is the sum of H0 and additional terms that describe the interaction

of the system with the laser field. The first-order term is the dipole coupling [30] of the form

u(t)H1; in the limit of small laser intensities this term may be enough to adequately describes

the interaction.

However, situations exist where the dipole coupling does not have enough influence on

the system to reach the control goal; the goal may become accessible only after adding a

polarizability term u2(t)H2 in the expansion of H(t) (see e.g. [13, 14] and related works); to

make effective use of this term one needs higher laser intensities u(t).

The focus of the paper is on practical procedures to find suitable control fields u(t) for the

Hamiltonian H(t) = H0 + u(t)H1 + u2(t)H2 by adapting feedback tracking control procedures

to this setting. Here and in the following H0, H1 and H2 are n × n Hermitian matrices with

complex coefficients and the control is the laser intensity u(t) ∈ R.

In what concerns the mere possibility to find a control, we recall that the controllability of

the finite dimensional quantum system evolving with equation

i
d

dt
9(t) = (H0 + u(t)H1 + u2(t)H2)9(t), (2)

can be studied via the general accessibility criteria [4, 32] based on Lie brackets; more specific

results can be found in [34].

Let us consider for a moment the system with Hamiltonian H0 + u(t)H1 + v(t)H2, v(t)

being a second control independent of u(t). It can be shown [34] that this system is controllable
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under the same circumstances as H0 + u(t)H1 + u2(t)H2 i.e. all target states that can be reached

with Hamiltonian H0 + u(t)H1 + v(t)H2 can also be reached by H0 + u(t)H1 + u2(t)H2 (although

obviously the second Hamiltonian is a particular case of the first for v(t) = u2(t)). This rather

counter-intuitive result suggests that u2(t) can be considered, for the purpose of theoretical

controllability, as independent of u(t); however, u2(t) having a particular functional dependence

on u(t) will play a role at the level of the numerical procedure to find the control: in general,

finding the control for H0 + u(t)H1 + u2(t)H2 is more difficult than for H0 + u(t)H1 + v(t)H2.

The characterization of the controllability does not provide in general a simple and efficient

way for open-loop trajectory generation. Optimal control techniques (cf [23, 30] and the

references herein) provide a first set of methods. A different approach consists of using feedback

to generate trajectories and open-loop steering control [5, 19, 22]. More recent results can be

found in [27] for decoupling techniques, in [3, 15, 17, 23, 31, 35, 36] for Lyapunov-based

techniques and in [1, 7, 28] for factorizations techniques of the unitary group.

In order to study feedback control of systems with Hamiltonian H(t) = H0 + u(t)H1 +

u2(t)H2, we adapt the analysis [20, 24], initially proposed for bilinear quantum systems

H0 + u(t)H1. In the previous work, it has been shown that the success of the feedback control

depends on whether there exists (nonzero) direct coupling, through H1, between the target state

and all other eigenstates. When H1 has the same property for H(t) = H0 + u(t)H1 + u2(t)H2,

we show that same feedback formulae hold. However, we argued that the polarizability term

u2(t)H2 is added when dipole u(t)H1 is not enough to control the system; consequently the

most interesting question is what happens when some of the (direct) coupling is realized by H2

instead of H1. We show that the previous feedback formulae no longer hold and we propose two

alternatives. Our method is valid to track any eigenstate trajectory of a Schrödinger equation (2)

when the Hamiltonian includes a second-order coupling operator.

The order of the paper is as follows: in section 2, we introduce the main notations and the

Lyapunov tracking feedback for a particular case. Section 3 contains the presentation of two

types of feedback: discontinuous and time-dependent (periodic) forcing, that can be applied

for all types of second-order coupling operators. Both sections present theoretical results on the

stabilization through these feedbacks, illustrated by numerical simulations. Concluding remarks

are presented in section 4.

2. Tracking feedback design

2.1. Dynamics and global phase

We consider an n-level quantum system evolving under equation (2). The wavefunction 9 =
(9 j)

n
j=1 is a vector in Cn, verifying

∑n

j=1 |9 j |2 = 1, thus it lives on the unit sphere S2n−1

of Cn. Physically, 9 and eiθ(t)9 describe the same physical state for any global phase θ(t) ∈ R,

i.e. 91 and 92 are identified when there exists θ(t) ∈ R such that 91 = exp(iθ(t))92. To take

into account such non-trivial geometry we add a second control ω corresponding to θ̇ (see

also [24]). Thus we consider the following control system

i
d

dt
9(t) = (H0 + u(t)H1 + u2(t)H2 + ω(t))9(t), (3)

where ω ∈ R is a new control playing the role of a gauge degree of freedom. We can choose it

arbitrarily without changing the physical quantities attached to 9. With such additional fictitious
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control ω, we will assume in the sequel that the state space is S2n−1 and the dynamic given by (3)

admits two independent controls u and ω.

2.2. Lyapunov control design

Take a reference trajectory t 7→ (9r(t), ur(t), ωr(t)), i.e. a smooth solution of (3):

i
d

dt
9r = (H0 + ur H1 + u2

r H2 + ωr)9r .

