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We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg

chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the

techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory,

that is, by studying quantum discord, quantum mutual information, and three recently introduced coherence

measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum

phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses

of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry

points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that, as none of the studied

measures can detect the infinite-order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to

signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what

is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite-order

quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can

be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.

DOI: 10.1103/PhysRevB.93.184428

I. INTRODUCTION

The investigations of many-body quantum systems have

revealed very interesting and deep physical concepts such as

quantum phase transitions (QPT). QPTs are abrupt changes in

the ground state of a quantum many-body system as one or

more parameters of the Hamiltonian is varied at absolute zero

temperature [1]. In contrast to thermal phase transitions, which

are driven by thermal fluctuations in the system, QPTs are

driven by quantum fluctuations stemming from the uncertainty

principle. However, it is also possible to see the effects of

a QPT at sufficiently low but finite temperatures where the

quantum fluctuations are not washed away by the thermal

effects. Traditionally, phase transitions are classified based on

the nonanalytic behavior in the derivatives of the ground state

energy. In particular, a discontinuity in the first derivative of the

ground state energy signals a first-order transition. On the other

hand, a discontinuity or divergence in the second derivative

of the ground state energy is recognized as a second-order

transition in which case the transition is associated with a

symmetry breaking. A more involved type of phase transition,

which does not fit to the traditional classification scheme, is

known as the Kosterlitz-Thouless (KT) transition. In this case,

there is no divergence or discontinuity in the derivatives of

the ground state energy and no symmetry breaking, thus KT

transitions are said to be of infinite order [2].

Quantum many-body systems possess correlations of var-

ious different nature due to the interaction among their
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constituents. Therefore, in addition to the traditional ways of

witnessing quantum phase transitions, it has been recently

suggested that the tools of quantum information theory [3] can

also be exploited to characterize the transition points (TPs)

of quantum phase transitions. Especially, in quantum spin

models, the behavior of entanglement [4], quantum discord [5],

and many other correlation measures have been investigated,

and their performance in detecting the TPs of the QPTs

have been discussed [6,7]. Recently, a new line of research

has emerged that concerns itself with the characterization

and quantification of quantum coherence contained in a

quantum state [8–12]. Based on these new quantum coherence

measures, similar analysis have been done in the ground states

of several spin chains [7]. However, many of these studies

focusing on quantum correlations in spin chains have been

done for spin-1/2 systems [6,7], where analytical solutions

are available in many cases. On the other hand, spin-1 models

have richer phase diagrams and show more complex physical

phenomena, yet methods for obtaining the ground state of

such systems are rather more involved [13–30]. For instance, a

very important distinctive property of the integer-spin quantum

systems as compared to the half-integer ones is the Haldane

conjecture, which states that the system has a gapped ground

state, giving rise to the so-called Haldane phase [31].

In this work, we will consider two very well known

one-dimensional spin-1 Heisenberg models, namely, the spin-1

XXZ chain and the spin-1 bilinear biquadratic chain. Both

of these models have been under extensive investigation in

the literature from different perspectives due to the rich

physics they exhibit. Here we obtain the ground state of

these systems by making use of the methods of density
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matrix renormalization group theory (DMRG). Then, we

extensively investigate the behavior of mutual information,

quantum discord, and three recently introduced coherence

measures—namely, relative entropy of coherence, l1 norm of

coherence [8], and Wigner-Yanase skew information [11,32]—

for the reduced density matrix of two nearest-neighbor spins

in the bulk. Our analysis lets us establish relations between the

phase transitions and symmetry points in the considered spin-1

Heisenberg chains and the studied correlation and coherence

measures.

This paper is organized as follows. In Sec. II, we introduce

the spin-1 Heisenberg models used in this study along with the

DMRG techniques required to obtain the numerical solution

of these models. Section III presents the definitions of the

considered correlation and coherence measures. We present

our results in Sec. IV and conclude in Sec. V.

