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Quantum copying: A network
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We present a network consisting of quantum gates that produces two imperfect copies of an arbitrary qubit.
The quality of the copies does not depend on the input qubit. We also show that for a restricted class of inputs
it is possible to use a very similar network to produce three copies instead of two. For qubits in this class, the
copy quality is again independent of the input and is the same as the quality of the copies produced by the
two-copy network.@S1050-2947~97!09510-3#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

Since the work of Wootters and Zurek it has been kno
that it is impossible to copy~i.e., clone! perfectly an arbitrary
quantum state@1,2#. These authors considered a quantu
copy machine that is supposed to copy a qubit and dem
strated that if it copies two basis vectors correctly, it can
copy superpositions of these vectors without introducing
rors. This result follows directly from the fact that quantu
mechanical transformations are implemented by linear
erators.

If one is only interested in producing imperfect copie
however, then it is possible to design machines~actually,
find unitary transformations! that copy quantum states. A
number of these were analyzed in recent papers by two o
@3,4#. The copy machine considered by Wootters and Zur
for example, produces two identical copies at its output,
the quality of these copies depends upon the input st
They are perfect for the basis vectors that we denote asu0&
and u1&, but, because the copying process destroys the
diagonal information of the input density matrix, they a
poor for input states of the form (u1&1eiwu0&)/A2, wherew
is arbitrary. A different copy machine, the Universal Qua
tum Copy Machine~UQCM!, produces two identical copie
whose quality is independent of the input state. In additi
its performance is, on average, better than that of
Wootters-Zurek machine, and the action of the machine s
ply scales the expectations values of certain operators
particular the expectation value in one of the copies of a
operator which is a linear combination of the Pauli matrix
is 2/3 that of its expectation value in the input state. Gi
has recently generalized the UQCM for the cases in wh
there areN identical inputs andN11 outputs, that is, one
copy is produced, and also in which there areN inputs and
N12 outputs, i.e., there are two copies produced@6#. In both
cases all of the output copies are identical and their fide
that is, their overlap with the input state, goes to 1 asN goes
to infinity.

In this paper we want to do two things. First, we presen
quantum logic network that realizes the UQCM. An analy
of this network suggests that it should be possible to prod
561050-2947/97/56~5!/3446~7!/$10.00
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not two~imperfect! copies of the input state at the output, b
three. Second, we find that a very similar quantum netw
can also be used as a quantum ‘‘triplicator,’’ i.e., a copyi
machine that produces three~imperfect! copies of the origi-
nal qubit. In general, the triplicator has the undesirable f
ture that the quality of the copies that emerge from it is st
dependent. However, if the original qubit is in a superpo
tion stateau0&1bu1& with a andb real then the quality of
the copied qubits does not depend on the particular valu
a. Moreover we show that in this case the quality of t
triplicated qubits is the same as those that emerge from
UQCM, which is a ‘‘duplicator.’’

In addition, we discuss the quantum entanglement of
qubits at the output of our quantum copying networks. T
fact that the copies are entangled means that they are
independent; measuring one copy can have an effect on
other. This feature is something that must be kept in m
when determining how to make use of the copies.

The quantum logic networks that we propose consist
one- and two-bit quantum gates for which proposed desi
already exist. They should, therefore, be useful in the exp
mental realization of quantum copy machines.

This paper is organized as follows. In Sec. II we brie
review the unitary transformation that specifies the UQC
The quantum copying networks are described in Sec.
while in Sec. IV we discuss the inseparability of the copi
qubits. The quantum triplicator is described in Sec. V.

II. UNIVERSAL QUANTUM COPY MACHINE

Let us assume we want to copy an arbitrary pure s
uC&a1

, which in a particular basis$u0&a1
,u1&a1

% is described

by the state vectoruC&a1
:

uC&a1
5au0&a1

1bu1&a1
, a5sin qeiw, b5cosq.

~2.1!

The two numbers that characterize the state~2.1! can be
associated with the ‘‘amplitude’’uau and the ‘‘phase’’w of
the qubit. Even though ideal copying, i.e., the transformat
3446 © 1997 The American Physical Society
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56 3447QUANTUM COPYING: A NETWORK
uC&a1
→uC&a1

uC&a2
, ~2.2!

is prohibited by the laws of quantum mechanics for anarbi-
trary state~2.1!, it is still possible to design quantum copie
that operate reasonably well. In particular, the UQCM@3# is
specified by the following conditions.