We introduce the following time varying function V (9, t):

V (9, t) = 〈9 − 9r(t)|9 − 9r(t)〉 =‖9 − 9r(t)‖2 (4)

where 〈.|.〉 denotes the Hermitian product. The function V is non-negative for all t > 0 and

all 9 ∈ S2n−1 and vanishes when 9 = 9r(t). We search for feedback controls such that V is a

Lyapunov function. To do that we compute the derivative of V along trajectories of (3)

dV

dt
= 2(u − ur)Im(〈H19(t)|9r〉) + 2(u2 − u2

r )Im(〈H29(t)|9r〉) + 2(ω − ωr)Im(〈9(t)|9r〉),
(5)

where Im denotes the imaginary part.

For convenience we denote: I1 = Im(〈H19(t)|9r〉) and I2 = Im(〈H29(t)|9r〉). Note that

if, for example, one takes
{

u = ur(t) − k(I1 + 2ur I2)/(1 + k I2),

ω = ωr(t) − c Im(〈9(t)|9r〉),
(6)

with k and c strictly positive parameters, one obtains

dV

dt
= −

2

k
(u − ur)

2 − 2c(Im(〈9(t) | 9r〉))2
6 0,

and thus V is non-increasing.

Remark 2.1 In order for the denominator 1 + k I 2 in equation (6) to be nonzero one notes that

|I2|6 |〈H29(t)|9r〉|6‖H2‖; therefore 1 + k I 2 > 0 as soon as k < 1

‖H2‖
. From now on, unless

otherwise specified, this condition will be supposed satisfied.

Let us focus on the important case when the reference trajectory corresponds to an

equilibrium: ur = 0, ωr = −λ and 9r = φ, where φ is an eigenvector of H0 associated with

the eigenvalue λ ∈ R (H0φ = λφ, ‖φ‖= 1). We obtain

I1 = Im(〈H19(t)|φ), I2 = Im(〈H29(t)|φ). (7)

Then (6) becomes a static-state feedback
{

u = −k I1/(1 + k I2),

ω = −λ − c Im(〈9(t)|φ〉),
(8)

and the Lyapunov function V = V (9).

Denote by λ j , with j = 1, . . . , n the eigenvalues of the matrix H0. Let φ1, . . . , φn be an

orthogonal system of corresponding eigenvectors.

We say that H0 has non-degenerate spectrum if λ j 6= λl for all j 6= l, j, l = 1, . . . , n.
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Although V being non-increasing is a very important property, this is not enough to

ensure that the target state φ is asymptotically reached. The following theoretical result for

the feedback (8) explains when convergence to target state holds:

Theorem 2.1 Consider (3) with 9 ∈ S2n−1 and an eigenstate φ ∈ S2n−1 of H0 associated with

the eigenvalue λ. Take the static feedback (8) with c > 0, k < 1

‖H2‖
and suppose that the spectrum

of H0 is non-degenerate. Then the two following propositions are true:

(i) The limit set of the closed loop system (3) is in the intersection of S2n−1 with the vector

space E = Rφ
⋃

α Cφα, where φα is any eigenvector of H0 not co-linear to φ such that

〈φα|H1φ〉 = 0.

(ii) If E = Rφ, the limit set is a subset of {φ, −φ}.

The proof follows the same ideas as in [24] and it can be found in [16].

Remark 2.2 The theorem above shows that tracking to φ works when all eigenstates of H0,

φ2, . . . .φn, other than φ are coupled to φ by H1, i.e.〈φk, H1φ〉 6= 0, k = 2, . . . , n. However, we

do not know what happens when some of the coupling are realized by H2 instead (the theorem

does not apply but the system is still controllable cf [34]). We analyze such a case in section 3.

Note that, as pointed out in the introduction, one uses the model H0 + u(t)H1 + u2(t)H2 precisely

in the cases when H1 coupling is not enough to control (otherwise taking low laser intensities

u(t) make H0 + u(t)H1 effective Hamiltonian instead of H0 + u(t)H1 + u2(t)H2 and H2 is not

longer used to model the system).

2.3. Examples and simulations

In order to solve (3), we use the following numerical scheme:

9((m + 1)1t) = e−i1t (H0+u(m1t)H1+u2(m1t)H2)+ω(m1t))9(m1t), (9)

where m is the index of the time step, 1t = T/M is the discretization time step, and M is the

total number of time steps. Numerical simulations have been performed for a three-dimensional

(3D) test system with H0, H1 and H2 given by

H0 =





0 0 0

0 1 0

0 0 3

2



 , H1 =





0 1 1

1 0 0

1 0 0



 , H2 =





0 0 1

0 0 0

1 0 0



 . (10)

In this case the wavefunction is 9 = (91, 92, 93)
T. We use the Lyapunov control (8) in

order to reach the first eigenstate φ = (1, 0, 0) of energy λ = 0, at the final time T .

Remark 2.3 We note that the conditions of theorem 2.1 are fulfilled since: 〈φ2|H1φ〉 6= 0 and

〈φ3|H1φ〉 6= 0. In addition ‖H2‖= 1.

