
1SCIENTIFIC REPORTS |          (2019) 9:4035  | https://doi.org/10.1038/s41598-019-40652-0

www.nature.com/scientificreports

Quantum Correlation in Squeezed 
Generalized Amplitude Damping 
Channels with Memory
Youngmin Jeong   & Hyundong Shin  

A squeezed generalized amplitude damping (SGAD) channel is a quantum channel that models a 

general noise process incorporating the effects of bath squeezing, dissipation, and decoherence. In 
this paper, we analyze the dynamics of quantum entanglement and discord in the SGAD channel with 
memory. By obtaining a stochastic map defining this noisy quantum channel, we derive the concurrence 
and discord of Werner-like mixed states sent by successive uses of the channel. It is shown that these 
quantum correlations can be preserved or even generated depending on the initial channel input states, 
channel parameters, and the degree of channel memory. In particular, the squeezing effect does not 
contribute to the dynamics of quantum correlation for singlet-like states under correlated noise.

Quantum correlation (e.g., entanglement1,2 and discord3–5) is a fundamental feature of quantum mechanics, 
which is known to be at the heart of various potential applications, such as superdense coding, quantum tele-
portation, and quantum cryptography6–10. However, the quantum correlation is very fragile and broken by unex-
pected and unwanted interactions with an environment–referred as quantum noise. �erefore, the evolution of 
quantum correlation in various noisy environments has been a topic of importance in a �eld of quantum infor-
mation processing and quantum computation11–13.

An amplitude damping channel is a quantum channel that models a physical process such as spontaneous 
emission or energy dissipation at zero temperature14. More generally, a quantum noise process due to dissipative 
interactions with a purely thermal bath is modeled by a generalized amplitude damping channel, which is one 
of the most important quantum channels and describes the dissipation e�ect at �nite temperature15. �is noisy 
quantum channel is further extended to a squeezed generalized amplitude damping (SGAD) channel by taking 
into account a squeezed thermal bath16. �e SGAD channel incorporates the both e�ects of dissipation at �nite 
temperature and bath squeezing17–20. �e squeezed thermal bath can suppress quantum decoherence18, while it is 
unable to help in preserving quantum entanglement19,20.

A noisy quantum channel is de�ned by a stochastic map17

ρ ρΦ Φ: ( ), (1)1 1

which is completely positive trace-preserving and transforms a quantum state described by a density operator ρ 
into a quantum state Φ1(ρ). �e density operator ρ satis�es a master equation21
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where = −i 1 , H is the system Hamiltonian,  is the Lindblad superoperator, and [⋅,⋅] denotes the commutator. 
�e �rst term in (2) describes coherent dynamics while the second term accounts for damping mechanisms. �e 
SGAD channel is a general Lindbladian noisy channel in which a quantum system interacts with a bath being 
initially in a squeezed thermal state under the Markov and Born approximations. �e corresponding Lindblad 
superoperator has the form of17
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where σ σ σ= ++ i( )
1

2 1 2  and σ σ σ= −− i( )
1

2 1 2  are creation and annihilation operators, respectively; σi for i = 1, 2, 
3 are Pauli x, y, and z operators; n is related to the number of thermal photons; m < n + 1/2 is the squeezing 
parameter; and Ω is the zero-temperature dissipation rate, associated to the spontaneous emission14,17,22. Note 
that the SGAD channel reduces to the generalized amplitude damping channel (thermal �eld channel) when 
m = 0 and further to the amplitude damping channel (spontaneous emission) by setting n = m = 0. As n → ∞, 
Φ1(ρ) tends to a maximally mixed state.

