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1 Introduction

Effective holographic theories (EHTs) and their parametrization have been advocated as

a useful and powerful tool to analyze the phase structure of holographic strongly coupled

theories following the Wilsonian philosophy and classify all universality classes of holo-

graphic (quantum) critical behavior, [1]. In QFT, the space of all theories is organized

by the Wilsonian paradigm in terms of fixed points, that correspond to scale invariant

QFTs and flows among them. The first step therefore is to classify scale invariant theories

(SITs). Their properties determine in a concrete and unique way a local chart in their
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neighborhood. Relevant and irrelevant operators indicate the directions in which one can

flow out of or into such SITs. Such neighborhoods are known as scaling regions, and their

properties can be analyzed in perturbation theory provided that the SIT is solvable.

In QFT we know the basic Wilsonian rules, although the classification and solution of

non-trivial SITs is an open problem in all dimensions including d = 2, where the largest set

of them are known. The final part in organizing the space of QFTs is to describe the flows

between SITs, and in particular to answer the question: where does a particular RG flow

end up? The generic answer to such a question is not known in all dimensions. Exceptions

to this are the rare cases where the full flow is perturbative, special examples in d = 2

where the full flow is exactly solvable, or cases where the endpoint, although at strong

coupling, can be guessed from symmetry arguments and anomaly matching.

In this patch-wise construction of the space of QFTs, the geometry, as was first intro-

duced in [2, 3], is locally well-defined. However the structure of the full space is elusive as

it contains singular and orbifold points, patches with different dimensions, and boundaries

that are not accessible to analysis. It is not known whether there are disconnected com-

ponents in this space. In a very concrete sense this looks very similar to what the space

of vacua of string theory seemed to be like. The AdS/CFT correspondence has made that

similarity plausible at least for subspaces of the two spaces.

The program of EHTs is addressing a similar coordinatization of the space of QFTs that

have a semiclassical gravity dual and are at strong coupling. Following a similar strategy,

we would like to know what the scale invariant theories are, how to characterize their

scaling regions, and finally how to connect them with flows. The answer to such questions,

involving AdS vacua corresponding to Lorentz-invariant CFTs, is more or less similar to

the Lorentz-invariant QFT answer. However here there are several other cases of scaling

behavior not linked to AdS that have not been well understood. The simplest example of

this is Lifshitz scale symmetries, [4] and Schrödinger symmetries, [5, 6] while more generic

cases are theories with generalized Lifshitz invariance and hyperscaling violation, [1, 7–

9] and the associated Schrödinger cousins [10]. The analogous problem in QFT is the

classification of non-Lorentz invariant scaling theories, [11]. More complicated non-Abelian

scaling symmetries (according to the Bianchi classification) have been recently addressed,

extending the list of QC universality classes, [12, 13].

In [1, 7] the most general quantum critical behavior of the metric with Abelian scaling

symmetry has been determined and shown to be realizable in a class of EHTs involving

also a U(1) gauge field (with unbroken gauge invariance) and a scalar. It is characterized

by a Lifshitz exponent z (z = 1 corresponding to standard Lorentz invariance) and a

hyperscaling violation exponent θ which controls the departure of the physics from naive

scaling, [1, 7–9, 14]. In this paper we will address a larger class of EHTs which realizes U(1)

symmetry breaking with a complex scalar order parameter. We will give a classification

of all possible scaling behaviors that can appear in that context. We will also argue that

this class of EHTs captures the generic behavior in most complicated cases. The surprising

outcome will be that generically the IR asymptotics in symmetry breaking contexts are

scale invariant, and therefore there are gapless modes on top of those that are natural to

expect in cases of spontaneous symmetry breaking.
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The class of Effective Holographic Theories we will consider in this paper are described

by the following action,

SM =M2

∫

d4x
√−g

[

R− 1

2
(∂φ)2 + V (φ)− Z(φ)

4
F 2 − W (φ)

2
A2 +X(φ)F ∗F

]

. (1.1)

We will set the dimension of space-time to be four, and therefore the dual QFTs live in

2+1 dimensions.1 They involve three basic fields, the metric gµν dual to the stress tensor,

a gauge field Aµ dual to a U(1) current and a scalar φ. For the class of solutions that

we will be considering in our paper, namely homogeneous, translation-invariant solutions

without magnetic fields, the last term is not important. We will therefore drop it from now

on.2 We give the field equations and the metric Ansatz in appendix A.

When the mass term for the gauge field vanishes W (φ) = 0, U(1) gauge invariance is

intact and the dual U(1) current is conserved. The action in that case

S0 =M2

∫

d4x
√−g

[

R− 1

2
(∂φ)2 + V (φ)− Z(φ)

4
F 2

]

(1.2)

describes the holographic dynamics of a (2 + 1)-dimensional theory, with an unbroken

U(1) symmetry driven by the most relevant scalar operator, dual to φ. The general IR

asymptotics of these actions were explored in [1], while simpler cases with a constant

potential have been analyzed earlier, [17, 18]. The analysis of [1], supplemented with a

further interpretation and study of the IR asymptotics in [7] indicated the existence of

large classes of quantum critical extremal solutions at finite charge density, characterized

by a Lifshitz exponent z and a hyperscaling violation exponent θ (see also [8, 9, 14] for an

analysis of the interesting implications of hyperscaling violation).

The range of applicability of the class of actions in (1.1) is wider than it appears.

For example adding more scalars to the theory, the solutions, and in particular their IR

asymptotics can still be described by solutions to (1.1) with φ being the appropriate linear

combination that defines the RG flow.

In a different direction, the action SM in (1.1) can be interpreted as the effective action

of a holographic theory with a U(1) symmetry and a complex charged scalar. To motivate

this interpretation, we start from a U(1) gauge field and a complex scalar Ψ that is charged

under the U(1) gauge symmetry, dual to a charged scalar operator. The most general two-

derivative effective holographic action of such fields can be parametrized after suitable field

redefinitions as3

S =M2

∫

d4x
√−g

[

R− G(|Ψ|)
2

|DΨ|2 + Ṽ (|Ψ|)− Z̃(|Ψ|)
4

F 2

]

(1.3)

with the standard covariant derivative as

DµΨ = ∂µΨ+ iqAµΨ . (1.4)

1However all the results generalize straightforwardly to higher dimensions.
2Such a term is extremely important when physics in magnetic fields is discussed, and is also at the

source of density wave instabilities, [15, 16].
3We drop again the F ∗F term.

– 3 –



J
H
E
P
0
4
(
2
0
1
3
)
0
5
3

The functions G, Ṽ , Z̃ are a priori arbitrary, and they capture the appropriate effective

dynamics. There are two possibilities in this context:

1. The phase of unbroken symmetry where Ψ = 0. In that case the saddle points of the

system are determined from the simple Einstein-Maxwell-AdS action

S0 =M2

∫

d4x
√−g

[

R− Z(0)

4
F 2 + V (0)

]

(1.5)

that has been studied extensively over the last few years.

2. The phases with broken U(1) symmetry. This will be spontaneous symmetry break-

ing if the boundary source is zero, or explicit symmetry breaking if the source is

non-zero, [19]. In the former case, this generates superfluidity, [19–21].4 Assuming

solutions with non-trivial Ψ and changing variables to Ψ = χeiθ, the action becomes

S =M2

∫

d4x
√−g

[

R− G(χ)

2

[

(∂µχ)
2 + χ2(∂µθ + qAµ)

2
]

+ Ṽ (χ)− Z̃(χ)

4
F 2

]

(1.6)

At finite density, the electric potential At is non-trivial. We may choose the gauge θ =

0 and change variables χ→ φ so that the kinetic term of φ is properly normalized to

finally obtain the action (1.1). The three arbitrary functions here (G, Ṽ , Z̃) translate

to the three arbitrary functions in (1.1) (withX = 0). Therefore, (1.1) withW (φ) 6= 0

describes holographic physics in the U(1) symmetry-broken phase. Superfluidity in

such models with generalized couplings has been considered in a number of works, [22–

28]. Note also that the scalar θ is the source of the Goldstone boson of the broken

U(1) symmetry if the breaking is spontaneous.

1.1 A classification of quantum critical points in phases with (un)broken sym-

metry

In this paper we will describe the landscape of quantum critical points of theories described

by the actions (1.1) and (1.2). The first criterion one may consider is the scaling symmetries

of the IR geometry, and their relation to the IR behavior of the scalar field.

Scaling symmetries of holographic quantum critical points. The metrics we will

study take the generic form, [7]

ds2 = rθ
(

−dt2

r2z
+
L2dr2 + dx2 + dy2

r2

)

(1.7)

and are extremal (they have zero temperature). They display both a dynamical exponent z

and a hyperscaling violation exponent θ, so that at finite temperature, the thermal entropy

scales like:

S ∼ T
2−θ
z . (1.8)

4And superconductivity if the global symmetry is weakly gauged.
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The dual field theory has effectively deff = 2 − θ spatial dimensions at small tempera-

tures, [8]. Hyperscaling violation θ 6= 0 can be engineered by letting the scalar run loga-

rithmically, while letting it settle to a constant leads to θ = 0. More properties of these

metrics are detailed in appendix B.

An important ingredient in a theory with a U(1) gauge boson is the scaling of the

gauge field. This is given in general by

At = Q rζ−z (1.9)

with ζ being a novel critical exponent controlling the impact of the charge density on the

physics of the critical theory.5 In the most generic case (see section 3.3.2), ζ is defined

independently from the other exponents z and θ: when hyperscaling is intact (θ = 0), then

generically we still have ζ 6= 0. The triplet of critical exponents (θ, z, ζ) is characterising

QC theories at non-zero charge density. In the presence of several U(1) symmetries there

is a non-trivial exponent ζ for each of the associated charge densities.

Hyperscaling violation is intimately linked with the running of the scalar field in the IR

and therefore one may classify phases by considering the effective scalar potential derived

from (1.1)

�φ+
dVeff(φ)

dφ
= 0 , Veff(φ) = V (φ)− Z(φ)

4
F 2 − W (φ)

2
A2 . (1.10)

Two qualitative behaviors will be possible.

The scalar field settles down to a finite constant φ⋆ in the IR, which ex-

tremizes Veff :

V ′
eff

∣

∣

⋆
=

dVeff(φ)

dφ

∣

∣

∣

∣

φ=φ⋆

= 0 (1.11)

This expression will generically be valid both in the unbroken (W (φ) = 0 identically) and

broken phase (W (φ) 6= 0, though W⋆ = W (φ⋆) = 0 at the extremum is allowed). The IR

fixed points will all be hyperscale-invariant.

In the unbroken phase, both AdS4 (section 2.1.1, charge→ 0) and AdS2 × R2 (sec-

tion 2.2.1, charge remains finite) fixed points can occur in the IR. In the broken phase,

if the current dual to the gauge field in the bulk is irrelevant6 the IR geometry is still

an AdS4 domain wall (section 3.1.1); however, if the current is relevant, the asymptotics

become Lifshitz (W⋆ 6= 0, section 3.3.1) or AdS2 ×R2 (W⋆ = 0, section 3.2.1).

The scalar field runs in the IR asymptoting to ±∞. This can happen both

in the unbroken or broken phases, and one will have hyperscaling violating phases (θ 6= 0)

which may preserve Poincaré invariance (z = 1) or break it (z 6= 1). The former case will

arise for IR phases described by neutral dilatonic domain walls, the latter when charge

5We would like to thank Sean Hartnoll and Liza Huijse for discussions on this point.
6We define the current to be irrelevant in the IR, when the stress tensor of the gauge field in the IR is

negligible compared with the Einstein tensor.
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backreacts on the IR metric. To characterize such phases, we will find convenient to adopt

exponential asymptotics for the scalar coupling functions

Z(φ) ∼
IR
Z0e

γφ, V (φ) ∼
IR
V0e

−δφ, W (φ) ∼
IR
W0e

ǫφ . (1.12)

As we explain below, this is without loss of generality, in almost all cases. Such asymptotics

are also well-motivated from the point of view of low-energy supergravity theories.

The unbroken symmetry case described by (1.2) was analyzed in detail in [1] and all

quantum critical solutions with running scalars were found (sections 2.1.2 and 2.2.2). If

the symmetry is broken, hyperscaling violating solutions also exist, and can be neutral

(section 3.1.2) or charged (sections 3.3.2 and 3.2.2). At leading order, two classes are

similar to the running solutions with unbroken symmetry (sections 3.2.2 and 3.1.2), while

a third displays symmetry-breaking even at leading order (section 3.3.2).

Moreover, even when the asymptotic behavior of such functions is not dictated by

a pure exponential, the exponential solutions still give the leading asymptotic behavior.

More precisely if we define

γ = Infimum{γ0 ∈ R : lim
φ→∞

e−γ0φZ(φ) > 0} (1.13)

ǫ = Infimum{ǫ0 ∈ R : lim
φ→∞

e−ǫ0φW (φ) > 0} (1.14)

δ = Infimum{δ0 ∈ R : lim
φ→∞

eδ0φV (φ) > 0} (1.15)

then the leading order result in the IR (with φ→ ∞) will be given by the functions (1.12)

Moreover, if V ∼ e−δφφ2a as φ→ ∞ then the leading behavior of the solution is determined

by δ whereas a determines subleading corrections, [1, 29–32]. If any function increases faster

than exponential then typically the Gubser bound is violated.

The only exception to the general statements above are special values of the exponents

that lie at the boundary between stable and unstable near-extremal black hole solutions.

For the zero density cases, this value is |δ| = 1. At finite density and unbroken symmetry

the special values satisfy

4 + γ2 + 2γδ − 3δ2 = 0 . (1.16)

It is not yet known what is the similar condition in the presence of a non-trivialW function.

Hyperscaling, Lifshitz solutions (θ = 0) can be found when δ = 0 (flat potential), see

sections 3.2.2 and 3.3.2. In section 4, we shall also reinterpret the scaling properties of

such hyperscaling violating solutions in terms of generalized dimensional reduction, which

involves the analytic continuation of the number of reduced dimensions, and see how they

may be connected to hyperscaling solutions, [7, 33, 34].

IR behavior of scalar coupling functions. It is also useful to consider the behavior of

appropriate ratios of the coupling functions V (φ), Z(φ) and W (φ) in the IR, as the scalar

φ tends to a finite value φ⋆ or diverges ±∞. There are two distinct cases:7

7A third case would be limφ→∞
W (φ)

V (φ)Z(φ)
→ ∞, but this does not correspond to any consistent scaling

solution in our analysis, as this limit is incompatible with the equations of motion.

– 6 –



J
H
E
P
0
4
(
2
0
1
3
)
0
5
3

1. limφ→∞
W (φ)

V (φ)Z(φ) = finite. In such a case we have a novel class of scaling solutions that

are generalized Lifshitz solutions characterized by a Lifshitz, hyperscaling violation

and charge exponents (z, θ, ζ), see section 3.3.2.