In figure 1, we plot the evolution of V = V (9) = 〈9 − φ|9 − φ〉 and u, corresponding to

system defined by (10) with feedback (8). We can remark a fast convergence of the Lyapunov

function V towards zero, that implies the convergence of 9 towards φ = (1, 0, 0). The target

goal is achieved with high accuracy at T = 100.

We consider another 3D test system with H0, H1 and H2 given by

H0 =





0 0 0

0 1 0

0 0 3

2



 , H1 =





0 1 0

1 0 0

0 0 0



 , H2 =





0 0 1

0 0 0

1 0 0



 . (11)
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Figure 1. Evolution of the Lyapunov function V (9) (green line) and control

u (blue line); initial condition 9(t = 0) = (0, 1/
√

2, 1/
√

2); system defined

by (10) with feedback (8). We take k = 0.2, c = 0.8, 1t = 0.1.

0 20 40 60 80 100
−0.2

0

0.2

Time (arbitrary units)

u

 V

u

10
−6

10
−4

10
−2

10
0

V

Figure 2. Evolution of the Lyapunov function V (9) (green line) and control

u (blue line); initial condition 9(t = 0) = (0, 1/
√

2, 1/
√

2); system defined

by (11) with feedback (8). The feedback (8) fails to reach the target, V stalls

at V = 10−0.1. We take k = 0.2, c = 0.8, 1t = 0.1.

In this case the wavefunction is 9 = (91, 92, 93)
T. We use the previous Lyapunov control in

order to reach the first eigenstate φ = (1, 0, 0) of energy λ = 0, at the final time T .

Simulations in figure 2 start with (0, 1/
√

2, 1/
√

2) as initial condition for 9. Such a feed-

back reduces the distance to the first state but does not ensure its convergence to φ = (1, 0, 0)

(the Lyapunov function V (9) does not reach the value zero, but stalls at V = 10−0.1.) This is

not due to a lack of controllability. This system is controllable since the Lie algebra spanned

by H0/ i , H1/ i and H2/ i coincides with u(3) (see [24]). As explained in remark 2.2, such
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Figure 3. Time evolution of I1 and I2; system defined by (11) with feedback (8).

We note that I1 converges to zero. Contrary to I1, I2 does not converge to zero.

convergence deficiency comes from the fact that operator H1 couples φ only with the state φ2.

We plot the evolution of V (9), u, I1 and I2, corresponding to system defined by (11) with

feedback (8), in figures 2 and 3.

3. Discontinuous and periodic feedback

In order to stabilize the system when formula (8) are ineffective, we propose two methods. The

first one is to use a special discontinuous feedback ([2, 6, 12, 26], as well as [10, section 11.4]

and references therein). The second approach is through periodic time-dependent feedback

([8, 9] as well as [10, sections 11.2 and 12.4] and references therein).

3.1. Discontinuous feedback

For the case of discontinuous feedback we consider the regions: A = {9||I1(9)| < δ

and I2(9) < −
√

δ}, B = {9||I1(9)| < δ and I2(9) >
√

δ}, C = {9||I1(9)| > δ/2 or

|I2(9)| < 2
√

δ}. Note that A, B, C are open sets; the regions A, C , respectively B, C are

overlapping as shown in figure 4.

For k1, k2, c, δ > 0 we define the control as follows:

u(9) = u(I1(9), I2(9)) =



















k1 I2, in A\C,

0, in B\C,

−k2 I1/(1 + k2 I2), in C\(A ∪ B),

for A ∩ C and A ∩ B see below,

(12)

ω = −λ − c Im(〈9(t) | φ〉).
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The definition of u(I1, I2) on A ∩ C is either u(I1, I2) = k1 I2 (i.e. formula for region A) or

u(I1, I2) = −k2 I1/(1 + k2 I2) (i.e. formula for region C); the switching of the feedback control

will take place upon reaching the boundary of A when using the feedback for A or upon reaching

the boundary of C when using the feedback for C . Note that a discontinuity may appear when

reaching the part of the border ∂C of C situated in the interior of A or the boundary ∂A which

is a subset of the interior of C . The same considerations apply for A ∩ B.

The idea is the following: in the first attempt, we tried to divide the space into disjoint

regions with corresponding feedback laws assigned, in order to take into account different

aspects which are not handled by choosing a feedback law defined in the whole space continuous

with respect to I1, I2. But we encountered a problem: the system thus obtained may not have a

global Carathéodory solution or the solution should be taken in a generalized sense (for example

Filippov solution) and this is harder to handle. Indeed, if the regions have disjoint interiors (i.e.

they may have only common boundary points) then discontinuities may appear at the boundary

points which are switching points and, after switching it may happen that the solution cannot be

continued in a Carathéodory sense. So, we will divide the space in overlapping regions such that

the boundary of one region is contained in the interior of the neighboring regions and at most

two regions overlap in a given point. Now, the switching will take place in the interior of the next

region. If the system uses a feedback corresponding to a given region, it will evolve using the

corresponding feedback until it touches the boundary. The boundary belongs to the interior of

a neighboring region and when touching such a boundary point we switch to the next feedback

law. Observe that the time spent by the system between two switching points is bounded from

below by a strictly positive constant. The only fact which has to be discussed is what happens

if the initial point is in the intersection of two regions. Then, the choice of the initial feedback

uniquely determines the solution of the Cauchy problem, as well as the global existence.

