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The superconductor model, which was originally proposed by Nambu and Jona-Lasinio 
and recently further developed by Eguchi and Sugawara, is reinvestigated by the functional 
integration method. New contributions in this article are (i) to simplify the derivation of 
the Eguchi-Sugawara (E-S) Lagrangian, and (ii) to furnish the Feynman rules for quantum 
corrections to the E-S equation. It is pointed out that (iii) the validity of the model can 
be experimentally testable by observing the ratio of the Goldstone boson coupling constant 
to those of the gauge bosons, a new universality. A non-abelian model is also discussed. 

§ l. Introduction 

In the study of the superconductor model proposed by Nambu and Jona

Lasinio,n recently Eguchi and Sugawara21 found a set of equations which governs 

the collective motions of fermions, and concluded that the system behaves as if 

the Higgs type gauge system does, provided that all the participating bosons are 

composite particles of the basic fermions (or quarks). 

In their approach, they obtain the equations for the expectation values of 

fermion fields by the Hartree-Fock method. For the purpose of investigating the 

quantum corrections to the equations, however, their formalism is not convenient. 

The recent work by Konishi, Saito and Shigemoto,31 although they do not use the 

expectation values as dynamical coordinates, is not convenient either for our object. 

The aim of the present work is to reformulate the theory in such a way 

that any order of quantum corrections are calculable, and also to simplify the 

derivation of equations. Instead of trying to obtain the equations of motions as 

they have done, we directly attempt to obtain the Lagrangian for composite boson 

fields keeping all residual terms which have been neglected in previous works_ 

Then both the Eguchi-Sugawara (E-S) Lagrangian and the Feynman rules for the 

quantum corrections are simultaneously deduced. In a somewhat different model 

in 1963, Bjorken41 already discussed the mechanism of this collective motion. Our 

approach is simpler and more practical than his method. An interesting conse

quence in our work is a new relationship between the coupling constants of the 

composite bosons. If both the Goldstone boson and the gauge bosons are composite 

particles, the relevant coupling constants are determined as functions of the cutoff 

momentum, and are independent of the coupling constants which are originally 

introduced in the modeL One of the experimentally testable relation is 
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948 K. KiHawa 

(1·1) 

where fa(fv) is the coupling constant of the Goldstone (the gauge) boson to the 

quark. 

Since the superconductor model is unrenormalizable, one has to introduce a 

cutoff momentum in the calculations. Throughout the work, therefore, we assume 

that the model is a kind of phenomenological one and that the quantum corrections 

are valid only when the relevant momenta are less than the cutoff momentum. 

Even if the cutoff momentum is kept finite, one may still wonder, however, wheth

er the investigation of higher order corrections are meaningful at all in this sort 

of unrenormalizable model. We argue that this is meaningful if the mechanical 

masses of the gauge bosons are kept zero by imposing a condition over a coupling 

constant. To the contrary, if the condition is not satisfied, we think that the 

correction terms are meaningful within a restricted sense. 

Our approximation method can be regarded as the power series expansion 

approach in 1/ln(A2/m2) where A is the cutoff momentum. The E-S equations 

can be considered to be the zeroth order term in this expansron. 

§ 2. Abelian model 

The Lagrangian we consider is given by 

(2·1) 

where tjJ represents a Dirac spinor field with no internal space component. Here

after tjJ is referred to as the quark. The model ·with the internal symmetry will 

be discussed in the next section. The coupling constants g and g' are both assumed 

to be positive so that the attractive force between the quark and anti-quark is 

guaranteed from the outset. 

With the help of auxiliary fields ¢'s, the Lagrangian (2 ·1) can be expressed 

as follows: 

·where 

Because variations with respect to ¢' s give 

¢s= -2g(/Jcj;, if;p= -2gi(/Jr,cf;, 

¢1=2g'(/Jr#cf;, ¢AP=2g'(/Jr,r#cf;, 

(2 ·2) 

(2 ° 3) 

(2· 4) 

the substitution of (2 · 4) into (2 · 2) shows the equivalence of Lz to LJ. The mass 

m~ in (2 · 2) and (2 · 3) is temporarily a free parameter which is to be determined 
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later. 
The quantization of our model is performed by the use of Lz rather than L1. 