2. limφ→∞
W (φ)

V (φ)Z(φ) = 0. In this case the leading IR solutions are the scaling solutions of

the symmetry preserving phases found in [1], corrected by a subleading power series,

see sections 3.1.2 and 3.2.2.

Fractionalized vs. cohesive phases. Another sharp distinction between quantum criti-

cal points can be made by exposing the respective contributions of bulk degrees of freedom

inside or outside the extremal “horizon” to the boundary charge density, [35, 36]. The

degrees of freedom behind the horizon correspond to deconfined or fractionalized states.

Due to the large N limit, common to holographic setups, there are parametrically more

(O(N2)) degrees of freedom hidden behind the horizon than outside it. The degrees of

freedom “behind” the extremal horizon generate a non-zero electric flux in the deep IR

1

4π

∫

R2

Z(φ) ⋆ F = −
ω(2)

4π
Z(φ)

C(r)A′
t(r)

√

Br)D(r)
6= 0 , (1.17)

where ω(2) is the volume of the spatial section of the metric, and we have used (1.12) for

the gauge coupling in the IR as well as the Ansatz (A.1) for the metric. The phases where

the electric flux does not vanish in the IR have been named fractionalized, in reference

to the fact that they are dual to gauge-variant operators (also charged under the U(1))

in “deconfined” phases (such as quarks). The charged degrees of freedom outside the

extremal horizon do not source any electric flux in the deep IR and are dual to “confined”

gauge-invariant operators: they realize cohesive phases.

By considering both exact and power series solutions, we are able to accommodate co-

hesive and fractionalized phases both, with a single scalar field. The power series behaviors

are obtained by requiring terms proportional to V0, Z0 or W0 to become subleading in the

field equations. Then the solution will be expressed as a leading order piece, which is an

exact solution of (a truncation of) the equations of motion, supplemented by a subleading

power series. The detailed analysis is presented in appendix C for completeness.

Quantum critical points and lines. An interesting finding of the present work is that

quantum critical geometries are generic in the IR, be they scale invariant or hyperscaling

violating. Moreover this is independent of whether we are in U(1)-preserving/violating,

cohesive/fractionalized phases.

This distinction between (partially) fractionalized and cohesive phases has been tied to

a specific kind of quantum phase transitions describing the onset of fractionalisation, [38–

40]. They involve a scale invariant IR quantum critical point, which sits at a bifurcation in

the holographic RG flow (that is, it has both a relevant and an irrelevant perturbation), see

figure 1. As it is unstable, this IR fixed point can only be reached from the UV boundary at

the price of fine-tuning the sole dimensionless coupling of the boundary theory, g = gO/µ,

where µ is the chemical and gO the coupling for the operator O dual to the bulk scalar

field responsible for driving the IR asymptotics.
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θ = � 

Z=1 

θ ≠ � 

Cohesive phase 

θ ≠ � 

Fractionalised phase 

IR  

UV 

g 

θ = � 

Bifurcating point 

Figure 1. Depiction of a schematic RG flow at zero temperature with a bifurcation point (see

also [41]). The flow interpolates between AdS4 in the UV and, in the IR, either an unstable, scale

invariant (θ = 0) critical point, or two hyperscaling violating (θ 6= 0) critical lines on each side.

Away from this critical value, the relevant deformation is picked up and drives the flow

away. Mediated by this unstable critical point (Lifshitz z 6= 1, [38] or AdS4 z = 1, [39, 40]),

a phase transition occurs between a cohesive and a fractionalized phase, described by

hyperscaling violating geometries. In [39, 40], an auxiliary neutral scalar was responsible

for supporting the IR geometry (1.7). This meant that, in order to allow for cohesive

phases, the dual current needed to be irrelevant and did not backreact on the leading order

IR geometries. We will find solutions where the dual current is relevant in the IR and still

permits a cohesive phase.

These works gave very interesting insights and we would like to make the picture

more precise. Scale invariant solutions correspond to isolated quantum critical points in a

line where g is varied. There can exist a relevant and an irrelevant perturbation around

this point, and then the value of g has to be fine-tuned for the RG flow to reach this

point. For generic values of g, the flow picks up the relevant deformation lands into a

quantum critical line, which is a continuous collection of hyperscaling violating, stable

quantum critical points. The reason why hyperscaling violating solutions can be reached

for continuous values of g can be traced back to the exponential behavior of the scalar

couplings, (1.12). For logarithmically running solutions, one of the deformations collapses

to zero and actually corresponds to a new scaling symmetry: a constant shift of the scalar

can be absorbed in a redefinition of the charge, [18]. Using this scaling symmetry, g can

be varied continuously and a quantum critical line develops.

The impression that we have a continuous line of hyperscaling-violating critical points

is an illusion to leading order in 1/Nc. The scaling symmetry that controls the fixed line is

– 8 –
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also rescaling the hyperscaling-violating scale ℓ, characteristic of these critical points, and

therefore affects no physical quantities. As many of these solutions can be lifted to scale

invariant solutions (see section 4), this scaling symmetry is naturally reinterpreted as a

scaling of the volume of the higher-dimensional transverse space.

Despite this, we expect that to the next order in 1/Nc, they will develop dependence

on a new parameter. This is more easily seen by realizing that tree level string theory is

independent of volume (as also leading order large-Nc theories). However, at one string

loop, a new dimensionless parameter, ℓ/ℓs, enters the physics
8 and the fixed point expands

into a fixed line.

In the main text, we will discuss whether the scale invariant fixed points have one or

two irrelevant, zero-temperature deformations. In the first case only will they be unstable

and able to mediate a fractionalisation transition between hyperscaling violating lines. We

shall see that this relevant deformation can be tied either to the gauge field or to the

scalar. We will also study whether these lines are stable (sometimes, depending on the

parameters, an irrelevant mode might become relevant, or even complex, in which case we

expect a dynamical instability). A more complete analysis is presented in appendix D.

It is also interesting that a related tale has been argued in [37] which has successfully

compared holographic transport to recent very low-temperature data on cuprate super-

conductors. Indeed this comparison suggests that the T → 0 limit of cuprates, in the

overdoped phase, may be described by a quantum critical line, [37].

2 Quantum Criticality in symmetry-preserving phases

In such a context the relevant effective action is (1.2), which has been analyzed in the

past, [1, 7]. We will describe first zero, then finite density phases.

2.1 Quantum Criticality at zero density: cohesive phases

At zero charge density, and chemical potential, the gauge potential At = 0.9 The relevant

action for such solutions is therefore the Einstein-Dilaton (ED) action, namely (1.2) with

Z = 0. Such actions have been holographically analyzed in full generality in several works

including [29–32, 42].

We will take the potential to be non-negative.10 This assumption is motivated by

experience in string theory, and this seems a robust conclusion in the absence of orientifold

planes based on non-go theorems, [43] and the fact that flux-induced potentials are positive

definite. De Sitter-like regions have been advocated in the presence of orientifolds, but the

controlled construction of such vacua remains to be done. We will also take the metric to

be Lorentz invariant, setting z = 1 in (1.7)

ds2 = rθ−2(L2dr2 + ηµνdx
µdxν) . (2.1)

8ℓs is the string scale.
9In the unbroken case, W = 0, at zero charge density, a constant At (identified with the chemical

potential) can be tolerated and solves the ED equations of motion with zero charge density. In a broken

phase, W 6= 0, a non-zero constant piece always induces a non-trivial charge density.
10Note that we are using for convenience the opposite sign from the standard literature. Therefore a

positive potential is Anti-deSitter-like.
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Two cases can be distinguished, whether the scalar settles to a constant or runs logarith-

mically in the IR.

2.1.1 Constant scalar

The conventional fixed points correspond to finite critical points of the potential, V ′(φ∗) =

0, with φ∗ finite and by assumption V (φ∗) > 0.11 The scale-invariant saddle-point solution

corresponds to an AdS4 metric and constant scalar φ = φ∗:

ds2 =
1

r2
(

−dt2 + dx2 + dy2 + L2dr2
)

, L2 =
6

V⋆
. (2.2)

If V ′′(φ∗) > 0 then this corresponds to an IR fixed point with respect to the operator

dual φ, and φ is irrelevant (positive mass2) in that fixed point.

If V ′′(φ∗) < 0 then this corresponds to a UV fixed point with respect to the operator

dual φ, and φ is relevant (negative mass2) in that fixed point.

Finally if V ′′(φ∗) = 0 then the operator is classically marginal, and the nature of the

fixed point (UV or IR) is decided by the first non-zero derivative of the potential.

Including a gauge field perturbation in the background (2.2) (see appendix D.1), we

find

A = A−
1 +A+

1 r . (2.3)

A−
1 is a marginal deformation, while A+

1 is relevant. Sourcing only A−
1 gives a cohesive

phase (there is no IR electric flux), while sourcing A+
1 gives a fractionalized phase, at the

price of introducing a relevant deformation. According to (1.17), the IR electric flux reads:

1

4π

∫

R2

Z(φ) ⋆ F = −
ω(2)Z⋆

4πL
A+

1 . (2.4)

2.1.2 Running scalar

These are “singular” points where V vanishes or diverges. Taking V to behave expo-

nentially: V ∼ V0 e
−δφ as φ → ±∞, there are running scaling solutions which violate

hyperscaling (1.7):

ds2 = rθ
(

L2dr2 − dt2 + dx2

r2

)

, L2 =
(θ − 3)(θ − 2)

V0
,

eφ = r
√

θ(θ−2), θ =
2δ2

δ2 − 1
.

(2.5)

Depending whether the IR region is near r = 0 (θ > 3 ⇔ 1 < δ2 < 3) or r → ∞
(θ < 0 ⇔ δ2 < 1) and the sign of δ, φ diverges to ±∞ and V (φ) asymptotes either to +∞ or

zero (note that the solution is not defined for 0 < θ < 2, and r is time-like for 2 < θ < 3).12

Such solutions are singular in the conventional sense although for δ ∈ (−
√
3,
√
3) (θ < 0

or θ > 3) they satisfy the Gubser bound, [44] and are therefore expected to be resolvable

singularities, [1].

11The case V ′(φ∗) = 0 and V (φ∗) = 0 is degenerate and is part of the second item.
12The NEC (B.5) only yields the inequality θ(θ − 2) > 0, which is not enough to have a well-behaved

solution.
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In string theory such solutions may arise in different guises. They may be decom-

pactification points where an internal radius scalar diverges or where a coupling constant

becomes strong. In all such cases there is also a resolution of the singularity. In the decom-

pactification case, one should describe them in the higher-dimensional theory (as in [7]).

In the strong coupling case one should include the corrections (as in [45]). As there is a

need that such singularities are resolved in the IR, such geometries can be considered as

approximate scale invariant theories. Depending on parameters, the geometry describes an

almost exact scale invariant regime at an intermediate range of energies before it runs off

to the regular resolved geometry regime in the ultimate IR, like in the case of “walking”

QFTs.

Although the CFTs are simple to find in the holographic context, and they fall into the

two categories above, the pattern of RG flows is a more complex problem. An important

question in particular concerns the nature of RG flows that interpolate between CFTs

belonging to the first and second class above. Although some progress has been made in

special cases in the past [1, 46] the essential problem remains unsolved.

Including a gauge field perturbation in the background (2.5) (see appendix D.4), we

find

A = A−
1 +A+

1 r
β
q
+ , βq+ = 1− γ

√

θ(θ − 2) . (2.6)

A−
1 is a marginal deformation, but the nature of A+

1 depends on the value of γ and θ: it

is irrelevant only when βq+(3 − θ) < 0. Sourcing only A−
1 gives a cohesive phase (there is

no IR electric flux), while sourcing A+
1 gives a fractionalized phase.13 According to (1.17),

the IR electric flux reads:

1

4π

∫

R2

Z(φ) ⋆ F = −
ω(2)Z0

4πL
βq+A

+
1 . (2.7)

2.2 Quantum Criticality at finite density: fractionalized phases

In a CFT at finite charge density, the conformal invariance is spontaneously broken by

the charge background. It came as a surprise that in the simplest holographic description

of a finite density state, the RN extremal black hole (a zero-temperature solution of the

action in (1.5)), a novel scaling symmetry emerged in the IR regime, realized by an AdS2
geometry, [47]. As we show this persists in more general situations.

Using the EHT with action S0 in (1.2) describing the holographic physics in a phase

with unbroken U(1) symmetry we can classify all quantum critical geometries at finite

temperature, both for a constant or running scalar.

2.2.1 Constant scalar

Quantum critical geometries with constant and finite φ are analogous to the standard AdS

fixed points of the previous subsection. Such geometries are AdS2 ×R2 and generalize the

analogous geometry of the RN black hole. The important difference here is that the value

13Such a fractionalized IR phase can be obtained in an analytical flow using the solutions described in

section 8 of [7].
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φ∗ of the scalar is no-longer an extremum of V (φ) but of Veff(φ) in (1.10), which reads

on-shell:

dVeff(φ)

dφ

∣

∣

∣

∣

φ=φ∗

= V ′
⋆ +

Z ′
⋆

Z∗
V∗ = 0 . (2.8)

For each such φ∗ the metric and gauge field in the solution are

ds2 =
L2

r2
(dr2 − dt2) + ℓ2(dx2 + dy2) , A = µ− Q

r
(2.9)

with

L2 =
1

V (φ∗)
, Q2 =

2

Z(φ∗)V (φ∗)
(2.10)

while ℓ remains undetermined. Q is the charge (density) in AdS2, and it is fixed by the

equations. If however, this solution is the IR limit of a flow of an (AdS4 (2.2) or hyperscaling

violating (2.5)) UV solution then the UV charge density is proportional to Q/ℓ2, and in

the IR it determines the value of ℓ. This can be verified explicitly both in the RN extremal

solution as well as in the γ = δ solutions in [1].14

From (2.8) we observe that a scaling solution at zero density (determined by V ′ = 0)

remains scale invariant if Z ′ = 0 at the same value of φ. In a class of examples, this

happens together with Z = 0 which in turn implies that the gauge field is absent in

the relevant IR CFT, its kinetic term vanishing due to strong coupling. This is indeed

what happens to the brane gauge fields when the branes and anti-branes annihilate during

tachyon condensation, [48].

When Z ′ 6= 0, the value of φ is shifted, or there is no solution to (2.8) and the only IR

critical points have a runaway scalar, see below.

The conditions for the presence of an AdS2×R2 solution generalize simply in the case

of N ≥ 1 U(1) gauge fields AI
µ, and m ≥ 1 (neutral) scalars, φi.

V (φi∗)
N
∑

I=1

ZI(φ
i
∗)Q

2
I = 2 ,

d

dφi
log

(

V
N
∑

I=1

ZIQ
2
I

)

∣

∣

∣

φi=φi
∗

= 0 . (2.11)

Note that now we have N charge densities and only one combination of them is determined

by the conditions above. By varying the others, one can generically find solutions to the

minimization conditions (2.11). Moreover now, the critical points become critical manifolds

as one can vary continuously the ratios of charge densities.

