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We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on
rotating (2þ 1)-dimensional black holes and naked singularities. In both cases we obtain the quantum-
backreacted metric analytically. In the black hole case, we explore the quantum corrections on different
regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of
both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to
their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature
singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In
the naked singularity case, quantum effects lead to the formation of a horizon that hides the conical defect,
thus turning it into a black hole. The fact that these effects occur not only for static but also for spinning
geometries makes a strong case for the role of quantum mechanics as a cosmic censor in Nature.
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I. INTRODUCTION

The quantum regime of gravitation has been one of the
outstanding conundrums of theoretical physics for almost a
century. Even the perturbative semiclassical framework,
where the matter fields are quantized while the quantum
nature of a background geometry is ignored, is a difficult
problem, both technically and conceptually. Yet, important
results have been shown within the semiclassical frame-
work. For example, in the presence of a black hole (BH), it
has been shown that quantum effects give rise to Hawking
radiation [1]. Such a semiclassical framework is possibly
a good approximation for astronomical BHs, but pro-
bably too crude for a microscopic BH near the end of
the evaporation process.
In this paper we focus in particular on a different

question of interest within the semiclassical framework:
the fate of timelike singularities as solutions of the classical
Einstein field equations when quantum matter effects are

taken into account. Timelike space-time singularities
appear in various settings. For example, rotating BHs
possess a hypersurface, called the Cauchy horizon, inside
the event horizon, beyond which there is a timelike
singularity. Such a singularity, while not visible to observ-
ers outside the black hole, may be visible to observers that
fall inside the BH. This can be seen in Fig. 1(b), where
r ¼ 0, r− and rþ are the radii of, respectively, the sin-
gularity, Cauchy horizon and event horizon. Nonrotating
but electrically charged black hole solutions also possess a
Cauchy horizon with a timelike singularity lying beyond it.
Another example is that of space-time solutions (rotating or
not) possessing timelike singularities but no event horizon;
such “naked” singularities (NSs) would thus be visible even
to far-away observers.
The presence of a generic (timelike) singularity is an

undesirable feature from a physical point of view, since it
signifies the breakdown of predictability: Cauchy data on
an initial hypersurface does not have a unique evolution;
heuristically: we do not know what may “come out” of such
a singularity. Therefore, Penrose formulated a cosmic
censorship hypothesis (CCH)[2]. The weak version of
CCH [3,4] essentially states that if a singularity forms
from the gravitational collapse of matter, then it will be
surrounded by an event horizon—thus, it will not be visible
to far-away observers. In its turn, the strong version of CCH
[5] essentially states that if a singularity forms from the
gravitational collapse of matter, then it will generically be
spacelike or null (not timelike)—thus, the singularity will
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not be visible to any observers at all (although they may
crash into it).
Given that there exist exact space-time solutions of the

classical Einstein equations which contain timelike singu-
larities, it is important to investigatewhether theygenerically
form under gravitational collapse. Investigating whether
singularities are stable under field perturbations will help
ascertain whether they are generic singularities or not.
In (3þ 1)-dimensions, it has been shown that classical

field perturbations lead to a curvature (nontimelike) singu-
larity at the Cauchy horizon in the case of spherically
symmetric and electrically charged (Reissner-Nordström)
BHs, with [6,7] or without [8–11] a positive cosmological
constant, as well as in the case of rotating (Kerr) BHs
[12,13]. These results are in support of strong CCH.1

In space-times with a number of dimensions other than
four, on the other hand, violation of strong CCH has been
found in, e.g., [14,15], as due to the Gregory-Laflamme
instability [16].
As for weak CCH, recent work [17] has shown that a

Kerr BH or a Kerr-Newman (i.e., electrically-charged Kerr)
BH cannot be turned into a NS by throwing matter into it,
as long as its stress-energy tensor satisfies the null energy
condition. However, in the specific case of (3þ 1)-D anti–
de Sitter (AdS) space-time (i.e., a Universe with a negative
cosmological constant), Ref. [18] has shown that weak
CCH may be violated.
The above examples deal with the classical stability

of space-times possessing timelike singularities. It is also
important to investigate their stability properties under
quantum field perturbations. This can be achieved via
the semiclassical Einstein equations, in which the classical
stress energy tensor is supplemented with the renormalized
expectation value of the quantum stress-energy tensor
(RSET) calculated on a fixed, classical background
space-time.
In the quantum case, the results for timelike singularities

in (3þ 1)-dimensions are very scarce. One of the very few
results is the argument in [19–21] that the RSET calculated
on Reissner-Nordström or Kerr(-Newman) background
space-time diverges on (at least a part of) the CH; there
is also the recent [22], which contains an exact calculation
of the renormalized expectation value of the square of
the field on the Cauchy horizon of Reissner-Nordström
and is found to be regular there, while the trace of the
RSET diverges. We note, however, that the RSET was not
obtained explicitly in these works and, therefore, the space-
time resulting from the quantum perturbations of the
Reissner-Nordström or Kerr(-Newman) background could
not be obtained. In order to understand the full structure of

the backreacted space-time, resulting from quantum field
perturbations, one should solve the semiclassical Einstein
equations. To the best of our knowledge, this has not been
achieved exactly2 for any (3þ 1)-D BH space-time. There
already exist some works in the literature where the
quantum-backreacted metric has been obtained in (1þ 1)-
dimensions (see e.g., [24] and references therein) as
well as in (2þ 1)-dimensions. We next review quantum-
backreaction results on a specific (2þ 1)-D case: the so-
called Bañados-Teitelboim-Zanelli (BTZ) geometries,
which include both BHs [25,26] and NSs [27].
Semiclassical backreaction on static BTZ space-times

has been studied in the following works. References [28,29]
showed that the horizon of a static BTZ BH is “pushed out”
due to backreaction and that a curvature singularity forms at
the center of the BH (although this region where the
curvature singularity forms is in principle beyond the regime
of validity of the semiclassical approximation). Also in the
case of a static BTZ BH, [30] found that the contribution of
the backreaction to the gravitational force on a static particle
may be positive or negative depending on the radius.
These works are for the case that the background space-

time is that of a static BTZ BH, which does not possess a
timelike singularity. In the case of a static (timelike) BTZ
NS, we showed in [31] that backreaction creates an event
horizon and forms a curvature singularity at its center
(although, again, this region inside the BH in principle
lies beyond the regime of validity of the semiclassical
approximation).
In the important case of nonzero rotation, to the best of

our knowledge, the only work up until recently which
aimed at investigating quantum-backreaction was that of
Steif in [32]. Steif found that, in the case of a rotating BTZ
BH, the RSET diverges as the inner horizon is approached
from its inside. In the paper [33] we went further and we
presented results for the backreacted metric, both in the
case of a rotating BTZ BH and a rotating BTZ NS. In this
paper we provide the full details of the calculation
presented in [33]. We analytically obtain the quantum-
backreacted metric everywhere for these two background
space-times. This enables us to thoroughly study the effect
of quantum corrections on rotating geometries describing
both BHs and naked conical singularities in 2þ 1 dimen-
sions. In particular, we study the quantum stability of such
space-times in relation to CCH. We also investigate the
effects of quantum backreaction on other interesting
regions of the space-times. For example, in the case of
the rotating BH space-time, we determine the quantum
backreaction on the event horizon and on the ergosphere
(region outside the rotating horizon where observers cannot
remain static). Our results show that, in the BH case, the
event horizon is pushed out (as in the static case) and the

1There are different versions of strong CCH. These results are
in support of some version or other of strong CCH: they show
varying degrees of “irregularity” of the field perturbation on the
Cauchy horizon depending on the specific physical setting, while
the C0 character is preserved in all settings studied.

2See [23], where an approximation for the RSET was used in
(3þ 1)-D Schwarzschild space-time.
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inner horizon develops a curvature singularity. This sin-
gularity in the backreacted spacetime may be spacelike or
timelike, depending on the values of the mass and angular
momentum of the black hole; when it is spacelike, strong
CCH is enforced. In the NS case, we find that an event
horizon forms and shields the singularity, which becomes a
spacelike curvature singularity (as in the static case of [31]).
Quantum effects on the NS thus act to enforce strong CCH.
There is an issue worth mentioning regarding our

space-time setting and evolution of initial data. Our BTZ
geometries are asymptotically AdS. Therefore, they are
not globally-hyperbolic and the Cauchy value problem
is, in principle, not well posed. It is known, however, that
this issue may be resolved by imposing specific boundary
conditions for the matter field on the AdS boundary [34]—
see r ¼ ∞ in Fig. 1. We specifically impose the so-called
transparent boundary conditions [34] on the AdS boundary.
Furthermore, we are dealing with regions of space-time
which possess a timelike singularity. This is true, of course,
for the NS case, but also for the region inside the Cauchy
horizon of the rotating BH case (which is the region that we
need to deal with in order to find the instability of the
Cauchy horizon). Similarly to the AdS boundary, the field
effectively satisfies some specific boundary conditions on
the timelike singularity, so that unique evolution of initial
data is restored.
Another point worth mentioning is that the singularity on

the Cauchy horizon that we find appears in the limit as we

approach the Cauchy horizon from its inside. However, as
opposed to Kerr, in the rotating BTZ geometry there exist
no closed timelike curves. Therefore, we are not faced with
the issues that such curves cause in relation to the initial
value problem in the region inside the Cauchy horizon
in Kerr.
An important point of our results is that they show that

the quantum effects on black holes and naked singularities
found in the static case [28,29,31] are rather generic. They
do not require the geometry to be static, but they are also
present in many of the spinning cases.
Finally, we note that, since three-dimensional gravity has

no local dynamical degrees of freedom (d.o.f.), the quan-
tum effects can only be due to the quantized matter source,
which in our case is provided by a (conformally coupled3)
scalar field. As mentioned, the quantum fluctuations of the
scalar field vacuum on a fixed background geometry give
rise to a RSET which is of OðℏÞ and acts as a source of
Einstein’s equations. These corrected equations give rise to
a one-loop correction on the geometry (backreaction). In
principle, one could go on to compute the second order
correction to the RSET by recalculating it, this time, on the
backreacted geometry. However, those would in principle

(a)

(b)

FIG. 1. Penrose diagrams for BTZ black holes: static black hole in panel (a) and rotating, nonextremal black hole in panel (b).

3The choice of conformal coupling is motivated by simplicity:
because AdS space-time is conformal to Minkowski space-time,
the quantum propagator in AdS is then obtained directly from its
expression in flat space-time.
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be corrections of Oðℏ2Þ and we choose not to continue in
this direction.
The paper is organized as follows. In Sec. II we review

the classical rotating BTZ geometries, both for black holes
and for naked singularities. In that section we also review
an exact black hole solution of the Einstein equations with a
source given by a particular classical scalar field configu-
ration. In Sec. III we consider a quantum scalar field on a
rotating BTZ geometry and calculate the two-point func-
tion and the RSET. We analytically solve the semiclassical
Einstein equations in Sec. IV. We analyze in depth the
physical features of these quantum-backreacted geometries
in Sec. V. We finish the main body of the paper with a
discussion in Sec. VI, where we summarize our results and
point to open questions. After the main body there are three
Appendixes: in Appendix A we present the background
BTZ geometries as the result of identifying points in the
embedding space R2;2; in Appendix B we review the two-
point function in (the covering space of) AdS3; in the last
Appendix C, we (re)derive the two-point function in a static
naked singularity space-time via the alternative method of
mode sums.
We use units such that the cosmological constant is

Λ ¼ −l−2 and the Planck length is lP ¼ ℏκ=ð8πÞ, where l
is the radius of curvature and κ is the (2þ 1)-dimensional
gravitational constant. We choose metric signature
ð−þþÞ.

II. REVIEW OF BTZ GEOMETRIES: BLACK

HOLES AND CONICAL SINGULARITIES

Three-dimensional BTZ BH and NS space-times are
exact solutions of the vacuum Einstein field equations with
a negative cosmological constant “−l−2”, described by the
line element

ds2 ¼
�

M −
r2

l
2

�

dt2 − Jdtdθ þ
�

r2

l
2
−M þ J2

4r2

�

−1

dr2

þ r2dθ2; ð2:1Þ

where −∞ < t < þ∞, 0 < r < ∞, 0 ≤ θ < 2π (periodic).
The constants M and J are, respectively, the mass4 and
angular momentum of these space-times. In this section we
review in some detail these classical solutions. For further
details, we refer the reader to the original papers [25,26] in
the BH case, and [27] in the NS case.

A. Black hole

The metric (2.1) describes a spinning black hole pro-
vided Ml ≥ jJj > 0. In this case, the space-time possesses

a Cauchy horizon at r ¼ r− > 0 and an event horizon at
r ¼ rþ ≥ r−, where

r� ≡
ljα�j
2

; α� ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi

M þ J

l

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

M −
J

l

r

: ð2:2Þ

Note that

M ¼ α2þ þ α2−

4
> 0 and J ¼ lαþα−

2
; ð2:3Þ

with αþ > 0, αþ ≥ α−, and α2þ − α2− ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − J2=l2
p

.
The static BH is obtained for J ¼ 0, where αþ ¼
2

ffiffiffiffiffi

M
p

> 0, α− ¼ 0, and there is no Cauchy horizon.
The coordinates in Eq. (2.1) do not cover the maximal

analytical extension of the rotating BTZ BH space-time.
The maximal analytical extension is represented in Fig. 1
by means of a Carter-Penrose diagram.
Clearly, the extremal (i.e., maximally rotating) BH

corresponds to Ml ¼ jJj. See Eq. (A2) for an expression
of the subextremal line-element (2.1) in terms of α� and
Eq. (A12) for the line-element for the extremal BTZ BH.
The inner horizon is classically unstable [35,36] in a

similar manner to that of Kerr or Reissner-Nordström
space-times [11,13,37]. Unlike the (3þ 1)-D Kerr geom-
etry, however, the (2þ 1)-D BH possesses no curvature
singularities—instead, it possesses a causal singularity at
r ¼ 0

5: there exist inextendible incomplete geodesics
that hit r ¼ 0 [25,26]. Like the singularity in Kerr, the
singularity of the BTZ BH is timelike. The past boundary
of the causal future of the timelike singularity is the
(future) Cauchy horizon. The name of “Cauchy” given
to this horizon is because the Cauchy problem the6 is not
well-posed to its future. In Kerr, the situation is even worse
since there exist closed timelike curves near its singularity
[38]. In the rotating BTZ space-time, on the other hand,
there exist no closed timelike curves by construction of the
space-time.
Conformal infinity I for null geodesics corresponds to

the so-called AdS boundary at r ¼ ∞. This boundary is a
timelike hypersurface and so the space-time is not globally
hyperbolic. Figure 1 shows the causal structure that gives
the defining characters to the event and Cauchy horizons, as
well as to the AdS boundary.
The metric in Eq. (2.1) is stationary and axially sym-

metric, with associated Killing vectors ∂=∂t and ∂=∂θ,
respectively. The Killing vector ∂=∂t is timelike for
r > rSL ≡

ffiffiffiffiffi

M
p

l, it is null at r ¼ rSL and it is spacelike
for rþ < r < rSL. This means that no static observers can
lie in the region r < rSL. The hypersurface r ¼ rSL is called

4The Hamiltonian mass and angular momentum of the
BTZ space-time are, in fact, Mπ=κ and Jπ=κ, respectively,
but we shall just refer to M and J as the mass and angular
momentum.

5In a slight abuse of language, we refer to r ¼ 0 although,
this singularity is, strictly speaking, not a point of the space-time.

6The Cauchy problem is the initial value problem when the
field data is given on a certain constant-coordinate hypersurface.

CASALS, FABBRI, MARTÍNEZ, and ZANELLI PHYS. REV. D 99, 104023 (2019)

104023-4



the static limit surface and the region r ∈ ðrþ; rSLÞ is called
the ergosphere. The existence of an ergosphere allows
for the Penrose process, whereby particles (only massless
ones in the BTZ case) can extract rotational energy from
the BH (see [3] in Kerr and [39] in rotating BTZ). The
ergosphere also allows for the wave-equivalent of the
Penrose process, the so-called phenomenon of superra-
diance, whereby boson field waves can extract rotational
energy from the BH. For superradiance, see [40,41] in Kerr
and [42] in asymptotically-AdS Kerr. In BTZ, on the other
hand, a massless scalar field obeying Dirichlet boundary
conditions does not exhibit superradiance [43], although the
specific case of a massive scalar field obeying certain Robin
boundary conditions does exhibit superradiance [44].
In its turn, the Killing vector χ ≡ ∂=∂tþ Ω∂=∂θ, where

Ω≡ J=ð2r2þÞ is the angular velocity of the event horizon, is
the generator of the event horizon. The vector χ is null at the
event horizon and, in the nonextremal case, it is timelike for
r > rþ. This means that, in the nonextremal case, timelike
observers that rigidly rotate at the angular velocity of the
BH can lie anywhere outside the event horizon, i.e., there is
no speed-of-light surface as in Kerr. In the extremal case, on
the other hand, the Killing vector χ is null everywhere.
Spinning BHs can also be obtained by boosting a static

BH of a given massM0, yielding a new BH state of massM
and angular momentum J, with

M ¼ M0ð1þ ω2Þ
ð1 − ω2Þ ; J ¼ 2ωM0l

ð1 − ω2Þ ; ð2:4Þ

where ω is the boost parameter in the Lorentz trans-
formation and it satisfies jωj < 1. In this way, all BH

states with M and J lying on the hyperbola M2 − J2=l2 ¼
const on the M-J plane—see Fig. 2—are connected by
boosts [45].

B. Naked singularity

If the mass in the BTZ metric (2.1) is continued to
negative values, the geometry then becomes a conical
NS (there is a curvature singularity at r ¼ 0) [27], with
the single exception of nonrotating AdS3 space-time
(M ¼ −1; J ¼ 0). For −Ml > jJj, we define

β� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−M þ J=l
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−M − J=l
p

∈ R; ð2:5Þ

so that

M ¼ −
β2þ þ β2−

4
< 0 and J ¼ lβþβ−

2
; ð2:6Þ

with βþ ≥ jβ−j ≥ 0 and β2þ − β2− ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − J2=l2
p

.
It follows from the line element (2.1) [see Eq. (A21) for

the NS line element in terms of β�] with mass M < 0 that
its metric components are well-defined everywhere for
r ≠ 0, which means that there is no horizon and it therefore
describes a NS. Its conformal structure at infinity is as in
the BH case and so it also possesses a (timelike) AdS
boundary at r ¼ ∞.
The spinless (i.e., J ¼ 0) states in the range −1 < M < 0

correspond to conical space-times with angular defects
Δ ¼ 2πð1 −

ffiffiffiffiffiffiffiffi

−M
p

Þ (particles), while those with M < −1

are conical excesses (antiparticles). The dividing case,
M ¼ −1, corresponds to AdS3 vacuum space-time.