�e simplest model for quantum channel uses is memoryless, that is, the quantum operation describing N 
channel uses is equal to Φ = Φ⊗N

1 . However, some noise process can introduce memory e�ects among consecu-
tive channel uses23–25, leading to Φ ≠ Φ⊗N

1 . �e e�ect of channel memory (or time-correlated noise) was widely 
explored in various quantum channels26–36. It was shown that the channel memory can enhance the classical 
capacity of a quantum channel by using entangled quantum states rather than separable quantum states26–33. �e 
channel memory can also freeze the evolution of quantum correlation between two qubits sent by successive 
channel uses34–36 with avoiding the entanglement sudden death (ESD) phenomenon37.

�e aim of this paper is to analyze the dynamics of quantum correlation of Werner-like mixed states sent 
by two consecutive uses of the SGAD channel with memory. We �rst �nd stochastic maps de�ning the SGAD 
channel with uncorrelated and correlated noises. We then provide analytical expressions for the concurrence and 
discord. �e roles of initial channel input states, the degree of channel memory, the number of thermal photons, 
and bath squeezing on the dynamics of concurrence and discord are investigated by numerical examples.

Results
The SGAD Channel with Memory. When the environmental correlation time is longer than the time 
between two consecutive channel uses, the overall stochastic map Φ for the two channel uses does not obey 

Φ = Φ⊗1
2 due to the channel memory. �is e�ect was veri�ed experimentally in a �ber optic link exhibiting �uc-

tuating birefringence23 and in the solid-state implementation of quantum hardware su�ering from low frequency 
noise24,25. �e stochastic map Φ for two qubits of initial states ρ ∈ ×4 4 sent by two consecutive uses of a quan-
tum channel with memory can be written as29

ρ ρ ρµ µΦ = − Φ + Φ( ) (1 ) ( ) ( ), (4)u c

where Φu and Φc denote the stochastic maps corresponding to uncorrelated (memoryless) and correlated (mem-
ory) noise e�ects of the channel, respectively; and µ is a degree of channel memory, implying that the noise is 
correlated with probability µ. �e stochastic map Φu(ρ) for the SGAD channel with uncorrelated noise is given 
by (see Methods)

∑ρ ρΦ = †
A A( ) , (5)i j i j i ju , , ,

where Ai,j = Ei ⊗ Ej and the Kraus operators Ei are
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�e stochastic map Φc(ρ) for the SGAD channel with correlated noise has the Kraus decomposition as follows 
(see Methods):
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∑ρ ρΦ = †
B B( ) , (12)k k kc

where the Kraus operators Bk are given by
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In contrast to the Kraus operators Ai,j for the uncorrelated action Φu, the Kraus operators Bk for the correlated 
action Φc are not in general tensorial forms (see Supplementary Material).

Dynamics of Quantum Correlation. Quantum correlation can be classi�ed into two categories: entangle-
ment and information-theoretic measures–discord. In contrast to entanglement3,5, the quantum discord can be 
positive even for certain separable mixed states9,10. We now study the dynamics of the concurrence and discord of 
Werner-like mixed states sent by two successive uses of the SGAD channel with memory.

Werner-Like Mixed States. We consider Werner-like mixed states ρ ∈±
×4 4 as initial input states for two 

qubits:

ρ ψ ψε
ε

= | | +
−

± ± ±⟩⟨ I
1

4
,

(20)4

where ε ∈ [0, 1] denotes the purity of the initial state, I4 is the 4 × 4 identity matrix, and
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ψ = ++ 1/2 ( 00 11 ), (21)

ψ = −− 1/2 ( 01 10 ), (22)

correspond to the Bell-like entangled two-qubit states38. �e Werner-like states ρ± are entangled when ε > 1/3, 
otherwise ρ± are separable states. Speci�cally, we call ρ− as a singlet-like state.

Quantum Entanglement. For any density matrix ρ ∈ ×4 4 for two-qubit states, the concurrence, denoted by 
ρC( ), can be computed as39

ρ ν ν ν ν= − − − +C( ) [ ] , (23)1 2 3 4

where ν1 > ν2 > ν3 > ν4 are the eigenvalues of the density matrix ρ ρσ σ⊗ ⊗⁎
2

2
2

2 in descending order and 
[x]+ = max{x, 0} denotes a positive part of x.