~i! The state of the original system and its quantum co
at the output of the quantum copier, described by den
operatorsr̂a1

(out) and r̂a2

(out) , respectively, are identical, i.e.,

r̂a1

~out!5 r̂a2

~out! . ~2.3!

~ii ! If no a priori information about thein-state of the
original system is available, then it is reasonable to requ
that all pure states should be copied equally well. One w
to implement this assumption is to design a quantum co
such that the distances between density operators of
system at the output (r̂aj

(out) , where j 51,2) and the ideal

density operatorr̂ (id) which describes thein-state of the
original mode are input state independent. Quantitatively
means that if we employ the square of the Hilbert-Schm
norm

d~ r̂1 ; r̂2!:5Tr@~ r̂12 r̂2!2#, ~2.4!

as a measure of distance between two operators, then
quantum copier should be such that

d1~ r̂aj

~out! ; r̂aj

~ id!!5const, j 51,2. ~2.5!

Here we use the subscript 1 in the definition of the dista
d1 to signify that this is the distance between single-qu
states.

~iii ! Finally, we would also like to require that the copie
are as close as possible to the ideal output state, which i
course, just the input state. This means that we want
quantum copying transformation to satisfy

d1~ r̂aj

~out! ; r̂aj

~ id!!5min$d1~ r̂aj

~out! ; r̂aj

~ id!!% ~ j 51,2!.

~2.6!

Originally, the UQCM was found by estimating a transfo
mation that contained two free parameters, and then de
mining them by demanding that condition~ii ! be satisfied,
and that the distance between the two-qubit output den
matrix and the ideal two-qubit output be input state indep
dent. That the UQCM machine obeys the condition~2.6! has
only been shown recently by one of us@7#.

The unitary transformation that implements the UQC
@3# is given by

u0&a1
uQ&x→A2

3
u00&a1a2

u↑&x1A1

3
u1&a1a2

u↓&x ,

u1&a1
uQ&x→A2

3
u11&a1a2

u↓&x1A1

3
u1&a1a2

u↑&x ,

~2.7!

where
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u1&a1a2
5

1

A2
~ u10&a1a2

1u01&a1a2
), ~2.8!

and satisfies the conditions~2.3!–~2.6!. The system labeled
by a1 is the original~input! qubit, while the other systema2
represents the qubit onto which the information is copi
This qubit is supposed to be initially in a stateu0&a2

~‘‘blank
paper’’ in a copier!. The states of the copy machine are l
beled byx. The state space of the copy machine is two
mensional, and we assume that it is always in the same s
uQ&x initially. If the original qubit is in the superposition
state~2.1! then the reduced density operator of both copies
the output are equal@see condition~2.3!# and they can be
expressed as

r̂aj

~out!5 5
6 uC&aj

^Cu1 1
6 uC'&aj

^C'u, j 51,2, ~2.9!

where

uC'&aj
5b* u0&aj

2a* u1&aj
~2.10!

is the state orthogonal touC&aj
. This implies that the copy

contains 5/6 of the state we want and 1/6 of that one we
not.

We note that the density operatorraj

(out) given by Eq.~2.9!

can be rewritten in a ‘‘scaled’’ form:

r̂aj

~out!5sj r̂aj

~ id!1
12sj

2
1̂, j 51,2, ~2.11!

which guarantees that the distance~2.4! is input-state inde-
pendent, i.e., the condition~2.5 is automatically fulfilled. The
scaling factor in Eq.~2.11! is sj52/3.

III. COPYING NETWORK

In what follows we show how with simple quantum log
gates we can copy quantum information encoded in the or
nal qubit onto other qubits. The copying procedure can
understood as a ‘‘spread’’ of information via a ‘‘controlled
entanglement between the original qubit and the copy qub
This controlled entanglement is implemented by a seque
of controlled NOT operations operating on the original qu
and the copy qubits that are initially prepared in a spec
state.

In designing a network for the UQCM we first note th
since the state space of the copy machine itself is two dim
sional, we can consider it to be an additional qubit. O
network, then, will take three input qubits, one for the inp
one that becomes one of the copies, and one for the mac
and transform them into three output qubits, two of whi
will be copies of the output. In what follows we will denot
the quantum copier qubit asa3 rather thanx.