More precisely, in our situation we may define first the propagator S1(t)90 by solving

the feedback equation such that: if the initial state 90 ∈ A ∩ C , we initiate with the feedback

corresponding to C and if the initial state 90 ∈ B ∩ C , we initiate also with the feedback
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corresponding to C . We define also the propagator S2(t)90 by solving the feedback equation

such that: if the initial state 90 ∈ A ∩ C , we initiate with the feedback corresponding to A and if

the initial state 90 ∈ B ∩ C , we initiate with the feedback corresponding to B. We continue with

the feedback for the given region until reaching the boundary of this one, then we switch to the

feedback corresponding to the next overlapping region. Observe that neither S1 nor S2 defines a

classical dynamical system, that is the semigroup property is lost. One has instead

S1(t + s)90 = S1(t)S1(s)90 or S1(t + s)90 = S2(t)S1(s)90. (13)

The propagators S1(t)90 and S2(t)90 are solutions in the sense of Carathéodory for the

feedback controlled system and depend continuously on the initial data. These solutions are

well defined locally and they are globally defined on [0, ∞[; this follows from the fact that

intervals of time between switching moments are bounded from below by a strictly positive

constant.

It is now a matter of choice and we consider the feedback system corresponding to

the propagator S1. The constants k1 and k2 are to be chosen such that dV/dt 6 0 along the

trajectories corresponding to S1. If this is true the same choice is valid also in the case of S2.

Observe first that dV/dt = u(I1 + uI 2). We fix now k1 > 1 and 0 < k2 < 1

‖H2‖
. We have the

following possibilities:

1. If 9(t) ∈ A\C then u = k1 I2 and dV/dt = k1 I2(I1 + k1 I 2
2 )6−k2

1δ|I2| + k1δ|I2| < 0.

2. If 9(t) ∈ B\C then u = 0 and dV/dt = 0.

3. If 9(t) ∈ C\(A ∪ B) then u = −k2 I1/(1 + k2 I2) (the denominator does not vanish by the

bound imposed to k2) so dV/dt = −k2 I 2
1 /(1 + k2 I2)

2 6 0.

4. If 9(t) ∈ A ∩ C or 9(t) ∈ B ∩ C then we are in one of the previous situations depending

on which feedback happens to be used at the given moment t .

Moreover, one has the following convergence result for the feedback (12).

Theorem 3.1. Consider (3) with 9 ∈ S2n−1 and an eigenstate φ ∈ S2n−1 of H0 associated with

the eigenvalue λ. Take the feedback (12) with k1 > 1, k2 < 1

‖H2‖
and c, δ > 0. If H0 is not

degenerate and for every k with φk 6= φ either 〈φk|H1φ〉 6= 0 or 〈φk|H2φ〉 6= 0 then the limit

set of 9(t) reduces to a solution of the uncontrolled system, with |I1| < δ, −2
√

δ 6 I2 6 C
√

δ

with a constant C depending only on H0.

Proof of theorem 3.1 Up to a shift on ω and H0, we can assume that λ = 0.

Trajectories corresponding to the propagator S1 are relatively compact so the limit points

at infinity form a limit set �δ which is compact and connected.

On the limit set �δ, V is constant and from the relation (13), �δ is invariant either to S1 or

to S2, that is if 91 ∈ �δ then S1(t)91 ∈ �δ, t > 0 or S2(t)91 ∈ �δ, t > 0.

The limit set �δ is a union of trajectories of equation (3) corresponding either to the

propagator S1 or to the propagator S2. Along these trajectories V is constant, so dV/dt = 0

where V is defined by (4). The equation dV/dt = 0 means that

u(I1 + uI2) = 0, (14)

Im〈9, φ〉 = 0. (15)
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Since u is defined by (12) it follows that the limit set �δ consists in fact of trajectories of the

uncontrolled system

i
d

dt
9 = H09. (16)

Indeed, a trajectory in the �δ limit set, corresponding either to the propagator S1 or to the

propagator S2, cannot have points in A since there dV/dt < 0. So, �δ ⊂ C ∪ B. In C\B,

dV/dt = 0 implies I1 = 0 and thus u = 0 while when using the feedback corresponding to B,

this is always 0 and the above assertion is proved. It is clear that the solutions of (16) are of the

form:

9 =
n

∑

j=1

bj e
−iλ j tφ j . (17)

For the same reasons as above we obtain that the limit set �δ is characterized by

�δ ⊂ {I1 = 0 and |I2| < 2
√

δ} ∪ {|I1| < δ and I2 >
√

δ}. (18)

From relation (18), we have that on the limit set |I1| < δ. Without loss of generality we take

φ = φ1. We substitute (17) in (15) and we have

Im〈9, φ〉 = Im(b1)〈φ, φ〉 +

n
∑

j=2

Im(b j〈φ j , φ〉e−iλ j t) = 0. (19)

Since 〈φ j , φ〉 = 0 for all j = 2, . . . , n, we obtain Im(b1) = 0. We denote by J1 = { j | j 6= 1,

〈H1φ j |φ〉 6= 0} and J2 = { j | j 6= 1, 〈H2φ j |φ〉 6= 0}. We have the hypothesis that J1 ∪ J2 =
{2, 3, . . . , n}.