Let ρ±(t) = Φ(ρ±) be the output state of the channel. �en, these output Werner-like states ρ±(t) belong to the 
family of the so-called X-states40 (see Supplementary Material) as follows:

ρ
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in the computational basis 00 , 01 , 10  and 11  for two qubits where tr(ρ±(t)) = 1. �e nonzero elements of 
ρ±(t) are given by
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where Λ(t) = e−Ω(2n+1)t is the damping parameter. In what follows, we drop the function of time in these nonzero 
elements for notational simplicity. Using the concurrence expression for the X-state39, we obtain

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ= 

± + − + ± ± + 


.±

− − + + + + − −
+

  C t( ( )) ( )( )
(31)14 14 23 23 11 11 22 22 33 33 44 44

For the initial input states (t = 0), the concurrences are given by

ρ
ε

=
−
.±C( (0))

3 1

2 (32)

Quantum Discord. A computation of discord falls into the category of NP-complete problems in general41. 
However, the discord of the X-state can be determined analytically35,42,43. Letting η ± t( )

i
, i = 1, 2, 3, 4, be the eigen-

values of the output Werner-like states ρ±(t), the discord of ρ±(t), denoted by ρ±D t( ( )), is given by
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ρ =±
± ±D t Q t Q t( ( )) min { ( ), ( )}, (33)1 2

where

∑ η η ρ ρ
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with the Shannon entropy = − − − −H p p p p p( ) log (1 ) log (1 )
2 2

. Note that the discord of a pure state coin-
cides with the entanglement of formation and reaches its maximum value equal to one when the pure state is 
maximally entangled (ε = 1)44,45. For the initial input states (t = 0), we have
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Discussion
For the SGAD channel with correlated noise (µ = 1), the output states ρ±(t) in (24) reduce to
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In the steady state (t → ∞), the states ρ±(t) have the form

Figure 1. Concurrence dynamics (n = 1, Ω = 1, ε = 0.9): (a) ρ+C t( ( )) as a function of time t with µ = 1 when 
m = 0, 0.5, 1.0, and m → 1.5; and (b) ρ−C t( ( )) as a function of time t with m = 1 when µ = 0.0, 0.2, 0.4, 0.6, 0.8, 
and 1.0. �e concurrence ρ+C t( ( )) decreases with t, and the ESD is appeared at  = .t 1 927, 1.445, 1.156, 0.963 for 
m = 0, 0.5, 1.0, and m → 1.5, respectively (see (41)). We can also observe that the decay of ρ+C t( ( )) over time 
becomes fast with increasing the squeezing parameter m. For the singlet-like state ρ−(t), the entanglement can 
be preserved without the ESD due to the channel memory when µ > 0.344. In this example, 

ρ = .→∞ −C tlim ( ( )) 0 073t , 0.332, 0.592, and 0.853 for µ = 0.4, 0.6, 0.8, and 1.0, respectively (see (43)).
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(38)

tlim ( )

0 0 0

0 0

0 0

0 0 0

t

n n

n

n n

n

n n

n

n n

n

[2 (1 ) (1 )]

2(2 1)

(1 ) 4 (1 )(1 )

4(2 1) 4 4

4 4

(1 ) 4 (1 )(1 )

4(2 1)

( 1)[2( 1)(1 ) (1 )]

2(2 1)

2

2

2

2

From (31–38), we make the following observations on the dynamics of concurrence and discord (see 
Figs 1–3).
•	 For correlated noise (µ = 1), the concurrences reduce to

ρ ε
ε

=





Λ −

− 



+

−Ω
+

C t t e( ( )) ( )
1

2
,

(39)
mt

ρ ε
ε

=





−

−

+
+ Λ + − Λ






.−

+

C t
n

n t n t( ( ))
1

2(2 1)
(2 ( ))(2 2 ( ))

(40)

�e concurrence ρ+C t( ( )) under correlated noise monotonically decreases with time t as well as the channel 
parameters (Ω, n, m) and ends up with the ESD at time

 =
Ω + +

.