The generating functional, therefore, is given by 

Z= ~ Jexp[i J{L2 (y6,~,¢'s) +7Jy6+~7J}dx] 

X [J)y6[J)~[J)¢s···fD¢A" (2·5) 

with 7J and 7J being quark sources. If one carries out ¢-integrations, (2 · 5) obvi

ously reduces to 

which is nothing but the generating functional for the original Lagrangian L 1• 

Now, instead of ¢-integrations, we first perform y6-integration in (2 · 5). That 

is, changing the integration variables from y6 and ~ to 

<Po=</;=+ (1/ira-m- U) 7J, 

~o=~ +7J(1/ira-m-U), 

one carries out y60 and ~0 integrations to obtain 

z ~ s det I ira- moo- Ul . !lJ¢s· .. !lJ¢A" 

X exp [i S {-~ (¢s2 + ¢P2) + ___!, (¢v"' +¢A"') + 7J. 1 --7]} dx]. (2 · 6) 
4g 4g zra- moo- u 

Note that one has obtained det[···l in (2·6) because of the fermi statistics of y6, 

otherwise one would obtain (det[ ···[) - 1• Disregarding some normalization factors 

and using the formula 

det[ M[ =exp{Tr(ln M) }, 

one finally reaches 

Z = ~ Jexp [is+ 17!. 1 77dx] !lJ¢8 • · • !lJ¢A" (2 · 7) 
N J' zra- moo- U 

with 

-i Tr[ln(1-. 1 u)], 
zra- moo 

(2·8) 

where Tr means the trace operation with respect to both the space-time points 

and r-matrix elements. The last term in (2 · 8), expanded in powers of U 
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950 K. Kikkawa 

Fig. 1. The F eynman diagrams contained in (2 · 9). The first four diagrams contain the 
divergent parts, which form Leon· 

-iTr[ln(1-. 1 u)]=l.:Ucn>, zra- moo n~l 
(2·9) 

where 

(2 -10) 

IS represented by a sum of Feynman diagrams as is shown in Fig. 1, and calculated 

by the usual method. Since the first four terms in (2 · 9) provide divergent inte

grals in the limit of cutoff momentum A-~=, we classify the terms as 

UDiv+ Uconv, (2 ·11) 

where UDiv indicates the divergent integration terms and Uconv the residual con
vergent terms in Uc2), uc3), Uc4) and all other ucn)'s for n>5. The precise definition 

of UDiv we adopt is that used in the Appendix of Ref. 2). It IS this UDiv that 

provides us with the E-S Lagrangian. 

Since the diagrams in Fig. 1 were already calculated by the previous authors,') 

we do not repeat the details of calculations except adding few remarks. It will be 

worth-while to point out, however, that the calculation of the effective Lagrangian 

terms (2 ·10) is much simpler than the calculation of terms in field equations. 

The result now turns out to be 

S= s[Lco!!+KF]dx, 

L cl [ 1 c~ )2 1 2 2 2 
Col!= 2 2 U !'cps + 2' moo cps 

+ l_ (fJ !'cpp )2 + l_ '2m=2cpp 2 + 2 (fJ !'cpscpp- 0 !'cppcps) rPA!' 
2 2 

-~ {l:. (fJ"¢v"- fJ"¢v") 2 _l_Jl/P¢v"'} 
3 4 2 

-~ {l:. (fJ"r/JA"- fJ"r/JA") 2 _l_M2cpA"'} 
3 4 2 

(2 ·12) 
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LF= (convergent one-loop diagrams in Ucanv), (2 ·13) 

where 

(2·14) 

(2 ·15) 

Cl= -4i SA 1 d4P. 
(2nY (P'- m=')' 

(2·16) 

remark 1. The first term um remains unvanished for scalar field ¢s' = r/Js 

(2·17) 

