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Abstract We study two one-dimensional atomic models composed of identical bosons trapped in a harmonic
trap: one model with a short-range interaction potential and another model with a long-range one, and com-
pare their entanglement features. Properties of the ground-states of two-, three-, and four-particle systems are
explored.

1 Introduction

In recent years there has been a growing interest in the physics of ultracold gases due to the ability to control
parameters such as the shape of the trapping potential, the interaction strength, and even the number of atoms.
Especially, the quasi one-dimensional (1D) systems that are usually created by imposing strong confinement
in a ‘transversal’ direction have attracted much attention [1–12]. The effective interaction potential for such
bosons in a 1D system is found to be U (x1, x2) ∝ δ(x2 − x1)[13]. Also, there is a considerable interest in
studies of systems composed of bosons interacting via a Coulomb potential [14–16]. Their properties in the
1D limit are, however, rather rarely studied.

In this paper, we consider two models composed of identical bosons confined in a 1D harmonic trap,
namely a model with a short-range interaction potential

Uσ (x) = g
e− x2

2σ2

√
2πσ

, (1)

which tends to a Dirac delta distribution gδ(x) as σ → 0, and a model with a long-range interaction [17,18]

Uκ(x) = κ
√

x2 + γ
, (2)

which exhibits Coulomb behaviour for large enough |x | (|x | � γ ).
We make a detailed investigation of their entanglement properties, and compare them with each other. We

base our analysis on the von Neumann (vN) entropy of the one-particle reduced density matrix. For example,
the vN entropy in the ground-state of four anyons with δ interaction has been recently investigated in [12].
However, still most of the studies of entanglement properties focus on the two-particle system [2–5,17,18].
Here, we shall discuss the N -body systems with N = 2, 3, 4.
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2 Methods

Many-particle eigenvalue problems are of the form

⎧
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N∑

i=1
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2
x2

i

]

+
∑

i< j

Uσ/κ(xi − x j )

⎫
⎬

⎭
ψ = Eψ. (3)

Since it is rather a time consuming task to solve them by the standard exact diagonalization method, here we
calculate the ground-states with the quantum diffusion algorithm [19]. The main results of this paper will be
presented for fixed parameters σ = γ = 0.05, without loss of generality. For the sake of brevity, we consider
only repulsive interactions (g > 0, κ > 0).

A tool to investigate two-body correlations is the single-reduced density matrix (RDM) [20]

ρ̂ = T r2,3,..,N |ψ〉〈ψ |. (4)

We will explore the quantum correlations in the systems by using the vN entropy S = −T r [ρ̂Log2ρ̂]. The
relevant integral eigensystem equation is thus

∞∫

−∞
ρ(x, x

′
)vs(x

′
)dx

′ = λsvs(x), (5)

where ρ(x, x
′
) is the RDM expressed in coordinates as

ρ(x, x
′
) =

∫
ψ(x, x2,..., xN )ψ(x

′
, x2,..., xN )dx2...dxN , (6)

where we have assumed ψ to be a real function. In terms of the eigenvalues {λs} (occupancies) and the
eigenfunctions {vs(x)} (natural orbitals), the RDM takes the form

ρ(x, x
′
) =

∞∑

s=0

λsvs(x)vs(x
′
), (7)

and the vN entropy is given by

S = −
∞∑

s=0

λslog2λs . (8)

Obviously the larger is the value of S, the larger is the number of terms actively involved in the expansion of
ρ(x, x

′
) (7).

Discretization of the variables x and x
′

with equal subintervals of length �x allows us to turn (5) into an
algebraic eigenvalue problem

∑

i

[Bi j − δi jλs]vs(xi ) = 0, j, (9)

where Bi j = [�xρ(xi , x j )]. Diagonalizing the matrix [Bi j ]n×n , we get a set of approximations to the N largest
eigenvalues of the RDM and then we can obtain an approximation to the entanglement entropy S.