We substitute (17) in (7), and we obtain

I1 = Im(b1)〈H1φ, φ〉 +
∑

j∈J1

Im(b j〈H1φ j , φ〉e−iλ j t), (20)

I2 = Im(b1)〈H2φ, φ〉 +
∑

j∈J2

Im(b j〈H2φ j , φ〉e−iλ j t). (21)

Since Im(b1) = 0 we have

I2 =
∑

j∈J2

Im(b j〈H2φ j , φ〉e−iλ j t) =
∑

j∈J2

B j sin(λ j t + θ j). (22)

where the coefficients B j = 0 if and only if b j = 0, j ∈ J2.

We define M = sup(I2) and m = inf(I2). We claim that there exists C > 0 independent

of B j and θ j such that M 6−Cm. Indeed, let κ = cardJ2, the number of elements of J2

and T κ = S1 × · · · × S1, κ times, be the κ dimensional real torus (we denoted by Sk the k

dimensional real unit sphere). Then the function t → (λ j t) j∈J 2
defines a conditionally periodic

trajectory in T κ (it is either dense in the torus or the closure of its image is a lower dimensional

torus in T κ) and we denote its image byM⊂ T κ . Choose B j ∈ R, j ∈ J2 with
∑

j∈J2
B2

j = 1.

The function

(B j , µ j , θ j) j∈J2
→ h(B j , µ j , θ j) =

∑

j∈J2

B j sin(µ j + θ j)

is continuous on the compact set S2κ−1 ×M× T κ → C and it cannot have constant sign for

any fixed B j , θ j . Indeed, otherwise, denoting by µ j = λ j t , the function t →
∑

j∈J2
B j cos(λ j t +

θ j)/λ j would be strictly monotonic and this is not possible because this is a function defined
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Figure 5. Left panel: evolution of the Lyapunov function V (9) (green line)

and control u (blue line); initial condition: 9(t = 0) = (0, 1/
√

2, 1/
√

2); system

defined by (11) with feedback (12). Right panel: zoom of the evolution of u from

T = 60 to 135. We take: k1 = 1.1, k2 = c = 0.8, δ = 10−4, 1t = 0.1. For this

example, the constant C defined by (23) is equal to 2.

along a conditionally periodic orbit in the torus T κ . Now we take

C = −
2 sup(B j ,µ j ,θ j )∈S2κ−1×M×T κ h(B j , µ j , θ j)

sup(B j ,θ j )∈S2κ−1×T κ infµ j ∈M h(B j , µ j , θ j)
. (23)

Since on the limit set �δ, I2 >−2
√

δ it is easy to verify that I2 6 C
√

δ. ⊓⊔

Remark 3.1 In order to make the conclusion of the theorem more precise note that if 9δ is a

trajectory of (16) belonging to �δ, then when δ converges to zero, 9δ → φ, if the initial state is

different from −φ. Accordingly, when I1, I2 are small V (9) will also be small and the system is

close to the target state.

In examples (11) and (24), κ = 1 hence C = 2.

Remark 3.2 An important ingredient of the proof is finding the limit sets of the evolution,

which itself depends very much on the choice of the sets A, B, C and of the controls u. The

general rationale behind these choices is to modify formula (8) minimally in order to have good

properties of �δ.

3.1.1. Examples for non-degenerate cases. We take the system (11) and apply the

discontinuous feedback (12). Simulations in figure 5, (left panel) describe the evolution of the

Lyapunov function V (9) and control u, for the initial state 9(t = 0) = (0, 1/
√

2, 1/
√

2), the

right image shows a zoom of the evolution of the control u and one can observe from the form

of u the jumps between the regimes corresponding to regions A, C and B, C . The constant C

defined by (23) is equal to 2. In this case: k1 = 1.1, k2 = c = 0.8 and δ = 10−4.

It appears that this feedback is quite efficient for system (11). We present the evolution of

I1 and I2 corresponding to system defined by (11), with feedback (12), in figure 6.
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Figure 6. Time evolution of I1 and I2; system defined by (11) with feedback (12).

We consider next the 5D system (see [33]) defined by

H0 =













1.0 0 0 0 0

0 1.2 0 0 0

0 0 1.3 0 0

0 0 0 1.4 0

0 0 0 0 2.15













, H1 =













0 0 1 1 1

0 0 1 1 1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0













, H2 =













0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0













.

(24)

We use the previous Lyapunov control in order to reach the first eigenstate φ =
(1, 0, 0, 0, 0, 0) of energy λ = 1, at the final time T . Note that here ‖H2‖= 1.

Simulations in figure 7, (left panel), describe the evolution of the Lyapunov function V (9)

and control u, for the initial state 9(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4), the right panel

shows a zoom of the evolution of control u. The constant C defined by (23) is equal to 2.

We take k1 = 1.1, k2 = c = 0.8 and δ = 10−4.

We present the evolution of I1 and I2 corresponding to system defined by (24), with

feedback (12), in figure 8.