The scalar field ¢s' is supposed to be the one having vanishing vacuum expectation 

value, therefore, the linear term such as (2 ·17) should not appear in the Lagrang

ian when it is represented in terms of ¢s'. The elimination of (2 ·17) is possible 

if the corresponding linear term in (2 · 8) 

1 2 1 ( 12 2 I 2) --rps = -- ¢s + m=¢s +m= 
4g 4g 

cancels (2 ·17), i.e., if 

1 =2gC0 , (2 ·18) 

which determines the quark mass m= as a function of g and the cutoff momentum 

A. The mass m= in (2 ·12) is assumed to be the solution of (2 ·18). 

remark 2. In the calculation of u<'J there occurs a regularization dependence 

to determine the ¢1 and ¢i' mass terms. Although the quadratic divergent terms 

associated with the scalar and the pseudo-scalar fields are cancelled by ( -1/ 4g) 

X ( ¢s'' + ¢/) in (2 · 8) if the condition (2 ·18) is assumed, those which associated 

with ¢1 and ¢A11 are not in the straightforward cutoff method, whose results 

are shown in (2 ·14). If one uses some other regularization method such as 

the Pauli-Villars method,5J one would obtain the second and the third terms in (2 ·14) 

being vanishing in the limit A-+co. It must be stressed, however, that there is 

no criterion to judge which one is correct, particularly when the cutoff momentum 

must be kept finite as indicated by (2 ·18). In the following, we assume that g' 

is so chosen that Jlvi' = 0 :4l 

(2 ·19) 

As is argued below, the quantum corrections are considered to be meaningful m 

all orders of expansion if (2 ·19), with a proper modification, is assumed. 
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952 K. Kikkawa 

remark 3. As one sees from (2 ·12), the coupling constant dependence of 

Lean appears only in the mass terms. Even if one started from the other Lagrang

ian which may not have r5- invariance, one would have obtained the same Lagrang

Ian as (2 ·12) except for mass terms of bosons. [If one adopts a repulsive force 

model (g, g' <O), however, the corresponding Leon becomes unstable because M 2 

<O.] An important remark in this connection is that, even if the original model 

(2 ·1) is given, one could begin with the Fierz transformed form of L 1• The 

reason why we adopted (2·1) is that, the scalar coupling term g((/i¢) 2 in (2·1) 

produces whole quark mass and the contribution from the Fierz transformed term 

becomes zero by mutual cancellation. *l 

§ 3. The Feynman rules 

In order to examme the explicit forms of quantum correction terms to Lco!h 

it is convenient to introduce a set of "renormalized" fields 

¢0 =S+iP, 

Then Leon can be written as 

where 

L _ _ 1 (F "")2 _ 1 (F "")z con- 4 A 4 v 

(3 ·1) 

(3·2) 

(3. 3) 

(3·4) 

In terms of the renormalized fields, the generating functional (2 · 7) turns out to be 

z=__!_ fexp[i f{Lcon+LF+'1/. 1 r;}dx] 
N zra- uR 

X 9J¢a9J¢a* 9JA"9JVIL, (3·5) 

*l The Fierz transformation invariance of the theory is not obvious in our approach. Since 
the Fierz transformation dependence appears in the mass terms, the problem is related with regulari
zation dependence. We have confirmed, however, that the in variance can be recovered in higher 

order corrections. 
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where 

(3·6) 

and LF ( ¢0 , V, A) stands for the sum of convergent parts of one-loop diagrams 

in Fig. 1, in which the renormalized coupling constants V2/3f and fare associated 

with the vertices of ¢0 and VP (or AP) emissions, respectively. The vertices 

necessary in the Feynman diagram calculations are LF and the Yukawa vertices 

with the quark, whose existence is implied by the last term in the exponent in 

(3·5). 
The generating functional (3·5) is the most useful expression for the Feynman 

diagram calculations. Since 

(3 ·7) 

this can be used as the power series expansion parameter. Leon is, then, regarded 

as the zeroth order term in our approximation scheme. Since Leon in (3 · 2) is 

the gauge invariant Lagrangian owing to the assumption (2 ·19), any higher order 

correction term does not provide worse divergent amplitude than the usual renorma

lizable theory. The quantum corrections are, therefore, considered to be meaning

ful to any order of expansion, provided that (2 ·18) and (2 ·19) are properly 

adjusted in the higher order calculation as in the ordinary renormalization proce

dures. 