NSs not produced 

by k k>0 

2+1 BH-NS spectrum 

NSs not produ

by k k>0

J 

BH 

M

Excesses 

(Antiparticles) 

Vacuum 

M2 -J2=1 

Defects 

(Particles ) 

FIG. 2. Schematic representation of BTZ black hole and naked singularity states for different values of M and J.
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The static conical singularities can also be boosted to obtain
spinning (anti)particles, in the same manner as for BHs. All
of these states are described by the same BTZ metric,
Eq. (2.1), with Ml ≤ −jJj.
Like the BH metric, the NS metric is also stationary and

axially symmetric, with the same associated Killing vectors
∂=∂t and ∂=∂θ, respectively. In this geometry, ∂=∂t is
always timelike and there is no ergosphere. The extremal
NS case corresponds to maximal rotation, Ml ¼ −jJj, and
its metric is given in Eq. (A29).
The spectrum of BHs and NSs can thus be summarized

as follows:

M > 0 & 0 ≤ M2
l
2 − J2 < ∞∶ Black holes

M < 0 & 0 ≤ M2
l
2 − J2 < 1∶ Particles

M < 0 & J ≠ 0 & 1 ¼ M2
l
2 − J2∶ RotatingAdS3

M ¼ −1 & J ¼ 0∶ NonrotatingAdS3ðvacuumÞ
M < 0 & 1 < M2

l
2 − J2 < ∞∶ Antiparticles

This spectrum is represented schematically in the M-J
plane in Fig. 2. The case M ¼ J ¼ 0 is known as the
“zero-mass black hole” or the maximum-deficit conical
singularity.

C. Construction of the classical BTZ geometries

In order to construct the BTZ geometries, we first
consider flat Rð2;2Þ with coordinates X0, X1, X2, X3 ∈ R

and metric

ds2 ¼ −ðdX0Þ2 þ ðdX1Þ2 þ ðdX2Þ2 − ðdX3Þ2: ð2:7Þ

We can then think of AdS3 as the pseudosphere

−ðX0Þ2 þ ðX1Þ2 þ ðX2Þ2 − ðX3Þ2 ¼ −l2 ð2:8Þ

embedded in R
ð2;2Þ. However, the topology of AdS3 is

S1ðtimeÞ × R
2ðspaceÞ and so the space-time contains

closed timelike curves. The covering of AdS3, denoted
by CAdS3, is obtained by “unwrapping” the S1, so that the
resulting space-time does not contain closed timelike
curves. We can now obtain BHs and NSs in (2þ 1)-
dimensions as locally negative constant curvature geom-
etries by identifying points in the covering space CAdS3,
which is represented by its embedding in flat R

2;2.

The identification is a quotient of CAdS3 by a Killing
vector k in the algebra soð2; 2Þ of global isometries of the
pseudosphere.
In the BH case (M ≥ jJj ≥ 0), k is a Killing vector that

acts transitively, that is, leaving no fixed points on CAdS3.
The region where the Killing vector is spacelike (k2 > 0) is
identified as r > 0 in the resulting manifold, while the
region where k is timelike (k2 ¼ r2 < 0) is removed in
order to avoid traversable closed timelike curves [26]. Thus
r ¼ 0 is a causal singularity. The specific form of k

depends on the mass M and angular momentum J of the
BH, with M ≥ jJj=l.
In the NS case, the Killing vector for the identification is

a spacelike rotation that keeps r ¼ 0 fixed. The manifold
CAdS3=kðM; JÞ then has a conical NS at the fixed point
of k (i.e., r ¼ 0), where the curvature has a Dirac-δ
singularity. The corresponding identification is along the
compact coordinate θ.
These identifications can also be expressed as the action

of a matrix HðkÞ that maps every point in R
2;2 to its image

under k, given in Table I. The identification matrices in
R

2;2 corresponding to the different BHs and conical
singularities are given explicitly in Appendix A.

D. Black hole solutions with a scalar field

We complete the discussion of the classical system by
reviewing an exact solution of Einstein equations in the
presence of a source given by a massless and conformally-
coupled real scalar field ϕ [46]. The action in three space-
time dimensions reads

I ¼
Z

d3x
ffiffiffiffiffiffi

−g
p �

Rþ 2l−2

2κ
−
1

2
gμν∇μϕ∇νϕ −

1

16
Rϕ2

�

;

ð2:9Þ

which provides the following field equations:

Gμν − l−2gμν ¼ κTμν; □ϕ −
1

8
Rϕ ¼ 0; ð2:10Þ

where the stress-energy tensor is given by

Tμν ¼ ∇μϕ∇νϕ −
1

2
gμνg

αβ∇αϕ∇βϕ

þ 1

8
ðgμν□ −∇μ∇ν þGμνÞϕ2: ð2:11Þ

TABLE I. Identification vector k for the nonextremal (M2l2 > J2) and extremal (M2l2 ¼ J2) BH and NS
geometries in terms of the soð2; 2Þ generators Jab (see Appendix A).

M2
l
2 > J2 M2

l
2 ¼ J2 Type of Killing vector k

M > 0 1
2
ðαþJ01 þ α−J23Þ αðJ01 þ J23Þ þ 1

2
ðJ02 þ J03 þ J12 þ J13Þ Spacelike, no fixed points

M < 0 1
2
ðβþJ21 þ β−J30Þ βðJ03 − J12Þ − 1

2
ðJ01 þ J03 þ J12 − J23Þ Spacelike, r ¼ 0 fixed point
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It is straightforward to check that this stress-energy tensor
is conserved and traceless, which in turn implies that the
geometry has a constant Ricci scalar,

R ¼ −6l−2: ð2:12Þ

An exact static, circularly-symmetric solution was found
in [46]. Its line element is given by

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dθ2; ð2:13Þ

where

fðrÞ≡ 1

l
2

�

r2 − 3C2 −
2C3

r

�

¼ ðrþ CÞ2ðr − 2CÞ
l
2r

;

ð2:14Þ

is the lapse function, C is an arbitrary integration constant
and the corresponding scalar field is given by

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8C

κðrþ CÞ

s

: ð2:15Þ

This exact solution describes a BH with an event horizon at
rþ ¼ 2C provided C > 0. In that case, the event horizon
surrounds a single curvature singularity at r ¼ 0, as can be
shown by calculating the Kretschmann scalar,

RμνλρRμνλρ ¼
12ðr6 þ 2C6Þ

l
4r6

: ð2:16Þ

For C ¼ 0 the solution reduces to the massless BTZ
spacetime with a vanishing scalar field. The on-shell
stress-energy tensor is given by

Tμ
ν ¼

C3

κl2r3
diagð1; 1;−2Þ; ð2:17Þ

which is consistently traceless. It should be noted that,
except for the constant factor C3=ðκl2Þ, the rest in the
expression in (2.17) coincides exactly with the renormal-
ized stress-energy tensor (3.43) to be presented in the next
section.

III. QUANTUM SCALAR FIELD

The semiclassical Einstein equations are obtained by
replacing the classical stress-energy of the matter field(s)
by the renormalized expectation value of the quantum
stress-energy tensor operator (RSET). In the presence
of a cosmological constant Λ ¼ −l−2, the semiclassical
Einstein equations are

Gμν −
gμν

l
2
¼ κhψ jTμνjψiren; ð3:1Þ

where hψ jTμνjψiren is the RSET for a quantum field in a
state jψi. For ease of notation, we henceforth drop the

subindex “ren” as well as the symbol for the quantum state
in the RSET, and we thus denote it by hTμνi.

A. Two-point functions

From now on we shall consider a massless, conformally
coupled scalar field ϕ (conformal coupling in three dimen-
sions corresponds to a coupling constant ξ ¼ 1=8 [47]). In
this case, the (Klein-Gordon) field equation is

�

□þ 3

4l2

�

ϕðxÞ ¼ 0: ð3:2Þ

As opposed to Eq. (2.10), the d’Alembertian□ ¼ gμν∇μ∇ν

here is with respect to a background metric gμν (i.e., it is a
solution of the classical vacuum Einstein equations) which,
in our case, we shall take to be a BTZ geometry.
The RSET for the quantum scalar field ϕ in a state jψi

is typically constructed from a geometric differential
operator acting on the Hadamard elementary two-point
function, which is the anticommutator Gð1Þðx; x0Þ ¼
hψ jfϕðxÞ;ϕðx0Þgjψi [48], where x and x0 are space-time
points. The anticommutator is related to the Feynman
Green function GFðx; x0Þ and to the Wightman function
Gþðx; x0Þ ¼ hψ jϕðxÞϕðx0Þjψi as [47,49]:

Gð1Þðx; x0Þ ¼ 2 ImðGFðx; x0ÞÞ ¼ 2ReðGþðx; x0ÞÞ: ð3:3Þ

Clearly from their definitions, both the anticommutator
and the Wightman function satisfy (with respect to either
x or x0) the homogeneous scalar field equation (3.2). In its
turn, the Feynman Green function satisfies the Green
function equation

�

□þ 3

4l2

�

GFðx; x0Þ ¼ −
δð3Þðx − x0Þ

ffiffiffiffiffiffi

−g
p ; ð3:4Þ

where g≡ detðgμνÞ and δð3Þ is the Dirac-δ distribution in
three dimensions.

1. Locally AdS3 space-time

In principle, there are two possible approaches to
compute the two-point function in the BTZ geometries.
The first one is to expand this function in terms of
elementary modes of the wave equation (3.2) satisfying
appropriate boundary conditions. The second approach is
to use the fact that these geometries can be obtained by an
appropriate identification in the covering AdS3 geometry.
This second approach is the one followed by [28,29,32,50]
and the one that we shall follow here—except in
Appendix C, where we follow the first approach.
Within the second approach, the two-point function in

BTZ can be readily obtained from the two-point function
in the embedding space CAdS3 [28,32]. As mentioned in
Sec. II, the BTZ space-times are not globally hyperbolic.
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For the Cauchy problem to be well-defined in these
space-times, one must impose boundary conditions on
the timelike AdS boundary [34] (as well as on the timelike
singularity in the NS case). The field may obey different
boundary conditions on the AdS boundary. We choose
transparent boundary conditions, which correspond to
defining the field modes that are smooth on the entire
Einstein static universe to which the AdS geometry can be
conformally mapped [28,34]. Taking advantage of the fact
that AdS3 is a maximally symmetric space-time, the
anticommutator in CAdS3 corresponding to these boundary
conditions can be found to be [32,34,50–52]

G
ð1Þ
A ðx; x0Þ ¼ 1

2
ffiffiffi

2
p

π

Θðσðx; x0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σðx; x0Þ
p ; ð3:5Þ

where Θ is the Heaviside step function,

σðx; x0Þ≡ ð−ðX0 − X00Þ2 þ ðX1 − X01Þ2 þ ðX2 − X02Þ2

− ðX3 − X03Þ2Þ=2; ð3:6Þ

and x and x0 are points in AdS3. Here, Xa and X0a, with
a ¼ 0, 1, 2, 3, are the coordinates in the embedding space
R

ð2;2Þ of the points x and x0, respectively. We note that
σðx; x0Þ is equal to one-half of the square of the geodesic
distance between the two points Xa and X0a in flat Rð2;2Þ

(this is Synge’s world function in R
ð2;2Þ, not in CAdS3).

Since Xa and X0a belong to the pseudosphere, σðx; x0Þ is the
chordal distance between x and x0. Throughout the paper,
we use Latin letters (such as a and b) for indices of
coordinates of points in R

2;2 and Greek letters (such as μ
and ν) for indices of coordinates of points in CAdS3 and
BTZ geometries. See Appendix B for further details and an

explicit coordinate expression for Gð1Þ
A ðx; x0Þ.

2. Multiply connected spaces

Let us now turn to the calculation of the two-point
function and the RSET specifically in the BTZ geometries.
Applying the method of images—according to which one
must sum over all distinct images of a point obtained by
the identification in the embedding space—it readily
follows that the anticommutator both for the BH and NS
geometries reads

Gð1Þðx; x0Þ ¼
X

n∈I

G
ð1Þ
A ðx;Hnx0Þ; ð3:7Þ

where H is the identification matrix in R
2;2 introduced in

Sec. II C7 and the range I is described below. In the case of

transparent boundary conditions, the two-point function
can be written as

Gð1Þðx; x0Þ ¼ 1

2
ffiffiffi

2
p

π

X

n∈I

Θðσðx;Hnx0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σðx;Hnx0Þ
p : ð3:8Þ

This expression applies to the case that the field obeys
specific boundary conditions on the AdS boundary
(r ¼ ∞) and, if the spacetime possesses one (which is
the case for all BTZ geometries except for the static BH),
also on the timelike singularity (r ¼ 0). In the case of a
static NS, we (re)derive the expression (3.8) in Appendix C
using the alternative method of mode sums, and we see
explicitly that the boundary conditions satisfied at the
timelike singularity are square-integrability.
In the expressions above, I ⊂ Z is a summation range

over all the various distinct images (see Appendix C where,
in the static NS case, the “sum over images” arises as a
“sum over caustics”). The identification matrices for the
BH and NS cases are different and we give them explicitly
in Appendix A; the ranges I are also different in each case
and we describe them next.

Black hole.—The Green function for the three-dimensional
BTZ BH was discussed in [28,32,50]. Since the identi-
fication matrix H acts transitively on R

2;2, the sum in
Eq. (3.7) includes an infinite countable number of images:
n ∈ I ¼ Z. As is shown in Appendix A, the H matrix for
the rotating black hole is given by

H¼

0

B

B

B

@

coshðπαþÞ sinhðπαþÞ 0 0

sinhðπαþÞ coshðπαþÞ 0 0

0 0 coshðπα−Þ −sinhðπα−Þ
0 0 −sinhðπα−Þ coshðπα−Þ

1

C

C

C

A

:

ð3:9Þ

Conical singularity.—In the case of a conical singularity,
the method of images does not reproduce the mode
expansion for the two-point function for arbitrary values
of M and J. Let us for now focus on the static case. If the
deficit angle Δ is of the form 2πðk − 1Þ=k, k ∈ Z

þ, the
angular identification produces a finite number of images.8

On the other hand, for arbitrary real values of Δ the sum in
Eq. (3.7) must be replaced by an integral since the
associated eigenfunctions acquire a continuous degree
and order [53]. The integral expressions, however, inter-
polate between the discrete sums that occur for consecutive
deficit angles, 2πðk − 1Þ=k and 2πk=ðkþ 1Þ.
The rationale that explains the difference between the

BH case NS cases is as in electrostatics: the method of
images between two parallel conducting plates generates a7Strictly speaking, H is meant to act on a point in R

2;2. As a
slight abuse of notation, by Hnx we shall mean Hn acting on the
point on the pseudosphere in R

2;2 that corresponds to the point x
in the BTZ space-time.

8A finite number of images is also obtained for rational values
of k.
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countable but infinite number of images regardless of the
distance between the plates. On the other hand, if the plates
form an angle θ ¼ 2π=k, a finite number of images is
produced, for k ∈ Z, whereas a dense distribution of
images are generated for a generic k. In the case of angular
excesses (negative angular deficit and M < −1) the geom-
etry is also described by Eq. (2.1), but the method of images
is inadequate. Therefore, from now on, for NS geometries
(whether rotating or not), we restrict ourselves to the case
M2

l
2 − J2 < 1 (and M < 0).

The identification matrix H is that in Eq. (A26) for
β≡ βþ ¼ 2

ffiffiffiffiffiffiffiffi

−M
p

, β− ¼ 0, namely

H ¼

0

B

B

B

@

1 0 0 0

0 cosðπβÞ − sinðπβÞ 0

0 sinðπβÞ cosðπβÞ 0

0 0 0 1

1

C

C

C

A

: ð3:10Þ

The number of terms in the sum in Eq. (3.7) is given by
the number of distinct images produced by the action of the
identification matrix H, which in this case is N − 1, where
N is the smallest positive integer such that HN ¼ 1. The
condition that such a number N exists implies that β is a
rational number. In [54] and in asymptotically flat (instead
of AdS) space-time, the method of images was applied
specifically to the case β ¼ 2=N, with N a positive integer.
Furthermore, in Appendix C we obtain the two-point
function for this β using the method of mode sums, without
relying on the method of images. Therefore, henceforth we
shall consider only the case β ¼ 2=N, N ∈ Z

þ, for static
NSs. Both from the method of images and from the
independent mode-sum calculation of Appendix C, it
follows that in Eq. (3.7) the sum over the images yields

G
ð1Þ
NSðx; x0Þ ¼

X

N−1

n¼0

G
ð1Þ
A ðx;Hnx0Þ ¼ 1

2
ffiffiffi

2
p

π

X

N−1

n¼1

Θðσðx;Hnx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σðx;Hnx0Þ
p :

ð3:11Þ

The mode expansion in [54,55] for a conical space-time
without a cosmological constant can possibly be extended
to the asymptotically AdS3 case by replacing Bessel
functions by Legendre functions in the homogeneous
solutions—see Eq. (C3).
Let us now turn to the rotating case. In this case, the

identification matrix [given in Eq. (A26)] depends on two
parameters, βþ and β−,

H ¼

0

B

B

B

@

cos ðπβ−Þ 0 0 − sin ðπβ−Þ
0 cos ðπβþÞ − sin ðπβþÞ 0

0 sin ðπβþÞ cos ðπβþÞ 0

sin ðπβ−Þ 0 0 cos ðπβ−Þ

1

C

C

C

A

:

ð3:12Þ

Again, the number of terms in the sum in Eq. (3.7) is given
by the number of distinct images produced by the action of
the identification matrix H. We shall henceforth consider
only the case β� ¼ 2=N�, Nþ ∈ N, jN−j ∈ N for rotating
NSs, where jN−j > Nþ. The smallest N for which HN ¼ 1

occurs whenN is the least common multiple ofNþ andN−.
This means that the number of images in the sum in
Eq. (3.7) is N − 1 and the expression for the two-point
function is formally the same as in Eq. (3.11).

B. Renormalized stress-energy tensor

Equipped with the two-point function, we now turn to
the calculation of the RSET. As mentioned above, the
quantum stress-energy tensor would in principle be calcu-
lated by applying a certain geometric differential operator
on the two-point function Gð1Þðx; x0Þ. However, as is well
known, the two-point function typically diverges at coinci-
dence (x ¼ x0)9—this can readily be seen in the BTZ case
from Eq. (3.8) and the fact that σðx; xÞ ¼ 0. The divergence
at coincidence, which can readily be seen in the BTZ case
from Eq. (3.8), is an ultraviolet divergence which must be
renormalized away [47]. That is, in order to obtain the
RSET, one must first renormalize the two-point function by

subtracting from it an appropriate bitensor G
ð1Þ
divðx; x0Þ

which is purely geometric. The RSET for the conformally
coupled scalar field can thus be obtained from the
Hadamard elementary function as [32,47]10:

κhTμνðxÞi ¼ πlP lim
x0→x

�

3∇x
μ∇

x0
ν − gμνg

αβ∇x
α∇

x0
β

−∇x
μ∇

x
ν −

1

4l2
gμν

�

ðGð1Þðx; x0Þ −G
ð1Þ
divðx; x0ÞÞ:

ð3:13Þ

We note that the Heaviside step function in Eq. (3.8) does
not actually appear in [28,32,50,51]. The reason is that
these references calculate either a two-point function
different from the anticommutator or else the anticommu-
tator only in the static case. In the static case (whether BH
or NS), σðx;HnxÞ is non-negative and so the step function
is redundant in this case. However, in the rotating case
(whether BH or NS), σðx;HnxÞ can be negative and so it is
important to include the step function.
Let us here note some properties of the RSET. First, since

we are dealing with a massless and conformally coupled
scalar field, the trace of its classical stress-energy tensor

9Any other divergences of the two-point function are not
ultraviolet divergences and so are of no relevance to the
renormalization process which we are interested in here.