3.1.2. Examples for degenerate cases. There are various situations where the condition of non-

degeneracy of the Hamiltonian H0, present in theorems 2.1 and 3.1 is non-fulfilled. One such

example is given below (see [18, 25]):

H0=









0 0 0 0

0 0.04556 0 0

0 0 0.095683 0

0 0 0 0.095683









, H1=









0 1 1 −1

1 0 1 1

1 1 0 0

−1 1 0 0









, H2=









0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0









.

(25)
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Figure 7. Left panel: evolution of the Lyapunov function V (9)

(green line) and control u (blue line); initial condition: 9(t = 0) =
(0, 1/

√
4, 1/

√
4, 1/

√
4, 1/

√
4); system defined by (24) with feedback (12).

Right panel: zoom of the evolution of u from T = 410 to 490. We take

k1 = 1.1, k2 = c = 0.8, δ = 10−4, 1t = 0.1. For this example, the constant C

defined by (23) is equal to 2.
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Figure 8. Time evolution of I1 and I2; system defined by (24) with feedback (12).

The internal Hamiltonian H0 is degenerate since λ3 = λ4 = 0.095683, but it can be

stabilized using the discontinuous feedback defined by (12). Here ‖H2‖= 1.

Simulations in figure 9 (left panel) describe the evolution of the Lyapunov function

V (9) and control u, system defined by (25) starting from the initial state 9(t = 0) =
(0, 1/

√
3, 1/

√
3, 1/

√
3); the right panel shows a zoom of the evolution of the control. We
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Figure 9. Left panel: evolution of the Lyapunov function V (9) (green line)

and control u (blue line); initial condition 9(t = 0) = (0, 1/
√
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√

3, 1/
√

3);

system defined by (25) with feedback (12). Right panel: zoom of the evolution

of u from T = 17205 × 104 to 17235 × 104. We take: k1 = 1.1, k2 = c = 0.8,

δ = 10−4 and 1t = 0.1.
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Figure 10. Time evolution of I1 and I2; system defined by (25) with

feedback (12).

present the evolution of I1 and I2 corresponding to system defined by (25), with feedback (12),

in figure 10.

This positive result for degenerate system shows that the theoretical results are sufficient

but not necessary; however, the approach may fail in some particular degenerate cases. This is

consistent with the literature on quantum control that shows that degenerate cases have special

structure (starting even with controllability criteria).
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3.2. Periodic feedback

Although the discontinuous feedback (12) gives satisfactory results in terms of the control

quality, the fact that it is discontinuous motivates trying to find additional procedures. To this

end we introduce in this section a periodic, time-dependent feedback u = u(t, 9) stabilizing (3)

to the ground state φ. The idea is to use a highly oscillatory field component whose linear

contribution averages to zero while the quadratic part averages to a constant; then we compare

the asymptotic behavior of the system with the behavior of the averaged system. We recall that

we are in the case when the reference trajectory corresponds to an equilibrium.

We consider the following time-dependent feedback

u(t, 9) = α(9) + β(9) sin(t/ε). (26)

We substitute (26) in (3) and we obtain the system

i
d

dt
9(t) = (H0 + α(9)H1 + β(9) sin(t/ε)H1 + α2(9)H2 + 2α(9)β(9) sin(t/ε)H2

+ β2(9) sin2(t/ε)H2 + ω(9))9(t). (27)

Remark 3.3 For a differential system ẋ = f (t, x), with f a T-periodic function, f (t + T, x) =
f (t, x), the averaged system is defined by ẋav = fav(x) where fav(x) = 1

T

∫ T

0
f (t, x)dt (see [21]

pp 402–10).

In our case the averaged system corresponding to (27) is given by

i
d

dt
9av = (H0 + αH1 + (α2 +

1

2
β2)H2 + ω)9av. (28)

We identify the coefficients α and β such that the averaged system is asymptotically stable.

Since the trajectories of the system (27) are close to the trajectories of the averaged system (28)

(see lemma 3.1 below), one can use the stability of the averaged system to obtain an approximate

stability result for the system (27).

We use a Lyapunov technique to stabilize the averaged system (28) around the ground

state φ. We take again the function V defined by (4), which is non-negative for all 9 ∈ S2n−1

and vanishes when 9 = φ.

The derivative of V along a trajectory of the averaged system (27) is given by

d

dt
V (9av(t)) = 2α Im(〈H19av(t)|φ〉) + 2α2 Im(〈H29av(t)|φ) + β2 Im(〈H29av(t)|φ〉)

+ 2(ω + λ) Im(〈9av(t)|φ〉). (29)

We denote I av
1 = Im(〈H19av(t)|φ〉) and I av

2 = Im(〈H29av(t)|φ〉). For instance, we take

α = −k I av
1 , β = (I av

2 )−, ω = −λ − c Im(〈9av(t)|φ〉), (30)

where we have denoted by (I av
2 )− = −min(I av

2 , 0), the negative part of I av
2 . We obtain

d

dt
V (9av(t)) = −2

(

k(I av
1 )2(1 − k I av

2 ) +
((I av

2 )−)3

2
+ c Im2(〈9av(t)|φ〉)

)