II. MODELS

In the section, we briefly discuss the different phases that the

one-dimensional XXZ model and the one-dimensional bilinear

biquadratic model favor with respect to their characteristic

parameters, and the nature of phase transitions occurring

among these phases. In order to calculate the ground state of

the model Hamiltonians, we use the standard DMRG infinite

system method [33]. In this version of DMRG, an open chain

is grown iteratively by adding two sites at a time to the center

of the chain. At each step the ground state for the whole chain

is calculated and a renormalization procedure is performed.

Typically, after a few hundred iterations the two central sites

are embedded in a bulk. The reduced density matrix for these

two central sites can then be obtained from the ground state.

It is important to stress that, despite the renormalization, the

spin interaction between the two central sites is always kept

exact. As the model parameters vary, truncation errors in the

renormalization procedure range from 10−10 to 10−6, with the

upper limit occurring around second-order phase transitions,

where quantum fluctuations are stronger.

A. Spin-1 XXZ chain

The Hamiltonian describing the one-dimensional spin-1

XXZ model with nearest neighbor interaction reads

H =
N

∑

i=1

[

Sx
i Sx

i+1 + S
y

i S
y

i+1 + �Sz
i S

z
i+1

]

, (1)

where N is the total number of sites, Si denotes the spin-1

operator at the site i, and � characterizes the anisotropy of the

spin-exchange interaction in the model. It is well established

that the model has four different phases depending on the

value of the anisotropy parameter [13,16,21]. The system is in

a ferromagnetic phase when � < −1. There is a first-order

phase transition at the TP �c1 = −1, which separates the

ferromagnetic phase from the XY phase. At the second TP

�c2, the system exhibits an infinite-order phase transition (that

is believed to be of KT type), from the XY phase to the Haldane

phase, which extends over the region �c2 < � < �c3. There

is also a second-order phase transition taking place at the TP

�c3 from the Haldane phase to the Néel phase, belonging

to the two-dimensional Ising universality class. Even though

the exact values of both TPs �c2 and �c3 have been the

subject of various numerical studies, it is widely accepted that

XY-Haldane and Haldane-Néel transitions respectively occur

at the TPs �c2 ≈ 0 and �c3 ≈ 1.185 [16,21]. It should also be

emphasized that, in addition to the phase transition points, the

model also has a particular SU(2) symmetry point at � = 1.

B. Spin-1 bilinear biquadratic chain

The Hamiltonian of the one-dimensional spin-1 bilinear

biquadratic chain can be written as

H =
N

∑

i=1

[cos θ (Si · Si+1) + sin θ (Si · Si+1)2], (2)

where N is the total number of sites, Si denotes the spin-1

operator at the site i, and θ ∈ [0,2π ) is the angle quantifying

the amount of coupling between nearest neighbor spins.

The model system has an especially rich phase diagram.

In the parameter region −0.25π < θ < 0.25π , the system

is in the Haldane phase. At the TP θc1 = 0.25π , there is a

transition of the KT type, separating the Haldane phase from

the gapless trimerized phase. A first-order transition from

the trimerized phase to the ferromagnetic phase occurs at

the TP θc2 = 0.5π . As the system favors the ferromagnetic

phase throughout the parameter region 0.5π < θ < 1.25π ,

another first-order transition takes place at the TP θc3 = 1.25π

from the ferromagnetic phase to the gapped dimerized phase.

Finally, there exists a second-order transition between the

dimerized phase and the Haldane phase at the TP θc4 = 1.75π .

Although it has been also suggested that the model might

exhibit a nondimerized nematic phase in the region 5π/4 <

θ < 1.33π with a KT type transition at θ = 1.33π [30], it

has been recently shown that no such nematic phase exists

and the system remains in the dimerized phase all through

this region [34]. It is also worthwhile to mention that at

θ = 0.1024π the system corresponds to the Affeck-Kennedy-

Lieb-Tasaki (AKLT) model [35] with an exact valence bond

ground state, and at θ = 1.5π it can be solved exactly by the

Bethe ansatz method [36]. Last but not least, we stress that,

besides being a TP of the model, θ = 0.25π is also special in

that the system has a SU(3) symmetry [37].