10The operator in Eq. (3.13) is 1=2 times the corresponding
operator in [31,56]. The reason is that the definition of the
anticommutator Gð1Þðx; x0Þ here is 2 times the definition used in
[31,56], so that all the results in here and in [31,56] agree.
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must be zero. Furthermore, since we are dealing with a
three-dimensional space-time, the trace of the RSET must
also be zero (i.e., there is no trace anomaly) [47]. Second,
the divergent term G

ð1Þ
div is constructed in a way so that the

RSET is also conserved with respect to the classical
background metric. In the BTZ case, the subtraction of

G
ð1Þ
divðx; x0Þ corresponds to simply removing the n ¼ 0 term

from the n-sum in Eq. (3.7) [50,54,57]. Therefore, the
n-sums for the RSET that follow from Eqs. (3.7) and (3.13)
will be over the summation range Inf0g, instead of the
range I which we described in Sec. III A 2 for the various
space-time settings.
Furthermore, as follows from Eqs. (3.7) and (3.13), the

n-summands in the RSET will contain the quantity

dn ≡ 2σðx;HnxÞ ð3:14Þ

as well as ΘðdnÞ. Therefore, in order to facilitate the nota-
tion for the n-sums we define a new summation symbol,

X0

n

sn ≡
X

n

ΘðdnÞsn; ð3:15Þ

for some summand sn and some summation range.
It follows from [32] that, by inserting the general form

Eq. (3.7) for the two-point function into Eq. (3.13), and
using Eq. (3.6) for σ, the RSET for a conformal scalar field
satisfying transparent boundary conditions on a BTZ
geometry takes the form

κhTμνi ¼
3lP

2

X0

n∈Inf0g

�

Snμν −
1

3
gμνg

λρSnλρ

�

; ð3:16Þ

where Snμν ≡ ∂μX
a∂νX

bSnab is the pull back to AdS3 of

Snab ≡
ðHnÞab
d
3=2
n

þ 3ðHnÞacXcðH−nÞbdXd − ðHnÞacXcðHnÞbdXd

d
5=2
n

:

ð3:17Þ

Even though this expression for the RSETwas given in [32]
for the BH case, it also applies to the NS with the
appropriate summation range I.
We now proceed to give explicit expressions for the

RSET and describe its main physical features, separately
for the BH and NS cases. We will make use of the fact
that the summand in Eq. (3.16) is either symmetric or
antisymmetric—depending on the specific component—
under n → −n.

1. Black hole

Here we give the RSET in the BH geometries. Using the
symmetries under n → −n mentioned above and the fact
that I ¼ Z is symmetric with respect to n ¼ 0, the explicit

expressions for the RSET that we shall give will contain
n-sums involving only n > 0.
We first summarize the RSET result in [29] in the static

case. We then rederive (and make a slight correction to) the
RSET in [32] in the nonextremal rotating case and plot its
components. We finally derive the RSET in the extremal
case. For the rotating BH cases, we also give the specific
radii inside the Cauchy horizon at which the RSET
diverges.

RSET for the static BTZ black hole.—The RSET in the
static BTZ BH is obtained from Eqs. (3.16), (A3), (A4), and
(A8) with (α− ¼ 0), and the summation range from −∞ <
n < ∞ in Eq. (3.8). In this setting, it is dn > 0, ∀ n > 0, at
any space-time point, and so ΘðdnÞ ¼ 1 in Eq. (3.15). The
RSET in this case is

κhTμ
νðxÞi ¼

lP

r3
FðMÞdiagð1; 1;−2Þ; ð3:18Þ

in ft; r; θg coordinates, where

FðMÞ≡M3=2

2
ffiffiffi

2
p

X

∞

n¼1

coshð2nπ
ffiffiffiffiffi

M
p

Þ þ 3

ðcoshð2nπ
ffiffiffiffiffi

M
p

Þ − 1Þ3=2
: ð3:19Þ

We plot the function FðMÞ in Fig. 3. Also, we note that we
obtain the same expression for the RSET regardless of
which region of the space-time, r > rþ [Eq. (A3)] or
0 < r < rþ [Eq. (A4)], we calculate it in. The result
(3.19) was previously found in [28] and [32].

RSET for the rotating nonextremal BTZ black hole.—Let us
now include (nonextremal) rotation to the BH. From
Eqs. (3.16), (A3), (A4), (A5) and (A8) we obtain the
RSET in the nonextremal BH case:

5 10 15
M

0.005

0.010

0.015

0.020

0.025

F(M)

FIG. 3. The function FðMÞ of Eq. (3.19) that defines the RSET
profile for a static BH. This function has a maximum at
M ≈ 0.648876, decays exponentially for large M and Fð0þÞ ¼
ζð3Þ=ð2π3Þ ≈ 0.0193841.
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κhTt
ti ¼

2lP

ðα2þ − α2−Þ2
X0
∞

n¼1

2ð2r2ð3an þ ðα2þ − α2−ÞbnÞ − l
2gnÞcn þ 3αþα−enð8r2 − α2−l

2 þ α2þl
2Þ

d
5=2
n

; ð3:20Þ

κhTr
ri ¼ lP

X0
∞

n¼1

cn

d
3=2
n

; ð3:21Þ

κhTθ
θi ¼ −

2lP

ðα2þ − α2−Þ2
X0
∞

n¼1

2ð2r2ð3ān − ðα2þ − α2−ÞbnÞ − l
2ḡnÞcn þ 3αþα−enð8r2 − α2−l

2 þ α2þl
2Þ

d
5=2
n

; ð3:22Þ

κhTt
θi ¼ −

6lPl

ðα2þ − α2−Þ2
X0
∞

n¼1

ð4ðcn − 4Þr2 − anl
2Þcnαþα− þ enð−4r2ðα2− þ α2þÞ þ 2α2−α

2
þl

2Þ
d
5=2
n

; ð3:23Þ

κhTθ
ti ¼

6lP

lðα2þ − α2−Þ2
X0
∞

n¼1

ð4ðcn − 4Þr2 − anl
2Þcnαþα− þ enð−4r2ðα2− þ α2þÞ þ l2ðα4− þ α4þÞÞ

d
5=2
n

; ð3:24Þ

with

an ≡ 2α2þ sinh2
�

nπα−

2

�

þ 2α2− sinh2
�

nπαþ
2

�

; ð3:25Þ

ān ≡ 2α2þ sinh2
�

nπαþ
2

�

þ 2α2− sinh2
�

nπα−

2

�

; ð3:26Þ

bn ≡ cosh ðπnαþÞ − cosh ðπnα−Þ ¼ 2

�

sinh2
�

πnαþ
2

�

− sinh2
�

πnα−

2

��

; ð3:27Þ

cn ≡ cosh ðπnαþÞ þ cosh ðπnα−Þ þ 2; ð3:28Þ

en ≡ 2 sinh ðπnαþÞ sinh ðπnα−Þ; ð3:29Þ

gn ≡ α2−ðα2þ þ 2α2−Þ sinh2
�

nπαþ
2

�

þ α2þðα2− þ 2α2þÞ sinh2
�

nπα−

2

�

; ð3:30Þ

ḡn ≡ α2−ðα2− þ 2α2þÞ sinh2
�

nπαþ
2

�

þ α2þðα2þ þ 2α2−Þ sinh2
�

nπα−
2

�

; ð3:31Þ

and, as per Eq. (3.14),

dn ¼ 2σðx;HnxÞ ¼ 4l2
α2þ sinh2ðπnα−

2
Þ − α2− sinh2ðπnαþ2

Þ þ 2r2l−2bn

α2þ − α2−
: ð3:32Þ

In this setting, it is dn > 0 for all n > 0 and any space-time point with r > ljα−j=2 (the Cauchy horizon of the BTZ
background). Therefore, in general, the ΘðdnÞ of Eq. (3.15) must be kept in the above equations. Also, we note that we
obtain the same expression for the RSET regardless of which region of the space-time, r > rþ [Eq. (A3)], r− < r < rþ
[Eq. (A4)], or 0 < r < r− [Eq. (A5)], we calculate it in.
An important issue appears in the region r < r−: in this region, dn takes negative values and it vanishes at the radii given by

r2 ¼ r2n ≡ l
2
α2−sinh2ðπnαþ2

Þ − α2þsinh
2ðπnα−

2
Þ

2bn
; n ∈ Z

þ: ð3:33Þ

Consequently, all components of hTμ
νi diverge at these various radii r ¼ rn < r−. Moreover, r2n → r2− as n → ∞, and

therefore, r− is an accumulation point of singularities from the left.
We note that our RSET expressions in Eqs. (3.20)–(3.24) agree with those in Eq. (19) in [32] except for a factor in one

component. Equation (19) in [32] is in a different set of coordinates, which are defined in Eq. (6) in [32] and which we
denote here by ft̄; r̄; θ̄g. If we transform our Eqs. (3.20)–(3.24) to ft̄; r̄; θ̄g coordinates, our result is equal to that in Eq. (19)
in [32] but with an extra factor “−2” in the hT θ̄

t̄i component.
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In Figs. 4–6 we plot the RSET components hTμ
νi as

functions of r and α− for a fixed value of αþ. It can be
observed that they all diverge as r → r− as expected. For
comparison with different boundary conditions, we note
that Ref. [58] plotted the RSET for the case of Dirichlet
boundary conditions—instead of transparent boundary
conditions, as in our case—and explicit analytical expres-
sions for the RSET in Dirichlet, Neumann and Robin
boundary conditions are given in [59,60].

RSET for the extremal BTZ black hole.—The angular
momentum in the extreme BTZ BH of mass M is
J ¼ γMl with γ ¼ �1 (i.e., αþ ¼ γα−). Here we define
α≡ rþ=l ¼

ffiffiffiffiffiffiffiffiffiffi

M=2
p

> 0. From Eqs. (3.16), (A13), (A14)
and (A18) we then find the following expression for the
RSET valid everywhere (∀ r > 0):

FIG. 4. Plot of the log of the absolute value of the RSET components hTμ
νi as functions of r ∈ ðr−; 10� and α− ∈ ½0; αþ� for the

specific values of αþ ¼ ð
ffiffiffi

3
p

þ 1Þ=
ffiffiffi

2
p

, l ¼ 1, κ ¼ 8π and lP ¼ 1. Left: hTt
ti; right: hTr

ri. The continuous red and blue lines correspond
to, respectively, rþ and rSL. The vertical axis has been capped at a fixed value.

FIG. 5. Same as Fig. 4 but for the component hTθ
θi.

FIG. 6. Same as Fig. 4 but for the (nondiagonal) components hTt
θi (left) and hTθ

ti (right).
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κhTt
ti ¼

l
2lP

2α

X

∞

n¼1

0 1

d
5=2
n

½3AðrÞð6π2α2n2 þ ð2π2α2n2 þ 1Þ coshð4παnÞ − 1Þ

þ16παnð3α − AðrÞÞ sinhðπαnÞ cosh3ðπαnÞ − 4α sinh2ð2παnÞ�; ð3:34Þ

κhTt
θi ¼ −

3γl3lP

2α

X

∞

n¼1

0 1

d
5=2
n

½AðrÞð6π2α2n2 þ ð2π2α2n2 − 1Þ coshð4παnÞ þ 1Þ

þ16α sinhðπαnÞ cosh2ðπαnÞðπαn coshðπαnÞ − sinhðπαnÞÞ�; ð3:35Þ

κhTr
ri ¼ 4lP

X0
∞

n¼1

cosh2ðnπαÞ
d
3=2
n

; ð3:36Þ

κhTθ
ti ¼

3γllP

2α

X

∞

n¼1

0 1

d
5=2
n

½AðrÞð6π2α2n2 þ ð2π2α2n2 − 1Þ coshð4παnÞ þ 1Þ

þ16α sinhðπαnÞ cosh2ðπαnÞðπαn coshðπαnÞ þ sinhðπαnÞÞ�; ð3:37Þ

κhTθ
θi ¼ −

l
2lP

2α

X

∞

n¼1

0 1

d
5=2
n

½3AðrÞð6π2α2n2 þ ð2π2α2n2 þ 1Þ coshð4παnÞ − 1Þ

þ16παnð3αþ AðrÞÞ sinhðπαnÞ cosh3ðπαnÞ þ 4α sinh2ð2παnÞ�; ð3:38Þ

with

dn ¼ 2σðx;HnxÞ ¼ 4l2 sinhðπαnÞðπnAðrÞ coshðπαnÞ þ sinhðπαnÞÞ; ð3:39Þ

and

AðrÞ≡ r2 − l
2α2

l
2α

: ð3:40Þ

We note that the RSET in the extremal BH case in
Eqs. (3.34)–(3.38) is actually equal to the RSET in the
subextremal BH case in Eqs. (3.20)–(3.24) when taking the
extremal limit r− → rþ.
Similarly to the nonextremal BH case, dn is zero at

certain values rn < rþ, with

r2n ≡ r2þ

�

1 −
tanh ðnπαÞ

nπα

�

; n ∈ Z
þ: ð3:41Þ

This implies that the nth term in the series for hTμ
νi

diverges at these radii. Moreover, since rn → rþ as n → ∞,
rþ becomes an accumulation point of singularities from
the left.

2. Naked singularity

Here we give the RSET in the NS geometries. Here we
shall make use of the symmetry SnμνðxÞ ¼ Sn−Nμν ðxÞ, a
consequence of the property HN ¼ 1 that allows to
symmetrize the sum over positive and negative n in
Eq. (3.16) as

X

N−1

n¼1

fn ¼
1

2

X

N−1

n¼1

ðfn þ fn−NÞ ¼
1

2

X

N−1

n¼1

ðfn þ f−nÞ; ð3:42Þ

where fn is the summand in (3.16). Depending on the
specific component of the RSET, we have fn ¼ f−n
or fn ¼ −f−n.
We first review the RSET in the static case obtained in

[31] and afterwards give our new RSET results in the
rotating case (we do not consider the extremal NS because
it involves an infinite sum whose convergence would need
to be addressed separately).

RSET for the static NS.—We consider static NS space-
times with β ¼ 2

ffiffiffiffiffiffiffiffi

−M
p

¼ 2=N and N ∈ Z
þ. The RSET

on this space-time can then be obtained from Eq. (3.16),
the embedding Eq. (A22) and identification matrix in
Eq. (A26) in the static limit (βþ ¼ β, β− ¼ 0), where the
summation range is 1 ≤ n ≤ N − 1. As in the static BH
case, it is dn > 0, ∀ n > 0, and for any space-time point, so
that ΘðdnÞ ¼ 1. The result, derived in [31], is11

11The symbol N is not used for the same quantity here as in
[56], but the expressions in both places are equivalent. On the
other hand, there is a typographical error in Eq. (14) in [31] in that
a factor of 1=2 is missing, but the remaining formulas in [31] are
correct.
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κhTμ
νðxÞi ¼

lP

r3
FðMÞdiagð1; 1;−2Þ; ð3:43Þ

in ft; r; θg coordinates, where

FðMÞ≡ ð−MÞ3=2
4

ffiffiffi

2
p

X

N−1

n¼1

cosð2nπ
ffiffiffiffiffiffiffiffi

−M
p

Þ þ 3

ð1 − cosð2nπ
ffiffiffiffiffiffiffiffi

−M
p

ÞÞ3=2
; ð3:44Þ

where we have used Eq. (3.42). The function FðMÞ is
plotted in Fig. 7.
From (3.44) it is clear that the result is nontrivial

for N ≥ 1, which in turn implies −1=4 < M < 0. For
static conical singularities with −1 < M < −1=4, the
computation requires an integral formula instead of
a sum.
The expression for the summand in FðMÞ, including the

factor ð−MÞ3=2 in Eq. (3.44) for the NS, can be obtained
from the corresponding one for the BH in Eq. (3.19) by
analytic continuation, M → −M. However, in the NS case,
the images for n and n − N are repeated, whereas in the BH
case all images with different n are distinct, which accounts
for the different overall factors in FðMÞ in the two cases.
Furthermore, for the NS, unlike the BH case, the sum runs
over a finite range and consequently F is manifestly finite
and positive.
The value of Fð0Þ may be obtained by taking the limit

M ¼ −1=N2
→ 0− (i.e., N → ∞) in Eq. (3.44), which is

numerically found to be

Fð0−Þ ¼ 0.0193841 ≈
ζð3Þ
2π3

; ð3:45Þ

where ζ is the Riemann zeta function (see Fig. 7). This
value matches the limit M → 0þ of FðMÞ in the BH
geometry, Eq. (3.19), in spite of the fact that there is
apparently a mismatch by a factor of two between

Eqs. (3.44) and (3.19). The apparent mismatch arises from
taking the limit by applying the L’Hôpital rule to the
summand and not considering the symmetry n→ N − n
that it has (see Fig. 8)—this symmetry adds a factor of two
apparently lost in the sum in Eq. (3.44). The continuity of
FðMÞ and its derivative acrossM ¼ 0 is manifest in Fig. 9.

RSET for the rotating NS.—We consider the case
β� ¼ 2=N�, N� ∈ Z

þ, where N− > Nþ. The number of
distinct images is N, the least common multiple of Nþ and
N−. Then, using Eq. (3.16), the symmetry (3.42), as well as
the embedding Eq. (A22) and identification matrix in
Eq. (A26), we obtain the following components of the
RSET for the rotating NS:

10 20 30 40 50

1

–M

0.0160

0.0165

0.0170

0.0175

0.0180

0.0185

0.0190

F(M )

FIG. 7. The function FðMÞ of Eq. (3.44) that defines the RSET
profile as a function of 1=

ffiffiffiffiffiffiffiffi

−M
p

¼ N, where N ¼ 2;…; 50. The
sum in Eq. (3.44) rapidly approaches the asymptotic value Fð0−Þ
in Eq. (3.45) given by the limit N → ∞.

10 20 30 40 50
n–14

–12

–10

– 8

– 6

log(fn)

FIG. 8. Logarithm of the summand fn in Eq. (3.44) as a
function of n. The plot shows the range n ¼ 1;…; N − 1 ¼ 49

and exhibits the symmetry n → N − n.

–0.10 –0.05 0.05 0.10
M

0.0185

0.0190

0.0195

0.0200

0.0205
F(M)

FIG. 9. The function FðMÞ as a function of M around M ¼ 0.
For M < 0, FðMÞ is given by the finite sum Eq. (3.44) and it is
plotted using dots. For M > 0, FðMÞ is given by the infinite
series Eq. (3.19) and it is represented with a solid line. The figure
shows that FðMÞ and its derivative dF=dM are continuous at
M ¼ 0, which can be also verified analytically.