For the formal discussion, another type of representation is better. One can 

easily confirm that the generating functional is graphically equivalent to the system 

with the Lagrangian 

L =Leon+ (Lz- Leon), (3 ·8) 

where 

(3·9) 

Although (3 · 8) is a trivial identity, what we mean by (3 · 8) 1s that Lean 1s 

supposed to be the "large" part in L and should be treated as the unperturbed 

part. As was pointed out by Nielsen and Olesen6) Leon has classically extended 

solutions whatever the coupling constant f small is. Strictly speaking, the per

turbation expansion should be carried out around these classical solutions.n 

We note that, in (3 · 8), if one makes the transformation 

(3 ·10) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/56/3/947/1936174 by guest on 25 August 2022



954 K. Kikkawa 

where 

(3 ·11) 

one can replace 

(3 ·12) 

The coupling constant of I ¢0 [ with the quark is now VZ/3 times smaller than 

those of v~ and A~. The factor V2/3 arises from the kinematical reason in the 

self-energy diagram in uc21 [see (2 ·12)]. Assuming that the additivity of the 

coupling becomes good in the high energy scattering, one can test this relation 

(Fig. 2). Note that g0 and gv can be arbitrary numbers in the ordinary gauge model 

in contrast with our case. Tip 
VorA 

fv 

N q 

Fig. 2. In any model which generates bosons by the Bjorken-Eguchi-Sugawara mechanism, 
the coupling constants obey falfv= v'2;3. 

Finally we make a comment on the validity of this higher order corrections 

when the mass condition (2 ·19) is not satisfied. In this case, since we do not 

have any reason that the two- or higher-loop diagram does not produce such a 

divergent term like [ { (8 ,/) ¢8 } 2 X (divergent factor) J, the correction rules obtained 

above cannot be taken literally. The corrections should be considered to be 

phenomenological ones, and, perhaps, only the tree diagram corrections are meaning

ful. 

§ 4. Non-Abelian model 

In this section we simply show the result without details. *1 The model we 

consider is 

L = (/J irof + g [ ((/J JA) 2 - ((/J /5Aaf) 2] 

- g' [ ((/J I ~Aaf) 2 + ((/J /51 Jai/J) 2], 

where }," IS an (NX 1V) matrix with 

Using the boson fields 

N 2 -1 

S = L; ;,."S" , etc., 
a=O 

*1 T. Eguchi also studied the Non-Abelian model, a private communication. 

(4·1) 

(4·2) 
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one obtains the Lagrangians 

where 

Leon= - _!__ tr ( G v""G v w) - _!__ tr ( G A""G A"J 
8 8 

+ _!__ tr (8 "S- ij[V", S] + j {A", P} )2 +_!_2m} tr (S 2) 

4 4 

+_!__ tr(a"P-ij[V", P] -f{A"' S} Y+ _!_2moo 2 tr (P 2) 
4 4 

-{
2 tr[(S2 +P2)- [S, P]2], 

L2 =(/Jiyarj;- j(/) (j ~ S + j ~ iysP+ r'" V" + rsr'"ii'") rj; 

G/"=fJPV"-a'VP+if{[P, ll'J +[AM, A'J}, 

G,!p, = f)P A'- ()' Al' + if { [ A 1'' V'] + [ V"' A']} . 

The approximation should be carried out on the basis of 

L=Lcon+L', 

L' =L2-LCol1, 

955 

(4· 3) 

(4·4) 

(4· 5) 

(4·6) 

assuming Leon as an unperturbed part. The mass conditions (2 ·18) and (2 ·19) 
must be again imposed. 
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Added Note: Recently T. Kugo independently obtained Leon by the same method as in this article. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/56/3/947/1936174 by guest on 25 August 2022