ε

ε−t
n m

ln( )

( 1/2) (41)

2

1

However, the squeezing parameter m does not a�ect to the dynamics of the concurrence and the discord for 
the singlet-like state ρ−(t). For the maximally entangled state (ε = 1), the quantum correlations in the SGAD 
channel with correlated noise do not evolve in time and are preserved as ρ ρ= =− −C Dt t( ( )) ( ( )) 1.
•	 In the steady state (t → ∞), we have

ρ ρ= =
→∞

+
→∞

+C Dt tlim ( ( )) lim ( ( )) 0,
(42)t t

ρ εµ µ µ ε

µ µ ε

=





−

+
− + + −

× − + + + + − .

→∞
−

+

C t
n

n n n

n n n

lim ( ( ))
1

2(2 1)
4(1 ) 2 (2 1)(1 )

4(1 )( 1) 2 ( 1)(2 1)(1 ) ] (43)

t
2

2

2

Figure 2. Discord dynamics (n = 1, Ω = 1, ε = 0.9): (a) ρ+D t( ( )) and (b) ρ−D t( ( )) at time t = 0.5 as a function of 
the squeezing parameter m when µ = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. �e squeezing e�ect reduces the 
decoherence18 and increases the discord, particularly under uncorrelated noise (µ = 0) or a low degree of 
channel memory. However, when µ = 1 (correlated noise), the discord remains constant for the singlet-like state 
ρ−(t) or even slightly decreases for the state ρ+(t) as the squeezing parameter m increases.
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�e concurrence ρ+C t( ( )) and discord ρ+D t( ( )) vanishe with time regardless of the channel parameters and 
channel memory, while these quantum correlations for the singlet-like state ρ−(t) can remain positive or be even 
generated depending on the channel parameters and memory as t → ∞. �e quantum state ρ−(t) looses the quan-
tumness since the density matrix (38) in the steady state has only diagonal elements. For spontaneous emission 
(n = 0), the steady-state concurrence is frozen at ρ εµ=→∞ −C tlim ( ( ))t . �is means that the steady-state ρ−C t( ( )) 
increases with the degree of channel memory (µ > 0) and the correlated noise can even generate the entanglement 
for unentangled states (ε ≤ 1/3). As n → ∞, we have

ρ
εµ

=






− 



→∞

−

+

C tlim ( ( ))
3 1

2
,

(44)t n,

which remains positive when εµ > 1/3.

Methods
Stochastic Map Φu for the SGAD Channel with Uncorrelated Noise. To �nd Φu for the SGAD chan-
nel with uncorrelated noise, we �rst consider the stochastic map Φ1 for a qubit of initial state ρ ∈ ×2 2 sent by a 
single channel use, which is given at time t by introducing the Lindblad superoperator  as follows17,21,29:



∑

ρ ρ

ρ λ

Φ =

=

t

L t R

( ) exp( )

tr( ) exp( ) (45)i i i i

1

∑ ρ λ= R t Ltr( )exp( ) , (46)i i i i

Figure 3. Quantum correlations in the steady state as a function of (ε, µ) for (a) ρ−C t( ( )) when n = 0, (b) 
ρ−C t( ( )) when n → ∞, (c) ρ−D t( ( )) when n = 0, and (d) ρ−D t( ( )) when n → ∞. �e entanglement can be 

generated in the SGAD channel with memory even in case there is initially no entanglement between two qubits 
(ε < 1/3) when n = 0. However, as n → ∞, the state ρ−(t) ends up with the disentanglement if εµ < 1/3 (see 
(44)). In other words, if the input state ρ−(0) has no entanglement (ε < 1/3), then there is no entanglement 
generation even under correlated noise (µ = 1). �e discord ρ−D t( ( )) in the steady state increases with µ and ε.
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where Li and Ri are the le� and right eigenoperators of  in (3); λi are the corresponding eigenvalues; and tr(⋅) 
denotes the trace operator. �e le� and right eigenopertors satisfy the eigenvalue equations:

 λ=R R , (47)i i i

λ=L L , (48)i i i

which have the duality relation

δ= .L Rtr( ) (49)i i i j,

From (3) and (47–49), we can �nd the right eigenoperators Ri and the le� eigenoperators Li for the SGAD 
channel as17

σ σ σ=




−

+






=R
n

L
1

2

1

2 1
,

1

2
,

(50)
1 0 3 1 0

σ σ σ σ= = + = − = −+ − − +R L R L
1

2
( ),

1

2
( ),

(51)2 2 3 3

σ σ σ= =



 +

+





R L
n

1

2
,

1

2

1

2 1
,

(52)
4 3 4 0 3

where σ0 = I, and the corresponding eigenvalues are given by

λ

λ

λ

λ











=

= −Ω + +

= −Ω − +

= − Ω + .

n m

n m

n

0,

( 1/2),

( 1/2),

2 ( 1/2) (53)

1

2

3

4

Let

ρ
ρ ρ

ρ ρ
=










⁎ ,
(54)

11 12

12 22

where ρ ρ ∈,
11 22

, ρ11 + ρ22 = 1, and ρ ∈
12

. �en, the output state Φ1(ρ) can be computed using (45) or (46) at 
time t as

ρ
ρ ρ ρ ρ

ρ ρ ρ ρ
Φ =







+ − + Ω − Ω

Ω − Ω + − + −







.
+

− Ω +

+

−Ω +

−Ω + +

+

− Ω +

+

⁎

⁎

( )
( ) (55)

e e mt mt

e mt mt e
( )

( cosh( ) sinh( ))

( cosh( ) sinh( ))

n

n

n t

n

n t

n t n

n

n t

n

1
2 1

1

2

2 ( 1/2)
11 22

1

2 1

( 1/2)
12 12

( 1/2)
12 12

1

2 1

1

2

2 ( 1/2)
11 22

1

2 1

Since the stochastic map (55) has a Kraus decomposition, we can obtain its Kraus operator-sum representation

∑ρ ρΦ = †E E( ) , (56)i i i1

where the Kraus operators Ei are given in (6–11). Using these Kraus operators, we can obtain the stochastic map 
Φu(ρ) for two qubits with initial states ρ ∈ ×4 4 sent over the memoryless SGAD channel as

∑ ∑ρ ρΦ = ⊗ 


⊗ ⊗ 

⊗† †I E E I E I I E( ) ( ) ( ) ( ) ( ) , (57)j j i i i ju

yielding the Kraus decomposition (5).

Stochastic Map Φc for the SGAD Channel with Correlated Noise. To �nd Φc for the SGAD channel 
with correlated noise, we consider the following correlated version of the Lindblad:

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

= −
Ω +

+ −

−
Ω

+ − − Ω +

∼
+
⊗

−
⊗

+
⊗

−
⊗

−
⊗

+
⊗

−
⊗
+
⊗

−
⊗
+
⊗

+
⊗

−
⊗

+
⊗

+
⊗

−
⊗

−
⊗

n

n
m

( 1)

2
( 2 )

2
( 2 ) ( ),

(58)

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2



where σ σ σ= ⊗±
⊗

± ±
2 . �e map Φc(ρ) at time t is given by

~

~ ~ ~


∑

ρ ρ

ρ λ

Φ =

= L R

t

t

( ) exp( )

tr( ) exp( ) , (59)i i i i

c
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where L
i
 and R

i
 are the le� and right eigenoperators of 

∼
; and λi are the corresponding eigenvalues. �e right 

eigenopertors R
i
 and the le� eigenopertors L

i
 are

=




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(60)

1 1
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16 16

and the corresponding eigenvalues are given by
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�e stochastic map (59) has the Kraus decomposition (12).
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