CASALS, FABBRI, MARTÍNEZ, and ZANELLI PHYS. REV. D 99, 104023 (2019)

104023-14



κhTt
ti ¼

lP

ðβ2þ − β2−Þ2
X

N−1

n¼1

0 2ð2r2ð3an − ðβ2þ − β2−ÞbnÞ þ l
2gnÞcn þ 3βþβ−enð8r2 þ β2−l

2 þ β2þl
2Þ

d
5=2
n

; ð3:46Þ

κhTr
ri ¼

lP

2

X

N−1

n¼1

0 cn

d
3=2
n

; ð3:47Þ

κhTθ
θi ¼ −

lP

ðβ2þ − β2−Þ2
X

N−1

n¼1

0 2ð2r2ð3ān þ ðβ2þ − β2−ÞbnÞ þ l
2ḡnÞcn þ 3βþβ−enð8r2 þ β2−l

2 þ β2þl
2Þ

d
5=2
n

; ð3:48Þ

κhTt
θi ¼ −

3lPl

ðβ2þ − β2−Þ2
X

N−1

n¼1

0 ð4ðcn − 4Þr2 − anl
2Þcnβþβ− þ enð4r2ðβ2− þ β2þÞ þ 2β2−β

2
þl

2Þ
d
5=2
n

; ð3:49Þ

κhTθ
ti ¼

3lP

lðβ2þ − β2−Þ2
X

N−1

n¼1

0 ð4ðcn − 4Þr2 − anl
2Þcnβþβ− þ enð4r2ðβ2− þ β2þÞ þ l

2ðβ4− þ β4þÞÞ
d
5=2
n

; ð3:50Þ

with

an ≡ 2β2þ sin2
�

nπβ−

2

�

þ 2β2− sin2
�

nπβþ
2

�

; ð3:51Þ

ān ≡ 2β2þ sin2
�

nπβþ
2

�

þ 2β2− sin2
�

nπβ−

2

�

; ð3:52Þ

bn ≡ cos ðπnβþÞ − cos ðπnβ−Þ ¼ 2

�

sin2
�

πnβ−

2

�

− sin2
�

πnβþ
2

��

; ð3:53Þ

cn ≡ cos ðπnβþÞ þ cos ðπnβ−Þ þ 2; ð3:54Þ

en ≡ 2 sin ðπnβþÞ sin ðπnβ−Þ; ð3:55Þ

gn ≡ β2−ðβ2þ þ 2β2−Þ sin2
�

nπβþ
2

�

þ β2þðβ2− þ 2β2þÞ sin2
�

nπβ−

2

�

; ð3:56Þ

ḡn ≡ β2−ðβ2− þ 2β2þÞ sin2
�

nπβþ
2

�

þ β2þðβ2þ þ 2β2−Þ sin2
�

nπβ−

2

�

; ð3:57Þ

and

dn ¼ 2σðx;HnxÞ ¼ 4l2
β2− sin2ðπnβþ2

Þ − β2þ sin2ðπnβ−
2
Þ − 2r2l−2bn

β2þ − β2−
: ð3:58Þ

Note that this RSET has the generic form

hTμ
νi ¼

1

2

X

N−1

n¼1

0½τμνðr; n; βþ; β−Þ þ τμνðr;−n; βþ; β−Þ�; ð3:59Þ

for some tensor τμν. The components hTt
ri and hTr

θi vanish because τrt and τrθ are antisymmetric under the change
n→ −n. For instance, the component τtr given by

τtr ¼ −
48l3rzn sin ð12 πβþnÞ

ðβ2þ − β2−Þðβ2−l2 þ 4r2Þðβ2þl2 þ 4r2Þd5=2n
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with

zn ≡ βþð4r2 þ β2−l
2Þ sin ðπβ−nÞ sin

�

1

2
πβþn

�

− 2β−ð4r2 þ β2þl
2Þ sin2

�

1

2
πβ−n

�

cos

�

1

2
πβþn

�

;

is odd under n → −n. This simplifies the backreaction
problem since it is sufficient to consider a solution of the
metric semiclassical equations of the stationary form in
Eq. (4.17) (i.e., with no gtr or grθ components).
Note that bn > 0 in (3.58) implies dn < 0 and therefore

those terms with bn > 0 do not contribute to the sum
defining the RSET.12 The special case bn ¼ 0 would make
dn to be independent of r, so that the RSET would diverge
at radial infinity, thus leading to a breakdown of the
perturbative approximation. It can be seen that bn vanishes
for n ¼ N, which is outside the range of the sum
1 ≤ n ≤ N − 1. In addition, there is a discrete set of pairs
of β� for which this also happens in the range of the sum.
This set is given by

S ≡ fβ�jnðβþ � β−Þ ¼ 2k; k ∈ Zg ð3:60Þ

and it must be removed from the analysis. For example, the
case βþ ¼ 2=3 and β− ¼ 1=3, yielding b2 ¼ b4 ¼ 0,
belongs to S.
For bn < 0, dn grows as r2 for sufficiently large r and

the above RSET components go as r−3 at infinity, which is
the same behavior as the RSET in the static case and as the
classical stress-energy tensor.
Finally, and similarly to the BH case, dn in Eq. (3.58)

vanishes at some radii rn given by

r2n ≡
l2

2bn

�

β2−sin2
�

1

2
πnβþ

�

− β2þsin
2

�

1

2
πnβ−

��

> 0;

ð3:61Þ

for some n. Since bn < 0, the numerator of (3.61) must be
negative in order for rn to be real valued. At each of these
zeroes, the RSET blows up and, therefore, the Kretschmann
invariant (5.7) diverges, signaling curvature singularities.
Let us now examine under which conditions one can

make sure that bn < 0 for some n in order for the sum in the
RSET to be nonvanishing. For β− ¼ 0 (J ¼ 0), bn is nega-
tive for all n, and since bn is a continuous function of β�, it
should still be negative for some range β− ≠ 0 (jJj > 0).
Since β� ¼ 2=N�, then 0 < βþ � β− ≤ 3. The largest

possible βþ ¼ 2 yields N ¼ jN−j and bn ≥ 0 for all
n ∈ f1;…; N− − 1g, hence this case is excluded.
Therefore the only allowed values for β� are contained
in the domain

0 < βþ � β− < 2: ð3:62Þ

The region covered by this condition corresponds to NSs in
the square region J > M > J − 1 and −J > M > −J − 1

as shown in Fig. 10. This region includes all the static NSs
with masses in the range 0 < M < −1. One can now
observe that since sin2 x grows monotonically for small
x and βþ ≥ β−, at least for n ¼ 1, b1 < 0, and therefore the
sum for the RSET always contains the first term. It is also
easy to see that, in that same domain, the factor in brackets
in Eq. (3.61) is negative for n ¼ 1, which renders r21 > 0.

IV. SOLUTION OF THE SEMICLASSICAL

EQUATIONS

In this section we solve analytically the semiclassical
Einstein equations:

Gμν − l
−2gμν ¼ κhTμνi: ð4:1Þ

Here, the RSET is calculated on a classical BTZ
background space-time (such as the one in the previous
section when using transparent boundary conditions) and
the solution gμν corresponds to the quantum-backreacted
geometry (that is, gμν in Eq. (4.1) is not the classical BTZ
background).
We provide details of the integration differentiating

between the nonrotating and rotating cases. For the static
case, this section contains a review of existing results in the
literature [28,29,31] and new observations about the RSET

M 

J 

FIG. 10. Region 0 < βþ þ β− < 2 [see Eq. (3.62)] in the M-J
plane corresponds to the central square between the zero mass
state (M ¼ 0, J ¼ 0) and anti–de Sitter (M ¼ −1, J ¼ 0). In this
region b1 < 0, which guarantees that the RSET contains at least
one nonvanishing term in the sum (n ¼ 1).

12Writing bn as 2ðsin2 y − sin2 xÞ with y < x, and imposing
bn > 0 implies that sin2 x=x2 − sin2 y=y2 < 0, from which
immediately follows that dn would be negative.
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conservation under different boundary conditions. In the
rotating case we include a thorough description of the
results briefly announced in [33].

A. Static geometries

Let us consider a general form for a static and circularly
symmetric three-dimensional line element:

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2dθ2: ð4:2Þ

The functions AðrÞ and BðrÞ are determined so that this
metric is a solution of the semiclassical Eq. (4.1) with a
static RSET of the form hTμ

νi ¼ diagðhTt
tðrÞi; hTr

rðrÞi;
hTθ

θðrÞiÞ as a source. In particular, the RSETs of
Eqs. (3.43) and (3.18) have this diagonal form; also, the
static BTZ BH geometries, Eq. (2.1) or (A21) with J ¼ 0,
have the form in Eq. (4.2).
The semiclassical Einstein equations containing the

above RSET as a source reduce to

B0

2r
−

1

l
2
¼ κhTt

ti; ð4:3Þ

BA0

2rA
−

1

l
2
¼ κhTr

ri; ð4:4Þ

AA0B0 − BðA02 − 2AA00Þ
4A2

−
1

l2
¼ κhTθ

θi; ð4:5Þ

where a prime on a function denotes derivative with respect
to its argument. Using Eqs. (4.3) and (4.4), Eq. (4.5)
becomes

hTr
ri0 þ

A0

2A
ðhTr

ri − hTt
tiÞ þ

1

r
ðhTr

ri − hTθ
θiÞ ¼ 0:

ð4:6Þ

In its turn, the only nonvanishing component of ∇μhTμ
νi is

∇μhTμ
ri ¼ hTr

ri0 þ
A0

2A
ðhTr

ri− hTt
tiÞ þ

1

r
ðhTr

ri− hTθ
θiÞ:

ð4:7Þ

We note that Eq. (4.6) is equivalent to ∇μhTμ
ri ¼ 0. As

expected, once the three field equations are satisfied, the
conservation of hTμ

νi holds.

1. Dirichlet and Neumann boundary conditions

The RSET that we gave in Sec. III B was for a conformal
scalar field satisfying transparent boundary conditions.
From [28], one can show that the RSET components
computed using Dirichlet and Neumann boundary con-
ditions for a conformal scalar field on the BTZ BH
background satisfy the following relation

hTr
ri0 þ

r

r2 − r2þ
ðhTr

ri − hTt
tiÞ þ

1

r
ðhTr

ri − hTθ
θiÞ ¼ 0:

ð4:8Þ

Comparing the above expression with Eq. (4.7), it is noted
that the conservation of the RSET is guaranteed if

A0

2A
¼ r

r2 − r2þ
: ð4:9Þ

This condition is exactly verified by the static BTZ BH
geometry, Eq. (2.1) with J ¼ 0. This means that the RSET
for a field satisfying Dirichlet or Neumann boundary
conditions is conserved on the BTZ BH background.
If, on the other hand, A were such that it did not satisfy
Eq. (4.9), then the RSET would not be conserved. In that
case, the integrability condition for Eqs. (4.3)–(4.5) would
not be fulfilled. However, if A satisfied A ∝ ðr2 − r2þÞ þ
OðlPÞ, then Eq. (4.8) would be satisfied at order lP. Then
the semiclassical equations (4.3)–(4.5) for a RSET for a
field satisfying Dirichlet or Neumann boundary conditions
would only be compatible at linear order in lP.

2. Transparent boundary conditions

The components of the RSET for a conformal scalar field
satisfying transparent boundary conditions on the BTZ
background geometries, for either BH [Eq. (3.18)] or NS
[Eq. (3.43)], satisfy the algebraic relations

hTt
ti ¼ hTr

ri and hTt
ti þ hTr

ri þ hTθ
θi ¼ 0; ð4:10Þ

which imply hTr
ri − hTθ

θi ¼ 3hTr
ri. In this case, Eq. (4.7)

reduces to

∇μhTμ
ri ¼ hTr

ri0 þ
3

r
hTr

ri; ð4:11Þ

whose right-hand side vanishes since hTr
ri is proportional

to r−3 [see Eqs. (3.18) and (3.43)]. Note that the term with
A0=A in Eq. (4.7) is absent in Eq. (4.11) because
hTt

ti ¼ hTr
ri. This shows that a RSET calculated on a

fixed background space-time and which is of the form

hTμ
νi ¼

constant
r3

diagð1; 1;−2Þ; ð4:12Þ

in ft; r; θg coordinates is conserved on the general static
metric in Eq. (4.2) and so fulfills the integrability condition
for Eqs. (4.3)–(4.5). In particular, the form (4.12) is
satisfied by the RSET for a field with transparent boundary
conditions on a BTZ background space-time.
Because Eq. (4.5) is satisfied by virtue of (4.11), it is

only necessary to solve Eqs. (4.3) and (4.4). Subtracting
Eqs. (4.3) and (4.4), and using Eq. (4.10), we obtain
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A0

A
¼ B0

B
: ð4:13Þ

Thus A ¼ B (up to a constant which can be taken equal
to 1) and, from Eq. (4.3), we obtain

A ¼ B ¼ r2

l
2
− c0 þ 2κ

Z

rhTt
tidr; ð4:14Þ

where c0 is an integration constant.
Note that for the transparent boundary conditions and in

the coordinates of Eq. (4.2), the exact solution given by
Eq. (4.14) of the semiclassical equations (4.3)–(4.5) is a
linear function of the source. Thus, if c0 is chosen to be the
mass M of the static BTZ geometries, then the exact (i.e.,
without expanding for small lP) solution for the metric
coefficients A and B coincides with the solution one would
obtain if expanding A and B to linear order in lP around a
BTZ static metric.

Black hole.—Let us first briefly review the static (J ¼ 0)
BTZ BH case, which was analyzed in [29] considering
transparent boundary conditions. Using Eq. (3.18), the
integral appearing in Eq. (4.14) becomes

2κ

Z

rhTt
tidr ¼ −

2lPFðMÞ
r

; ð4:15Þ

where FðMÞ is given in Eq. (3.19). The backreacted metric,
as given by Eqs. (4.2) and (4.14), is then

ds2 ¼ −

�

r2

l
2
− c0 −

2lPFðMÞ
r

�

dt2 þ dr2
�

r2

l2
− c0 −

2lPFðMÞ
r

�

þ r2dθ2: ð4:16Þ

This metric is that of a circularly symmetric AdS black
hole (i.e., a “three-dimensional Schwarzschild-AdS” black
hole), as was already noted in [29], where its thermody-
namics properties for c0 ¼ M were investigated.

Naked singularity.—In the static NS case, the RSET in
Eq. (3.43) has the same structure as for the static BH case.
Therefore, the quantum-backreacted metric has the same
form as in Eq. (4.16), but now FðMÞ is instead given by the
finite sum (3.44).

B. Rotating geometries

In this section we set as a source of the Einstein
semiclassical equations (4.1) the RSET corresponding to
a conformally coupled scalar field on the rotating BTZ
background geometries. In order to solve these backreac-
tion equations we consider a general stationary and
circularly symmetric three-dimensional line element:

ds2 ¼ −NðrÞ2fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ þ kðrÞdtÞ2; ð4:17Þ

for some functions NðrÞ, fðrÞ and shift function kðrÞ. We
are interested in finding the linear corrections in lP to the
rotating BTZ geometries. For this purpose, we write the
metric functions explicitly up to order OðlpÞ as

NðrÞ ¼ N0ðrÞ þ lPN1ðrÞ þOðl2PÞ;
fðrÞ ¼ f0ðrÞ þ lPf1ðrÞ þOðl2PÞ;
kðrÞ ¼ k0ðrÞ þ lPk1ðrÞ þOðl2PÞ; ð4:18Þ

where the functions labeled with a subindex 0 are the
background metric coefficients and those with subindex 1
correspond to their first-order backreaction corrections
in lP.
The zeroth order field equations provide the equations

for the background functions:

N0
0 ¼ 0; k000 þ

3

r
k00 ¼ 0; f000 þ

3

r
f00 ¼

8

l
2

f00 þ
r3k020
2N2

0

¼ 2r

l
2
; ð4:19Þ

where a prime means derivative with respect to their
argument, r. Thus, it is N0ðrÞ ¼ constant, which is taken
to be 1. In its turn, the first integral of the equation for k0
gives r3k00 ¼ J ¼ constant, so that

k0 ¼ −
J

2r2
þ k0ð∞Þ: ð4:20Þ

We choose k0ð∞Þ ¼ 0 in order to describe the BTZ
geometries in a coordinate frame such that the shift function
at infinity vanishes. Thus, we have

N0 ¼ 1; k0 ¼ −
J

2r2
: ð4:21Þ

Moreover, from Eq. (4.19) we have

f00 ¼
2r

l
2
−

J2

2r3
; ð4:22Þ

and hence,

f0 ¼
r2

l2
−M þ J2

4r2
; ð4:23Þ

where M is a constant of integration. Equation (4.23) is
the usual expression for the lapse function of the BTZ
geometries with mass M and angular momentum J.
The next order of the field equations provides linear

differential equations forN1ðrÞ, k1ðrÞ and f1ðrÞ. Explicitly,
the OðlPÞ semiclassical Einstein equations (4.1) read
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16r6
κ

lp
hTtti ¼ f0ðr5ð16Jk01 − 8f01Þ þ 4J2r4N00

1 − 8J2r3N0
1 þ 8J2r2N1 þ 8Jr6k001Þ

þ 2J2r4f001 − 3J4rN0
1 þ 6J4N1 − 6J3r3k01 þ

12

l
2
J2r5N0

1; ð4:24Þ

8
κ

lp
hTtθi ¼ −4f0

�

J

�

N00
1 −

N0
1

r

�

þ r2k001 þ 3rk01

�

− 2Jf001 þ 3J

�

J2

r3
−
4r

l
2

�

N0
1 −

6J3N1

r4
þ 6J2k01

r
; ð4:25Þ

κ

lp
hTrri ¼

r3ðf01 þ Jk01Þ − J2N1

2r4f0
þ N0

1

r
; ð4:26Þ

4
κ

lp
hTθθi ¼ 4r2f0N

00
1 þ 2r2f001 þ

�

12r3

l
2

−
3J2

r

�

N0
1 þ

6J2N1

r2
− 6Jrk01: ð4:27Þ

We first isolate the relevant second derivatives appearing in these equations:

r4Jk001 ¼ ð−r3Jk01 þ 2r3f01 þ J2rN0
1 − 2J2N1Þ þ

1

f0

�

2Jr2
κ

lp
hTtθi þ 4r4

κ

lp
hTtti

�

; ð4:28Þ

4r2f0N
00
1 þ 2r2f001 ¼ 4

κ

lp
hTθθi −

�

12r3

l
2

þ 3J2

r

�

N0
1 −

6J2N1

r2
þ 6Jrk01: ð4:29Þ

Substituting these equations into Eq. (4.24) we obtain

A≡ 4J2r2
κ

lp
hTθθi þ 16Jr4

κ

lp
hTtθi þ 16r6

κ

lp
hTtti ¼ −8r2f0ðr3ðJk01 þ f01Þ − J2N1Þ; ð4:30Þ

which combined with Eq. (4.26) gives

N0
1 ¼ r

κ

lp
hTrri þ

A

16r5f20
: ð4:31Þ

This last equation determines N1. Since the RSET is traceless, we obtain

hTtti ¼ f20hTrri þ
�

1

l
2
−
M

r2

�

hTθθi −
J

r2
hTtθi; ð4:32Þ

so that A becomes

A ¼ 16r6
κ

lp
f0

�

f0hTrri þ
1

r2
hTθθi

�

: ð4:33Þ

We now use the combination of Eqs. (4.26) and (4.27) that eliminates k01, together with Eqs. (4.32) and (4.31), and obtain

ðr3f01Þ0 ¼ −
A

8r3f0
− 2r2N0

1

�

4r2

l
2
−M −

J2

2r2

�

− 2r3f0N
00
1: ð4:34Þ

This equation allows to solve for f1. Finally, the equation determining k1 comes from Eq. (4.30):

Jk01 ¼ −f01 þ
J2N1

r3
−

A

8r5f0
: ð4:35Þ

In this way, we have decoupled the semiclassical Einstein equations at the linear approximation in lP. We note that the
components of the RSET satisfy the integrability condition of these equations,
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dhTrri
dr

¼
�

J2l2 − 2l2r2f0 − 4r4

l
2r3f0

�

hTrri þ
l
2hTtti− hTθθi

l
2rf20

;

ð4:36Þ

which corresponds to the covariant conservation (at first
order in lP) of the RSET.
The integration of Eqs. (4.31), (4.34) and (4.35) give

N1ðrÞ ¼
κ

lP

Z

dr

�

2rhTrri þ
hTθθi
rf0ðrÞ

�

þ c1; ð4:37Þ

f1ðrÞ ¼
Z

dr

�

−2f0ðrÞN0
1ðrÞ þ N1ðrÞ

�

−
2M

r
þ J2

r3

�

þ 2

r3

Z

dr

�

2MrN1ðrÞ þ
κ

lP
r3f0ðrÞhTrri

��

þ c2

r2
þ c3; ð4:38Þ

Jk1ðrÞ ¼ −f1ðrÞ − 2f0ðrÞN1ðrÞ

þ 2

Z

rdr

�

2N1ðrÞ
l
2

þ f0ðrÞl−1P κhTrri
�

þ c4:

ð4:39Þ

The integration constants c1, c2, c3 and c4 are set to zero so
that N1, f1 and k1 vanish for vanishing RSET. Note that f1
and k1 are determined by N1 and hTr

ri ¼ f0ðrÞhTrri.
We next give the explicit form of the semiclassical

corrections for the different BTZ backgrounds.