(31)
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and thus dV/dt 6 0, for c > 0 and k < 1

‖H2‖
(see also remark 2.1), i.e. V is non-increasing along

the trajectories of the averaged system. In particular φ is a stable point for the averaged system,

i.e. such that

∀ δ > 0, ∃ δ′ > 0 such that (|9av(0) − φ| < δ′) ⇒ (|9av(t) − φ| < δ, ∀ t ∈ [0, +∞)). (32)

We have the following asymptotic stability result:

Theorem 3.2 Under the hypotheses

(i) λ j 6= λl for j 6= l,

(ii) for any j = 2, . . . , n:〈H1φ j |φ〉 6= 0 or 〈H2φ j |φ〉 6= 0,

the averaged system (28) is globally asymptotically stable on S2n−1 \ {−φ} in the sense

(recall (32)) that every solution 9av of (28) with an initial state other than −φ tends to φ as

t tends to +∞.

Proof of theorem 3.2 Up to a shift on ω and H0, we may assume that λ = 0. LaSalle’s

principle (see, e.g. [21, theorem 3.4, pp 115]) says that the trajectories of the system (28)

converge to the largest invariant set contained in dV/dt = 0. The equation dV/dt = 0 means

that

I av
1 = 0, (I av

2 )− = 0, Im(〈9av(t)|φ〉) = 0, (33)

and therefore α = β = 0.

On the �-limit set of a trajectory, V is constant. Since the �-limit set is also invariant

under the flow generated by (28) it follows, taking into account (33), that it consists in fact of

trajectories of the uncontrolled system:

i
d

dt
9av = H09av. (34)

The solutions of (34) have the form

9av =
n

∑

j=1

b j e
−iλ j tφ j . (35)

We substitute (35) in (33) and we obtain

Im(〈9av(t)|φ〉) = Im(b1)〈φ, φ〉 +

n
∑

j=2

Im(b j〈φ j , φ〉e−iλ j t), (36)

I av
1 (9av) = Im(b1)〈H1φ, φ〉 +

∑

j∈J1

Im(b j〈H1φ j , φ〉e−iλ j t), (37)

I av
2 (9av) = Im(b1)〈H2φ, φ〉 +

∑

k∈J2

Im(b j〈H2φ j , φ〉e−iλ j t). (38)

Without loss of generality we take φ = φ1. From equation (33) and (36), together with

〈φ j , φ〉 = 0 for all j = 2, . . . , n we obtain Im(b1) = 0. Since along the trajectories 9av

in �, I av
1 (9av) ≡ 0, we have

∑

j∈J1
Im(b j〈H1φ j , φ〉e−iλ j t) =

∑

j∈J1
B

′

j sin(λ j t + θ j) = 0. The

functions sin(λ j t + θ j) are linearly independent as the λ j are all different, hence the sum
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can only vanish if all coefficients B ′
j vanish. Observe now that B ′

j = 0, j ∈ J1 if and only if

b j = 0, j ∈ J1. Using Im(b1) = 0 we have:

I2(9av) =
∑

j∈J2

Im(b j〈H2φ j , φ〉e−iλ j t) =
∑

j∈J2

B j sin(λ j t + θ j). (39)

Since I av
2 (9av)> 0 ∀ t, it follows that I av

2 (9av) ≡ 0 (see the argument at the end of the proof

of theorem 3.1). We have thus b j = 0 for j = 2, . . . , n. Now considering the form of the limit

trajectories (35) this leaves only 9av = b1e−iλtφ = b1φ (we assumed λ = 0). Since Im(b1) = 0

the only case remained is 9av = ±φ that is � ⊂ {φ, −φ}. This concludes the proof of

theorem 3.2. ⊓⊔

Our next theorem shows that our time-varying feedback laws lead to some kind of ‘practical

global asymptotic stability on S2n−1 \ {−φ}’ if ε > 0 is small enough and if the assumptions of

theorem 3.2 hold (see also [11]).

Theorem 3.3 Assume the hypothesis (i) and (ii) of Theorem 3.2 hold and let V be a

neighborhood of −φ and δ be a positive number. Then there exist a time T > 0 and ǫ0 > 0

(depending both on δ and V) such that every solution 9(t) of (27) with ǫ ∈ (0, ǫ0) that satisfies

9(τ) ∈ S2n−1 \V for some τ > 0 also satisfies |9(t) − φ| < δ for every t > τ + T .

Proof of theorem 3.3 The idea of the proof is as follows. One knows that every trajectory

of the averaged system (28) which is not identically equal to −φ converges to the target state

φ. Hence, since the trajectories of the system (27) are close to the trajectory of the averaged

system (28), one may expect that a trajectory which at some time is not in a given neighborhood

V of −φ will be in a given neighborhood of φ for large time if ε > 0 is small enough.

The key ingredient that shows the relation between the trajectories of the oscillating

system (27) and the trajectories of the averaged system (28) is the following classical lemma

(see, e.g. [21, pp 415–7] or [29, section 3.2]).