14The γδ = 1 solutions in this reference provide another example, though the IR geometry violates

hyperscaling.
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2.2.2 Running scalar

We now turn to quantum critical geometries driven by the scalar running off to ±∞. Such

geometries were found and classified in [1, 7]:15

ds2 = −
(r

ℓ

)θ−2z
f(r)dt2 +

(r

ℓ

)θ L2dr2

r2f(r)
+ rθ−2d~x2 , L2 =

(1 + z − θ)(2 + z − θ)

V0

f(r) = 1−
(

r

rh

)2+z−θ

, eφ =
(r

ℓ

) θ
δ
, A =

√

2(−1 + z)

Z0(2 + z − θ)

(

ℓ

r

)2+z−θ

f(r) dt,

δ =
θ

√

(θ − 2)(2− 2z + θ)
, γ =

4− θ
√

(θ − 2)(2− 2z + θ)
,

θ =
4δ

γ + δ
, z =

4 + γ2 + 2γδ − 3δ2

(γ − δ)(γ + δ)
ζ = θ − 2 .

(2.12)

The constraints such that this solution is consistent were derived in [1], and are more

stringent than those imposed by the NEC. The allowed parameter range depending on the

location of the IR regime is (see discussion in appendix B):

IR : r → 0 : [2 < θ ≤ 3 , z < θ − 2] , [θ > 3 , z < 1] ,

IR : r → +∞ : [θ ≤ 0 , z > 1] ,

[

0 < θ < 2 , z >
2 + θ

2

]

.
(2.13)

There is always an IR curvature singularity, except for the range 0 < θ < 2 with the IR at

r → +∞. rh is a free integration constant related to the temperature, while the electric

charge and chemical potential are

Q =
ω(2)M

2

2

√

V0(z − 1)

2(1 + z − θ)
ℓθ−2 , µ = −

√

2(z − 1)

2 + z − θ

(

ℓ

rh

)2+z−θ

, (2.14)

where ω(2) is the volume of the spatial directions. As in the AdS2 × R2 case above, the

charge can be varied by varying the length scale ℓ. The value of ℓ will be connected to UV

data.

For special values of the parameters z and θ, there is a larger symmetry, [7]:

• z → +∞ with θ finite (γ = δ) reduces the metric to AdS2 × R2 with a constant

scalar;

• z, θ → +∞ while keeping their ratio fixed (γ = −δ) and changing coordinates to

rz = ρmakes the metric conformal to AdS2×R2. This case enjoys special dimensional

reduction properties, [7] (see also section 4.1) and has been called semi-locally critical:

time scales but space does not. Green’s functions still depend on momentum, which

gives rise to interesting behavior, [50–53];

15The solutions themselves were known earlier, see [49] and the relevant references in [1]. Their inter-

pretation and physical analysis in the holographic context was done in [1] and the realization that they

represent quantum critical points with (generically) hyperscaling violation was advocated in [7].
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• θ = 0 (δ = 0) gives a Lifshitz metric, [17, 18].

One finds that the electric flux (1.17) generated by (2.12) is finite in the IR and

proportional to Q, so the degrees of freedom are fractionalized.

3 Quantum Criticality in symmetry-breaking phases

In this section, we will focus on symmetry-breaking phases described by (1.1) and present

a classification of all quantum critical points possible in the IR: fractionalized or cohesive

(vanishing of electric flux in the IR), neutral or charged (subleading electric potential in the

IR), hyperscaling or not (constant or running scalar), with unbroken or broken symmetry

(W (φ) = 0 or not). To obtain charged cohesive phases, it is crucial that the charged scalar

itself supports the IR geometry (1.7) (that is, it should not be subleading in the IR).

3.1 Quantum Criticality at zero density: cohesive phases

We first consider the cohesive phases, that is phases where the electric flux (1.17) vanishes

in the IR, and distinguish once more between scale invariant and hyperscaling violating

solutions. Note that in some cases these phases can become (partially) fractionalized, but

we shall describe them in this subsection for conciseness.

3.1.1 Constant scalar

Setting the charge to zero in the field equations (A.3)–(A.7), and requiring the scalar to

settle in an extremum of the scalar potential, (1.11), one is simply left with AdS in the

Poincaré patch:

ds2 =
1

r2
(

−dt2 + dx2 + dy2 + L2dr2
)

, L2 =
6

V⋆
. (3.1)

This domain wall can be used to set symmetry-breaking boundary conditions both in the

UV and in the IR, [22, 23, 54–56].

We now turn to the study of the zero temperature deformations around (3.1) (see

appendix D.1 for a full analysis), and wish to determine whether they are irrelevant or

relevant in the IR (r → +∞). One mode comes from the scalar field:

∆φ = φ1r
β
φ
− , βφ− =

1

2

(

3−
√

9− 4L2V ′′
⋆

)

(3.2)

and is real and irrelevant if V ′′
⋆ < 0, real and relevant if 0 < V ′′

⋆ < V ′′
BF = 9/4L2, complex

and relevant when the scalar mass goes below the Breitenlohner-Friedman bound, V ′′
⋆ >

V ′′
BF . The IR AdS4 geometry is dynamically unstable, as the dimension of the dual operator

to φ becomes complex. It has been shown that a Lifshitz geometry (see section 3.3.1) could

arise instead, [55, 56].

The second irrelevant perturbation is provided by turning on the gauge field

∆A = A1r
β
q
− , βq− =

1

2



1−
√

1 +
4L2W⋆

Z⋆



 . (3.3)
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Assuming Z⋆ > 0 and W⋆ > 0, βq− is always real and negative. When the U(1) symmetry

is broken in the IR, this phase is always cohesive as the electric flux vanishes in the IR.

When the U(1) symmetry is not broken in the IR (W⋆ = 0), then βq− = 0, as one

would find for the chemical potential in the UV. One can then consider the conjugate

deformation βq+ = 1: it is a relevant deformation, but now generates a constant IR electric

flux, describing a (partially) fractionalized phase. According to (1.17), the IR electric flux

reads:
1

4π

∫

R2

Z(φ) ⋆ F = −
ω(2)Z⋆

4πL
A+

1 . (3.4)

As a conclusion, there will be a (dynamically) unstable bifurcation point if V ′′
⋆ > 0 and

W⋆ 6= 0, or including the β+q deformation when V ′′
⋆ < 0 and W⋆ = 0. In all other cases,

there are two irrelevant deformations and this a stable fixed point.

3.1.2 Running scalar

Turning to solutions with a running scalar, the neutral solution (2.5) can still describe

the leading order IR solution when the U(1) is broken, if we let the terms proportional to

the gauge field and its derivative be subleading in the IR, see appendix C.5. If both are

subleading and the mass term in Maxwell’s equation as well, we find the power series (with

the scalar functions parametrized as in (1.12)):

ds2 = B(r)dr2 −D(r)dt2 + rθ−2dx2 , L2 =
(θ − 3)(θ − 2)

V0
,

D(r) = rθ−2



1 +
∑

n≥1

dnr
nα2



 , B(r) = L2rθ−2



1 +
∑

n≥1

bnr
nα2



 ,

eφ = r
√

θ(θ−2)



1 +
∑

n≥1

ϕnr
nα2



 , A = Q



1 +
∑

n≥1

anr
nα1



 ,

θ =
2δ2

δ2 − 1
, α1 = (ǫ− γ)

√

(θ − 2)θ + θ , α2 = 2 + ǫ
√

(θ − 2)θ ,

(3.5)

where dn, bn, ϕn and an are uniquely determined by the field equations and proportional

to Q2W0. The allowed parameter range is the same as for the solution (2.5) with unbroken

U(1), and differs whether the IR is r → +∞ (θ < 0) or r → 0 (θ > 3). In order for the

power series to be consistent, we should also require that the powers α1,2 are subleading

in the IR, which translates as the following inequalities on ǫ and γ, depending on the sign

of (3− θ):

(3− θ)
(

θ + (ǫ− γ)
√

θ(θ − 2)
)

< 0 , (3− θ)
(

2 + ǫ
√

θ(θ − 2
)

< 0 . (3.6)

Turning to linearized deformations around (the leading order part of) (3.5), two irrelevant

deformations are found, driving zero-temperature flows (Q = 0). Both are now zero modes,

βφ− = 0, βq− = 0, and are respectively a shift of the scalar ∆φ = φ−1 and of the gauge field

charge ∆A = A−
1 (since W0 is subleading, in contrast to (3.10) below).
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As discussed in section 2.1.2, if we turn on the deformation conjugate to βq−, that

is βq+ = 1 − γ/
√

θ(θ − 2), this allows for a (partially) fractionalized phase. This is an

irrelevant deformation only in the more constrained parameter phase (compared to (3.6):

(3− θ)βq+ < 0 , (3− θ)
(

2 + ǫ
√

θ(θ − 2
)

< 0 . (3.7)

According to (1.17), the IR electric flux then reads:

1

4π

∫

R2

Z(φ) ⋆ F = −
ω(2)Z0

4πL
βq+A

+
1 . (3.8)

Another option is if Q = 0, in which case the power series in (3.5) vanishes and

the solution becomes an exact solution of the field equations (identical to (2.5)). This

means that the mass term in Maxwell’s equation is no longer subleading compared to the

kinetic term, which will enforce ǫ = γ − δ in the gauge field fluctuations. The linearized

deformations around that solution now read:

∆φ = φ1 , ∆gµν = δφ1L
2rθ−2δrµδ

r
ν (3.9)

which is simply a constant shift of the scalar, while the other turns on charge

∆A = A±
1 r

β
q
± , βq± =

1

2

(

1−
√

θ(θ − 2)γ ±
√

(

1−
√

θ(θ − 2)γ
)2

+ 4L2
W0

Z0

)

, (3.10)

Here it is necessary that ǫ = γ− δ. Comparing with the previous section 3.1, the irrelevant

scalar mode has collapsed to zero because of the choice of exponential potential, while for

the gauge field deformation setting γ = δ and θ = −n using the lift in section 4.2 recovers

the result in AdSn+4. If the IR is r → 0 (θ > 3), we should choose βq+, otherwise β
q
−

(r → +∞, θ < 0). In their regime of validity, both deformations are always irrelevant

irrespective of the value of γ. Moreover, we enforce that terms proportional to the gauge

field in the scalar equation are subleading with respect to to the potential. This gives the

inequality

γ
√

θ(θ − 2) + 2− θ + 2βq− < 0 ⇔ 2(3− δ2)
W0

V0Z0
+ (1− γδ)(δ2 − γδ − 2) > 0 , (3.11)

constraining allowed values for γ.

As we found two irrelevant perturbations for each case, spontaneous symmetry break-

ing in the boundary theory can be engineered. Since the gauge field is subleading in the

deep IR, the electric flux (1.17) vanishes, this will always describe a cohesive phase.

3.2 Quantum Criticality at finite density: fractionalized phases

In fractionalized phases, the electric flux (1.17) does not vanish in the IR. The UV charge

density is the sum of this flux and any potential bulk charged matter flux. This can

be achieved with scale invariant (section 3.2.1) or hyperscaling violating (section 3.2.2)

solutions. The scalar will be either settling in a minimum of the effective potential (1.10)

or will diverge logarithmically.
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3.2.1 Constant scalar

We first start by searching for a scale invariant solution with a constant scalar φ = φ⋆. This

value is determined by extremising the effective potential (1.10). An AdS2 × R2 solution

(z → ∞) exists provided one sets W⋆ = 0 and

W ′
⋆ = −Z⋆V

′
⋆ − V⋆Z

′
⋆ (3.12)

at φ = φ⋆. Then

ds2 =
1

r2

(

−dt2 +
dr2

V⋆

)

+ ℓ2
(

dx2 + dy2
)

, A =

√

2

Z⋆

1

r
dt . (3.13)

Note that here the functions V , Z and W are a priori arbitrary. It is easily verified that

the electric flux in the IR (1.17) is non-zero:

1

4π

∫

R2

Z(φ) ⋆ F =
ω(2)ℓ

2

4π

√

2Z⋆V⋆ , (3.14)

so this is indeed a fractionalized phase

The linearized perturbations around the solution are detailed in appendix D.2. One

finds four conjugate modes: if they are real, two of them are positive and therefore relevant

deformations, while the other two can be negative and irrelevant deformations. If they are

complex, then their real part is necessarily positive and equal to 1/2, and the fixed point

is dynamically unstable. A last option is to have only one irrelevant mode, which allows

to realize our bifurcation scenario.

We pick W ′
⋆ = 0 to make the formulae simpler and find:

β1− = −1 , β1+ = 2 , β2± =
1

2

(

1±
√
1− 4λ

)

, λ = −2V ′
⋆
2

V⋆2
+
V ′′
⋆

V⋆
+
W ′′

⋆

V⋆Z⋆
+
Z ′′
⋆

Z⋆
. (3.15)

This case encompasses in particular the well studied theory of the charged complex scalar

with a quadratic potential, [20, 21, 55, 56]. We may distinguish three cases.

If λ < 0, then β2− < 0, there are two irrelevant perturbations in the IR and one of

them can be tuned so that the source of the dual scalar operator is switched off in the

UV, leading to spontaneous symmetry breaking and a stable IR fixed point. It would be

interesting to investigate whether AdS2×R2 could be the IR endpoint of a flow with broken

symmetry in the UV, when W ′
⋆ 6= 0 but W (0) = 0 (so that AdS2 ×R2 is a solution of the

field equations both with and without the scalar turned on).

If 0 < λ < 1/4, then β2− > 0 and there is only one irrelevant mode, β1−. If λ > 1/4

(which corresponds to the effective Breitenlohner-Freedman bound), then β2− is complex

with a positive real part. This happens for instance when the square root in (3.15) becomes

negative, for a large enough scalar charge W ′′
⋆ and a small enough scalar mass V ′′

⋆ . In that

case, one also expects an instability (of the phase with broken symmetry or not), and the

(effective) Breitenlohner-Freedman bound in AdS2 is violated.