Quantum Correlations of a Few Bosons within a Harmonic Trap 51

3 Numerical Results

First, we analyse the properties of the systems with (1). Our results are shown in Fig. 1 where the values of S
are displayed as a function of the interaction parameter g. For the sake of comparison, in this figure we have
also drawn the behaviour of the vN entropy for two-particle systems in the zero-range limit σ → 0 of (1),
which has been also obtained in [4]. We see that there is a slight difference between the results calculated at
σ = 0.05 and those for the limit σ → 0. This becomes more pronounced only at large values of g which
we find consistent with the discussion in [6]. One can expect the results presented for three- and four-particle
systems to be also quite close to the limit σ → 0.

As may be seen, for all cases considered in Fig. 1 an analogous situation occurs, namely the entanglement
entropy S has a monotonically increasing behaviour as g increases, and tends to a constant value as g → ∞.
Except for the case g = 0, the entropy S generally has a higher value for a larger value of N , which is more
pronounced at stronger interactions. A transition between the regime of weakly interacting bosons and the
strongly correlated fermionized regime is manifested by the onset of the plateau in the behaviour of the vN
entropy. Interestingly enough, the results of Fig. 1 indicate that the critical interaction parameter at which the
fermionic limit is reached is at most weakly sensitive to the number of particles. In fact, the entropies S of
two-, three- and four-particle systems make their most rapid variations over the interval 0 < g < 20 and above
g ≈ 20 reach practically their limiting values.

Now we come to the discussion of the properties of the systems with the long-range interaction (2). The
results obtained are presented in Fig. 2. We find that the main entanglement features exhibited by the systems
with (2) are similar to those exhibited by the ones with (1). Namely, in the case of (2) the vN entropy also
increases both with an increase in the interaction parameter and in the number of particles. It is expected that
in the limit of κ → ∞, in which the so-called Wigner molecule is formed, the entanglement becomes insen-
sitive to the parameter γ . This is because the average distances between particles tend to infinity as κ → ∞,
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Fig. 1 The vN entropy in the ground-state of the system with (1) at σ = 0.05, as a function of g for N = 2, 3, 4. The broken
curve corresponds to the vN entropy of the two-particle system in the zero-range limit σ → 0 of (1)
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Fig. 2 The vN entropy in the ground-state of the system with (2) at γ = 0.05, as a function of κ for N = 2, 3, 4. The broken
curve corresponds to the vN entropy of the two-particle system at γ = 0.1
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regardless of γ . We recall here that the interaction potential exhibits a pure Coulomb behavior for |x | → ∞.
As an example, in Fig. 2 the behaviour of the entropy S for N = 2 is plotted for two different values of γ ,
which demonstrates that S is indeed insensitive to γ at κ → ∞ limit. It is worth noting at this point that at
fixed N the vN entropy saturates at a larger value for (2) than for (1).

We have found, for the systems with (2), the value of the occupancyλ0(N ) to be of the order N−1 as κ → ∞,
regardless of γ (at least up to N = 4). Finally, it is instructive to compare this result with that obtained for the
systems with the contact interaction (σ → 0) in the case of g → ∞ namely λ0(N ) ≈ N−0.41 [10].

4 Summary

In summary, we investigated the ground-state properties of two atomic models composed of two, three, and four
particles. We found that the main entanglement features exhibited by both models are quite similar. Namely,
the entropies S of the systems with (1) and (2) increase with the increase in the interaction parameters g and κ ,
respectively, and tend to constant values as g → ∞ and κ → ∞. In both models an effect of the number
of particles turned out to be more expressive at large interaction parameters. In particular, the entanglement
features of the systems with (2) become in the limit of κ → ∞ unaffected by the parameter γ . In this limit
we have found for the occupancy of the lowest natural orbital the approximation: λ0(N ) ≈ N−1, valid at least
up to N = 4. It would still be desirable to obtain the full dependence of λ0 on N in the case of κ → ∞, in
particular, and this is an open topic for future investigations.

It would be interesting to check if any of the trends observed for the models with a harmonic well are
shared by the models with other confining potentials. This will be the topic of further studies.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are
credited.
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