The operation of this network will be slightly differen
from what was indicated in the previous paragraph. Rat
than have the copies appear in thea1 and thea2 qubit, they
will appear in thea2 anda3 qubits.

Before proceeding with the network itself let us spec
the one- and two-qubit gates from which it will be co
structed. Firstly we define a single-qubit rotationR̂j (u)
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FIG. 1. Graphical representation of the UQCM network. The logical controlled NOTP̂kl given by Eq.~3.2! has as its input a contro
qubit ~denoted asd) and a target qubit~denoted ass). The action of the single-qubit operatorR is specified by the transformation~3.1!.
We separate the preparation of the quantum copier from the copying process itself. The copying, i.e., the transfer of quantum in
from the original qubit, is performed by a sequence of four controlled NOTs. We note that the amplitude information from the origin
is copied in the obvious direction in an XOR or the controlled NOT operation. Simultaneously, the phase information is copied
opposite direction making the XOR a simple model of quantum nondemolition measurement and its backaction.
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( j 51,2,3), which acts on the basis vectors of qubits as

R̂j~u!u0& j5cosuu0& j1sinuu1& j ,

R̂j~u!u1& j52sin uu0& j1cosuu1& j . ~3.1!

We also will utilize a two-qubit operator~a two-bit quan-
tum gate!, the so-called controlled NOT, which has as
inputs a control qubit~denoted as solid circles in Fig. 1! and
a target qubit~denoted as open circles in Fig. 1!. The control
qubit is unaffected by the action of the gate, and if the c
trol qubit is u0&, the target qubit is unaffected as well. How
ever, if the control qubit is in theu1& state, then a NOT
operation is performed on the target qubit. The operator
implements this gate,P̂kl , acts on the basis vectors of th
two qubits as follows (k denotes the control qubit andl the
target!:

P̂klu0&ku0& l5u0&ku0& l , P̂klu0&ku1& l5u0&ku1& l ,

P̂klu1&ku0& l5u1&ku1& l , P̂klu1&ku1& l5u1&ku0& l . ~3.2!

We can decompose the quantum copier network into
parts. In the first part the replica qubitsa2 and a3 are pre-
pared in a specific stateuC&a2a3

(prep). Then in the second part o

the copying network the original information from the orig
nal qubit isredistributedamong the three qubits. That is th
action of the quantum copier can be described as a sequ
of two unitary transformations

uC&a1

~ in!u0&a2
u0&a3

→uC&a1

~ in!uC&a2a3

~prep!→uC&a1a2a3

~out! . ~3.3!

The network for the quantum copying machine is display
in Fig. 1.

A. Preparation of quantum copier

Let us first look at the preparation stage. Prior to a
interaction with the input qubit we have to prepare the t
quantum copier qubits (a2 and a3) in a very specific state
uC&a2a3

(prep). If we assume that initially these two qubits are

the state

uC&a2a3

~ in! 5u0&a2
u0&a3

, ~3.4!
-

at

o

nce

d

y

then the arbitrary stateuC&a1a2

(prep),

uC&a2a3

~prep!5C1u00&a2a3
1C2u01&a2a3

1C3u10&a2a3

1C4u11&a2a3
, ~3.5!

with real amplitudesCi ~such that( i 51
4 Ci

251) can be pre-
pared by a simple quantum network@8# ~see the ‘‘prepara-
tion’’ box in Fig. 1! with two controlled NOTsP̂kl and three
rotationsR̂(u j ), i.e.,

uC&a2a3

~prep!5R̂2~u3!P̂32R̂3~u2!P̂23R̂2~u1!u0&a2
u0&a3

.

~3.6!

Comparing Eqs.~3.5! and ~3.6! we find a set of equations

cosu1cosu2cosu31sin u1sin u2sin u35C1 ,

2cosu1sin u2sin u31sin u1cosu2cosu35C2 ,

cosu1cosu2sin u32sin u1sin u2cosu35C3 ,

cosu1sin u2cosu31sin u1cosu2sin u35C4 , ~3.7!

from which the anglesu j ( j 51,2,3) of rotations can be
specified as functions of parametersCi . In particular, for the
purpose of the UQCM we need that

uC&a2a3

~prep!5
1

A6
~2u00&a2a3

1u01&a2a3
1u10&a2a3

). ~3.8!