III. CORRELATIONS AND COHERENCE

This section serves as a brief introduction to description

of the figures of merit that we will be using throughout this

work, i.e., quantum mutual information, quantum discord,

relative entropy of coherence, l1 norm of coherence, and

Wigner-Yanase skew information based measure of coherence.

The relevance of these measures to the study of quantum

phase transition follows from different reasons. Quantum

discord, for example, was broadly studied in the quantum

critical systems and brought various new insights to the field

when compared with entanglement measurements. Quantum

discord can detect QPTs even when the entanglement measures

fail to do so and it can be used even for thermal systems.

However, to evaluate it for spin dimensions higher than two

spin-1/2 particles is a highly demanding task. To overcome this

difficulty, we have introduced a simple numerical procedure

that will allow the analysis of quantum discord in high
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dimensional spin systems. Indeed, in our view, it will serve

as an efficient new tool of the quantum information theory for

the study of QPT. On the other hand, once again we would

like to emphasize that, to the best of our knowledge, this is the

first work which calculates the recently introduced coherence

measures in a spin-1 model. The importance of the calculation

of coherence measures stem from the facts that they can be

used as a resource in quantum computing protocols [38], they

can be calculated even for single spin density matrices, they

are experimentally friendly quantities to calculate, and they

are analytically (and easily) computable even for high spin

dimensions.

A. Quantum discord

Let us commence by introducing the quantum mutual

information. It quantifies the total amount of classical and

quantum correlations in a bipartite quantum state ρAB as

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (3)

where ρA(B) is the reduced density matrix of subsystem A (B)

and S(ρ) = −Tr{ρ log2 ρ} is the von Neumann entropy. On the

other hand, the classical correlation, which is the maximum

amount of classical information that can be obtained about

the subsystem A by performing local measurements on the

subsystem B, is given by

C(ρAB) = max
{�B

k }

{

S(ρA) −
∑

k

pkS(ρA|k)

}

, (4)

where the operators {�B
k } constitute a positive operator

valued measure (POVM) acting only on the subsystem B,

and ρA|k = TrB(�B
k ρAB�B

k )/pk is the remaining state of the

subsystem A after obtaining the outcome k with probability

pk = TrAB(�B
k ρAB�B

k ) in the subsystem B. Then, the amount

of inaccessible information, by means of local measurements,

defines the quantum discord as [5]

D(ρAB) = I(ρAB) − C(ρAB). (5)

In the following, we will describe a numerical recipe to

efficiently calculate quantum discord. We should underline

that, unlike most works in the literature, where quantum

discord is evaluated for a pair of qubits and only using

projective measurements, our method makes it possible to

calculate quantum discord for the composite system of two

spin-1 objects and using POVMs rather than projective mea-

surements. Nonetheless, we restrict ourselves to the projective

measurements in this work for the sake of simplicity.

Numerical evaluation of quantum discord

Although the calculation of quantum discord is an NP-

complete problem [39], i.e., the necessary time to obtain

the value for it grows exponentially with the Hilbert space

dimension, we present a method to numerically compute

quantum discord. In order to find the global minimum of

quantum discord under projective measurements, we have to

search all the Hilbert space to find the optimal orthonormal

basis. One way of doing so is to generate a random unitary

matrix, whose eigenvectors are used as a starting point for a

global optimization technique, like steepest descent or variable

metric methods as implemented in MATLAB, for instance. The

minimization is repeated for different starting points.

The random unitary matrix is obtained by means of a

circular unitary ensemble (CUE), which consists of all unitary

matrices with Haar measure in the unitary group, following

the technique proposed in [40,41]. The idea is to generate

Euler angles (φ,ψ,χ ), such that the arbitrary unitary matrix

U be composed from unitary transformations E(i,j )(φ,ψ,χ ) in

two-dimensional subspaces [41]. The nonzero elements of the

matrices E(i,j ) are

E
(m,n)
kk = 1, k �= m,n, E(m,n)

mm = cos φmne
iψmn ,

E(m,n)
mn = sin φmne

iχmn , E(m,n)
nm = − sin φmne

−iχmn , (6)

E(m,n)
nn = cos φmne

−iψmn .