1. Semiclassical corrections to the nonextremal black hole

The backreaction corrections to the nonextremal rotating
BTZ BH are determined using Eqs. (3.20)–(3.24) together
with Eqs. (4.37)–(4.39), yielding

N1ðrÞ ¼
l
2

ðα2þ − α2−Þ
X0
∞

n¼1

ancn − 2α−αþen

bnd
3=2
n

; ð4:40Þ

f1ðrÞ ¼ −
1

32r2ðα2þ − α2−Þ

×
X0
∞

n¼1

4hnðancn − 2α−αþenÞ þ cnd
2
nðα2þ − α2−Þ3

b2nd
3=2
n

;

ð4:41Þ

k1ðrÞ ¼
l

4r2

X0
∞

n¼1

ðα2− þ α2þÞen − α−αþðcn − 4Þcn
b2nd

1=2
n

;

ð4:42Þ

where an, bn, cn, en and dn are given in Eqs. (3.25), (3.27),
(3.28), (3.29) and (3.32), respectively, with

hn ≡ ð4r2 − l
2α2þÞð4r2 − l

2α2−Þbn

þ ðα2þ − α2−Þ
�

4r2 −
ðα2þ þ α2−Þl2

2

�

dn: ð4:43Þ

For plots of the (equivalent of the) functionsN1ðrÞ, f1ðrÞ
and k1ðrÞ in the backreacted metric, we refer the reader
to [56].

2. Semiclassical corrections to the extremal black hole

Using Eqs. (3.34)–(3.38) together with Eqs. (4.37)–
(4.39) we obtain the semiclassical corrections to the
extremal BTZ BH case:

N1ðrÞ ¼
X

∞

n¼1

0 An

2πnα sinh ð2πnαÞd3=2n

; ð4:44Þ

f1ðrÞ ¼ −l4
X

∞

n¼1

0 ðr
2

l2
− α2Þ2Bn þ 2αðr2

l2
− α2Þ sinhð2παnÞCn þDn

r2π2n2α sinhð2παnÞd3=2n

; ð4:45Þ

k1ðrÞ ¼ −γl
X

∞

n¼1

0 2π2α2n2ðcosh2 ð2πnαÞ þ 1Þ − sinh2 ð2πnαÞ
2r2π2n2 sinh2 ð2πnαÞd1=2n

; ð4:46Þ

where

An ≡ l
2ðsinh2 ð2πnαÞ þ 2π2n2α2ðcosh2 ð2πnαÞ þ 1Þ − 2πnαðcosh ð2πnαÞ þ 1Þ sinh ð2πnαÞÞ; ð4:47Þ

Bn ≡ 6n3π3α2ðcosh2ð2παnÞ þ 1Þ − 4n2π2α sinhð2παnÞ cosh2ðπαnÞ þ 3nπ sinh2ð2παnÞ; ð4:48Þ

Cn ≡ n2π2α2ðcosh2ð2παnÞ þ 1Þsech2ðπαnÞ þ 2nπα sinhð2παnÞ þ 2 sinh2ðπαnÞ; ð4:49Þ

Dn ≡ 8α3 sinh2ðπαnÞ sinhð2παnÞ; ð4:50Þ

with dn given in Eq. (3.39). We remind the reader that α ¼ rþ=l ¼
ffiffiffiffiffiffiffiffiffiffi

M=2
p

> 0 and the angular momentum J ¼ γMl with
γ ¼ �1.

CASALS, FABBRI, MARTÍNEZ, and ZANELLI PHYS. REV. D 99, 104023 (2019)

104023-20



3. Semiclassical corrections to the nonextremal

naked singularity

In the case of the nonextremal NS, using Eqs. (3.46)–
(3.50) together with Eqs. (4.37)–(4.39), the following
backreaction corrections are found:

N1ðrÞ ¼ −
l
2

2ðβ2þ − β2−Þ
X

N−1

n¼1

0 ancn − 2βþβ−en

bnd
3=2
n

; ð4:51Þ

f1ðrÞ ¼
X

N−1

n¼1

0 4hnðancn − 2βþβ−enÞ − cnd
2
nðβ2þ − β2−Þ3

64r2ðβ2þ − β2−Þb2nd3=2n

;

ð4:52Þ

k1ðrÞ ¼ −
l

8r2

X

N−1

n¼1

0 ðβ2− þ β2þÞen þ βþβ−ðcn − 4Þcn
b2nd

1=2
n

;

ð4:53Þ

where an, bn, cn, en and dn are given in Eqs. (3.51), (3.53),
(3.54), (3.55) and (3.58), respectively, with

hn ¼ ð4r2 þ l
2β2þÞð4r2 þ l

2β2−Þbn

− ðβ2þ − β2−Þ
�

4r2 þ ðβ2þ þ β2−Þl2
2

�

dn: ð4:54Þ

The integrals involving the RSET components were
computed assuming bn ≠ 0, which is indeed the case.
Aside from the limits in the sums, the above expressions

(4.51)–(4.53) are equal to the nonextremal rotating BH cor-
rections (4.40)–(4.42) by means of the replacements α2� →
−β2�; cosh ðπnα�Þ → cos ðπnβ�Þ, and αþα− sinh ðπnαþÞ×
sinh ðπnα−Þ→ βþβ− sin ðπnβþÞ sin ðπnβ−Þ.

V. ANALYSIS OF THE SEMICLASSICAL-

BACKREACTED GEOMETRIES

In this section we shall investigate the physical properties
of the geometries given by the semiclassical-backreacted
metrics which we have obtained in the previous section. As
usual, we shall split this investigation between the different
background space-times.

A. Static black hole

As shown in [29] for the static BH case, by setting c0 in
Eq. (4.16) to be equal to the massM > 0 of the background
BH, the quantum corrections lead to a growth of order lP of
the event horizon and to the formation of a curvature
singularity at r ¼ 0.

B. Static naked singularity

The static solution of semiclassical Einstein equation
given in (4.14) has an arbitrary integration constant c0
whose choice corresponds to the freedom of describing

different physical setups. The analysis of the space-time
structure, performed in [31] considering c0 ¼ M ≤ 0 in
Eq. (4.14) corresponds to the study of quantum corrections
on the classical conical singularities of mass M. For finite
M a horizon forms at the radius

r
ðqÞ
þ ðlP → 0Þ ¼ 2FðMÞ

−M
lP þOðl2PÞ; ð5:1Þ

while for M → 0−, the horizon is at

r
ðqÞ
þ ðM → 0−Þ ¼

�

2
lp

l
Fð0Þ

�

1=3

lþOðMÞ: ð5:2Þ

This horizon hides a curvature singularity inside (at r ¼ 0).
In the background space-time, the (naked) singularity was a
causal singularity and of timelike character. On the other
hand, in the backreacted space-time, the (horizon-hidden)
singularity is a curvature singularity and of spacelike
character (as in Schwarzschild space-time).
The fact that the backreacted metric corresponds to a BH

prompts the question of whether there is a classical solution
of Einstein equations that corresponds to this metric. We
examine this possibility by choosing c0 ¼ 3ðFðMÞlP=lÞ2=3
in Eq. (4.14), so as to match the BH classical solution
(2.13), which exhibits an event horizon with radius

rþ ¼ 2l

�

c0

3

�

1=2

¼ 2l

�

lp

l
FðMÞ

�

1=3

: ð5:3Þ

This horizon is of the same order in lP as the result in
Eq. (5.2). This classical solution for the metric extremizes
the one-loop effective action where the role of the classical

scalar field is played by
ffiffiffiffiffiffiffiffiffiffiffi

8C
κðrþCÞ

q

[see Eq. (2.15)], with

C ¼ lðFðMÞlp=lÞ1=3. This dressed BH has a mass—the
conserved charge associated with the time translation
symmetry at infinity—given by [46]

M ¼ 3

�

lPFðMÞ
l

�

2=3

: ð5:4Þ

The corresponding temperature and entropy of this black
hole are [46]

T ¼ 3
ffiffiffi

3
p

π

�

lP

l

�

M1=2; S ¼ 2π

3
ffiffiffi

3
p

�

l

lP

�

M1=2; ð5:5Þ

respectively.13 The first law of thermodynamics dM ¼
TdS is directly verified from Eqs. (5.4) and (5.5). As noted
in [46], due to the conformal coupling, the area law for
entropy is corrected as

S ¼
�

1 −
κ

8
ϕ2ðrþÞ

�

πrþ
2lp

¼ πrþ
3lp

: ð5:6Þ

13In Eqs. (5.4) and (5.5) we have set κ ¼ π.
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C. Rotating black hole

From the analytical solution of the backreaction equa-
tions given in the previous section, we shall now investigate
how the quantum corrections modify the background BH
geometry. It is important to stress that our results are valid
for nonextremal BHs as well as for extremal ones.

1. Asymptotic structure

At infinity the corrections are negligible, since N1 →
1

r3
,

f1 ∼
1
r
and k1 ∼

1

r3
as r → ∞ (we remind the reader that

N0ðrÞ ¼ 1, k0ðrÞ ¼ Oð 1
r2
Þ and f0ðrÞ → r2). Therefore, the

quantum corrections do not modify the asymptotic struc-
ture of the BTZ background space-time.

2. Horizons

Let us now study the quantum backreaction on the
Cauchy and event horizons. In order to study their stability
properties it is useful to compute the curvature invariants
of the quantum-backreacted space-time. The correction
“−2κhTμ

μi” [which is OðlPÞ] to the background Ricci
scalar R ¼ 6Λ is zero because the RSET, which is the
source of the semiclassical Einstein equations, is traceless.
In its turn, the Kretschmann of the backreacted metric is

RμνρσR
μνρσ ¼ 4RμνR

μν − R2 ¼ 12Λ2 þ 4κ2hTμ
νihTν

μi;
ð5:7Þ

where the semiclassical Einstein equations and the trace-
lessness of the RSET have been used.
With regards to the event horizon, we first note that

the RSET is regular at the classical event horizon. At
r ¼ rþ ¼ lαþ=2, we have from Eqs. (3.20)–(3.24) that

κ2hTμ
νihTν

μijr¼rþ

¼ 3l2P
4l6

X

∞

n;m¼1

cncm

ðcoshðnπαþÞ − 1Þ3=2ðcoshðmπαþÞ − 1Þ3=2 ;

ð5:8Þ

with cn ¼ coshðnπαþÞ þ coshðnπα−Þ þ 2, already defined
in (3.28). The invariant (5.8) is regular and so, from
Eq. (5.7), it follows that the Kretschmann scalar at the
event horizon (of the background space-time) is also
regular.
In order to find the event horizon of the quantum-

corrected solution, we look for the largest root of

grr ¼ fðrÞ ¼ r2

l
2
−M þ J2

4r2
þ lPf1ðrÞ ¼ 0 ð5:9Þ

where we have used Eqs. (4.18), (4.21) and (4.23). Working
at OðlPÞ, it is enough to replace f1ðrÞ with f1ðrþÞ,
provided rþ ≫ lP, and consider the largest solution of

the resulting quartic equation.14 The radius rðqÞþ of the event
horizon of the backreacted metric is then given by

�

r
ðqÞ
þ
l

�2

¼ M − lPf1ðrþÞ
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM − lPf1ðrþÞÞ2 −
J2

l
2

s

:

ð5:10Þ

It is understood that the above expression must be
expanded at leading order in lP, which in the nonextremal
case yields

r
ðqÞ
þ ¼ rþ

�

1 −
2lPf1ðrþÞ
α2þ − α2−

�

; ð5:11Þ

with α2þ − α2− ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − J2l−2
p

.
From Eq. (4.41) we arrive at

f1ðrþÞ ¼ −

ffiffiffi

2
p

ðα2þ − α2−Þ
8lα2þ

X

∞

n¼1

α2þcnðcn − 4Þ − 2αþα−en
b2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðnπαþÞ − 1
p :

ð5:12Þ

One can proof that f1ðrþÞ < 0. In fact, by writing
α� ≡ s� Δ, where s > 0 and Δ > 0, we have that the
numerator of the summand in Eq. (5.12) is

α2þððcoshðnπαþÞ þ coshðnπα−ÞÞ2 − 4Þ − 4αþα− sinhðnπαþÞ sinhðnπα−Þ
¼ 4ðsþ ΔÞ½ssinh2ðnπΔÞð1þ cosh2ðnπsÞÞ þ Δsinh2ðnπsÞð1þ cosh2ðnπΔÞÞ� > 0: ð5:13Þ

Thus, Eq. (5.11) implies r
ðqÞ
þ > rþ. That is, the radius of

the quantum-corrected event horizon is larger than the
classical one.

The event horizon of the extreme BTZ black hole is
located at rextþ ¼ l

ffiffiffiffiffiffiffiffiffiffi

M=2
p

≡ lα. From Eq. (4.45) we obtain

fext1 ðlαÞ≡ f1ðrextþ Þ ¼ −
1

lπ2

X

∞

n¼1

1

n2 sinhðnπαÞ < 0: ð5:14Þ

Following the same procedure for obtaining the radius of
the event horizon in the nonextremal case, we obtain the
corrected horizon radius

14Clearly, this procedure would not work if we wanted to
analytically extend our solution to the NS regime, where there is
no horizon at the classical level.
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r
extðqÞ
þ ¼ rextþ þ l

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−lPf
ext
1 ðlαÞ

q

; ð5:15Þ

where the leading order correction term is now Oð ffiffiffiffi

lP
p Þ,

instead of OðlPÞ as in the nonextremal case shown in

Eq. (5.11). Note that the corrected horizon r
extðqÞ
þ is greater

than the classical one rextþ . Moreover, from Eqs. (5.12)
and (5.14), it is easy to see that fext1 ðlαÞ ¼
limJ→Mlf1ðrþÞ.
Let us now consider the quantum corrections at the inner

(Cauchy) horizon r−. As already remarked in [32] and as
we mentioned in Sec. III B, the RSET in Eqs. (3.20)–(3.24)
is divergent at a series of circles r ¼ rn for which dn
vanishes, i.e., at

r2n

l
2
¼ α2−ðcoshðnπαþÞ − 1Þ − α2þðcoshðnπα−Þ − 1Þ

4ðcoshðnπαþÞ − coshðnπα−ÞÞ
:

ð5:16Þ

As n→ ∞, rn approaches r− from the inside, i.e., r
2
n

l
2 →

α2−
4
.

This accumulation produces an essential singularity
at r−. We see via Eq. (5.7) that the divergence of
hTμ

νihTν
μi at r− produces a curvature singularity (in the

Kretschmann scalar) there. As mentioned, the singularity
at the Cauchy horizon arises when approaching it from its
inside, i.e., as r → r−−. In Kerr, it has been shown that
classical field perturbations in the region inside the
Cauchy horizon possess unstable modes [61]. However,
near the singularity in Kerr there exist closed timelike
curves and so the initial value problem is in principle not
well posed there (even after requiring specific boundary
conditions on the singularity). The rotating BTZ BH case
here, on the other hand, possesses no closed timelike
curves anywhere and so we are free from their troubles.
A singularity at the Cauchy horizon is not unexpected.

In (3þ 1)-D, classical perturbations of the external region
of Reissner-Nordström and Kerr space-times grow with-
out bound at the inner (Cauchy) horizon, thus producing
a “mass inflation” curvature singularity there [8,11–13].
It was shown in [35] that a similar unbounded growth of
the perturbations (and of the local mass function)
happens in (2þ 1)-D for the rotating BTZ BH at r−.
Furthermore, at a quantum level, there are indications that
the RSET diverges in at least a part of the CH in
Reissner-Nordström and Kerr(-Newman) background
space-times [19–22].
Within our linear perturbative analysis, and following the

same reasoning adopted in [62], we can study the quantum
corrections to the inner horizon. As we did for the event
horizon, provided r− ≫ lP, we can replace f1ðrÞ with
f1ðr−Þ in Eq. (5.9) and consider its smallest positive root.
The radius rðqÞ− of the Cauchy horizon of the backreacted
metric is then given via

�

rðqÞ−

l

�

2

¼ M − lPf1ðr−Þ
2

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM − lPf1ðr−ÞÞ2 −
J2

l2

s

;

ð5:17Þ

which at OðlPÞ reduces to

rðqÞ− ¼ r−

�

1þ 2lPf1ðr−Þ
α2þ − α2−

�

: ð5:18Þ

It turns out that the sign of the quantum correction to the
radius of the inner horizon is given by the sign of f1ðr−Þ,
where

f1ðr−Þ ¼
ffiffiffi

2
p

ðα2þ − α2−Þ
8lα2−

X

∞

n¼1

α2−cnðcn − 4Þ − 2αþα−en
b2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðnπα−Þ − 1
p :

ð5:19Þ

One can show that, close to extremality, f1ðr−Þ is finite and
negative. This means that the inner horizon is pushed
inwards (i.e., rðqÞ− < r−) and “disappears from the space-
time”, which ends up in the future at a spacelike curvature
singularity at r−. Thus, the causal structure of the back-
reacted rotating black hole is essentially that of the static
black hole in Fig. 1(a). This means that, in this case,
quantum effects act to preserve strong CCH. The same
considerations apply to the extremal case, where f1ðr−Þ is
given by (5.14) and the corrected inner horizon radius takes
the form (5.15) but with rþ replaced by r− and a minus sign
in front of the correction term.
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FIG. 11. This is f1ðr−Þ in Eq. (5.19) as a function of α− and
αþð>α−Þ. The red and blue shades correspond to, respectively,
positive and negative values of f1ðr−Þ. Equation (5.19) shows
that f1ðr−Þ diverges in the static limit α− → 0, as the plot
indicates (N.B.: the numerical calculation was not accurate
enough for α− very close to zero).
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We cannot check, with our method, what happens in the
opposite regime (i.e., in the weak rotating limit) since, in
this regime, the inner horizon is close to r ¼ 0 and so f1ðrÞ
cannot be replaced with f1ðr−Þ in Eq. (5.9). We plot f1ðr−Þ
in Fig. 11. This plot shows that the sign of f1ðr−Þ changes
when varying M and J. When it is negative, the radius of
the Cauchy horizon diminishes and is smaller than the
radius where the curvature singularity is. Therefore, in this
case, the singularity is also spacelike and strong CCH is
preserved. On the other hand, when f1ðr−Þ is positive, the
radius of the Cauchy horizon increases and is larger than
the radius where the singularity is. Therefore, in this case,
the singularity is timelike and strong CCH continues to be
violated even in the backreacted space-time. Figure 11 also
indicates a divergence in f1ðr−Þ in the static limit. This
divergence seems to come from the fact that the image of
the point r ¼ 0 in the static case is itself, and so the chordal
distance in Eq. (3.32) is equal to zero in the static case for
the point r ¼ 0.