To summarize, this fixed point can mediate a fractionalisation transition (in the case

W ′
⋆ = 0) only if λ < 0 (so that there is one irrelevant and one relevant deformation),

otherwise it is stable.
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3.2.2 Running scalar

We now consider the cases where the scalar does not settle in an extremum of the effec-

tive potential (1.10), but is allowed to diverge logarithmically in the IR. Assuming the

asymptotic scalar functions take the form (1.12), and W (φ) → 0 at leading order, the field

equations (A.3)–(A.7) admit the following hyperscaling violating series solution:

ds2 = −D(r)dt2 + L2B(r)dr2 +
d~x2

r2−θ
, L2 =

(1 + z − θ)(2 + z − θ)

V0

D(r) = rθ−2z

(

1 +
∑

n=1

dnr
nα

)

, B(r) = rθ−2

(

1 +
∑

n=1

bnr
nα

)

,

eφ = r
√

(θ−2)(2−2z+θ)

(

1 +
∑

n=1

ϕnr
nα

)

, A =
Qdt

r2+z−θ

(

1 +
∑

n=1

anr
nα

)

,

Q2 =
2(−1 + z)

Z0(2 + z − θ)
, α =

4(−γ + δ + ǫ)

γ + δ
, ǫ =

4 + α− 2θ
√

(−2 + θ)(2− 2z + θ)
,

δ =
θ

√

(θ − 2)(2− 2z + θ)
, γ =

4− θ
√

(θ − 2)(2− 2z + θ)
,

θ =
4δ

γ + δ
, z =

4 + γ2 + 2γδ − 3δ2

(γ − δ)(γ + δ)
.

(3.16)

The leading order solution (n = 0) is the solution studied in [1, 7], see (2.12), while the

subleading series coefficients are uniquely determined from the equations of motion and

are proportional to the ratio W0/(V0Z0). The constraints on θ and z are as in (2.13). Note

that the exponent ǫ in W is arbitrary, but should obey the inequality

4(−γ + δ + ǫ)

γ + δ
(2 + z − θ) > 0 (3.17)

so that the subleading terms in the series are subleading in the IR.16

Restricting to θ 6= 1 + z ensures V0 6= 0, and we shall require V0 > 0. Constraints

on the background solution are that r should be spacelike, and that Q2 > 0, [1]. These

are strictly equivalent to the constraints that can be derived on the metric (2.12) from the

NEC (B.5), [9].

One finds that the electric flux (1.17) in (2.12) is finite in the IR:

1

4π

∫

R2

Z(φ) ⋆ F =
ω(2)

4π

√

2(z − 1)V0Z0

1 + z − θ
(3.18)

so the degrees of freedom are (at least partially) fractionalized.

Perturbing (3.16) at the linearized level, we find two irrelevant, zero temperature

deformations. The first is a constant mode, which either shifts the scalar by a constant or

reparametrizes time. The other one is non-universal and reads

∆φ = φ1r
β± , β± =

1

2

(

2 + z − θ ±
√

2 + z − θ

2z − 2− θ
(18z2 + 2z − 20 + 16θ − 19zθ + θ2)

)

.

(3.19)

16Note that if 4(−γ+δ+ǫ)
γ+δ

(2 + z − θ) < 0 there is no IR scaling solution.

– 18 –



J
H
E
P
0
4
(
2
0
1
3
)
0
5
3

It sources the metric and the gauge field as well, see appendix D.5. Depending on where

the IR is located (r → 0,+∞), we should select either β+ or β−, respectively. Within

the allowed parameter range (2.13), the appropriate mode is always an irrelevant deforma-

tion. It can never become complex, so there is no dynamical instability associated to the

geometry (3.16) in our setup.

3.3 Quantum Criticality at finite density: cohesive phases

We consider now cohesive phases (the electric flux (1.17) vanishes in the IR) where the gauge

field participates at leading order in the IR asymptotics. The scalar will be either settling

in a minimum of the effective potential (1.10) or diverge logarithmically. As W (φ) 6= 0,

the UV theory will be in a symmetry-breaking phase.

3.3.1 Constant scalar

The first possibility is for the scalar to settle in an extremum of the effective potential (1.10),

which gives rise to a scale invariant Lifshitz solution, [55, 56]:

ds2 = −dt2

r2z
+
L2dr2 + ℓ2

(

dx2 + dy2
)

r2
, L2 =

4 + z + z2

V⋆
,

A = Qr−zdt , Q2 =
2(z − 1)

zZ⋆
,

W⋆ =
4(z − 1)

L2Q2
, 0 =

[

log

(

VW
2(z−1)

4+z+z2Z
z(z−1)

4+z+z2

)]′∣
∣

∣

∣

φ=φ⋆

.

(3.20)

Since we are interested in z finite, we can restrict to W⋆ 6= 0 (see section 3.2.1 otherwise).

Note also that W⋆ > 0 implies z > 0, which, once combined with requesting the charge Q

to be real, yields z > 1. This is identical to the constraint derived from the NEC (B.5).

For the specific value z = 2, this solution can be lifted to a z = 0 Schrödinger solution in

an axion-dilaton theory (albeit with a constant dilaton), [57–59].

As expected, the electric flux (1.17) vanishes in the IR r → +∞ like r−2, which is in

accord with the interpretation that this solution describes a fully cohesive phase, [36].

Turning to linearized deformations (see appendix D.3 for details), we find two conjugate

pairs of modes, two of which will typically have negative real parts. Their exact expressions

are quite involved. There is always one independent amplitude, setting the strength of the

deformation. Selecting a particular model helps the analysis. In [55], the quadratic and

quartic potential models were studied, and it was shown that two of the modes could be

real and irrelevant in a large portion of the parameter space, giving rise to superfluidity.

To give another example, we set V ′
⋆ = Z ′

⋆ = W ′
⋆ (so that the scalar extremizes sepa-

rately all individual contributions to its effective potential). The expressions for the modes

become:

β1± =
1

2

(

z + 2±
√

20− 20z + 9z2
)

,

β2± =
z + 2

2

(

1±
√
1− 4λ

)

, λ =
L2V ′′

⋆ + 1
2L

2Q2W ′′
⋆ + 1

2z
2Q2Z ′′

⋆

(z + 2)2
.

(3.21)
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We note that β1− < 0 if and only if z < 1 or z > 2, where only the latter is compatible

with the constraints on the metric. If 1 < z < 2, then both β1± are relevant deformations.

On the other hand, β2+ is always relevant, while β2− is real and negative if λ < 0, real

and positive if 0 < λ < 1/4 and complex with a positive real part if λ > 1/4 (effective

Breitenlohner-Freedman bound for this IR Lifshitz space-time).

Thus, the parameter space where (3.20) is a stable IR fixed point (two irrelevant

deformations) is z > 2, λ < 0, while it can mediate a fractionalisation transition if z > 2

and λ > 0 or 1 < z < 2 and λ < 0.

3.3.2 Running scalar

Finally, we turn to the case where the gauge field participates in the IR geometry at leading

order and the scalar is running, with the scalar functions as in (1.12). This solution exists

when ǫ = γ − δ :17

ds2 = rθ
[

−dt2

r2z
+

1

r2
(

L2dr2 + dx2 + dy2
)

]

,

L2V0 = z2 + ζ + (θ − 2)2 − z(ζ + θ − 1) ,

eφ = r
θ
δ , A =

√

2(z − 1)

Z0(z − ζ)
rζ−zdt ,

W0

V0Z0
=

(z − ζ)(2 + ζ − θ)

z2 + ζ + (θ − 2)2 − z(ζ + θ − 1)
,

γ =
θ − 2ζ

√

2(1− z)ζ + (θ − 2)θ
, δ =

θ
√

2(1− z)ζ + (θ − 2)θ
.

(3.22)

The exponent ζ parameterizes the violation of Lifshitz scaling in the electric potential At,

independently from the hyperscaling violation in the metric. In particular, this does not

modify the scaling (1.7) of the entropy. Since z, θ and ζ are determined by parameters

in the action, there is no free parameter left once γ, δ and the ratio W0/V0Z0 have been

chosen.

As in section 2.2.2, sending δ → 0 (θ = 0) will result in a Lifshitz hyperscaling space-

time, with a running scalar, where the electric potential is itself not Lifshitz-invariant,

as ζ 6= 0. One can on the other hand take ζ = 0, so the electric potential is Lifshitz

invariant while the metric is hyperscaling violating. Sending z, θ → +∞ while keeping

their ratio fixed and changing coordinates to rz = ρ is still a regular limit and makes

the metric conformal to AdS2 × R2, with the gauge field invariant under the semi-local

scaling. This case enjoys special dimensional reduction properties, see section 4.2. Given

recent interest in semi-local criticality in the symmetry-preserving phase, [50–53], it is quite

interesting that such a geometry appears also in the IR asymptotics of the symmetry-

breaking phase. One can also take the limit ζ → ∞ to maintain an anomalous scal-

ing.

17There exists another spurious solution with θ = z + 2, which requires W0 < 0, and accordingly we

discard it.
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We consider the constraints one can put on the parameter space. There are five of

them

1. The first is to require a well-defined IR (see appendix B), whether r → 0 (2+z−θ < 0)

or r → +∞ (2 + z − θ > 0):

(θ − 2)(θ − 2z) > 0 . (3.23)

2. The second is requiring that r is spacelike, L2 > 0, which provided that V0 > 0,

implies

z2 + ζ + (θ − 2)2 − z(ζ + θ − 1) > 0 . (3.24)

3. The third is that Q2 is positive (Z0 > 0), which implies

(z − 1)(z − ζ) > 0 . (3.25)

4. The fourth is that W0 > 0, which seems reasonable as it is related to the mass of

the gauge field, and is associated to the positivity of the kinetic term of the original

charged scalar,

(z − ζ)(2 + ζ − θ) < 0 . (3.26)

5. The last condition is that δ and γ are real:

2(1− z)ζ + (θ − 2)θ > 0 . (3.27)

The allowed parameter space (θ, z) is plotted in figure 2, for various values of ζ, and

is smaller than that allowed by the NEC. We evaluate the behavior of the IR electric

flux (1.17) as
∫

R2

Z(φ) ⋆ F ∼ rξ , ξ = θ − 2− ζ , (3.28)

which is always vanishing in the IR. ξ = 0 automatically implies W0 = 0 and brings us

back to the solutions of section 2.2.2. In this case, one can also work out that the gauge

field vanishes in the IR while Z(φ) diverges.

In [40], the fact that the charged scalar did not couple directly to the gauge field kinetic

term (but only the neutral scalar responsible for driving the IR asymptotics) prevented any

cohesive phase unless the coupling function Z stayed bounded. We can evade this constraint

in our case as the charged scalar does couple via Z to the gauge field kinetic term.

We now perturb (3.22) linearly (details are relegated to appendix D.6). We are looking

for irrelevant deformations. First, there is a zero mode shifting the scalar by a constant.

There is also a pair of conjugate modes β±, one relevant and one irrelevant and sum-

ming to 2 + z − θ. Their exact expressions are not illuminating and can be found in

appendix D.6. Irrespective of where the IR is, β+ is never irrelevant. Depending on the

parameters, β− can be irrelevant (real and negative if the IR is r → +∞, positive if it

is r → 0) or relevant (real and positive if the IR is r → +∞, negative if it is r → 0; or
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Figure 2. Plots of the allowed parameter space (θ, z) for various values of the exponent ζ. The

upper left corner is the region where the IR is r → +∞, the lower right where it is r → 0. In

red, we depict the region where β
−

is a real irrelevant deformation; in blue, the region where it is

real and relevant; in green, the region where it is complex and relevant. In this case, the geometry

(3.22) is dynamically unstable.

complex). In figure 2, we plot these regions in the parameter space. If β− is complex, then

it is relevant and the geometry (3.22) is dynamically unstable.

In the red region, the amplitudes of the modes β = 0 and β− can be used to tune the

source of the dual scalar operator to zero in the UV and engineer spontaneous symmetry

breaking.

4 Hyperscaling violation from generalized dimensional reduction

In this section, we summarize how the various hyperscaling violating metrics discussed

in sections 2.1.2, 2.2.2 and 3.3.2 can be obtained from scale invariant metrics using the

generalized dimensional reduction techniques of [7, 33].18 Given that the extremal ge-

ometries (1.7) are conformal to Lifshitz, it is quite natural to expect such lifts to exist.

Technical details of such uplifts can be found in [7] for the symmetry-preserving case and

in appendix E for the symmetry-breaking case.

We shall mostly consider diagonal lifts, either along a torus or along a sphere. The

Kaluza-Klein Ansatz for the metric will look like

ds2(4+n) = e−∆ϕds2(4) + e
ϕ
∆(1−∆2)dK2

(n) , (4.1)

where ϕ coincides with the lower-dimensional scalar φ of action (1.1) in the absence of

a higher-dimensional scalar Φ, while ∆ = δ in the same way. K(n) is an n-dimensional

constant curvature space, which we select to be a torus Tn or a sphere Sn, in which case

Tn : ∆2 =
n

2 + n
≤ 1 , Sn : ∆2 =

2 + n

n
≥ 1 . (4.2)

18By generalized, we mean that the number of reduced dimensions is analytically continued and exchanged

against a real parameter.
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We parametrize the higher-dimensional theory as:

S̃ =

∫

d4+n
√

−g̃
[

R̃− 1

2
∂̃Φ2 − Z0e

ΓΦ

2(q + 2)!
F̃ 2
[q+2] −

W0e
EΦ

2(q + 1)!
Ã2

[q+1] + V0

]

, (4.3)

and scan the various cases which can occur:

• Z0 =W0 = 0: the fixed point is neutral as in section 2.1.2.

• Z0 6= 0, W0 = 0: the fixed point is charged with a massless gauge field, as in

section 2.2.2.

• Z0 6= 0, W0 6= 0: the fixed point is charged with a massive gauge field, as in sec-

tion 3.3.2.

4.1 Symmetry-preserving phases

We first address the case with Z0 = 0. There are two different uplifts to explain the scaling

of the metric (2.5), [7, 34]:

• δ2 < 1 (θ < 0), Φ = 0: the metric can be uplifted to a Poincaré-AdS in n + 4

dimensions. Then, the higher-dimensional holographic dictionary can be reduced to

define the lower-dimensional one, [33, 34].

• δ2 > 1 (θ > 0), Φ = 0, V0 = 0: the metric can be uplifted to a Ricci-flat 2-brane

with a transverse sphere Sn, which can be realized either by a theory without a

cosmological constant.

Turning to Z0 6= 0, the scaling properties of the solutions (2.12) with W0 = 0 can be

interpreted by lifting them to solutions of the action (4.3), [7]:

• γ = δ, δ2 < 1: Φ = 0, q = 0, V0 6= 0. The uplifted metric is AdS2 ×Rn+2. This has

a constant scalar (so θ = 0) and corresponds formally to z → +∞.

• γ = −δ, δ2 < 1: Φ = 0, q = n, V0 6= 0. The uplifted metric is planar AdSn+2 ×R2.

Both θ and z diverge, but their ratio defines a new hyperscaling violation exponent

θ/z = −n.