The matrices of Euler angles ψ and φ have dimension

(N − 1) × (N − 1), and the matrix χ has dimension (N −
1) × 1, where N is the dimension of the Hilbert space. The

angles in ψ and χ must be taken uniformly in the interval

[0,2π ). The angles in φ are given by arcsin (ξ
1/(2r+2)
rs ), for

r = 0,1, . . . ,N − 2, with ξrs uniformly distributed in the

interval [0,1). The random unitary matrix U reads

U = eiαE1E2 · · · EN−1, (7)

where α is also taken uniformly in the interval [0,2π ), and the

matrices Ek , for k = 1,2, . . . ,N − 1, read

Ek = E(N−k,N−k−1)(φk−1,k,ψk−1,k,0) × · · ·
×E(N,N−1)(φ0,k,ψ0,k,χk). (8)

In our numerical calculations, we generate the angles α,

φ, ψ , and χ by means of a uniform random vector x0, with

2(N − 1)2 + N elements. The first element of x0 is the angle

α, the next N − 1 elements correspond to the vector χ , and

the last 2(N − 1)2 elements generate the matrices φ and ψ .

Therefore, following the technique presented above, we can

create a random unitary matrix starting point, and search for

the global minimum in the space of unitary matrices with Haar

measure in the unitary group [42].

With the aid of the Naimark’s theorem [43], the algorithm to

optimize the quantum discord under projective measurements

can also be used to perform the optimization under POVMs.

Let us review the procedure. Consider a set of positive

semidefinite operators Pa , acting on the Hilbert space X , of

dimension x. In order to form a POVM, the Pa must satisfy

∑

a

Pa = Ix, (9)

where Ix is the identity operator acting on X . To each Pa , we

associate a projector |a〉〈a|, acting on an extended Hilbert

space X ⊗ Y . We wish that a projective measurement in

the extended Hilbert space X ⊗ Y , of dimension x × y, will

reproduce the statistics of the POVM in the original space X ,

namely,

Tr(Paρ) = Tr(A†|a〉〈a|Aρ), (10)

where A is an isometry that takes a vector in X to Y ,

A†A = Ix, A†|a〉〈a|A = Pa. (11)
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Let |ea〉 be the canonical basis in Y; then we choose

|a〉〈a| = Ix ⊗ |ea〉〈ea|. (12)

With this choice, the isometry A reads

A =
∑

a

√

Pa ⊗ |ea〉. (13)

By choosing some arbitrary ancilla |u〉 inY , we can decompose

the isometry as

A = UV, V = (Ix ⊗ |u〉), (14)

where U is a unitary acting on X ⊗ Y . Finally we have

Tr(Paρ) = Tr(Qaρ ⊗ |u〉〈u|), (15)

where the projector Qa reads

Qa = U †(Ix ⊗ |ea〉〈ea|)U. (16)

We conclude that the POVM {Pa} in the original space is

equivalent to the projective measurement {Qa} over the state

ρ ⊗ |u〉〈u| in the extended space. The unitary U is explicitly

U = AV +, (17)

where V + is the pseudo-inverse of V .

B. Quantum coherence

Although quantum coherence plays a central role in

quantum mechanics, being a manifestation of the quantum

superposition principle, its quantification has been formalized

only very recently. In particular, a set of conditions that is

expected to be satisfied by any proper measure of coherence

has been proposed in Ref. [8]. Two such measures that we study

in this work are known as the relative entropy of coherence

and the l1 norm of coherence. While the former is defined as

Cre(ρ) = S(ρdiag) − S(ρ), (18)

where S(ρdiag) is obtained from the state ρ by deleting all of

its off-diagonal elements, the latter is given by the sum of

absolute values of all off-diagonal elements of ρ, that is,

Cl1 (ρ) =
∑

i �=j

|ρi,j |. (19)

Naturally, it is only meaningful to talk about coherence

measures once we set a specific basis for incoherent quantum

states since coherence is clearly basis dependent.