3. Hypersurfaces outside rotating black holes:

Ergosphere and absence of superradiant instability

Another surface of interest in the rotating BTZ space-
time is the static limit surface, defined by gtt ¼ 0. In order
to find the radius of the static limit surface of the quantum-
corrected space-time, we solve

gtt ¼ −N2ðrÞfðrÞ þ r2k2ðrÞ ¼ 0: ð5:20Þ

Working at OðlPÞ, the equation to solve is

−

�

r2

l
2
−M

�

− lPð2f0N1 þ f1 þ Jk1Þ ¼ 0: ð5:21Þ

Using the results in Eqs. (4.40)–(4.42), we see that the three
last terms take a rather simple form:

2f0N1 þ f1 þ Jk1

¼ −
X0
∞

n¼1

ðα2þ þ α2−Þcnðcn − 4Þ − 4αþα−en

4b2nd
1=2
n

; ð5:22Þ

which is shown to be negative15 for all r such that dn > 0.
In order to solve Eq. (5.21), for large enough radius

in comparison with lP, we evaluate the terms in Eq. (5.22)
[which are multiplied by lP when appearing in Eq. (5.21)]
on the classical static limit surface r2SL ¼ l

2M ¼ l
2ðα2þþ

α2−Þ=4. Let us denote by rðqÞSL and rextðqÞSL the radii of the static
limit surface of the quantum-backreacted nonextremal and
extremal BH geometries, respectively. For the nonextremal
geometry, we obtain

r
ðqÞ2
SL

l
2

−
r2SL
l
2
¼ −lPð2f0N1 þ f1 þ Jk1Þjr¼rSL

> 0: ð5:23Þ

Therefore, like for the event horizon, the quantum correc-
tions increase the radius of the static limit surface. In the
extremal case we obtain, from Eq. (5.21) and using
Eqs. (4.44)–(4.46),

ðrextðqÞSL Þ2 − ðrextSLÞ2 ¼ lPl
X

∞

n¼1

sinh2ð2nπαÞ þ n2π2α2ðcoshð4nπαÞ þ 3Þ
2π2n2 sinh2ð2nπαÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðnπαÞðsinhðnπαÞ þ nπα coshðnπαÞÞ
p ; ð5:24Þ

which is also positive. At this point, it is interesting to evaluate the quantum correction to the “size” rSL − rþ of the
ergoregion by computing, from Eqs. (5.11) and (5.23),

½ðrðqÞSL Þ
2
− ðrðqÞþ Þ2� − ½r2SL − r2þ� ¼

ffiffiffi

2
p

lPl

8

X

∞

n¼1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2þ − α2−
p

ððα2þ þ α2−Þcnðcn − 4Þ − 4αþα−enÞ
b2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2þðcoshðnπαþÞ − 1Þ − α2−ðcoshðnπα−Þ − 1Þ
p

−
α2þcnðcn − 4Þ − 2αþα−en
b2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðnπαþÞ − 1
p

�

: ð5:25Þ

We could not determine the sign of the right-hand side of
Eq. (5.25) analytically. However, we carried out a numeri-
cal evaluation and this sign seems to be always negative
(although for α− very close to zero the numerics were not
reliable).

In the extremal case, where the Oð ffiffiffiffi

lP
p Þ correction to rþ

is larger than the OðlPÞ correction to rSL, we have

½ðrextðqÞSL Þ2 − ðrextðqÞþ Þ2� − ½ðrextSLÞ2 − ðrextþ Þ2�

¼ −lrextþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−lPf
ext
1 ðlαÞ

q

< 0; ð5:26Þ

where rextðqÞþ denotes the radius of the event horizon of the
backreacted extremal BH geometry.
We shall now turn to the evaluation of the quantum

corrections to the angular velocity of the BH using

15This statement can be checked by writing α� ¼ s� Δ, and
so we have that the numerator of the summand in Eq. (5.22)
is ðα2þ þ α2−ÞððcoshðnπαþÞ þ coshðnπα−ÞÞ2 − 4Þ− 8αþα− sinh×
ðnπαþÞ sinhðnπα−Þ ¼ 8 ½s2 sinh2ðnπΔÞ ð1þ cosh2ðnπsÞÞ þΔ

2×
sinh2ðnπsÞð1þ cosh2ðnπΔÞÞ� > 0.
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Eq. (4.21). We find that the angular velocity of the
quantum-corrected BH is

Ω
ðqÞ
H ¼ gtθ

gtt

	

	

	

	

r¼r
ðqÞ
þ

¼ −kj
r¼r

ðqÞ
þ

¼ J

2ðrðqÞþ Þ2
− lPk1ðrþÞ:

ð5:27Þ

In the nonextremal case, combining the two contributions
to Ω

ðqÞ
H , we find at OðlPÞ,

Ω
ðqÞ
H −ΩH ¼−

ffiffiffi

2
p

lPðα2þ −α2−Þ
l
2α2þ

X

∞

n¼1

sinhðnπαþÞ sinhðnπα−Þ
b2nðcoshðnπαþÞ− 1Þ1=2 ;

ð5:28Þ

where ΩH ¼ J=ð2r2þÞ. Note that the right-hand side of
(5.28) has a sign opposite to that of ΩH because
J sinhðnπα−Þ > 0. Therefore, the quantum corrections to
the angular velocity reduce its absolute value. The same

effect occurs in the extremal case. We denote by ΩextðqÞ
H and

Ω
ext
H the angular velocity of the black hole in, respectively,

the backreacted and background geometries. From
Eq. (5.27) and Eqs. (4.44)–(4.46), we obtain

Ω
extðqÞ
H −Ω

ext
H ¼ −

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−fext1 ðlα
p

Þ
2

ffiffiffi

2
p

αl

ffiffiffiffi

lP
p

; ð5:29Þ

with Ωext
H ¼ γ=ð2lÞ. Since the quantum correction to rextþ is

of the order Oðl1=2P Þ [see Eq. (5.15)], we obtain the same
leading order for the correction to the angular velocity.
Finally, we inspect the possible appearance of a

speed of light surface, which would—likely—make the
space-time superradiantly unstable [63].16 For this purpose,
we consider the quantum-corrected Killing vector χðqÞ ¼
∂=∂tþΩ

ðqÞ
H ∂=∂θ. This vector has squared norm

χðqÞ
2 ¼ gμνχ

ðqÞμχðqÞ
ν ¼ −N2f þ r2k2 þ 2r2kΩ

ðqÞ
H þ r2Ω

2ðqÞ
H

¼ −ðf0ðrÞ þ lPf1ðrÞÞ − 2lPf0ðrÞN1

þ J2

4r2

�

r2

r
2ðqÞ
þ

− 1

�

2

− JlP

�

r2

r2þ
− 1

�

× ðk1ðrþÞ − k1ðrÞÞ þOðl2PÞ:
ð5:30Þ

Classically,

χ2 ¼ −
ðr2þ − r2−Þðr2 − r2þÞ

l2r2þ
: ð5:31Þ

The vector χðqÞ is timelike in the near-horizon region
[where the terms in the second line of (5.30) go like

“−Aðr2 − r
ðqÞ2
þ Þ”, with A a positive constant, and the terms

in the third line go like ∼ðr2 − r
ðqÞ2
þ Þ2] and becomes null on

the horizon. At radial infinity, where N1, f1, k1 → 0, we
have that

χðqÞ
2

∼ −
r2

l
2
ð1 − l

2
Ω

ðqÞ2
H Þ; r → ∞: ð5:32Þ

The condition for it to be spacelike, and (likely) for the
space-time to develop a superradiant instability is

lΩ
ðqÞ
H > 1: ð5:33Þ

Classically, this condition is not met, i.e., lΩH ≤ 1 (the
equality being realized in the extremal case).
Equation (5.28) implies that, in the nonextremal case,

it is lΩ
ðqÞ
H < lΩH < 1, and, in the extremal case,

lΩ
extðqÞ
H < lΩ

ext
H ¼ 1. This suggests that the quantum

effects do not change the superradiant stability property
of the BTZ BH.
In order to investigate the norm of χ2 more widely, we

first obtain explicitly the OðlPÞ correction to χ2 in the
subextremal case from Eqs. (5.30) and (5.11):

FIG. 12. Plot of the OðlPÞ correction (χ2corr) to χ2 in Eq. (5.34)
as a function of r and α− for the fixed value of
αþ ¼ ð

ffiffiffi

3
p

þ 1Þ=
ffiffiffi

2
p

≈ 1.93. The blue horizontal plane corre-
sponds to zero.

16Although the BTZ BH is unstable under massive scalar field
perturbations due to modes whose frequency has a real part that
lies within the superradiant regime [64], this is not considered the
“standard” superradiant instability, which refers to a massless
scalar field.
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χðqÞ
2 ¼ χ2 þ lP

�

−f1ðrÞ − 2f0ðrÞN1

þ J2l2f1ðrþÞ
2r4þ

ðr2 − r2þÞ
ðr2þ − r2−Þ

− J

�

r2

r2þ
− 1

�

× ðk1ðrþÞ − k1ðrÞÞ
�

þOðl2PÞ: ð5:34Þ

We plot thisOðlPÞ correction to χ2 in Fig. 12. [N.B.: for the
large-r behavior in Eq. (5.32) to be seen in Fig. 12 for small
α−, the plot should be performed to larger values of r].
In the extremal case, where χ2 ¼ 0 identically [see

(5.31)], the quantum-corrected χextðqÞ
2

is entirely given
by the quantum corrections, whose leading term, Oð

ffiffiffiffi

lp
p

Þ,
comes from the first term in the last line of Eq. (5.30) and

from r
ðqÞ
þ [see Eq. (5.15)]. We then obtain

χextðqÞ
2 ¼ −

J2l

2ðrextþ Þ3
�

r2

r2þ
− 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−lpf1ðlαÞ
q

< 0: ð5:35Þ

Thus the quantum corrections turn the classically identi-
cally null χext timelike.

D. Rotating naked singularity

1. Emergence of an event horizon

The first-order quantum correction to the metric com-
ponent grr of the NS geometry, f1ðrÞ in Eq. (4.18), is
responsible for the formation of a horizon. In order to see
this, we note that f1ðrÞ has a finite number of poles at radii
rn where dn vanishes [see Eq. (3.61)]. As we will shown
below at these poles f1 → −∞, turning the otherwise
positive definite grrclassical ¼ f0ðrÞ, into a function that
vanishes at some finite radii. The largest radius at which
grr vanishes is the event horizon of the quantum-back-

reacted metric, rðqÞþ .
The zeroes of dn form a finite set, the largest of them,

which we denote by r�, occurs at a certain value n ¼ n�,

r2� ¼
l
2

2bn�

�

β2− sin2
�

1

2
πn�βþ

�

− β2þ sin2
�

1

2
πn�β−

��

:

ð5:36Þ

This zero appears twice in the sum that defines f1ðrÞ
due the symmetry of the summand in Eq. (4.52) under
n→ N − n. At r ¼ r� the geometry has a curvature
singularity (since the Kretschmann invariant (5.7) diverges)
and therefore the spacetime cannot be extended to r < r�.
From (4.52) the correction f1ðrÞ can be seen to diverge

as ðr − r�Þ3=2 near r�,

f1ðrÞ ¼
Ξf0ðr�Þ

ðr − r�Þ3=2
þ C; r → r�; ð5:37Þ

where C is a finite constant and

Ξ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2þ − β2−
p

l
2ðan�cn� − 2β−βþen�Þ

32bn�ð−bn�r�Þ3=2
: ð5:38Þ

First, we note that the combination an�cn� − 2β−βþen� in
the numerator of the above equation is positive definite.
Moreover, since bn� < 0, Ξ < 0. Then, using Eq. (5.37),
the condition grrj

r
ðqÞ
þ

¼ 0 that defines the quantum-cor-

rected horizon can be written as

ðf0ðrðqÞþ Þ þ lPCÞðrðqÞþ − r�Þ3=2 þ lPΞf0ðr�Þ ¼ 0: ð5:39Þ

Since f0ðrÞ is an analytic function for r ≠ 0, one can write

f0ðrðqÞþ Þ ¼ f0ðr�Þ þ f00ðr�Þðr
ðqÞ
þ − r�Þ þOðrðqÞþ − r�Þ2 near

r�. Replacing this Taylor expansion in Eq. (5.39), one finds

that: (i) rðqÞþ − r� must be of the order l2=3P , (ii) C can be
ignored and consequently,

r
ðqÞ
þ ¼ r� þ ð−ΞlPÞ2=3 þOðl7=3P Þ: ð5:40Þ

Thus, the existence of a horizon and its radius have been
established for the backreacted spacetime. The classical NS
has been replaced by a rotating black hole whose horizon
encloses a curvature singularity. This singularity at r ¼ r�
is spacelike since grr has no zero within ½r�; rðqÞþ Þ.
Thus, in the cases that satisfy Eq. (3.62), except for the

set S defined in Eq. (3.60), an event horizon forms; the
other cases would have to be investigated separately.

2. Ergosphere

The radius of the static limit surface, which is the
boundary of the ergosphere, is determined by Eq. (5.21).
This equation can be solved near the singularity r ¼ r�,
yielding

r
ðqÞ
SL ¼ r� þ μl2P; ð5:41Þ

with

μ≡
ðβ2þ − β2−Þððβ2− þ β2þÞð4 − cn�Þcn� − 4β−βþen�Þ2

16ð−bn�Þ5r�ððβ2− þ β2þÞ þ ð2r�
l
Þ2Þ2

:

ð5:42Þ

It follows that the right-hand side of the above equation is

positive because bn� < 0. Since the distance rðqÞSL − r� is of

order Oðl2PÞ and r
ðqÞ
þ − r� is of order Oðl2=3P Þ, as shown in

Eq. (5.40), the static limit surface is located behind the
event horizon.

VI. SUMMARY AND DISCUSSION

In this paper we have considered the OðlPÞ RSET for a
conformally coupled massless scalar field in a background
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(2þ 1)-dimensional BTZ geometry. This background cor-
responds to a black hole (M > 0) or to a naked conical
singularity (M < 0). Using this RSETas an effective source
for the Einstein equations, we have computed the quantum
corrections to the original background metric (backreac-
tion) both in the static and rotating cases. Our findings can
be summarized as follows:

A. Static black hole

(i) The RSET given in Eqs. (3.18) is diagonal, traceless
and conserved with respect to the background black
hole geometry. For a fixedM, the backreacted metric
has a quantum-corrected horizon with a radius larger
than the classical one,

r
ðqÞ
þ ¼ rþ þ FðMÞ

M
lP þOðl2PÞ > rþ; ð6:1Þ

where FðMÞ is given in Eq. (3.19) and rþ ¼
ffiffiffiffiffi

M
p

l.
For very small mass,

r
ðqÞ
þ ¼

�

2
lp

l
Fð0þÞ

�

1=3

lþOðMÞ; ð6:2Þ

where Fð0þÞ ¼ ζð3Þ=ð2π3Þ ≈ 0.0193841.
(ii) A curvature spacelike singularity is formed at r ¼ 0.

B. Rotating black hole

(i) The RSET given in Eqs. (3.20)–(3.24) is traceless
and conserved with respect to background black
hole geometry (4.17). Its only off-diagonal t − θ

components are compatible with the stationary
rotating black hole solution. Again, the nonextremal
backreacted metric has a quantum-corrected event
horizon with a radius larger than the classical one,

r
ðqÞ
þ ¼ rþ −

2f1ðrþÞrþ
α2þ − α2−

lP þOðlPÞ2 > rþ; ð6:3Þ

where f1ðrþÞ < 0.
(ii) The radius r− (which is the inner—Cauchy—

horizon of the classical background space-time)
becomes an accumulation surface for divergent
contributions to the RSETat which the Kretschmann
invariant blows up. In the quantum-corrected space-
time, the curvature singularity at r− can be either
spacelike (rðqÞ− < r−; this is the case close to, and at,
extremality) or, depending on the values ofM and J,
timelike (rðqÞ− > r−). In the former case, quantum
mechanics provides a mechanism for strong cosmic
censorship.

(iii) Similarly to the event horizon, the ergosphere is also
pushed outwards (the quantum correction to its

radius is always positive), while the black hole
angular velocity generically diminishes.

(iv) In the extremal limit, our results could be interpreted
by saying that the quantum corrections take the
solution away from extremality.

C. Static naked singularity

(i) The RSET given in Eq. (3.43) is diagonal, traceless
and conserved with respect to the background static
conical geometry. The backreacted metric presents a
horizon of nonvanishing radius,

r
ðqÞ
þ ¼ 2FðMÞ

−M
lP þOðl2PÞ; ð6:4Þ

where FðMÞ is given in Eq. (3.44). This result is
valid for a finite mass M. In the limit M → 0−, the
horizon radius is given by

r
ðqÞ
þ ¼

�

2
lp

l
Fð0Þ

�

1=3

lþOðMÞ: ð6:5Þ

Figure 9 shows the continuity at M ¼ 0 between
the radius of the event horizon of the quantum-
backreacted black hole and the radius of the newly
formed event horizon of the quantum-backreacted
naked singularity.

(ii) A spacelike curvature singularity is formed at r ¼ 0.
The appearance of a horizon around the classical
naked singularity, and the fact that the timelike
singularity of the background spacetime has become
spacelike in the backreacted spacetime, means that,
at least in this simplified setting, quantummechanics
provides a mechanism for strong cosmic censorship.

(iii) The backreacted geometry is obtained as a classical
solution of the Einstein equations in the presence
of the RSET given in Eq. (3.43). This stress-energy
tensor happens to be the same as that for the
Einstein-Hilbert action conformally coupled to a
scalar field, Eq. (2.17) with C ¼ l½FðMÞlP=l�1=3.
Hence, the backreacted metric can be interpreted as a
classical solution of the form

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dθ2; ð6:6Þ

with fðrÞ≡ 1

l
2 ðr2 − 3C2 − 2C3

r
Þ. In this interpreta-

tion, the geometry is that of a black hole with a tiny
positive mass, M ¼ 3½FðMÞlP=l�2=3, and a horizon
radius r̃þ of order l1=3P , r̃2þ ¼ ð4=3ÞMl

2.
(iv) In [65], black holes localized on the brane in 3þ 1-

dimensional Randall-Sundrum braneworlds [66,67]
were interpreted, via the AdS/conformal field theory
(CFT) correspondence, as static quantum-corrected
BTZ black holes and naked singularities. In par-
ticular, and despite the fact that the dual quantum

QUANTUM-CORRECTED ROTATING BLACK HOLES AND… PHYS. REV. D 99, 104023 (2019)

104023-27



theory (CFT) living on the brane is poorly known,
use of the AdS/CFT dictionary gives a brane black
hole metric that has the same form as ours:

ds2 ¼ −

�

r2

l
2
−M −

r1ðMÞ
r

�

dt2 þ dr2
�

r2

l2
−M −

r1ðMÞ
r

�

þ r2dθ2; ð6:7Þ

for some function r1ðMÞ. For a slightly curved
brane, it is r1ðMÞ ∼ NlpfðMÞ (N being the (large)
number of d.o.f. of the CFT on the brane) and f is a
function that depends on the massM. For zero-mass
black holes, where fð0Þ ∼Oð1Þ, as well as for naked
singularities (M < 0), the correction term r1ðMÞ

r
leads

to the formation of a horizon, in agreement with our
results.