• γδ = 1, δ2 > 1: Φ = 0, q = 0, V0 = 0. The uplifted metrics are (n + 4)-dimensional

near-extremal black branes in Einstein-Maxwell theory. In that case, one has

θ =
2(n+ 2)

(n+ 1)
, z =

3− n2

1 + n
, (4.4)

and the metric is the Γ = 0 limit of (4.7) below.
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• (γ−δ)(γ+δ) > 0: Φ 6= 0, q = 0, V0 6= 0. The uplifted metrics are (n+4)-dimensional

Lifshitz black holes with a Maxwell charge:

ds̃2 = −dt2

r2z
+
L2dr2 + dR2

(n+2)

r2
, L2 =

(1 + n+ z)(n+ 2 + z)

V0

θ = −n , z = 1 +
2(n+ 2)

Γ2
,

eΦ = r
√

2(n+2)(z−1) , Ã[1] =

√

2(z − 1)

Z0(n+ 2 + z)
r−n−2−zdt .

(4.5)

• (γ − δ)(γ + δ) > 0: Φ 6= 0, q = n, V0 6= 0. The uplifted metrics are Lifshitz black

n-branes with an electric [n]-charge:

ds̃2 =
−dt2 + dR2

(n)

r2z
+
L2dr2 + dR2

(2)

r2
, L2 =

(1 + (n+ 1)z)(2 + (n+ 1)z)

V0

θ = −nz , z = 1 +
4

Γ2
,

eΦ = r2
√
z−1 , Ã[n+1] =

√

2(z − 1)

Z0(2 + (n+ 1)z)
r−2−(n+1)zdt ∧ dR(n) .

(4.6)

• (γ − δ)(γ + δ) < 0: Φ 6= 0, q = 0, V0 = 0. The uplifted metrics are near-extremal

dilatonic black 2-brane solutions with an electric Maxwell charge:

ds̃2 = −r
4(n−1)(n+1)

2(n+1)+(n+2)Γ2 dt2 + r
−4(n−1)

2(n+1)+(n+2)Γ2

(

L2dr2 + dR2
(2) + r2dΩ2

(n)

)

,

θ = n+ 1 + z , z =
2(3− n2) + (n+ 2)Γ2

2(n+ 1) + (n+ 2)Γ2
, L2 =

n(n− 1)

V0
,

eΦ = r
2(n−1)(n+2)Γ

2(n+1)+(n+2)Γ2 , Ã[1] =

√

2(n+ 2)

Z0 [2(n+ 1) + (n+ 2)Γ2]
rn−1dt .

(4.7)

Note that for n = 0 is ill-defined, as it imposes V0 = 0 and leaves L2 undetermined.

• (γ − δ)(γ + δ) < 0: Φ 6= 0, q = n, V0 = 0.:

ds̃2 = −r
−4

2(n+1)+(n+2)Γ2 dt2 + r
4(n+1)

2(n+1)+(n+2)Γ2

(

L2dr2 + dR2
(2) + r2dΩ2

(n)

)

,

θ = 1 + z(n+ 1) , z =
2(3 + 2n) + (n+ 2)Γ2

2(n+ 1) + (n+ 2)Γ2
,

eΦ = r
2(n+2)Γ

2(n+1)+(n+2)Γ2 , L2 =
zn(zn− 1)

V0
,

Ã[n+1] =

√

4(n+ 2)

Z0 [2(2n2 + 2n− 2) + (n2 + n− 2)Γ2]
rnz−1dt ∧ dΩ(n) .

(4.8)

Note that the electric flux is wrapped around the transverse sphere, but can be

dualized to a magnetic one wrapping the 2-brane.
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A last, quite interesting possibility is the case where the solution descends from a (neutral)

AdS5 solution by a circle reduction. Then γ = ±
√
3 and δ = ±1/

√
3. The reduction is not

generalized, but the values taken by γ and δ imply that z = 3 and θ = 1, [60].19 In four

dimensions, this is precisely the value of θ where hyperscaling violating metrics exhibit

logarithmic violation of the area law of the entanglement entropy, [8, 9, 61]. One might

say that the dual theory is one-dimensional, though this might be a little misleading as

the gauge carriers do not scale as in one spatial dimension. However, the value z = 3/2

appears in certain gauge theories describing non-Fermi liquids (together with θ = 1), [8] ,

not z = 3.

One may hope that combining a non-diagonal reduction along a circle and a diagonal

reduction along a torus might allow more freedom in the dynamical exponent. This setup

was studied in [34], and yields θ = 1 − n/2, z = 3 + n/2 for an n-dimensional torus.

Requiring θ = 1 implies n = 0 and brings us back to the circle reduction.

4.2 Symmetry-breaking phases

As for W0 = 0 (see the previous subsection), one may still interpret the scaling properties

of the solutions (3.22) with W0 6= 0 using dimensional reduction tools. It does not look like

a non-diagonal reduction along an S1 from an AdS theory can give a massive gauge field

with θ = 1 in the reduced metric in our setup (though see [57–59]). Turning to diagonal

reductions, one finds that the scaling properties of the solution can be reinterpreted as

scale invariance in the higher-dimensional setup (4.3):

• γ = δ, ǫ = 0: Φ = 0, q = 0, V0 6= 0. The uplifted metric is simply the massive Lifshitz

solution in n+ 4 dimensions, [17]. In the lower-dimensional setup, one finds that

ds̃2 = −dt2

r2z
+
L2dr2 + dR2

(n+2)

r2
,

Ã[1] =

√

2(z − 1)

Z0z
r−zdt , W0 =

z(n− 2)

L2
,

θ = −n , V0L
2 = z2 + (n+ 1)z + (n+ 2)2.

(4.9)

• γ = −δ, ǫ = −2δ: Φ = 0, q = n, V0 6= 0. The uplifted metric is a massive Lifshitz

n-brane, with an electric flux wrapped around the brane, [17].

d̃s2 =
L2dr2 + dR2

(2)

r2
+

−dt2 + dR2
(n)

r2z
,

Ã[n+1] =

√

2(z − 1)

(n+ 1)z
r−(n+1)zdt ∧ dR(n) , W0 =

2(n+ 1)z

L2
,

θ = −nz , V0L
2 = (n+ 1)2z2 + (3n+ 1)z + 4 .

(4.10)

19For more details one how to set up the holographic dictionary, see [34].
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• Φ 6= 0, q = 0, V0 6= 0: the metric uplifts to a Lifshitz solution with a running scalar

and a massive gauge field:

ds̃2 = −dt2

r2z
+

dR2
(n+2) + L2dr2

r2
, eΦ = rΓ(z−1) ,

θ = −n , L2 =
Z0

4W0

[

2(n+ 2) + Γ2(z − 1)
] [

2z + Γ2(z − 1)
]

,

Ã[1] =

√

4(z − 1)

Z0 [2z + (z − 1)Γ2]
ρ−z+Γ

2
(z−1) .

(4.11)

• Φ 6= 0, q = n, V0 6= 0: the metric uplifts to a Lifshitz n−brane with a running scalar

and a massive n-form:

ds̃2 = −
dt2 + dR2

(n)

r2z
+

dR2
(2) + L2dr2

r2
, eΦ = r−Γ(z−1) ,

θ = −nz , L2 =
1

2V0

[

8 + 2(3n+ 1)z + 2(n+ 1)2z2 + Γ2(z − 1)2
]

,

Ã[n+1] =

√

4(z − 1)

Z0 [2(n+ 1)z + (z − 1)Γ2]
r−(n+1)z−Γ2

2
(z−1)dt ∧ dR(n) ,

W0

Z0V0
=

[

4 + (1− z)Γ2
] [

2(n+ 1)z − (1− z)Γ2
]

2
√

8 + 2(3n+ 1)z + 2(n+ 1)2z2 + Γ2(z − 1)2
.

(4.12)

• Φ 6= 0, q = 0, V0 = 0: the metric uplifts to a hyperscaling violating 2−brane with a

running scalar and a massive electric gauge field:

ds̃2 = r
2θ

n+2

[

−dt2

r2z
+

dR2
(2) + L2dr2

r2
+ dΩ2

(n)

]

, L2 =
n(θ − 2− z)

V0
,

eΦ = ra , a2 = −4(2 + n)− 2(1 + n)z − 2z2 + (2(3 + n) + 2z)θ − 2(1 + n)θ2

2 + n
,

Ã[1] =

√

(z − 1)2

Z0(2 + n− θ)(θ − 2− z)
r

(2+n−θ)(2+z−θ)
(z−1) dt ,

W0

Z0V0
=

(2 + n− θ)(2 + z − θ)(1 + n+ z − θ)

n(z − 1)2
, Γ = E +

√

2

n+ 2

θ

a
,

E2 =
2(2 + n)

(

z + z2 + n(2 + z − θ) + (−2 + θ)2 − zθ
)2

(−1 + z)2a2
.

(4.13)

• Φ 6= 0, q = n, V0 = 0: the metric uplifts to a Lifshitz n−brane with a running scalar
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and a massive n-form:

ds̃2 = r
2θ

n+2

[

−dt2

r2z
+

dR2
(2) + L2dr2

r2
+ dΩ2

(n)

]

, L2 =
nz(θ − 2− z)

V0
,

eΦ = ra, a2 = −8− 2(1 + 2n)z − 2(1 + n)z2 + (6 + 2(1 + n)z)θ − 2(1 + n)θ2

2 + n

Ã[n+1] =

√

− (−1 + z)2

Z0(2 + z − θ)(2 + nz − θ)
r

(2+z−θ)(2+nz−θ)
−1+z dt ∧ dΩ(n) ,

W0

Z0V0
=

(2 + z − θ)(2 + nz − θ)(1 + z + nz − θ)

n(−1 + z)2z
.

(4.14)

Note that the electric flux is wrapped around the transverse sphere, but there is no

electromagnetic-duality to dualize is to a magnetic flux wrapped around the 2-brane:

this symmetry of the equations of motion is broken by the mass term of the gauge

field.

5 Outlook

In this work, we have given a unifying view of the classification of the IR asymptotics of

holographic theories using the concept of Effective Holographic Theories, as advocated first

in [1, 7]. We have considered standard Abelian scaling symmetry but have enlarged our

scope by allowing broken U(1) symmetries. We have found all IR scaling, homogeneous and

translation-invariant asymptotics and studied their perturbations. We have classified them

in terms of whether they describe cohesive or fractionalized phases, whether the symmetry-

breaking effects are leading or subleading in the IR and whether the scale invariant fixed

points can mediate a fractionalisation transition via a bifurcation in the RG flow.

There is a non-trivial interplay between hyperscaling preserving and hyperscaling vio-

lating solutions. Hyperscaling preserving solutions appear as fixed points and have AdS4,

AdS2 × R2 or Lifshitz geometries. The hyperscaling violating solutions appear as fixed

lines and contain an explicit scale (responsible for hyperscaling violation). The fixed line

can be interpreted as changing that scale, or equivalently changing the charge density (or

chemical potential). This structure, albeit more complex is expected to appear in more

general EHTs, containing several scalars and U(1) symmetries.

Our surprising result is that scaling (quantum critical) behavior is generic in holo-

graphic theories and that quantum critical theories appear generically as fixed lines rather

than fixed points. A possible connection of this fact to recent data on cuprate supercon-

ductors has been addressed in [37].

There are several directions that open up:

• We have introduced a new scaling exponent ζ in section 3.3.2, which parameterizes

the violation of the Lifshitz scaling in the electric potential, independently from

the violation of hyperscaling in the metric. It would be very interesting to find a

connection between this exponent in the bulk and scaling in the dual field theory.
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• Understanding the structure of flows between the critical solutions we find and map,

is of importance. This will put an order in this collection of scaling geometries. Some

specific cases have been studied in [38–40], but as we have described here, this is just

the tip of an iceberg.

• It is interesting to investigate new effects that may appear after the inclusion of

more order parameters/symmetries. In particular new effects are expected when

what acts as parameters in single scalar models, may turn into varying parameters

in multi-scalar models. Indeed that is what happens in tachyon models for chiral

symmetry breaking of QCD, [62–64], where new phenomena like conformal transitions

can appear, [65–67].

• The special class of hyperscaling violating metrics conformal to AdS2×R2 have been

singled out in [7], because they have vanishing entropy at extremality (as do all

hyperscaling violating metrics) and display a “semi-local” quantum criticality (time

scales, space does not, but Green’s functions are still momentum-dependent), [50–53].

They have received a lot of attention recently, and were shown to have “fermionic”

properties. The previous studies have focussed on the symmetry-preserving phase,

but this class of geometries also appears in the symmetry-breaking phases. It would

be interesting to investigate further their properties.

• Logarithmic violation of the area law of the entanglement entropy has been tied to

the presence of Fermi surfaces in [8, 9, 61]. This does not depend on the theory

considered, but rather on the metric itself, and more precisely on the value of θ (and

not z). In particular, the geometries presented here, for instance (3.16) or (3.22), can

accommodate this value. However, they are supposed to model superfluid phases,

where the fermionic degrees of freedom have condensed. How is it then that a Fermi

surface should still be present? For fractionalized phases, the fractionalized fermion

would still display a Fermi surface,20 but not for the cohesive phase of (3.22). This

leads one to wonder whether weakly-coupled concepts such as the Fermi surface are

still applicable in this strongly-coupled context, and even make sense.

• Given the ubiquitousness of hyperscaling violating metrics in Effective Holographic

models, it is important to investigate their stability under quantum or stringy cor-

rections. The former case has already been studied in a number of works, [68–70]

and it was found that magnetic versions of these metrics are unstable to quantum

effects and develop again an AdS2 × R2 throat. The latter case is still largely un-

explored. Lifshitz metrics have been showed to be stable, [71], while inclusion of

certain quadratic operators maintaining second-order field equations preserved the

two-derivative scaling symmetries, [60].

20We would like to thank A. Balatsky for discussions on this specific point.
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A Ansatz and field equations

We consider a metric in a general frame

ds2 = B(r)dr2 −D(r)dt2 + C(r)
(

dx2 + dy2
)

, (A.1)

and with non-trivial gauge field, At(r) and scalar φ(r).

Using primes to denote radial derivatives, the scalar curvature of this metric is

R =
1

B

[

1

2

(

C ′

C
− D′

D

)2

+
B′

B

(

C ′

C
+
D′

2D

)

− 2
C ′′

C
− D′′

D

]

. (A.2)

Specifying to an electric Ansatz for the gauge field, the equations of motion read

(

Z

√

C2

DB
A′

t

)′

= W

√

BC2

D
At (A.3)

D′

D

C ′

C
+

1

2

C ′2

C2
+
Z

2

A′2
t

D
− BW

2

A2
t

D
−BV − 1

2
φ′2 = 0 (A.4)

C ′′

C
+

1

2
φ′2 − 1

2

(

B′

B
+
D′

D

)

C ′

C
− 1

2

C ′2

C2
+
BWA2

t

2D
= 0 (A.5)

2
D′′

D
− 2

C ′′

C
− D′

D

(

D′

D
+
B′

B
− C ′

C

)

+
B′

B

C ′

C
− 2ZA′2

t

D
− 2BWA2

t

D
= 0 (A.6)

√

1

DBC2
∂r

(
√

DC2

B
φ′

)

+ V ′ +
Z ′

2DB
A′2

t +
W ′

2D
A2

t = 0 (A.7)

Only four of them are independent, as the scalar equation of motion (A.7) can be obtained

from the others.
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From these equations, one can obtain the following conserved charge

Q =
C√
BD

[

ZAA′ − C

(

D

C

)′]

. (A.8)

This charge connects horizon to boundary data, and when it evaluates to zero, signals

extremality, [1, 38, 55]. Note that interestingly, the precise matter content (massive gauge

field, charged complex scalar, electron star) does not affect its definition.