On the other hand, there is a particular quantity which,

despite not satisfying [44] the conditions proposed in Ref. [8],

can still be considered as a measure of coherence in a

conceptually different way [10,11]; i.e., as Wigner-Yanase

skew information [32]:

Csi(ρ,K) = − 1
2
Tr[

√
ρ,K]2, (20)

where K is a nondegenerate Hermitian matrix, and [.,.] denotes

the commutator. We note that as the skew information reduces

to the variance V (ρ,K) = Tr ρK2 − (Tr ρK)2 for pure states,

it is upper bounded by the variance for mixed states. In fact,

Csi(ρ,K) is a measure of asymmetry relative to the group of

translations generated by the observable K , which in turn can

be interpreted as a measure of coherence of the state ρ relative

to the eigenbasis of the observable K [45]. From this point on,

we will simply refer to Csi(ρ,K) as K coherence.

IV. RESULTS

In this section, we intend to investigate the behavior of the

considered correlation and coherence measures in the ground

state of the spin-1 XXZ chain for two nearest neighbor spins

in the bulk. For our purposes, we consider the region where

the anisotropy parameter lies in between −1 < � < 1.5.

Observing Fig. 1, at the TP �c2 ≈ 0, where the system has

an infinite-order phase transition, we do not notice a nontrivial

behavior in the quantum mutual information; i.e., it does not

exhibit either a nonanalytical behavior or an extremum. In

other words, the mutual information is not able to detect the

existence of the KT type transition in the XXZ chain. On the

other hand, at the point �c3 ≈ 1.185, we see a pronounced

local minimum, which spotlights the second-order transition

that the system has between the Haldane and Néel phases.

Recalling that the XXZ chain also has a particular SU(2)

symmetry point at � = 1, we can observe that the mutual

information shows a smooth local maximum at this special

point.

Figure 2 displays the outcomes of our analysis for the

quantum discord in the ground state of the XXZ chain.

Similarly to the case of quantum mutual information, quantum

discord is not capable of recognizing the location of the KT

type transition. In fact, it is rather expected that neither mutual

information nor quantum discord show a nonanalytic behavior

at this point, since all derivatives of the ground state energy

and thus the elements of the two-spin density matrix we

study are continuous for an infinite-order transition. Moving

to the second-order transition at the TP �c3 ≈ 1.185, we

notice that quantum discord shows an inflection point; that

is, the transition point might be easily captured looking at the

derivative of Fig. 2 around this point, which would display

a quite pronounced minimum. Finally, it is straightforward

to observe that quantum discord has a sharp maximum at
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FIG. 1. Mutual information versus the anisotropy parameter � in

the one-dimensional spin-1 XXZ model. Different phases, transition

points, and the SU(2) symmetry point are shown.
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the one-dimensional spin-1 XXZ model. Different phases, transition

points, and the SU(2) symmetry point are shown.

the SU(2) symmetry point � = 1. Indeed, a closer inspection

reveals that quantum discord has a sudden change at this value

of the anisotropy parameter. That is to say that the optimal

measurement basis for quantum discord suddenly changes at

the SU(2) symmetry point, resulting in a clear identification of

the symmetry point through quantum discord. We note that this

is fundamentally different from the way mutual information

detects the existence of the SU(2) symmetry point.

Next, we explore the quantum coherence using different

measures in the ground state of the spin-1 XXZ chain for

two nearest neighbor spins in the bulk. In Fig. 3, we plot the

relative entropy of coherence, l1 norm of coherence, the local

Sx coherence, and the local Sz coherence versus the anisotropy

parameter, where Sx and Sz are the usual spin-1 matrices. Local

K-coherence means that the observable K in the definition of
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FIG. 3. Quantum coherence measures as quantified by l1 norm of

coherence, relative entropy of coherence, and K coherence versus the

anisotropy parameter � in the one-dimensional spin-1 XXZ model.

Different phases, transition points, and the SU(2) symmetry point are

shown.