Lemma 3.1 Let T > 0. There exists C and ε0 > 0 such that, for every τ ∈ R and for every

ε ∈ (0, ε0), if 9 : [τ, τ + T ] → S2n−1 is a solution of (27) and 9av is the solution of the averaged

system (28) such that 9av(τ ) = 9(τ), then

|9(t) − 9av(t)| < Cε, ∀ t ∈ [τ, τ + T ] .

Let δ1 > 0 be such that

(|ξ − φ| < δ1) ⇒ (ξ 6∈ V). (40)

By (32), there exists δ2 > 0 such that, for every solution 9av of the averaged system (28),

(|9av(0) − φ| < 2δ2) ⇒
(

|9av(t) − φ| <
min{δ, δ1}

2
∀ t ∈ [0, +∞)

)

. (41)

By theorem 3.2, there exists T > 0 such that, for every solution 9av of the averaged

system (28),

(9av(0) ∈ S2n−1 \V) ⇒ (|9av(t) − φ| < δ2 ∀ t ∈ [T, +∞)). (42)
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By lemma 3.1 and (42), there exists ǫ1 > 0 such that, for every ε ∈ (0, ε1), for every τ ∈ R and

for every solution 9 of (27),

(9(τ) ∈ S2n−1 \V) ⇒ (|9(τ + T ) − φ| < 2δ2). (43)

By lemma 3.1 and (41), there exists ε2 > 0 such that, for every ε ∈ (0, ε2), for every τ ′ ∈ R and

for every solution 9 of (27),

(|9(τ ′) − φ| < 2δ2) ⇒ (|9(τ ′ + t) − φ| < min{δ, δ1} ∀ t ∈ [0, T ]). (44)

Let us check that the conclusion of theorem 3.3 holds with ε0 = min{ε1, ε2}. Let

ε ∈ (0, min{ε1, ε2}), let τ > 0 and let 9 be a solution of (27) such that 9(τ) ∈ S2n−1 \V .

By (43),

|9(τ + T ) − φ| < 2δ2. (45)

From (44) with τ ′ = τ + T and (45), one obtains that

|9(τ + t) − φ| < min{δ, δ1}6 δ ∀ t ∈ [T, 2T ]. (46)

From (40) and (46) for t = T , one obtains that

9(τ + T ) 6∈ V. (47)

Using (47) and applying (46) with τ + T for the new value of τ , one obtains that

|9(T + τ + t) − φ| < min{δ, δ1}6 δ ∀ t ∈ [T, 2T ].

Continuing, an easy induction argument on the integer m shows that, more generally, for every

non-negative integer m,

|9(mT + τ + t) − φ| < min{δ, δ1}6 δ ∀ t ∈ [T, 2T ].

This ends the proof of theorem 3.3. �

3.2.1. Examples for non-degenerate cases. We take the system (11) and apply the periodic

feedback (26) with α and β defined by (30). Simulations of figure 11 describe the evolution of

the Lyapunov function V (9) for the initial state 9(t = 0) = (0, 1/
√

2, 1/
√

2).

It appears that the periodic feedback is quite efficient for system (11) (see figure 11).

We take the system (24) and apply the periodic feedback (26) with α and β defined by (30).

Simulations of figure 12 describe the evolution of the Lyapunov function V (9) and control u

for the initial state 9(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4). Agreement with the theoretical

results presented above is obtained (see figure 12).

3.2.2. Examples for degenerate cases. We take the system defined by (25) and we apply the

periodic feedback (26) with α and β defined by (30). Simulations of figure 13 describe the

evolution of the Lyapunov function V (9) and control u, system defined by (25) starting from

the initial state 9(t = 0) = (0, 1/
√

3, 1/
√

3, 1/
√

3). We present the evolution of I1 and I2

corresponding to system defined by (25), with feedback (26), in figure 14.
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Figure 12. Evolution of the Lyapunov function V (9) (green line) and control u

(blue line); initial condition: 9(t = 0) = (0, 1/
√

4, 1/
√

4, 1/
√

4, 1/
√

4); system

defined by (24) with feedback (26). We take ε = 10−3, k = 0.8, c = 0.5,

1t = 0.1.

4. Conclusions

We focus in this paper on designing trajectory tracking (feedback) procedures for a control

system with polarizability terms u2(t)H2 present. We find that a straightforward application

of the previous results only work for systems that are controllable without the polarizability

term. To be able to find a control field that exploits the polarizability coupling we propose two

different solutions: the first one is to use a discontinuous feedback with memory terms, the
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Figure 13. Evolution of the Lyapunov function V (9) (green line) and control

u (blue line); initial condition 9(t = 0) = (0, 1/
√

3, 1/
√

3, 1/
√

3); system

defined by (25) with feedback (26). We take ε = 10−3, k = 0.8, c = 0.5 and

1t = 0.1.

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

Time (arbitrary units)

I 1

I1

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4

0.6

Time (arbitrary units)

I 2

I2

Figure 14. Time evolution of I1 and I2; system defined by (25) with

feedback (26).

other is to use time-dependent (periodic) forcing. In both cases, we present related theoretical

results and numerically implement these techniques on prototypical examples. The time-

dependent feedback is seen to generally produce smoother controls. The stabilizing procedures
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for feedback design we have proposed in this paper may be adapted to other general situations

where stabilization fails under the usual continuous feedbacks.
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