To connect with hyperscaling (violating) solutions, we can look for solutions of the

form:

B(r) = L2rθ−2, D(r) = rθ−2z, C(r) = rθ−2, A(r) = Qrζ−z . (A.9)

The dynamic exponent z and hyperscaling violating one θ can be determined in terms of

the scalar exponents, γ, δ, ǫ and the action parameters Z⋆, W⋆ and V⋆ or Z0, W0 and V0.

B Some properties of hyperscaling violating metrics

In this appendix, we collect some properties of hyperscaling violating metrics. In arbitrary

d+ 2 dimensions, hyperscaling violating metrics can be written

ds2(d+2) = r
2θ
d

[

−dt2

r2z
+
L2dr2 + dR2

(d)

r2

]

. (B.1)

To have a well-defined IR, we should require

(θ − d)(θ − dz) > 0 . (B.2)

The IR can be located either at r → 0 or r → +∞,21 and this is determined by where the

(x, t) metric elements vanish:

r →
IR

+∞ θ < d , θ < dz ,

r →
IR

0 θ > d , θ > dz .
(B.3)

Independently of a precise embedding of (B.1), and anticipating on appendix D, it can be

seen by calculating the extremality charge (A.8) that perturbations with the Ansatz (D.1)

or (D.2) and a mode equal to d + z − θ will generically correspond to flows to finite tem-

perature. This is also supported by the fact that whenever an exact analytical completion

of (B.1) to finite temperature exists, it reduces to that particular mode for small temper-

atures. That perturbation also helps defining the UV, since it should vanish there. As a

consequence, let us add the following constraint to (B.3):

r →
IR

+∞ d+ z − θ > 0 ,

r →
IR

0 d+ z − θ < 0 .
(B.4)

21One should however keep in mind that the r coordinate in (B.1) will generically not coincide with the

radial coordinate describing the full RG flow from AdS in the UV. The space-time (B.1) will typically be

obtained by a scaling limit, which implies changing radial coordinates. In the full picture, the IR may well

sit at a finite value of the radial coordinate.
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In turns out that the constraints (B.3) as well as other “natural” constraints (such as

L2 > 0 or Q2 > 0 if hyperscaling violation is supported by extra matter fields, see sec-

tions 2.2.2, 3.1, 3.3) will all yield (B.4). Nonetheless, there is no proof that it should always

be the case. On top of that, one may wish to impose the Null Energy Condition (NEC),

which reads for the two null vectors (N t = Lez−
θ
d , N r = 1

L
r1−

θ
d cosψ , Nx = 1

L
r1−

θ
d sinψ )

where ψ = (0, π/2), [9]:

(d− θ)(d(z − 1)− θ) ≥ 0 ,

(z − 1)(d+ z − θ) ≥ 0 .
(B.5)

Combining these two sets of constraints, (B.1) and (B.5) yields:

θ ≤ 0&& z ≥ 1 || 0 < θ < d&& z ≥ 1 +
θ

d
. (B.6)

Note that in any case, z ≥ 1. We will also be interested to know how the NEC translates

after uplifting with the Kaluza-Klein Ansatz:

ds̃2 = e−δφds2(4) + e
φ
δ
(1−δ2)dΩ2

(n), δ2 =
n

n+ 2
, (B.7)

where n is the number of compact dimensions, φ the Kaluza-Klein scalar and for simplicity

Ω(n) is an n-sphere. Then, projecting the Einstein tensor on the null vector, the higher-

dimensional NEC reads in terms of the lower one:

G̃µνN
µNν =

(

Gµν −
1

2
∂µφ∂νφ

)

NµNν , (B.8)

where the indices µ, ν = 0 . . . 3 span the non-compact dimensions.

The sign of θ determines whether the geometry has a curvature singularity in the IR:

R ∼ r−
2
d
θ, RλµνρR

λµνρ ∼ r−
4
d
θ (B.9)

where R is the Ricci scalar calculated from (A.2). The curvature singularity sits either at

r = 0 (θ > 0) or at r = +∞ (θ < 0). In previous work, [1], we argued that one should have

the curvature singularity in the IR, so as not to spoil the interpolation to a UV solution with

appropriate (AdS) asymptotics. However, a numerical solution was presented recently with

0 < θ < 2, [61], which interpolates to AdS UV boundary conditions before the curvature

invariants can diverge.

Even if the curvature invariants are regular there, the IR space-time may still suffer

from diverging tidal forces. Then, strings propagating in this background may become

infinitely excited, preventing any resolution of this null singularity by including the full

spectrum of string states, [73]. It turns out that the only value of z compatible with (B.6)

where these null singularities do not occur is z = 1 + θ
d
, [74], which saturates one of NEC

inequalities.

There has been a lot of recent activity around a specific value for θ, which lies in the

allowed range (B.6): when θ = d− 1, the system is effectively (d− 1)-dimensional and the

area law for the entanglement entropy is logarithmically violated. This has been argued
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to signal a “hidden” Fermi surface where the charge carriers are gauge-variant operators

associated to horizon degrees of freedom, [8, 9, 61]. In d = 2 dimensions, one is then led

to select the values θ = 1, z = 3
2 .

Can these values be realized in the geometries examined in the main text? We consider

in turn the massless geometries of section 2.2.2 and the massive geometries of section 3.3.2.

In the former, setting θ = 1 yields γ = 3δ, and z still depends on δ, (2.12), [8]:

γ = 3δ ⇒ θ = 1, z =
3δ2 + 1

2δ2
. (B.10)

Varying δ, z takes values in the real line and is bounded from below, 3/2 < z, with the

lower-bound saturated when both γ and δ diverge.22 Turning to the latter, (3.22), when

θ = 1,

z =
1 + γδ

δ(γ − δ)
, W0 = − V0Z0(−γ + δ)(−γ + 3δ)

(

2 + γ2 + δ2
)

2 (2 + γ2 + 2γδ + δ2 + 5γ2δ2 − 6γδ3 + 3δ4)
(B.11)

One recovers the massless case by setting γ = 3δ. Setting further z = 3/2 implies a negative

mass: W0 < 0.23 AsW0 should be thought of as the charge squared of our original complex

scalar, this leads to some inconsistency. To conclude, it does not appear possible to satisfy

both constraints coming from logarithmic violation of the area law of the entanglement

entropy and IR regularity in the minimal setup (1.1).

C Classification of QC asymptotics in the broken symmetry case.

We write the metric as:

ds2 = L2B(r)dr2 −D(r)dt2 + C(r)
(

dx2 + dy2
)

. (C.1)

We take again the asymptotic IR forms

V = V0e
−δφ , Z = Z0e

γφ , W =W0e
ǫφ (C.2)

but with general δ, γ, ǫ, and make the Ansatz (if θ < 2, θ < 2z then the UV is at r = 0)

D(r) = rθ−2z

(

1 +
∑

n=1

dnr
nα

)

, B(r) = rθ−2

(

1 +
∑

n=1

bnr
nα

)

,

C = rθ−2, eφ = ra0

(

1 +
∑

n=1

ϕnr
nα

)

, At = Qrc0

(

1 +
∑

n=1

anr
nα

)

.

(C.3)

The field equations should determine uniquely both the leading order as well as the sub-

leading power series.

The equations (A.3)–(A.6) imply

ZA′2
t

D
=
k1
r2

+ · · · , BWA2
t

D
=
k2
r2

+ · · · , BV =
k3
r2

+ · · · (C.4)

22We would like to thank Jelle Hartong for bringing this point to our attention.
23This result was pointed out to us by Jelle Hartong.
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with

k1 − k2 − 2k3 = a20 + (θ − 2)(4z − 3θ + 2) (C.5)

k2 = −a20 + (θ − 2)(θ + 2− 2z) (C.6)

2(k1 + k2) = 4(z2 − zθ + z + θ − 2) (C.7)

to leading order. These can be solved for ki as

k1 = a20 + 2z(z − 1)− θ(θ − 2) (C.8)

k2 = −a20 + (2 + θ − 2z)(θ − 2) (C.9)

2k3 = a20 + 2(z2 + z + 4)− 2θ(z + 3) + θ2 (C.10)

The gauge field equation reads

c0(−2 + c0 + a0γ + z)
Z0

L
r−3+c0+a0γ+z = LW0r

−3+c0+a0ǫ+θ+z. (C.11)

If the potential term is leading (k3 6= 0, BV ∼ 1/r2) then

a0δ = θ , k3 = L2V0e
−δφ0 . (C.12)

There are two possibilities here:

1. Both terms in (C.11) are leading. In that case

θ = a0(γ − ǫ) , L2 = c0(c0 + a0γ + z − 2)
Z0

W0
. (C.13)

Note also that there is a compatibility condition for the first two equations in (C.4).

Its implications depend on the case. Moreover, combining (C.12) with (C.13) neces-

sarily requires setting ǫ = γ − δ if the dilaton is to be non-trivial (a 6= 0).

2. Only the first term in (C.11) is leading implying

c0(c0 + a0γ + z − 2) = 0 , (θ − 2)(θ + a0(ǫ− γ)) > 0 (C.14)

where the inequality is necessary so that the mass term is subleading in the deep IR.

We are then left with algebraic equations. We may now consider what happens de-

pending on whether ki are zero or not. The relevant equations are (C.4), (C.8)–(C.10) and

either (C.13) or (C.14).

C.1
∏

3

i=1
ki 6= 0

From the equations (C.4) we have

c20Q
2Z0 = k1 , L2Q2W0 = k2 , L2V0 = k3 (C.15)

θ = a0δ , c0 = −z − a0ǫ

2
, θ = a0(γ − ǫ) (C.16)
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that imply

a0(ǫ− γ + δ) = 0 ⇒ ǫ = γ − δ (C.17)

for a running scalar. We can then obtain

Q2 =
k1
c20Z0

, L2 =
k2
k1

Z0c
2
0

W0
(C.18)

and

k1k3 =
(

z +
a0ǫ

2

)2
k2
Z0V0
W0

(C.19)

C.1.1 Option 1

With option 1 as in (C.13) we obtain an extra relation

k3 =
Z0V0
4W0

(2z + a0ǫ)(a0ǫ+ 4− 2a0γ) (C.20)

We must now solve the two remaining equations (C.19) and (C.20). We can derive from

the two

(a0ǫ+ 4− 2a0γ)k1 = (2z + a0ǫ)k2 (C.21)

This equation has two solutions.

1.

a0 =
(γ − δ)z − (γ + δ)

1− δ2
(C.22)

and the leftover condition for z becomes

W0 = −V0Z0

(

2δ2(z2 − z + θ) + (1− δ2)θ2
) (

2δ2(2− 2z + zθ) + (1− δ2)θ2
)

2(−1 + z)2δ2 (8δ2 + 2zδ2 + 2z2δ2 − 6δ2θ − 2zδ2θ + θ2 + δ2θ2)
(C.23)

where we used

γ =
δ2(1 + z) + θ(1− δ2)

(−1 + z)δ
. (C.24)

The other parameters of the solution read

a0 =
θ

δ
, L2 =

8δ2 + 2zδ2 + 2z2δ2 − 6δ2θ − 2zδ2θ + θ2 + δ2θ2

2V0δ2

c0 =
2δ2(z − z2 − θ) + (δ2 − 1)θ2

2(−1 + z)δ2
, Q2 =

−2δ2(−1 + z)2

Z0(2δ2(z − z2 − θ) + (δ2 − 1)θ2)

(C.25)

This is the solution described in section 3.3.2.

2. The other solution is

θ = z + 2 (C.26)

and from (C.20) we obtain a quadratic equation for z

W0 = − V0Z0(2γ + zγ − 2δ + zδ)2

2 (4 + 4z + z2 − 4zδ2 + z2δ2)
(C.27)
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and the rest of the solution reads

a0 =
θ

δ
, L2 =

4 + 4z + z2 − 4zδ2 + z2δ2

2V0δ2

c0 = −2γ + zγ − 2δ + zδ

2δ
, Q2 =

2(4 + 4z(1− δ2) + z2
(

1 + δ2
)

)

Z0(2γ + zγ − 2δ + zδ)2

(C.28)

Note that requiring r to be spacelike (L2 > 0) and Q2 > 0 implies W0 < 0, which

is ill-defined, as it is ultimately related to the square of the charge of the original

complex scalar field.

C.1.2 Option 2

There is no consistent solution to the equations of motion: a solution to Maxwell and

Einstein’s equations does not solve the scalar equation.

C.2 k3 = 0

From the equations (C.4) we have

c2Q2Z0 = k1 , L2Q2W0 = k2 (C.29)

c0 = −z − a0ǫ

2
, θ = a0(γ − ǫ) (C.30)

as well as

k3 = a20 + 2(z2 + z + 4)− 2θ(z + 3) + θ2 = 0 (C.31)

C.2.1 Option 1

With option 1 we obtain also

L2 = c0(c0 + a0γ + z − 2)
Z0

W0
(C.32)

We end up with

Q2 =
k1
c20Z0

, L2 =
k2
k1

Z0c
2
0

W0
, c0 = −z − a0ǫ

2
, θ = a0(γ − ǫ) (C.33)

and

(2 + z + (ǫ− γ)a0)
(

−2γ + ǫ+ zǫ+ a0((γ − ǫ)2 − 1)
)

= 0 ,

4 + z + z2 − (3 + z)θ +
θ2

2
+
a20
2

= 0 .
(C.34)

Like in the previous case the first equation has two solutions for z.

1. The first solution is

a0 =
2γ − ǫ− zǫ

(−1 + γ − ǫ)(1 + γ − ǫ)
, θ =

(2γ − ǫ− zǫ)(γ − δ)

(−1 + γ − ǫ)(1 + γ − ǫ)
(C.35)

while the second equality in (C.34) becomes a quadratic equation in z. The problem

with this solution is that imposing consistency constraints L2 > 0, Q2 > 0 and a20 > 0

is inconsistent with (θ − 2)(θ − 2z) > 0 (well-defined UV).
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2. The other solution is

θ = 2 + z , a0 =
2 + z

γ − ǫ
(C.36)

and the first equation in (C.34) becomes the quadratic equation for z

2(γ − ǫ)2 − 2z(−1 + γ − ǫ)(1 + γ − ǫ) + z2
(

1 + γ2 − 2γǫ+ ǫ2
)

= 0 (C.37)

that has real roots if (ǫ− γ)2 ≥ 3. It necessarily has either L2 < 0 or W0 < 0, so we

discard it.