With the help of Eq.~3.7! we find that the rotation angle
necessary for the preparation of the state given in Eq.~3.8!
are

u15u35
p

8
, u252arcsinS 1

2
2

A2

3 D 1/2

. ~3.9!
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B. Quantum copying

Once the qubits of the quantum copier are properly p
pared then the copying of the initial stateuC&a1

(in) of the origi-

nal qubit can be performed by a sequence of four contro
NOT operations~see Fig. 1!

uC&a1a2a2

~out! 5 P̂a3a1
P̂a2a1

P̂a1a3
P̂a1a2

uC&a1

~ in!uC&a2a3

~prep! .

~3.10!

When this operation is combined with the preparation sta
we find that the basis states of the original qubit (a1) are
copied as

u0&a1
u00&a2a3

→A2

3
u0&a1

u00&a2a3
1

1

A3
u1&a1

u1&a2a2
,

~3.11!

u1&a1
u00&a2a3

→A2

3
u1&a1

u11&a2a3
1

1

A3
u0&a1

u1&a2a2
,

~3.12!

whereu1&a2a3
5(u01&a2a3

1u10&a2a3
)/A2. When the original

qubit is in the superposition state~2.1! then the state vecto
of the three qubits after the copying has been perform
reads

uC&a1a2a3

~out! 5u0&a1
uF0&a2a3

1u1&a1
uF1&a2a3

, ~3.13!

with

uF0&a2a2
5aA2

3
u00&a2a3

1b
1

A3
u1&a2a3

,

uF1&a2a3
5bA2

3
u11&a2a3

1a
1

A3
u1&a2a3

. ~3.14!

From this it follows that at the output of the quantum cop
we find a pair of entangled qubits in a state described by
density operator

r̂a2a3

~out!5uF0&a2a3
^F0u1uF1&a2a3

^F1u. ~3.15!

Each of the copy qubits at the output of the quantum cop
has a reduced density operatorr̂aj

(out) ( j 52,3) given by Eq.

~2.11!. The distanced1( r̂aj

(out) ; r̂aj

(id)) ( j 52,3) between the

output qubit and the ideal qubit is constant and can expre
as a function of the scaling parameters in Eq. ~2.11!:

d1~ r̂aj

~out! ; r̂aj

~ id!!5
~12s!2

2
5

1

18
. ~3.16!

Analogously we find the distanced2( r̂a2a3

(out) ; r̂a2a3

(id) ) between

the two-qubit output of the quantum copying and the id
output to be constant, i.e.,

d2~ r̂a2a3

~out! ; r̂a2a3

~ id! !5
s2

2
5

2

9
. ~3.17!
-

d

e,

d

r
e

r

ed

l

The original qubit after the copying is performed is in
state

r̂a1

~out!5
1

3
~ r̂a1

~ in!!T1
1

3
1̂, ~3.18!

where the superscriptT denotes the transpose. We note th
in spite of the fact that the distance between this den
operator and the ideal qubit depends on the initial state of
original qubit, i.e.,

d1~ r̂a1

~out! ; r̂a1

~ id!!5
2

9
~1112uau2ubu2sin2w!, ~3.19!

the output state of the original qubit still contains inform
tion about the input state, though less than either of the c
ies. In order to extract this information we note that for
Hermitian operatorÂ

Tr~ r̂a1

~ in!Â!5Tr@~ r̂a1

~ in!!TÂT#. ~3.20!

This means that to obtain information aboutÂ at the input,
we measureÂT for the original qubit at the output.

We note that the flow of information in our quantum ne
work can be controlled by the choice of the preparation s
uC&a2a3

(prep) @5#. In particular, if we chose the rotation anglesu j

in our network~4.6! such that

cos 2u15
1

A5
, cos 2u25

A5

3
, cos 2u35

2

A5
,

~3.21!

then the stateuC&a2a3

(prep) reads

uC&a2a3

~prep!5
1

A6
~2u00&a2a3

1u01&a2a3
1u11&a2a3

).

~3.22!

In this case the copies appear in thea1 anda2 qubits, while
the qubita3 plays the role of the copying machine~ancila!.
That is, with the preparation~3.22! the transformation~2.7!
is realized.