Csi(ρ,K) is simply I ⊗ K . First of all, we immediately notice

that none of the considered coherence measures can spotlight

the infinite-order KT transition in the model since they do

not exhibit a nontrivial behavior at the transition point. To

put it differently, the KT transition in the spin-1 XXZ model

escapes all of the correlation and coherence measures that we

use in our investigation. On the other hand, all four coherence

measures can detect the second-order transition occurring

at the TP �c3 ≈ 1.185 via an inflection point. Turning our

attention to the SU(2) symmetry point in the XXZ model, we

observe that the relative entropy of coherence and l1 norm of

coherence are not able to detect the existence of this point at

� = 1. In addition, it is also not possible to detect the SU(2)

symmetry point just by checking the local Sx coherence or the

local Sz coherence individually. However, it is interesting that

plotting the K coherence for two different observables reveals

the SU(2) symmetry point through the intersection of these

two curves. That is, the curves of the local Sx coherence or

the local Sz coherence intersect at the SU(2) point � = 1; i.e.,

the system has the same K coherence at the symmetry point,

independently of the observable Sx and Sz.

Last, we study the Sx-coherence in the ground state of the

spin-1 XXZ chain for a single spin in the bulk. The results of

this investigation are shown in the inset of Fig. 3. Interestingly,

an inflection point still appears even in the level of single-site

coherence at the TP of the second-order phase transition at

�c3 ≈ 1.185. Furthermore, the Sx coherence vanishes only at

the SU(2) symmetry point � = 1, pinpointing its location. The

reason we do not display the relative entropy of coherence and

l1 norm of coherence here is that they are zero for all values

of the anisotropy parameter due to the fact that the single spin

density matrix is diagonal in Sz basis.

Having discussed the correlations and coherence in the spin-

1 XXZ chain, we now examine the spin-1 bilinear biquadratic

model from the perspective of bipartite correlations in the

ground state of the chain. Here we report on the nature of

correlations in the chain both for the nearest neighbor spins

in the bulk and for a small chain of 12 spins under open

boundary condition. We should also mention in passing that

the reason we also considered a small chain of 12 spins in

bilinear biquadratic model is to show the physical effects that

can only be observed in the bulk in this case. Looking at

Figs. 4 and 5, we can see that both first-order transitions taking

place at TPs θc2 = 0.5π and θc3 = 1.25π are signaled by

the discontinuous jumps in mutual information and quantum

discord, respectively. Moreover, exploring the correlations just

for a chain of 12 spins is sufficient to detect these transitions.

The difference between the behaviors of quantum discord

and mutual information at these points is that while mutual

information first increases in a discontinuous fashion at the TP

θc2 = 0.5π and then again decreases at the TP θc3 = 1.25π ,

quantum discord behaves in the exact opposite way. When

it comes to the second-order transition occurring at the TP

θc4 = 1.75π between the trimerized and Haldane phases,

Figs. 4 and 5 show that it is not possible to pinpoint the TP in

case of 12 spins since the curves of mutual information and

quantum discord are smooth without any sign of the transition.

However, performing the same analysis for two spins in the

bulk, we see that a kink appears at θ = 1.78π , which in turn lets

the second derivatives of both mutual information and quantum
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FIG. 4. Mutual information versus the parameter θ in the one-

dimensional spin-1 bilinear biquadratic model. Different phases,

transition points, and the SU(3) symmetry point are shown.

discord to display a sharp maximum at the TP θc3 = 1.75π .

We emphasize that this is different from the case of first-order

transitions, whose traces can be located regardless of the size

of the chain.

We now recall that, in the spin-1 bilinear biquadratic model,

the point θc1 = 0.25π corresponds to both the TP of the

infinite-order KT type transition and the SU(3) symmetry

point. In Fig. 4, we clearly observe a local minimum at this

point, which would let one conclude that the TP of the KT

transition, despite being an infinite-order transition, can be

detected through the behavior of mutual information both

for bulk and 12 spins. Nonetheless, we argue that what is

signaled here is actually the SU(3) symmetry point of the

model rather than the TP of the KT transition. Our argument

is based on what we have observed in case of the spin-1 XXZ

model, that is, neither mutual information nor any other studied

measure are able to capture the KT transition point due to the
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FIG. 5. Quantum discord versus the parameter θ in the one-

dimensional spin-1 bilinear biquadratic model. Different phases,

transition points, and the SU(3) symmetry point are shown.