C.2.2 Option 2

In that case, one can find a leading order solution:

L2 = −Z0(−2− z + θ)2(−1− z + θ)

W0(−2 + θ)
, a0 =

√

−8− 2z − 2z2 + 6θ + 2zθ − θ2 ,

ǫ2 =
4(2− θ)

8 + 2z + 2z2 − 6θ − 2zθ + θ2
, γ2 =

−(−4 + θ)2

8 + 2z + 2z2 − 6θ − 2zθ + θ2
,

Q =

√

2(2− θ)

Z0(−2− z + θ)
, c0 = −2− z + θ ,

(C.38)

but the subleading series is logarithmic.

C.3 k1 = 0

From (C.8) we have

a2 + 2z(z − 1)− θ(θ − 2) = 0 (C.39)

and since k2, k3 6= 0

L2V0 = k3 , L2Q2W0 = k2 (C.40)

c0 = −z − a0ǫ

2
, θ = a0δ (C.41)

so that

Q2 =
k2
k3

V0
W0

, L2 =
k3
V0

(C.42)

There remains to impose the gauge field equation.

C.3.1 Option 1

There is no consistent solution to the equations of motion: a solution to Maxwell and

Einstein’s equations does not solve the scalar equation.

C.3.2 Option 2

There is only one consistent leading order solution

L2 =
(−2 + θ)(−2− z + θ)

V0
, a0 = ±

√

2z − 2z2 − 2θ + θ2 ,

ǫ = ∓ 2z√
2z − 2z2 − 2θ + θ2

, δ = ± θ√
2z − 2z2 − 2θ + θ2

,

Q =

√

2V0(−1 + z)

W0(2− θ)
, c0 = 0 .

(C.43)
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However, the next order in the power series is inconsistent: the solution to Maxwell and

Einstein’s equations is not a solution to the scalar equation.

C.4 k2 = 0

C.4.1 Option 1

There is no consistent solution to the equations of motion: a solution to Maxwell and

Einstein’s equations does not solve the scalar equation.

C.4.2 Option 2

There is a single leading solution, which as expected is a correction to the massless

case (2.12):

L2 =
(−2− z + θ)(−1− z + θ)

V0
, Q =

√

2(−1 + z)

Z0(2 + z − θ)

γ = ∓ −4 + θ
√

−(−2 + 2z − θ)(−2 + θ)
, δ = ± θ

√

(−2 + θ)(2− 2z + θ)

a0 = ±
√

(−2 + θ)(2− 2z + θ), c0 = −2− z + θ .

(C.44)

The series expansion has α = 4(−γ + δ + ǫ)/(γ + δ). All amplitudes are proportional to

the ratio W0/(V0Z0).

C.5 k1 = k2 = 0

C.5.1 Option 1

There are two leading order solutions, where in both cases the metric and the scalar are

the same as in the neutral domain-wall (2.5) and one has to set ǫ = γ − δ:

z = 1 , L2 =
(−3 + θ)(−2 + θ)

V0
, a0 =

√

θ(θ − 2), θ =
2δ2

(−1 + δ2)
(C.45)

They differ by the gauge field:

1. Q = 0. One has zero leading order gauge field and so solves exactly the equations of

motion, without a power series.

2. The other verifies

W0 = − V0Z0c
2
0

(−3 + θ)(−2 + θ)
, γ = − −1 + 2c0

√

(−2 + θ)θ
, (C.46)

from which one determines the scaling of the gauge field, while the charge Q is

independent from the other variables. However, the power series scales like r3−θ, and

this leads to a contradiction: this is the same scaling as the temperature fluctuation,

which should be relevant in the IR and not irrelevant.
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C.5.2 Option 2

There are three leading order solutions, where in all cases the metric and the scalar are the

same as in the neutral domain-wall (2.5)

z = 1 , L2 =
(−3 + θ)(−2 + θ)

V0
, a0 =

√

θ(θ − 2), θ =
2δ2

(−1 + δ2)
(C.47)

They differ by the gauge field:

1. Q = 0. One has zero leading order gauge field and so solves exactly the equations

of motion, without a power series. Linear perturbations around this solutions are all

relevant, so we discard it.

2. The other has constant gauge field c0 = 0. It has a consistent power series with a

different power for the gauge field and for the other fields

α1 = (ǫ− γ)
√

(θ − 2)θ + θ α2 = 2 + ǫ
√

(θ − 2)θ (C.48)

and

a1 =
QL2W0

Z0c1

(

c1 − 1 + γ
√

θ(θ − 2)
) , b1 =

Q2L2W0(θ − 2)

β(−3 + β + θ)
, c1 = 0 ,

d1 =
Q2L2W0

β(−3 + β + θ)
, ϕ1 = − Q2L2W0(−2 + β)

2β
√
−2 + θ

√
θ(−3 + β + θ)

.

(C.49)

Q is an integration constant left undetermined by the field equations.

3. The third has a non-constant gauge field at leading order but yields a logarithmic

series.

C.6 k1 = k3 = 0

C.6.1 Option 1

There is no consistent solution to the equations of motion: a solution to Maxwell and

Einstein’s equations does not solve the scalar equation.

C.6.2 Option 2

In that case there is no charged solution with a running scalar.

C.7 k2 = k3 = 0

C.7.1 Option 1

There is no consistent solution to the equations of motion: a solution to Maxwell and

Einstein’s equations does not solve the scalar equation.
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C.7.2 Option 2

The solution is

a0 =
√

(3− z)(z − 1), θ = 1 + z , Q =

√

2(z − 1)

Z0
, c0 = −1, γ =

√

3− z

z − 1
(C.50)

Note that L2 is left undetermined at leading order, which is pathological.

C.8 k1 = k2 = k3 = 0

C.8.1 Option 1

The solution is

a0 =
√

4z − z2, θ = 2 + z , ǫ =
−2− z +

√

(4− z)zγ
√

(4− z)z
,

W0 =
Z0c0

(

z − 2 +
√

(4− z)zγ + c0

)

L2

(C.51)

but the subleading series is logarithmic.

C.8.2 Option 2

In this case, there are three solutions, with identical metric and scalar at leading order:

a0 =
√

4z − z2, θ = 2 + z (C.52)

and differing only by the value taken by the gauge field. However, the equations of motion

leave L2 free in all cases, so we discard them all.

1. The first has zero gauge field at leading order (Q = 0).

2. The second has constant gauge field at leading order (c0 = 0) while Q is a free

parameter.

3. The third solution has a non-constant gauge field at leading order but only allows for

a logarithmic series.

D Linear perturbations

In this appendix, we give details about the linear perturbations around the various (leading

order) solutions we have analyzed. They are of two types: either they are exact solutions

to the field equations, or these leading order solutions have to be supplemented by a power

series. There is a slight subtlety with the latter: they are an expansion in the radial

coordinate (powers become subleading in the IR), while the linear perturbations are an

expansion with a small amplitude. So, to leading order both in r and in the amplitudes of

perturbations, it is enough to work out the linear perturbation around the leading order

solution, discarding the power series. In this fashion, linear perturbations around the
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solution in section 3.2.2 are identical to those around the solution in section 2.2.2. The two

solutions only differ by the power series in section 3.2.2, which reflects the fact we have

allowed W (φ) 6= 0 there.

We perturb around the solution (C.3) by setting

B = L2rθ−2
(

1 +B1r
b1
)

, D = rθ−2z
(

1 +D1r
d1
)

, C = rθ−2 (1 + C1r
c2) ,

φ = φ0 + φ1r
a1 , A = rc0 (Q+A1r

c1) .
(D.1)

in the case where the scalar is a constant at leading order (without any warping factor in

C(r) in the AdS2 ×R2 case), or

B = L2rθ−2
(

1 +B1r
b1
)

, D = rθ−2z
(

1 +D1r
d1
)

, C = rθ−2 (1 + C1r
c2) ,

φ = a0 log r + φ1r
a1 , A = rc0 (Q+A1r

c1) .
(D.2)

if it is running. Assuming the IR to be at r → +∞ (r → 0), a typical mode β will be

irrelevant in the IR if it is negative (positive). It is also fruitful to distinguish between

“universal” modes, which depend only on the exponents z and θ in the metric, and “non-

universal” modes, which depends on the details of the theory, [55], as well as between

those which drive a flow to finite temperature and those that allow to interpolate between

different ground states. For this, we evaluate the extremality charge Q, (A.8).

We are mostly interested in zero-temperature RG flows, where a scale invariant fixed

point mediates a fractionalization transition between two hyperscaling violating quantum

critical lines. For the former geometries, we will study whether one of the zero-temperature

deformations can be relevant, so that the fixed point is unstable. For the latter, we will

require that only irrelevant deformations exist so that the RG flow is well-defined (most of

the time it needs to be constructed numerically). Indeed, the perturbations will typically

generate a two-parameter family of solutions. One parameter can be used to satisfy the

UV boundary condition on the condensing scalar: the source to its dual operator should be

set to zero on the boundary, so that the U(1) symmetry is spontaneously broken and the

boundary theory is in a superfluid state. This leaves generically a one-parameter family of

superfluid phases.

D.1 AdS4 geometry

We perturb the solution (3.1) using the Ansatz (D.2). There is a universal mode b1 = d1 =

βu = 3 which is simply the temperature perturbation with D1 = −B1 and the rest set to

zero (and indeed Q 6= 0). We know that this matches the analytical finite temperature

completion, so we do not have to worry that this perturbation could source the scalar or

the gauge field at higher orders. All the other perturbations satisfy Q = 0 and so maintain

zero temperature. The conjugate mode with d1 = 0 and D1 6= 0 is a time rescaling.

There is a scalar perturbation a1 = βφ with φ1 6= 0, which is a solution of

0 =
(

βφ
)2

− 3βφ + L2V ′′
⋆ , 9− 4L2V ′′

⋆ > 0 . (D.3)
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Note that it displays the usual instability when the scalar mass goes below the

Breitenlohner-Friedman bound, V ′′
BF = 9/4L2 < 0. Below that bound, the dimension

of the operator dual to that mode becomes complex, and one expects another IR geometry

to develop (such as Lifshitz, [55, 56]). The two modes read

βφ± =
1

2

[

3±
√

9− 4L2V ′′
⋆

]

(D.4)

with βφ− < 0 providing the irrelevant perturbation we need.

The second irrelevant mode is provided by the gauge field perturbations with c1 = βq

and A1 6= 0. They decouple from the other perturbations, as the charge dynamics do not

impact the metric field equations once the scalar is frozen to a non-zero value. One finds:

0 = −6W⋆ − βqV⋆Z⋆ + (βq)2 V⋆Z⋆ , 24W⋆ + V⋆Z⋆ > 0 . (D.5)

As we are interested in approaching AdS4 in the IR, we should select the irrelevant mode:

βq± =
1

2



1±
√

1 +
4L2W⋆

Z⋆



 . (D.6)

βq+ > 0 while βq− < 0, so the latter can be used to drive the flow to the IR AdS4. In the

case where the U(1) is unbroken W⋆ = 0, then the modes reduce to βq∓ = 0, 1 as usual for

a UV AdS4 (chemical potential and charge density).

D.2 AdS2 × R2 geometry

Perturbing around the solution (3.13) using the Ansatz (D.1), one finds a universal, relevant

mode with power β = 1 and amplitudes:

C1 = − φ1W
′
⋆

2V⋆Z⋆
, D1 = −B1 −

φ1 (2Z⋆V
′
⋆ +W ′

⋆)

V⋆Z⋆
, A1 = 0 . (D.7)

When W (φ) = 0, this is just the finite temperature completion of AdS2 × R2 (only D1

is non-zero). In the massive case, we see that the perturbation now sources both the

scalar (φ1) and the metric components of the R2 factor (C1). This perturbation generically

has Q 6= 0, but one can choose a linear combination of φ1 and B1 which maintains zero

temperature. The two conjugate modes β = 0 with D1 = 2A1 and C1 free are respectively

a rescaling of time and of the volume of the spatial directions.

Then, we also find four other modes, which drive zero temperature flows (Q = 0),

and might be real or complex depending on the value taken by the coupling functions and

their first/second derivatives at φ = φ⋆. By tuning these, one may find both relevant and

irrelevant modes. They satisfy a fourth-order polynomial

(β − β1+)(β − β1−)(β − β2+)(β − β2−) = 0 ⇒ βi± =
1

2

(

1±
√

X ±
√
Y

)

, (D.8)
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with
∑

βi± = 2 ,
∑

i<j

βi±β
j
± = −1− 2Z ′

⋆
2

Z⋆
2

+
V ′′
⋆

V⋆
+

W ′′
⋆

V⋆Z⋆
+
Z ′′
⋆

Z⋆
=

3−X

2
,

∑

i<j<k

βi±β
j
±β

k
± =

∑

i<j

βi±β
j
± − 1 =

1−X

2
,

∏

βi± = −V
′
⋆
2

V⋆2
+

4V ′
⋆Z

′
⋆

V⋆Z⋆
+
Z ′
⋆
2

Z⋆
2
+

2V ′′
⋆

V⋆
+

2W ′′
⋆

V⋆Z⋆
+

2Z ′′
⋆

Z⋆
=

(1−X)2 − Y

16
.

(D.9)

The modes go by pairs, summing to 1, so that if they are complex, their reals parts are

all positive, equal to 1/2 and the fixed point is dynamically unstable. Irrespective of the

precise value taken by β, the amplitudes read (after gauging away A1):

B1 = −φ1
(

2
(

−1 + β2
)

Z⋆V
′
⋆ +

(

1− 2β + 2β2
)

W ′
⋆

)

(−2 + β)(1 + β)V⋆Z⋆
,

D1 =
φ1 (2(1 + β)Z⋆V

′
⋆ + (1 + 2β)W ′

⋆)

(−2 + β)(1 + β)V⋆Z⋆
, C1 = − φ1W

′
⋆

β(1 + β)V⋆Z⋆
.