D. Rotating naked singularity

(i) The RSET given in Eqs. (3.46)–(3.50) is traceless
and conserved with respect to the background
rotating conical geometry. Similarly to the rotating
black hole background above, its only off-diagonal
t − θ components are compatible with the stationary
rotating solution (4.17). Again, the backreacted
metric also has an event horizon of radius

r
ðqÞ
þ ¼ r� þ ð−ΞlPÞ2=3; ð6:8Þ

where r� is the largest zero of dn, and Ξ is the finite
expression given in Eq. (5.38).

(ii) A spacelike curvature singularity is formed at
the radius r� given by Eq. (5.36). As in the static
case, the appearance of a horizon and the spacelike
character of the singularity in the backreacted
spacetime mean that quantum mechanics acts as a
strong cosmic censor.

(iii) A legitimate concern is about the validity of the
perturbative approximation in powers of lP for the
geometry in view of the fact that lPf1 diverges at
some finite r. This divergence is responsible for the
formation of a horizon, which implies a change of
topology and of the causal structure of the space-
time. The point is that for r ≫ lP the geometry
receives a very small correction of order ℏ (as
clearly seen in the static case, with a small horizon
of the same order, rþ ∼ lP). This is not too different
from a perturbation of the Schwarzschild geometry
by the addition of a small electric charge or angular
momentum: the appearance of a (small) second
horizon produces a small correction to the exterior
metric. Depending on the experimental resolution,
it might be irrelevant for an external observer
whether the geometry has a second horizon or
not, even if the topology and the causal structure

both suffer major changes. For a small M < 0, the
perturbative approximation is certainly more reli-

able and r
ðqÞ
þ ∼ ðlPÞ1=3 for J ¼ 0, and r

ðqÞ
þ ∼ ðlPÞ2=3

for J ≠ 0.

E. Extensions and open questions

(i) For rotating naked singularities we have assumed
β� ¼ 2=N�, with integer N�. The method of images
can also be extended to arbitrary rational values of
β�, but we did not consider this case in order to keep
the discussion as simple as possible and to be able to
make definite claims. Despite of the restriction on
the values of β�, our results are sufficient to explore
rotating geometries for small angular momentum to
claim that the conclusions drawn for the static case
are generic and not an accidental consequence of the
static symmetry. In the case of static flat space, the
authors of [54] have shown that for continuous
values of the angular deficit the resulting RSET
interpolates between the discrete values obtained for
β ¼ 2=N. This suggests that a similar extension to
arbitrary real values of β� is possibly doable in the
spirit of [55].

(ii) An obvious direction for extension is imposing
boundary conditions on the field different from
the transparent conditions that we have considered
here. In the static black hole case, Lifschytz and
Ortiz [28] derive the RSET and investigate back-
reaction effects using Dirichlet and Neumann boun-
dary conditions. From the expression for the RSET
in Eq. (5.1) of [28] they show that the horizon grows
for these two types of boundary conditions. Fur-
thermore, lettingM → −M in Eq. (5.1) of [28] so as
to naively analytically continue from the black hole
to the naked singularity case (ignoring differences in
the summation limits), the backreaction on the naked
singularity with Dirichlet and Neumann conditions
can also be seen to be qualitatively the same as
with transparent conditions. We expect that these
qualitative backreaction behaviors are perturbatively
reproduced in the rotating black hole and naked
singularity cases.

(iii) Another direction in which this work can be ex-
tended is the inclusion of quantummatter to examine
backreaction on other spacetimes. For example,
other (2þ 1)-D geometries with naked singularities
like BTZ spacetimes with M < −1 (angular ex-
cesses), or with Ml < jJj; spacetimes with closed
timelike curves [68], etc.

(iv) Quantum matter was also shown to form a horizon
around conical singularities in asymptotically flat

three-dimensional spacetimes in [54,69]. Although
those papers did not identify the backreacted geom-
etry as a black hole—perhaps because the existence
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of black holes in 2þ 1 dimensions was not wide-
spread at the time—they suggest that results similar
to ours could be found for naked singularities in flat
and de Sitter three-dimensional spacetimes.

(v) The existence of locally propagating d.o.f. in higher
dimensions means that, without a quantum theory
of gravity, the cosmic censorship hypothesis for
D ≥ 4 could only be tested semiclassically: quantum
effects on cosmic strings, the big bang or big crunch
singularities in 3þ 1 dimensions could only be
examined with quantum matter on a classical back-
ground.
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APPENDIX A: BLACK HOLES AND NAKED

SINGULARITIES AS IDENTIFICATIONS IN R
2;2

A general Killing vector k for the pseudosphere Eq. (2.8)
embedded in R

2;2 can be written in terms of the soð2; 2Þ
generators Jab ≔ Xb∂a − Xa∂b. Let us parametrize the
pseudosphere with coordinates ðt; r; θÞ. The BTZ geom-
etries are then obtained by identifying points in the
pseudosphere via the Killing vector

k ¼ ∂θ ¼
∂Xa

∂θ
∂a ¼

1

2
ωabJab; ðA1Þ

where the antisymmetric matrix ωab characterizes the
identification.
Since k ¼ ∂θ, the identification corresponding to the

action of the vector 2πk means that the geometry is
periodic in θ with period 2π. Identifying a point in the
manifold with itself rotated by 2π can also be represented
by the action of the matrix H ≔ e2πk in the embedding
space, such that Ha

bX
bðθÞ ¼ Xaðθ þ 2πÞ.

1. Rotating nonextremal BTZ black hole

The rotating BTZ BH with mass M and angular
momentum J is described by the line element in
Eq. (2.1). It may be expressed in terms of α� in
Eq. (2.2) as

ds2 ¼ −

�

r2

l
2
−
α2þ þ α2−

4

�

dt2 þ dr2l2r2

ðr2 − l
2α2þ
4
Þðr2 − l

2α2−
4
Þ
−
lαþα−

2
dtdθ þ r2dθ2: ðA2Þ

The various BTZ BH regions can be parametrized in terms of ðt; r; θÞ coordinates in the following way:
Region I: r > rþ.

X0 ¼
ffiffiffiffiffiffi

A−

p

cosh

�

αþlθ − α−t

2l

�

; X1 ¼
ffiffiffiffiffiffi

A−

p

sinh

�

αþlθ − α−t

2l

�

;

X2 ¼
ffiffiffiffiffiffi

Aþ
p

cosh

�

αþt − α−lθ

2l

�

; X3 ¼
ffiffiffiffiffiffi

Aþ
p

sinh

�

αþt − α−lθ

2l

�

: ðA3Þ

Region II: r− < r < rþ.

X0 ¼
ffiffiffiffiffiffi

A−

p

cosh

�

αþlθ − α−t

2l

�

; X1 ¼
ffiffiffiffiffiffi

A−

p

sinh

�

αþlθ − α−t

2l

�

;

X2 ¼ −
ffiffiffiffiffiffi

Aþ
p

sinh

�

αþt − α−lθ

2l

�

; X3 ¼ −
ffiffiffiffiffiffi

Aþ
p

cosh

�

αþt − α−lθ

2l

�

: ðA4Þ

Region III: 0 < r < r−.
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X0 ¼
ffiffiffiffiffiffiffiffiffi

−A−

p

sinh

�

αþlθ − α−t

2l

�

; X1 ¼
ffiffiffiffiffiffiffiffiffi

−A−

p

cosh

�

αþlθ − α−t

2l

�

;

X2 ¼ −
ffiffiffiffiffiffiffiffiffiffi

−Aþ
p

sinh

�

αþt − α−lθ

2l

�

; X3 ¼ −
ffiffiffiffiffiffiffiffiffiffi

−Aþ
p

cosh

�

αþt − α−lθ

2l

�

; ðA5Þ

where

A� ≡
4r2 − α2�l

2

α2þ − α2−
: ðA6Þ

The rotating BTZ space-time is obtained through identifications generated by the Killing vector

k ¼ αþ
2
J01 þ

α−

2
J23: ðA7Þ

The identification matrix H ¼ e2πk then takes the form

H ¼

0

B

B

B

@

coshðπαþÞ sinhðπαþÞ 0 0

sinhðπαþÞ coshðπαþÞ 0 0

0 0 coshðπα−Þ − sinhðπα−Þ
0 0 − sinhðπα−Þ coshðπα−Þ

1

C

C

C

A

: ðA8Þ

Using coordinates ðt; r; θÞ, the chordal distance σðx; x0Þ [Eq. (3.6)] for each region of the BTZ BH spacetime is given by:
Region I: r > rþ,

σðx; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 − α2−l
2

α2þ − α2−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r02 − α2−l
2

α2þ − α2−

s

cosh

�

αþlðθ0 − θÞ þ α−ðt − t0Þ
2l

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 − α2þl
2

α2þ − α2−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r02 − α2þl
2

α2þ − α2−

s

cosh

�

α−lðθ − θ0Þ þ αþðt0 − tÞ
2l

�

− l
2: ðA9Þ

Region II: r− < r < rþ,

σðx; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 − α2−l
2

α2þ − α2−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r02 − α2−l
2

α2þ − α2−

s

cosh

�

αþlðθ0 − θÞ þ α−ðt − t0Þ
2l

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2þl
2 − 4r2

α2þ − α2−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2þl
2 − 4r02

α2þ − α2−

s

cosh

�

α−lðθ − θ0Þ þ αþðt0 − tÞ
2l

�

− l
2: ðA10Þ

Region III: 0 < r < r−,

σðx; x0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2−l
2 − 4r2

α2þ − α2−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2−l
2 − 4r02

α2þ − α2−

s

cosh

�

αþlðθ0 − θÞ þ α−ðt − t0Þ
2l

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2þl
2 − 4r2

α2þ − α2−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2þl
2 − 4r02

α2þ − α2−

s

cosh

�

α−lðθ − θ0Þ þ αþðt0 − tÞ
2l

�

− l
2: ðA11Þ

2. Extremal BTZ black hole

The extremal BTZ BH of mass M is described by the line element

ds2 ¼ −dt2
�

r2

l
2
− 2α2

�

þ dr2l2r2

ðr2 − l
2α2Þ2 − 2γlα2dtdθ þ r2dθ2; ðA12Þ
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where α≡ rþ=l ¼
ffiffiffiffiffiffiffiffiffiffi

M=2
p

> 0 and the angular momentum is J ¼ γMl with γ ¼ �1. The coordinate ranges are −∞ <

t < ∞; 0 < r < ∞; 0 ≤ θ < 2π (periodic). We note that line element for the extremal black hole is equal to the extremal
limit of the line element for the nonextremal rotating black hole, Eq. (A2).
The extremal BTZ BH can be embedded in R

2;2 in the following way. For the region r > rþ,

X0 ¼
l

��

ffiffiffiffiffiffiffiffiffi

AðrÞ
p

ðu − 1Þ þ 1
ffiffiffiffiffiffiffi

AðrÞ
p

�

sinh αvþ
�

ffiffiffiffiffiffiffiffiffi

AðrÞ
p

ðuþ 1Þ þ 1
ffiffiffiffiffiffiffi

AðrÞ
p

�

cosh αv
�

2
ffiffiffi

2
p ;

X1 ¼
l

��

ffiffiffiffiffiffiffiffiffi

AðrÞ
p

ðuþ 1Þ þ 1
ffiffiffiffiffiffiffi

AðrÞ
p

�

sinh αvþ
�

ffiffiffiffiffiffiffiffiffi

AðrÞ
p

ðu − 1Þ þ 1
ffiffiffiffiffiffiffi

AðrÞ
p

�

cosh αv
�

2
ffiffiffi

2
p ;

X2 ¼
l

��

1
ffiffiffiffiffiffiffi

AðrÞ
p −

ffiffiffiffiffiffiffiffiffi

AðrÞ
p

ðu − 1Þ
�

sinh αvþ
�

ffiffiffiffiffiffiffiffiffi

AðrÞ
p

ðuþ 1Þ − 1
ffiffiffiffiffiffiffi

AðrÞ
p

�

cosh αv
�

2
ffiffiffi

2
p ;

X3 ¼
l

��

1
ffiffiffiffiffiffiffi

AðrÞ
p −

ffiffiffiffiffiffiffiffiffi

AðrÞ
p

ðuþ 1Þ
�

sinh αvþ
�

ffiffiffiffiffiffiffiffiffi

AðrÞ
p

ðu − 1Þ − 1
ffiffiffiffiffiffiffi

AðrÞ
p

�

cosh αv
�

2
ffiffiffi

2
p ; ðA13Þ

and for the region r < rþ we have

X0 ¼ −

l

��

1
ffiffiffiffiffiffiffiffiffi

−AðrÞ
p − ðuþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

−AðrÞ
p

�

sinhðαvÞ þ
�

ð1 − uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

−AðrÞ
p

þ 1
ffiffiffiffiffiffiffiffiffi

−AðrÞ
p

�

coshðαvÞ
�

2
ffiffiffi

2
p ;

X1 ¼ −

l

��

ð1 − uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

−AðrÞ
p

þ 1
ffiffiffiffiffiffiffiffiffi

−AðrÞ
p

�

sinhðαvÞ þ
�

1
ffiffiffiffiffiffiffiffiffi

−AðrÞ
p − ðuþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

−AðrÞ
p

Þ coshðαvÞ
�

2
ffiffiffi

2
p ;

X2 ¼
l

��

ðuþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

−AðrÞ
p

þ 1
ffiffiffiffiffiffiffiffiffi

−AðrÞ
p

�

sinhðαvÞ þ
�

ð1 − uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

−AðrÞ
p

− 1
ffiffiffiffiffiffiffiffiffi

−AðrÞ
p

�

coshðαvÞ
�

2
ffiffiffi

2
p ;

X3 ¼
l

��

1
ffiffiffiffiffiffiffiffiffi

−AðrÞ
p − ð1 − uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

−AðrÞ
p

�

sinhðαvÞ þ
�

−ðuþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

−AðrÞ
p

− 1
ffiffiffiffiffiffiffiffiffi

−AðrÞ
p

�

coshðαvÞ
�

2
ffiffiffi

2
p : ðA14Þ

Here,

AðrÞ≡ r2 − l2α2

l
2α

; u≡ θ þ γt

l
; v≡ θ −

γt

l
: ðA15Þ

The extremal BH is obtained through identifications generated by the Killing vector

k ¼ αðJ01 þ J23Þ þ
1

2
ðJ02 þ J03 þ J12 þ J13Þ; ðA16Þ

so that the identification matrix H ¼ e2πk takes the form

H ¼

0

B

B

B

@

coshð2παÞ sinhð2παÞ e2παπ −e2παπ

sinhð2παÞ coshð2παÞ e2παπ −e2παπ

e−2παπ −e−2παπ coshð2παÞ − sinhð2παÞ
e−2παπ −e−2παπ − sinhð2παÞ coshð2παÞ

1

C

C

C

A

: ðA17Þ

The nth power of H is
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Hn ¼

0

B

B

B

@

coshð2nπαÞ sinhð2nπαÞ ne2nπαπ −ne2nπαπ

sinhð2nπαÞ coshð2nπαÞ ne2nπαπ −ne2nπαπ

ne−2nπαπ −ne−2nπαπ coshð2nπαÞ − sinhð2nπαÞ
ne−2nπαπ −ne−2nπαπ − sinhð2nπαÞ coshð2nπαÞ

1

C

C

C

A

: ðA18Þ

In terms of the coordinates ðt; r; θÞ, the chordal distance σðx; x0Þ [Eq. (3.6)] for the extremal BTZ BH is

σðx; x0Þ ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðrÞAðr0Þ
p

2
ðlðθ − θ0Þ þ γðt − t0ÞÞ sinh

�

αðlðθ − θ0Þ þ γðt0 − tÞÞ
l

�

þ l
2ðAðrÞ þ Aðr0ÞÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðrÞAðr0Þ
p cosh

�

αðlðθ − θ0Þ þ γðt0 − tÞÞ
l

�

− 1; ðA19Þ

in the region r > rþ, and

σðx; x0Þ ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðrÞAðr0Þ
p

2
ðlðθ0 − θÞ þ γðt0 − tÞÞ sinh

�

αðlðθ − θ0Þ þ γðt0 − tÞÞ
l

�

−
l
2ðAðrÞ þ Aðr0ÞÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðrÞAðr0Þ
p cosh

�

αðlðθ − θ0Þ þ γðt0 − tÞÞ
l

�

− 1; ðA20Þ

in the region r < rþ.

3. Rotating nonextremal naked singularity

The spinning NS with mass M < 0 and angular momentum J (M ≠ −1 if J ¼ 0) is described by the line element

ds2 ¼ −

�

r2

l
2
þ β2þ þ β2−

4

�

dt2 þ dr2l2r2
�

r2 þ l2β2þ
4

��

r2 þ l2β2−
4

� −
lβþβ−

2
dtdθ þ r2dθ2; ðA21Þ

with −∞ < t < ∞; 0 < r < ∞; 0 ≤ θ < 2π (periodic). In this case, the embedding is given by

X0 ¼ AþðrÞ cos
�

lθβ− þ tβþ
2l

�

; X1 ¼ A−ðrÞ cos
�

tβ− þ lθβþ
2l

�

;

X2 ¼ A−ðrÞ sin
�

tβ− þ lθβþ
2l

�

; X3 ¼ AþðrÞ sin
�

lθβ− þ tβþ
2l

�

; ðA22Þ

with

A�ðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 þ l2β2�
β2þ − β2−

s

: ðA23Þ

This geometry is obtained through identifications generated by the Killing vector

k ¼ βþ
2
J21 þ

β−

2
J30: ðA24Þ

This Killing vector is spacelike,

k2 ¼ β2þ
4
½ðX1Þ2 þ ðX2Þ2� −

β2−

4
½ðX0Þ2 þ ðX3Þ2� ¼ r2 > 0: ðA25Þ

CASALS, FABBRI, MARTÍNEZ, and ZANELLI PHYS. REV. D 99, 104023 (2019)

104023-32



Exponentiating (A25) yields the identification matrix

H ¼

0

B

B

B

@

cos ðπβ−Þ 0 0 − sin ðπβ−Þ
0 cos ðπβþÞ − sin ðπβþÞ 0

0 sin ðπβþÞ cos ðπβþÞ 0

sin ðπβ−Þ 0 0 cos ðπβ−Þ

1

C

C

C

A

: ðA26Þ

Using the coordinates ðt; r; θÞ, the chordal distance σðx; x0Þ [Eq. (3.6)] for the nonextremal NS reads

σðx; x0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2−l
2 þ 4r2

β2þ − β2−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2−l
2 þ 4r02

β2þ − β2−

s

cos

�

βþlðθ − θ0Þ þ β−ðt − t0Þ
2l

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2þl
2 þ 4r2

β2þ − β2−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2þl
2 þ 4r02

β2þ − β2−

s

cos

�

β−lðθ − θ0Þ þ βþðt − t0Þ
2l

�

− l
2: ðA27Þ

The embedding (A22) breaks down for βþ ¼ jβ−j, which
corresponds to the extremal case Ml ¼ −jJj. This means
that the Killing vector for the identification that gives rise
to the extremal NS cannot be obtained by just taking the
limit βþ ¼ jβ−j in (A25) and the matrix H needs to be
recalculated for this case as well—we give it in the next
subsection.
Note that Hðβþ; β−Þ remains unchanged if either βþ or

β− are shifted by even integer numbers. In addition, if n and
m are two integers such that nðβþ − β−Þ ¼ 2m, then

Hnðβþ; β−Þ ¼ Hðnβþ; nβ−Þ ¼ Hðnβ− þ 2m; nβ−Þ
¼ Hðnβ−; nβ−Þ; ðA28Þ

which is the form of the naive extremal limit. As we see in
Sec. III B, this feature leads to a singularity in the RSETand
to a breakdown of the perturbative regime for the system.