analytical behavior of the ground state energy and all of its

derivatives. On the other hand, Fig. 5 displays that a sharp

peak in quantum discord can be seen at this point, which

we believe again spotlights the SU(3) symmetry point rather

than the TP of the KT transition. In particular, our numerical

treatment also reveals that a sudden change emerges in the

quantum discord at θc1 = 0.25π which has its roots in the

change of the optimizing basis in the definition of quantum

discord. We stress that, in the spin-1 XXZ model, the SU(2)

symmetry point has been also captured via discord through

a sudden change, which supports our argument that what we

in fact observe here in the bilinear biquadratic model is the

effect of the SU(3) symmetry point and not the KT transition

happening at the same point. Also, we recall that the measures

for the 12 spins chain were unable to signal the second-order

TP at θc4 = 1.75π , so it is quite unlikely they would detect a

TP of infinite order. Finally, we point out that the special points

of the spin-1 bilinear biquadratic model, namely θ = 0.1024π

corresponding to the AKLT model and θ = 1.5π , where the

model has an exact solution with the Bethe ansatz method, can

be seen to be shown respectively in Figs. 4 and 5 through the

extrema of the mutual information and quantum discord.

As for the behavior of quantum coherence measures in

case of the bilinear biquadratic model, even though we do

not explicitly present our results here for the purposes of

brevity and convenience, we have performed an analysis

similarly to the case of the XXZ model. We have observed

that all three coherence measures are able to capture the

SU(3) symmetry point and the quantum phase transitions when

two-spin coherence is studied. On the other hand, we have

seen for a single spin that σx coherence can only detect the

first-order phase transitions while the remaning two coherence

measures vanish due to the fact that their density matrices are

diagonal in Sz basis. This is in accord with the results of

Ref. [17] where the single site entropy has been studied for the

same model.

V. CONCLUSION

In summary, we have investigated the quantum mutual

information, quantum discord, and quantum coherence in the

ground states of spin-1 XXZ and bilinear biquadratic chains

for two nearest neighbor spins in the bulk. On one hand,

our study has enabled us to draw conclusions regarding the

relation of the behavior of quantum correlations and coherence

to the quantum phase transitions in these models. On the

other hand, we have established a link between the particular

symmetry points of the studied spin-1 Heisenberg chains and

the considered correlation and coherence measures.

In particular, we have seen that neither the total and quantum

correlations, as quantified by mutual information and quantum

discord respectively, nor the coherence measures have been

able to capture the TP of the infinite-order KT type transition

occurring in the XXZ model. However, they were all able

to locate the Ising type second-order transition. In case of

the SU(2) symmetry point, whereas we have observed that

both of the correlation measures can detect it, K coherence

based on Wigner-Yanase skew information is the unique

coherence measure in our study which is able to signal this

symmetry point for a pair of nearest neighbor spins in the
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bulk. Furthermore, we have shown that even for a single spin

in the bulk, K coherence can identify the SU(2) symmetry and

the Ising transition in the spin-1 XXZ model.
Moreover, we have performed a similar analysis for the

spin-1 bilinear biquadratic chain. Here, the mutual information
and quantum discord have signaled the point θ = 0.25π , which
corresponds both to the TP of the infinite-order KT transition
and the SU(3) symmetry point. Based on our findings regarding
the KT transition and SU(2) symmetry point in the XXZ chain,
we have argued that what might actually be observed through
the measures is a consequence of the SU(3) symmetry rather
than the effect of the KT transition occurring at the same point.
Our argument is supported by the fact that quantum discord
displays sudden changes due to the discontinuous change of
the optimizing basis in its definition at the symmetry points in
both models. Also, the density matrix elements of the nearest
neighbor spins and all of their derivatives are analytical at the
KT transition points, thus the sudden changes in quantum
discord are likely to have their roots in the symmetries.
We emphasize that the sudden change of quantum discord
at the symmetry points is fundamentally different from the

behavior of quantum mutual information, which shows a local
extremum at these spots. Finally, we have pointed out the
necessity of studying the correlations in the bulk, as opposed
to just a small chain of 12 spins, to be able to spotlight the
second-order transition in the chain.
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