IV. INSEPARABILITY OF COPIED QUBITS

An ideal copy machine would produce two copies that
completely independent of each other; i.e., the reduced d
sity matrix for the two copies,r̂a2a3

, would be a product of

r̂a2
and r̂a3

. For the UQCM, however, this is not the cas
and there are correlations between the copies. These cor
tions can be either quantum mechanical or classical, and
would like to determine whether the two copies are quantu
mechanically entangled. To do so, we first recall that a d
sity operator of two subsystems is inseparable if itcannotbe
written as the convex sum

r̂a2a3
5(

m
w~m!r̂a2

~m!
^ r̂a3

~m! . ~4.1!
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Inseparability is one of the most fundamental quantum p
nomenon, which, in particular, may result in the violation
Bell’s inequality ~to be specific, a separable system alwa
satisfies Bell’s inequality, but the contrary is not necessa
true!. Note that distant parties cannot prepare an insepar
state from a separable state if they only use local operat
and classical communication channels@9#.

In the case of two qubits~i.e., spin-1/2! we can utilize the
Peres-Horodecki theorem@9,10#, which states that the pos
tivity of the partial transposition of a state is both anecessary
and sufficientcondition for its separability. Before we pro
ceed further we briefly describe how to ‘‘use’’ this theore
the density matrix associated with the density operator
two spin-1/2 can be written as

rmm,nn5^emu^ f mur̂uen&u f n&, ~4.2!

where $uem&% ($u f m&%) denotes an orthonormal basis in th
Hilbert space of the first~second! spin-1/2 ~for instance,
ue0&5u0&a2

; ue1&5u1&a2
, and u f 0&5u0&a3

; u f 1&5u1&a3
). The

partial transpositionr̂T2 of r̂ is defined as

rmm,nn
T2 5rmn,nm . ~4.3!

Then the necessary and sufficient condition for the s
r̂a2a3

of two spin-1/2 to be inseparable is that at least one

the eigenvalues of the partially transposed operatorrmm,nn
T2 is

negative.
Now we will check whether the density operatorr̂a2a3

(out)

given by Eq. ~3.15! is separable. In the basi
$u11&a2a3

,u10&a2a3
,u01&a2a3

,u00&a2a3
% this density operator is

described by a matrix

r̂a2a3

~out!5
1

6S 4ubu2 2a* b 2a* b 0

2ab* 1 1 2a* b

2ab* 1 1 2a* b

0 2ab* 2ab* 4uau2
D , ~4.4!

while the corresponding partially transposed operator in
matrix representation reads

r̂a2a3

T2 5
1

6S 4ubu2 2ab* 2a* b 1

2a* b 1 0 2a* b

2ab* 0 1 2ab*

1 2ab* 2a* b 4uau2

D . ~4.5!

From the fact that one of the four eigenvalues

H 1

6
,
1

6
,
22A5

6
,
21A5

6 J , ~4.6!

of this partially transposed operator is negative for all valu
of a ~i.e., for arbitrary state of the original qubit!, it follows
that the two qubits at the output of the quantum copier
nonclassically entangled. The fact that the eigenvalues of
transposed density operator are input-state independent~and
combined with the fact that distanced2 betweenr̂a2a3

(out) and
-
f
s
y
le

ns

:
f

te
f

e

s

e
he

r̂a2a3

(id) is also input-state independent! suggests that the degre

of entanglement between the copied qubits is also input-s
independent.

V. QUANTUM TRIPLICATOR

When it is a priori known that the original qubit is ini-
tially in a superposition state~2.1! with the mean value of the
observableŝy equal to zero~i.e., a andb are real! then the
quantum copying network presented in Fig. 1 can serve a
as a quantum triplicator. That is, out of a single original qu
this device can create three identical qubits with equal d
sity operatorr̂aj

(out) , i.e.,

r̂a1

~out!5 r̂a2

~out!5 r̂a3

~out! , ~5.1!

such that the distancesd1( r̂aj

(out) ; r̂aj

(id)) given by Eq.~2.4! are

constant~i.e., they do not depend ona). This quantum trip-
licator is input-state independent, but we have to remem
that the class of original qubits for which this is true is r
stricted.