4. Extremal naked singularity

Although the line-element of the extremal NS coincides
with the line-element in Eq. (A21) when taking the
extremal limit Ml ¼ −jJj, the extremal NS space-time
cannot be obtained by taking the limit βþ ¼ jβ−j ¼ 2β in
the embedding (A22), Killing vector (A25) or the identi-
fication matrix (A26). In fact, the extremal metric

ds2 ¼ −

�

r2

l
2
þ 2β2

�

dt2 þ l
2r2dr2

ðr2 þ l
2β2Þ2

− 2γlβ2dtdθ þ r2dθ2; ðA29Þ

with −∞ < t < ∞; 0 < r < ∞; 0 ≤ θ < 2π (periodic), is
obtained via the embedding

X0 ¼
l

��

1
BðrÞ − ðv − 1ÞBðrÞ

�

sinðβuÞ þ
�

−ðvþ 1ÞBðrÞ − 1
BðrÞ

�

cosðβuÞ
�

2
ffiffiffi

2
p ;

X1 ¼
l

��

−ðv − 1ÞBðrÞ − 1
BðrÞ

�

sinðβuÞ þ
�

ðvþ 1ÞBðrÞ − 1
BðrÞ

�

cosðβuÞ
�

2
ffiffiffi

2
p ;

X2 ¼
l

��

ðvþ 1ÞBðrÞ − 1
BðrÞ

�

sinðβuÞ þ
�

ðv − 1ÞBðrÞ þ 1
BðrÞ

�

cosðβuÞ
�

2
ffiffiffi

2
p ;

X3 ¼
l

��

−ðvþ 1ÞBðrÞ − 1
BðrÞ

�

sinðβuÞ þ
�

ðv − 1ÞBðrÞ − 1
BðrÞ

�

cosðβuÞ
�

2
ffiffiffi

2
p : ðA30Þ

Here β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi

−M=2
p

> 0 and the angular momentum is J ¼ −γMl with γ ¼ �1, where

BðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ l
2β2

l
2β

s

; u≡ θ þ γt

l
; v≡ θ −

γt

l
: ðA31Þ
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This extremal NS is obtained through identifications generated by the Killing vector

k ¼ βðJ03 − J12Þ −
1

2
ðJ01 þ J03 þ J12 − J23Þ: ðA32Þ

The identification matrix in this case is given by

H ¼ e2πk ¼

0

B

B

B

@

cosð2πβÞ þ π sinð2πβÞ −π cosð2πβÞ π sinð2πβÞ π cosð2πβÞ − sinð2πβÞ
−π cosð2πβÞ cosð2πβÞ − π sinð2πβÞ −π cosð2πβÞ − sinð2πβÞ π sinð2πβÞ
−π sinð2πβÞ π cosð2πβÞ þ sinð2πβÞ cosð2πβÞ − π sinð2πβÞ −π cosð2πβÞ

sinð2πβÞ − π cosð2πβÞ −π sinð2πβÞ −π cosð2πβÞ cosð2πβÞ þ π sinð2πβÞ

1

C

C

C

A

;

ðA33Þ

and the nth power of H is obtained replacing π by nπ in the above expression.
For the extremal NS, the chordal distance σðx; x0Þ [Eq. (3.6)] is given by

σðx; x0Þ ¼ lBðrÞBðr0Þ
2

ðlðθ − θ0Þ þ γðt0 − tÞÞ sin
�

βðlðθ − θ0Þ þ γðt − t0ÞÞ
l

�

þ l2ðBðrÞ2 þ Bðr0Þ2Þ
2BðrÞBðr0Þ cos

�

βðlðθ − θ0Þ þ γðt − t0ÞÞ
l

�

− 1: ðA34Þ

APPENDIX B: TWO-POINT FUNCTION IN CAdS3

In this Appendix we derive the anti-commutator in
CAdS3, Eq. (3.5). Let us consider the line element in
the covering space of AdS3 in coordinates ρ ∈ ½0; π=2�,
θ ∈ ð0; 2π�, τ ∈ R [28]:

ds2 ¼ l2 sec2ρð−dτ2 þ dρ2 þ sin2 ρdθ2Þ: ðB1Þ

The transformation between these coordinates in AdS3
and those in Eq. (2.7) in R

ð2;2Þ is [28]:

X0 ¼ l
cos τ
cos ρ

; X1 ¼ l tan ρ cos θ;

X2 ¼ l tan ρ sin θ; X3 ¼ l
sin τ
cos ρ

: ðB2Þ

This transformation allows us to write the function σ in
Eq. (3.6) in the AdS3 coordinates of Eq. (B1) as

σðx; x0Þ ¼ l
2ðcosðΔτÞ secρ secρ0 − 1− tanρ tanρ0 cosΔθÞ:

ðB3Þ

The metric Eq. (B1) is manifestly conformal to half of
the Einstein Universe R × S2 with a conformal factor
ΩðxÞ ¼ l= cos ρ, and, therefore (see, e.g., Eq. (3.154)
[47]), Gþ

A ðx; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos ρ cos ρ0
p

Gþ
E ðx; x0Þ=l, where Gþ

A

is the Wightman function in AdS3 and Gþ
E is the

Wightman function in the Einstein universe. By using this
fact and explicitly calculating Gþ

E , Appendix A [28] finds

Gþ
A ðx; x0Þ ¼ lim

ϵ→0þ

1

4
ffiffiffi

2
p

πl
ðcosðΔτ − iϵÞ sec ρ sec ρ0

− 1 − tan ρ tan ρ0 cosΔθÞ−1=2; ðB4Þ

where Δτ≡ τ − τ0 and Δθ≡ θ − θ0, for a quantum state
which corresponds to imposing transparent b.c.; the ‘iϵ’
corresponds to the Feynman prescription. Now, by using

cosðΔτ − iϵÞ ≈ cosðΔτÞ þ i sin ðΔτÞϵ; ϵ → 0þ; ðB5Þ

lim
ϵ→0þ

ðx� iϵÞ−1=2 ¼ jxj−1=2e∓iπΘð−xÞ=2; x ∈ R; ðB6Þ

together with Eqs. (3.3) and (B3), it readily follows that
the anticommutator corresponding to Eq. (B4) is given
by Eq. (3.5).

APPENDIX C: TWO-POINT FUNCTION

IN STATIC BTZ NAKED SINGULARITY

VIA MODE SUMS

In Sec. III A, we gave the two-point function on a static
BTZ NS space-time as derived by applying the method
of images on the two-point function in AdS3. Specifically,
the two-point function on a static BTZ NS is given by
Eq. (3.11) with N ¼ 1=

ffiffiffiffiffiffiffiffi

−M
p

. In this Appendix, we are
going to rederive that expression by instead using mode
sums over homogeneous solutions of the field equation,
Eq. (3.2). This alternative derivation will enable us to
clarify the boundary conditions used in obtaining the two-
point function.
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We start with the homogeneous field Eq. (3.2) and write
a field mode solution as

ϕmωðxÞ ¼ Nmωe
−iωtþimθRmωðrÞ; ðC1Þ

where Nmω is a normalization constant, ω ∈ C and m ∈ Z.
The radial function RmωðrÞ is found to satisfy the ordinary
differential equation
�

1

r

d

dr

�

rðr2 −MÞ d

dr

�

−
m2

r2
þ ω2

r2 −M
þ 3

4

�

RmωðrÞ ¼ 0;

ðC2Þ

where r ∈ ð0;∞Þ. We need to choose boundary conditions
for the solutions of this radial equation at the singularity
“r ¼ 0” and at the AdS boundary r ¼ ∞.
Let us now define normalize quantities as: r̄≡ r=
ffiffiffiffiffiffiffiffi

−M
p

∈ ð0;∞Þ, ω̄≡ ω=
ffiffiffiffiffiffiffiffi

−M
p

and m̄≡m=
ffiffiffiffiffiffiffiffi

−M
p

, where
we remind the reader thatM < 0 for a static NS. From now
on we restrict ourselves to the case that M ¼ −1=N2, with
N ∈ Z

þ, so that, in particular, m̄ ¼ m · N ∈ Z.
The solutions of Eq. (C2) can be expressed in terms of

associated Legendre functions. In particular, we choose the
following two linearly independent solutions:

1Rmωðr̄Þ≡ ð1þ r̄2Þ−1=4P−m̄
−1=2þω̄

�

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r̄2
p

�

;

2Rmωðr̄Þ≡ ð1þ r̄2Þ−1=4Pm̄
−1=2þω̄

�

−
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r̄2
p

�

: ðC3Þ

It can be easily checked that the functions in Eq. (C3)
satisfy Eq. (C2). In what follows, it will be convenient
to use the coordinate ρ ∈ ð0; π=2Þ defined via cos ρ≡
ð1þ r̄2Þ−1=2. In terms of this new coordinate, the solutions
read

1RmωðρÞ ¼
ffiffiffiffiffiffiffiffiffiffi

cos ρ
p

P−m̄
−1=2þω̄ðcos ρÞ;

2RmωðρÞ ¼
ffiffiffiffiffiffiffiffiffiffi

cos ρ
p

Pm̄
−1=2þω̄ð− cos ρÞ: ðC4Þ

Let us now turn to their boundary conditions. They behave
as 1Rmω ¼ Oðr̄jm̄jÞ (for which m̄ ∈ Z is needed) and

2Rmω ¼ Oðr̄−jm̄jÞ as r̄ → 0þ [70]. That is, 1Rmω is regular
as r → 0þ and square integrable near r ¼ 0; on the other
hand, 2Rmω is irregular as r → 0þ and is not square
integrable near r ¼ 0 (except for m ¼ 0). Near the AdS
boundary, 2Rmω obeys transparent boundary conditions
[34,51]. Therefore, 1Rmω is the appropriate solution near
the singularity r ¼ 0 and 2Rmω is the appropriate one near
the AdS boundary r ¼ ∞.
We now proceed to write the two-point function similarly

to the way that it is done in [30,51] for the BH case. The idea
is that one first Euclideanizes the space-time. The field
equation becomes elliptic in the Euclidean manifold and so
there is a unique Green function (under the conditions of
square-integrability near the origin and transparent boundary

conditions at infinity), which is the so-called Euclidean
Green function. The Euclidean Green function may be
constructed in the usual way that one constructs a Green
function: with the radial part of the modes given by the radial
solution which satisfies the desired boundary condition near
r ¼ 0 evaluated at the point with the smallest radius [i.e.,
r< ≡minðr; r0Þ], times the radial solution which satisfies the
desired boundary condition near r ¼ ∞ evaluated at the
point with the largest radius [i.e., r> ≡maxðr; r0Þ]. The
Euclidean Green function is obtained as a frequency-integral
of the modes constructed as per above (it is a frequency
instead of a discrete sum since, in this case, the correspond-
ing Euclidean manifold contains no conical singularity and
so no periodicity is required in the Euclideanized time). One
then de-Euclideanizes and obtains the Feynman Green
function from the Euclidean Green function by the corre-
sponding analytic continuation. When de-Euclideanizing,
the integration contour over the purely imaginary frequen-
cies in the Euclidean Green function is deformed to an
integral over just below the real axis for ReðωÞ < 0 and just
above the real axis for ReðωÞ > 0; we denote such contour
by C (see, e.g., Fig. 1 in [49]). Specifically, the Feynman
Green function in the static NS space-time when the field
satisfies transparent boundary conditions is given by

GFðx; x0Þ ¼ −
N2

ð2πÞ2
Z

C

dω
X

∞

m¼−∞

e−iωtþimθ

× 1Rmωðρ<Þ2Rmωðρ>Þ
tan ρ ·W½1Rmω; 2Rmω�

: ðC5Þ

Here we have taken t0 ¼ 0 and θ0 ¼ 0 without loss of
generality (due to the stationarity and circular symmetry of
the space-time). The factor “tan ρ” is required so that the
denominator is constant. The Wronskian is given by

W½1Rmω; 2Rmω�≡ 1Rmω

d2Rmω

dρ
− 2Rmω

d1Rmω

dρ

¼ −
2

π
cot ρ cos ðπðm̄ − ω̄ÞÞ: ðC6Þ

The Feynman propagator (C5) satisfies the Green function
equation (3.4).
From Eqs. (C5) and (C6) it readily follows that

GFðx; x0Þ ¼
N

8π
ðcos ρ cos ρ0Þ1=2

Z

C

dω̄
X

∞

m¼−∞

ð−1Þm̄e−iω̄ t̄þimθ

×
P−m̄
−1=2þω̄ðcos ρ<ÞPm̄

−1=2þω̄ð− cos ρ>Þ
cosðπω̄Þ ; ðC7Þ

where we have defined t̄≡ t
ffiffiffiffiffiffiffiffi

−M
p

. We note that the only
singularities in the complex-ω plane of the integrand [for
r; r0 ∈ ð0;∞Þ] in Eq. (C7) are the poles which correspond
to the zeros of the denominator, i.e., ω̄ ¼ nþ 1=2 with
n ∈ Z. We next wish to perform the infinite-sum and
integral in Eq. (C7).
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For the sum, we will mirror a similar calculation in the Appendix of [71]. We start with Eq. (8.794) of [72]. After basic
operations and the use of the property

Pk
νðcosψ1ÞP−k

ν ðcosψ2Þ ¼ P−k
ν ðcosψ1ÞPk

νðcosψ2Þ ðC8Þ

for k ∈ Z, ψ1, ψ2 ∈ R, ν ∈ C, we obtain

X

∞

k¼−∞

ð−1ÞkP−k
ν ðcosψ1ÞPk

νðcosψ2Þeikφ ¼ Pνðcosψ1 cosψ2 þ sinψ1 sinψ2 cosφÞ; ðC9Þ

with φ ∈ R. We now take φ → φþ 2nπ=N onto Eq. (C9) and take a sum over n from 0 to N − 1.
After some more basic operations and the use of the distributional identity [71]

X

N−1

n¼0

eikðφþ2nπ=NÞ ¼ Neikφ
X

∞

m¼−∞

δk;m·N ; ðC10Þ

we obtain the useful identity

X

∞

m¼−∞

ð−1Þm·NP−m·N
ν ðcosψ1ÞPm·N

ν ðcosψ2ÞeimNφ ¼ 1

N

X

N−1

n¼0

Pν

�

cosψ1 cosψ2 þ sinψ1 sinψ2 cos

�

φþ 2nπ

N

��

: ðC11Þ

We can now apply Eq. (C11) to the infinite-sum in Eq. (C7):

X

∞

m¼−∞

ð−1Þm̄eimθP−m̄
−1=2þω̄ðcos ρ<ÞPm̄

−1=2þω̄ð− cos ρ>Þ ¼
1

N

X

N−1

k¼0

P−1=2þω̄ðcos βkÞ; ðC12Þ

where

cos βk ≡ − cos ρ cos ρ0 − sin ρ sin ρ0 cos

�

θ þ 2kπ

N

�

: ðC13Þ

Therefore, we have, from Eqs. (C7) and (C12),

GFðx; x0Þ ¼
1

8π
ðcos ρ cos ρ0Þ1=2

X

N−1

k¼0

Z

C

dω̄e−iω̄ t̄
P−1=2þω̄ðcos βkÞ

cosðπω̄Þ : ðC14Þ

In order to evaluate this contour integral we shall use the residue theorem. For this purpose, we choose to close the contour C
in the lowerω-plane. When t > 0, the integral along the arc at infinite radius in the lower plane vanishes and so from now on
we consider t > 0. Then, taking into account the poles of the integrand for ω̄ > 0 (i.e., ω̄ ¼ nþ 1=2 with n ∈ Z

þ ∪ 0)
when using the residue theorem, we obtain

GFðx; x0Þ ¼
i

4π
ðcos ρ cos ρ0Þ1=2 lim

ϵ→0þ

X

N−1

k¼0

X

∞

n¼0

e−iðnþ1=2Þðt̄−iϵÞð−1ÞnPnðcos βkÞ; ðC15Þ

where we have introduced a small-ϵ prescription for convergence. In order to carry out the n-sum, we use the fact that
ð−1ÞnPnðcos βkÞ ¼ Pnð− cos βkÞ for n ∈ Z

þ ∪ 0, together with Eq. (8.921) [72], which requires that je−iðt̄−iϵÞj ¼ e−ϵ < 1,
which is satisfied for ϵ > 0. As a result, we obtain

GFðx; x0Þ ¼
i

4
ffiffiffi

2
p

π
ðcos ρ cos ρ0Þ1=2 lim

ϵ→0þ

X

N−1

k¼0

1

ðcosðt̄ − iϵÞ þ cos βkÞ1=2
: ðC16Þ

By writing it in the original BTZ coordinates, it is easy to check that (restoring l)
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cosðt̄ − iϵÞ þ cos βk
cos ρ cos ρ0

¼ ððN2r2 þ l
2ÞðN2r02 þ l

2ÞÞ1=2 cos
�

t − iϵ

Nl

�

− N2rr0 cos

�

θ þ 2kπ

N

�

− l
2; ðC17Þ

Comparing with Eq. (A27), we can see that, for
k ¼ 0 and ϵ ¼ 0, the right-hand side of (C17) is equal
to the world function σðx; x0Þ with M ¼ −1=N2. The
expression for k ≠ 0 (and ϵ ¼ 0) simply corresponds
to σðx;Hkx0Þ.
In its turn, the ϵ-dependence can be separated out

so that:

cosðt̄ − iϵÞ þ cos βk
cos ρ cos ρ0

∼ σϵðx;Hkx0Þ≡ σðx;Hkx0Þ þ sin t̄ · iϵ;

ϵ → 0þ: ðC18Þ

The final expression for the Feynman Green function is
thus

GFðx; x0Þ ¼
i

4
ffiffiffi

2
p

π
lim
ϵ→0þ

X

N−1

n¼0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σϵðx;Hnx0Þ
p : ðC19Þ

In its turn, the final expression for the anticommutator is
thus, from Eqs. (3.3) and (C19),

G
ð1Þ
NSðx; x0Þ ¼ 2ImðGFðx; x0ÞÞ ¼

1

2
ffiffiffi

2
p

π

X

N−1

n¼0

Θðσðx;Hnx0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σðx;Hnx0Þ
p :

ðC20Þ

Even though this expression has been derived assuming
t > 0, since the expression for the anticommutator
Gð1Þðx; x0Þ is the same for t > 0 as for t < 0, this expression
is actually valid for all t ∈ R. Equations (C20) and
Eq. (3.11) agree while they have been derived in completely
different ways: as a mode-sum here whereas using the
method of images there. We note that the “sum over
caustics” (or, in other words, the generalization θ → θ þ
2nπ=N with the associated sum over n or, in other words, the
“sum over images” within the method of images) has arisen
naturally here from the distributional identity Eq. (C10).
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