The triplicator network is exactly the same as the o
considered in the previous section except we have to perf
the rotationR̂3(u2) in the opposite direction. That is, th
anglesu1 andu2 are the same as specified by Eq.~3.9!, but
u25arcsin(1/22A2/3)1/2. In this case the stateuC&a2a3

(prep)

reads

uC&a2a3

~prep!5
1

A12
~3u00&1u01&1u10&1u11&). ~5.2!

With the help of Eq.~3.10! we now find the output state o
the quantum triplicator:

uC&a1a2a3

~out! 5
1

A12
~3au000&1au101&1au110&1au011&

13bu111&1bu010&1bu001&1bu100&).

~5.3!

Whena andb are real then we find that the three qubits
the output of the triplicator haveidentical density operators
given by Eq.~2.11! with the scaling factors52/3.

Moreover, we find that the three two-qubit density ope
tors at the output of the triplicator are mutually equal. In t
matrix form they read

r̂a2a3

~out!5 r̂a1a2

~out!5 r̂a1a3

~out!

5
1

12S 8b211 4ab 4ab 3

4ab 1 1 4ab

4ab 1 1 4ab

3 4ab 4ab 8a211

D . ~5.4!

This quantum triplicator operates in such way that all d
tances between output qubits and ideal copies, i.e.,
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d1~ r̂aj

~out! ; r̂aj

~ id!!5
1

18
, d2~ r̂ajal

~out! ; r̂ajal

~ id! !5
2

9
,

d3~ r̂a1a2a3

~out! ; r̂a1a2a3

~ id! !5
1

2
, ~5.5!

are constant for arbitrary real values ofa.
We note that the two-qubit density matrices~5.4! are in-

separable, because one of the eigenvalues

H 2
1

6
,
1

3
,
51A17

12
,
52A17

12 J ~5.6!

of the corresponding partially transposed matrix is negat
Because this negative eigenvalue does not depend ona, and
the fact thatd2 is input-state independent, we can conclu
that the quantum triplicator creates a specific class of t
qubit states characterized by the same degree of enta
ment.

Next we turn our attention to the fact that the scali
factor s52/3, which relates the output qubits to the origin
qubit, is in our case larger than that found in Gisin’s trip
cation procedure@6#, where it iss55/9. While our scaling
factor is larger, there is a price to pay. Namely, our triplic
tion network requiresa priori knowledge; the original qubi
must be described by the state vector~2.1! with reala andb.
Gisin’s scheme is more general, because it triplicates all
bits ~2.1! and the quality of the copies is independent of t
input state. However, the quality of his copies is not as go
which can be seen directly from the fact that for his pro
dure the distance between the copied and original qu
b
e

i.e

d

e.

e
-
le-

l

-

u-

d,
-
ts

d1( r̂aj

(out) ; r̂aj

(id)) is almost two times~to be precise, 16/9

times! larger than with ours. In fact, there exists a gene
tradeoff between thea priori knowledge of the state of the
original qubit and the quality of the copying: the better w
know the initial state of the original qubit the better copyin
transformation can be. For example, if we know exactly
state of the original qubit, we can produce as many per
copies as we want.

Finally we analyze the output state of the triplicator n
work described in Fig. 1 when the original qubit is in a
arbitrary superposition state~2.1! ~with a and b complex!.
Using the general expression~5.3! for the output of the trip-
licator we find that the individual qubits at the output a
equal, i.e.,r̂a1

(out)5 r̂a2

(out)5 r̂a3

(out) , with the density matrices

given by the expression

r̂aj

~out!5
1

6S 4ubu211 3a* b1ab*

3ab* 1a* b 4uau211 D , j 51,2,3.

~5.7!

In general, these density operators cannot be written in
scaled form~2.11! and consequently, the distance betwe
the output and input qubits depends on the initial state of
original qubit, i.e.,

d1~ r̂aj

~out! ; r̂aj

~ id!!5
1

18
~1112uau2ubu2 sin2w!. ~5.8!

The two-qubit density operators at the output of the tr
licator are also equal, and they can be described by the
sity matrix
r̂a2a3

~out!5 r̂a1a2

~out!5 r̂a1a3

~out!5
1

12S 8ubu211 3a* b1ab* 3a* b1ab* 3

3ab* 1a* b 1 1 3a* b1ab*

3ab* 1a* b 1 1 3a* b1ab*

3 3ab* 1a* b 3ab* 1a* b 8uau211

D . ~5.9!
e of
e-
put
ns-

vior
e

r,

ally,
From this expression we can easily find that the two-qu
distancesd2( r̂akal

(out) ; r̂akal

(id) ) between the actual output of th

triplicator and the ideal case are input-state dependent,

d2~ r̂akal

~out! ; r̂akal

~ id! !5
2

9
~1112uau2ubu2sin2w!,

k,l 51,2,3, kÞ l . ~5.10!

Analogously for the three-qubit distanced3( r̂a1a2a3

(out) ; r̂a1a2a3

(id) )

we find

d3~ r̂a1a2a3

~out! ; r̂a1a2a3

~ id! !5 1
2 ~1112uau2ubu2sin2w!.

~5.11!

Here the minimum values of the distancesdj ( j 51,2,3) are
obtained whenw50,p and in this case they do not depen
on the particular value ofuau.
it

.,

From the explicit expression~5.9! we find that the two-
qubit density matrices are inseparable for an arbitrary stat
the input qubit. This means that quantum triplication ‘‘cr
ates’’ very specific quantum correlations between the out
qubits. Namely, one of the eigenvalues of the partially tra
posed matrix~5.9! is negative forarbitrary valuesuau andw.
Moreover, there exists correspondence between the beha
of the distanced1( r̂aj

(out) ; r̂aj

(id)) and the value of the negativ

eigenvalueE of the partially transposed matrix. In particula
whenw50,p this eigenvalue does not depend onuau and is
equal to21/6. The corresponding distanced1 in this case is
minimal and equal to 1/18~irrespective ofuau). As the dis-
tanced1 increases, this eigenvalue decreases. Specific
for a given value ofuau the distanced1 is maximal when
w5p/2. Correspondingly, the negative eigenvalueE of the
partially transposed matrix for a givenuau takes its minimal
value whenw5p/2. In this caseE can be approximated by
its upper boundĒ:
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E& Ē52S 114~A522!uau2ubu2

6 D , ~5.12!

which clearly reveals a dependence between the distancd1
@given by Eq.~5.8! with w5p/2# and the negative eigen
valueE. This observation suggests that the copying sche
analogous to the triplication network discussed above
serve as specific ‘‘quantum entanglers’’ and that the mea
of entanglement can be operationally related to a spe
distanced1.

VI. CONCLUSION

It is possible to construct devices that copy the inform
tion in a quantum state as long as one does not dem
perfect copies. One can build either a duplicator, which p
duces two copies, or a triplicator, which produces three. B
of these devices can be realized by simple networks of qu
tum gates, which should make it possible to construct th
in the laboratory.

There are a number of unanswered questions about q
tum copiers. Perhaps the most obvious is which quan
copier is the best. Recently it has been shown@7# that the
UQCM described in this paper is the best quantum cop
able to produce two copies of the original qubit. It is n
known, however, how to construct the best quantum tripli
tor ~or, in general, a device that will produce multiple copie
the so-called multiplicator!. There exist bounds on how we
one can do, which follow from unitarity, but they are n
realized by existing copiers@11#. This is at least partially the
fault of the bounds, which are probably lower than they ha
to be.

A quantum copier takes quantum information in one s
hu

,

es
n
re
c

-
nd
-

th
n-
m

n-
m

r
t
-
,

e

-

tem and spreads it among several. It would be nice to be
to see how this happens qualitatively, but, at the momen
is not clear how to do this. The problem is that we are int
ested in how only a part of the information flows through t
machine. It is only the information in the input state, and n
that in the two input qubits, which enter the machine in sta
dard states, the so-called ‘‘blank pieces of paper,’’ wh
matters, but it seems to be difficult to separate the effec
the two in the action of the machine.

This issue is connected to another, which is how to b
use the copies to gain information about the input state.
previous paper we showed how nonselective measurem
of a single quantity on one of the copies can be used to g
information about the original and leave the one-particle
duced density matrix of the other copy unchanged. An int
esting extension of this would be to ask, for a given num
of copies, how much information we can gain about t
original state by performing different kinds of measureme
on the copies.

It is clear that quantum copying still presents both the
retical and experimental challenges. We hope to be abl
address some of issues raised by the questions in the pre
ing paragraphs in future publications.
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