(D.10)

D.3 Lifshitz geometry

Perturbing around the solution (3.20) using the Ansatz (D.1), there exist two universal

modes: one is irrelevant β = 0 and corresponds to a rescaling of time; one is relevant,

βu = 2 + z, and puts the solution at finite temperature without turning on the scalar; as

well as two pairs of conjugate modes. Each pair sums to 2 + z: two modes will have a

fixed sign and be relevant, while typically the other two can be (ir)relevant depending on

parameters. Their value is determined from the quartic polynomial:

(β − β1+)(β − β1−)(β − β2+)(β − β2−) = 0 ⇒ βi± =
1

2

(

2 + z ±
√

X ±
√
Y

)

, (D.11)

with
∑

βi± = 2(2 + z) ,

∑

i<j

βi±β
j
± = (10− z)z +

(

4 + z + z2
)

V⋆

(

V ′′
⋆ +

(z − 1)W ′′
⋆

zZ⋆

)

+ (z − 1)z

(

Z ′′
⋆

Z⋆
− 2

Z ′
⋆
2

Z2
⋆

)

=
1

2

(

12 + 12z + 3z2 −X
)

,

∑

i<j<k

βi±β
j
±β

k
± = (z + 2)3 − (z + 2)

∑

i<j

βiβj =
1

2
(2 + z)

(

4 + 4z + z2 −X
)

,

∏

βi± = 2(z − 1)(z − 2)
∑

i<j

βi±β
j
± − 2(−10 + z)(−2 + z)(−1 + z)z

+
(1 + z)

(

4 + z + z2
)2
V ′
⋆
2

(−1 + z)V⋆2
− 2z(−5 + 2z)

(

4 + z + z2
)

V ′
⋆Z

′
⋆

V⋆Z⋆
− 5(−1 + z)2z2Z ′

⋆
2

Z⋆
2

=
1

16

(

4 + 4z + z2 −X
)2 − Y

16
.

(D.12)

In all cases, one can express the amplitudes of the perturbation in terms of φ1. The

expressions are not particularly enlightening and very lengthy, so we do not give them.
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D.4 Neutral geometry with hyperscaling violation

Perturbing around the solution (2.5) with the Ansatz (D.2), with a relevant, universal

mode d1 = b1 = a1 = βu = 3− θ:

φ1 =
√

θ(θ − 2)φ̃1 , C1 = 0 , D1 = −B1 + 2θφ̃1 , (D.13)

while A1 decouples from the others. There are two free amplitudes, B1 and φ1, while the

extremality charge Q is proportional to D1. So any flow with D1 6= 0 will go to finite

temperature (including the case φ1 = 0, for which there is an exact analytical finite tem-

perature completion, [1, 7]). On the other hand, imposing D1 picks up a zero temperature

flow. One also finds two modes conjugate to the previous two, with d1 = b1 = a1 = 0,

B1 = δφ1 and D1 free. The former is an infinitesimal, constant shift of φ, the latter a time

reparametrization.

Turning to the gauge field perturbations (and using (1.12)), c1 = βq, there exists a

pair of conjugate modes:

B1 = C1 = D1 = φ1 = 0 , A1 6= 0 , ǫ = γ − δ ,

βq± =
1

2

(

1−
√

θ(θ − 2)γ ±
√

(

1−
√

θ(θ − 2)γ
)2

+ 4L2
W0

Z0

)

,
(D.14)

both sourced by A1. β
q
− < 0, so it is always an irrelevant perturbation and it can drive a

T = 0 flow from the UV to the neutral dilatonic fixed point.

For the power series solution, (3.5), the gauge field perturbations are slightly modi-

fied to

βq+ = 1−
√

θ(θ − 2)γ , βq− = 0 , (D.15)

since terms in W0 now become subleading. Moreover, the constraint ǫ = γ − δ is evaded.

D.5 Charged, fractionalized geometry with hyperscaling violation

Perturbing the solution (3.16) linearly with the Ansatz (D.2), there are two, doubly-

degenerate universal modes (independent on the details of the scalar couplings): one is

irrelevant β = 0

φ1 =
√

(θ − 2)(2− 2z + θ) φ̃1 , B1 = θφ̃1 , D1 = (4− θ)φ̃1 , (D.16)

and is just a constant, infinitesimal shift of the scalar, while the other has A1 = 2D1 and

is just a time rescaling. The conjugate universal mode is relevant, β = βu = 2 + z − θ:

φ1 = 0 , D1 = −B1 , A1 6= 0 (D.17)

with B1 controlling the strength of the perturbation; A1 decouples and should simply be

identified with the chemical potential. Then, B1 generates temperature (Q 6= 0), as can

be verified by putting the solution at finite temperature exactly, [1]. Choosing a different

gauge (C1 6= 0), one may pick a linear combination of the amplitudes maintaining zero

temperature.
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The two remaining modes β± are non-universal, and always maintain zero temperature

(Q = 0). Their sum is also 2 + z − θ, with typically one of them irrelevant and the other

relevant:

φ1 =
√

(θ − 2)(2− 2z + θ) φ̃1 , B1 = (2− 2z + θ)φ̃1 ,

D1 = (2− 2z + θ)φ̃1, A1 =
2− 2z + θ

2(1− z)β±
φ̃1 ,

β± =
1

2

(

2 + z − θ ±
√

2 + z − θ

2z − 2− θ
(−20 + 2z + 18z2 + 16θ − 19zθ + θ2)

)

.

(D.18)

D.6 Charged, cohesive geometry with hyperscaling violation

We linearly perturb the solution (3.22), using (D.2). One first finds the universal, relevant

pertubation β = βu = 2 + z − θ:

A1 =

(

−θ2 + δ2
(

−4− 2z2 + 2θ + zθ
))

B1

2(−1 + z)δ2(2 + z − θ)

+

(

(2 + z)θ3 + δ4(θ − 2)
(

2z3 − 24− 10z2 + 20θ − 6θ2 + θ3 − 2z
(

2− 5θ + θ2
)))

φ1

2(−1 + z)δ(2 + z − θ) (δ2(−2 + 2z − θ)(−2 + θ) + θ2)

+

(

δ2θ
(

16 + 2z3 + 2z2(3− θ)− 8θ + 2θ2 − θ3 + z
(

12− 14θ + 3θ2
)))

φ1

2(−1 + z)δ(2 + z − θ) (δ2(−2 + 2z − θ)(−2 + θ) + θ2)
,

D1 =−
(

2δ2 − 3zδ2 + z2δ2 + δ2θ + zδ2θ + θ2 − δ2θ2
)

B1

(−1 + z)δ2(2 + z − θ)

+

(

8δ2 + 2zδ2 + 2z2δ2 + 4θ + 2zθ − 6δ2θ − 2zδ2θ − θ2 + δ2θ2
)

φ1

(−1 + z)δ(2 + z − θ)
.

(D.19)

The mode is doubly-degenerate: two amplitudes (for instance B1, φ1) remain indepen-

dent and can drive separate relevant flows, typically to finite temperature (Q 6= 0, but

one can pick a gauge maintaining zero temperature). Comparing with the Lifshitz case

(section 3.3.1) where we had four conjugate non-universal modes, two have collapsed to

universal values upon choosing couplings such as (1.12). Consequently, there is also a

doubly-degenerate, irrelevant β = 0 mode (always with Q = 0): the two independent am-

plitudes can be chosen to be A1 and φ1. The A1 perturbation is just a rescaling of the time

coordinate, while the other is a constant shift of the scalar.

There is also a pair of conjugate modes β+ + β− = 2 + z − θ, one relevant and one

irrelevant in the IR, solutions to

(

−2δ2 + 3zδ2 − z2δ2 − δ2θ − zδ2θ − θ2 + δ2θ2
)

×
(

2δ2 − 4zδ2 + 2z2δ2 + 2δ4 + 2zδ4 + 3δ2θ + zδ2θ − 3δ4θ − zδ4θ + θ2 − 2δ2θ2 + δ4θ2
)

− (−1 + z)2δ4(2 + z − θ)β + (−1 + z)2δ4β2 = 0 .

(D.20)

– 44 –



J
H
E
P
0
4
(
2
0
1
3
)
0
5
3

One can choose to express A1, B1 and D1 in terms of φ1, while setting C1 = 0:

A1 =− δ
(

−2zδ2 + 2z2δ2 + θ
(

−δ2(−2 + θ) + θ
))

β±φ1
2 (δ2(−2 + θ)− θ) (θ2 + δ2 (2 + z2 + z(−3 + θ) + θ − θ2))

B1 =

(

θ2 + δ2
(

2− 4z + 2z2 + 2θ − θ2
))

φ1

δ(1 + z − θ) (δ2(−2 + θ)− θ)
,

+
(1− z)δ

(

δ2(−2 + 2z − θ)(−2 + θ) + θ2
)

β±φ1
(1 + z − θ) (δ2(−2 + θ)− θ) (θ2 + δ2 (2 + z2 + z(−3 + θ) + θ − θ2))

D1 =
2(−1 + z)δφ1
δ2(−2 + θ)− θ

.

(D.21)

For these modes, Q = 0, so the flows are at T = 0.

E Kaluza-Klein compactifications

There are two straightforward ways of getting the action (1.1) with scalar potential and

gauge couplings given by (1.12): either by starting from an action containing a massive

vector field or a massive higher-rank form (reduced to a lower-dimensional vector field). We

will deal with these two possibilities in turn, and also eventually add a higher-dimensional

scalar. We will focus on toroidal reductions, but it is straightforward to extend the calcu-

lations below to a reduction along a sphere. Throughout this section, higher-dimensional

quantities will be denoted by a tilde and have latin capital indices, as in g̃AB for the

(p + n + 1)-dimensional metric. On the other hand, untilded quantities will be lower di-

mensional and have small greek indices, such as gµν for the (p+1)-dimensional metric. We

give results for arbitrary dimension p.

E.1 From a higher-dimensional massive vector field

We start from the higher-dimensional action

S̃ = M̃2

∫

dp+n+1x
√

−g̃
[

R̃+ 2Λ− 1

4

(

F̃[2]

)2
− 1

2

(

Ã[1]

)2
]

(E.1)

where F[2] = dA[1] is a two-form field strength for a Maxwell potential, g̃ the (p+ n+ 1)-

dimensional metric and
(

F̃[2]

)2
= g̃AC g̃BDF[2]ABF[2]BD and

(

Ã[1]

)2
= g̃BCA[1]BA[1]C .

Then, using the reduction Ansatz

ds̃2 = e−δφds2 + e
φ
δ

(

2
p−1

−δ2
)

dR2
(n) , (E.2)

for the metric with

δ2 =
2

p− 1

n

(p+ n− 1)
≤ δ2c =

2

p− 1
, (E.3)

and assuming the gauge potential to depend only on the lower-dimensional coordinates

xµ and without any legs along the reduced dimensions, one obtains for the gauge field

quadratic invariants

(

F̃[2]

)2
= e2δφ

(

F[2]

)2
,

(

Ã[1]

)2
= eδφ

(

A[1]

)2
. (E.4)
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Combining with
√

−g̃ =
√−ge−δφ, (E.5)

the reduced action is

S =M2

∫

dp+1x
√−g

[

R− 1

2
∂φ2 + 2Λe−δφ − 1

4
eδφ
(

F[2]

)2 − 1

2

(

A[1]

)2
]

(E.6)

which has

γ = δ , ǫ = 0 , γ − δ = ǫ (E.7)

and so verifies the relations γ − δ = ǫ for any dimension p and in particular for p = 3.

Setting γ = δ, ǫ = 0 in (3.22), and using (E.3), the higher-dimensional solution reads,

after rescaling the coordinates,

ds̃2 = −dt2

u2z
+ L2du

2

u2
+

dx2 + dy2 + dR2
(d−3)

u2
, (E.8)

A[1] =

√

2(z − 1)

z
u−zdt , (E.9)

W0 =
z(d− 1)

L2
, Z0 = 1 , (E.10)

V0L
2 = z2 + (d− 2)z + (d− 1)2. (E.11)

As expected, this coincides with the (d+ 1)-dimensional Lifshitz background of [17]. Note

that, for z = 1, the Maxwell field vanishes and one recovers the AdS spacetime.

E.2 From a higher-dimensional massive q-form field

We start from the higher-dimensional action

S̃ = M̃2

∫

dp+n+1x
√

−g̃
[

R̃+ 2Λ− 1

2(n+ 2)!

(

G̃[n+2]

)2
− 1

2(n+ 1)!

(

B̃[n+1]

)2
]

(E.12)

where G[n+2] = dB[n+1] is a two-form field strength for a Maxwell potential, g̃ the (p+n+1)-

dimensional metric and

(

G̃[n+2]

)2
= g̃A1B1 . . . g̃An+2Bn+2G[2]A1...An+2

G[2]B1...Bn+2
(E.13)

(

B̃[n+1]

)2
= g̃A1C1 . . . g̃An+1Cn+1B[1]A1...An+1

B[1]C1...Cn+2
(E.14)

Then, using the reduction Ansatz

ds̃2 = e−δφds2 + e
φ
δ

(

2
p−1

−δ2
)

dR2
(n) , (E.15)

for the metric with

δ2 =
2

p− 1

n

(p+ n− 1)
≤ δ2c =

2

p− 1
, (E.16)

and

G[n+2] = F[2] ∧ dR(n) , B[n+1] = A[1] ∧ dR(n) , (E.17)
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for the form fields, one obtains for the gauge field quadratic invariants

(

G̃[n+2]

)2
=

(n+ 2)!

2
e−(p−3)δφ

(

F[2]

)2
,

(

B̃[n+1]

)2
= (n+ 1)!e−(p−2)δφ

(

A[1]

)2
. (E.18)

Combining with
√

−g̃ =
√−ge−δφ, (E.19)

the reduced action is

S =M2

∫

dp+1x
√−g

[

R− 1

2
∂φ2 + 2Λe−δφ − 1

4
e−(p−2)δφ

(

F[2]

)2 − 1

2
e−(p−1)δφ

(

A[1]

)2
]

(E.20)

which has

γ = −(p− 2)δ , ǫ = −(p− 1)δ , γ − δ = ǫ (E.21)

and so verifies the relations γ − δ = ǫ for any dimension p and in particular for p = 3.

Again, replacing in (3.22), rescaling the coordinates and setting n = d− 3, the higher-

dimensional solution reads,

d̃s2 = L2du
2

u2
+

dx2 + dy2

u2
+

−dt2 + dR2
(d−3)

u2z
, (E.22)

B[d−2] =

√

2(z − 1)

(d− 2)z
e
−
√

d−3
d−1

φ0u−(d−2)zdt ∧ dR(d−3) , (E.23)

W0 =
2(d− 2)z

L2
, Z0 = 1 , (E.24)

V0L
2 = (d− 2)2z2 + (3d− 8)z + 4 , (E.25)

which is a solution of an Einstein AdS theory with a massive (d − 2)-form, (E.12). For

the special case d = 4, that is with a massive 2-form, this coincides with the result of [17].

Note that, like in the paradigmatic case of asymptotically flat Λ = 0 black (d− 3)-branes,

the form is supported by a (d − 3)-dimensional torus. For z = 1, the form vanishes and

one recovers the AdS spacetime.

E.3 Including a higher-dimensional scalar

The two previous reductions produced a one-parameter family of uplifts, since only the

exponent δ could be chosen independently. One can do a little better and obtain a two-

parameter of uplifts, by including a real scalar in the higher-dimensional setup, both in the

case of a Maxwell field and an (n+ 2)-form.

E.3.1 And a Maxwell field

We now follow section 7 of [7], and include a scalar field Φ in the higher-dimensional theory.

This allows to avoid fixing γ proportional to δ. Start from

S =

∫

dp+n+1x
√−g

[

R− 1

2
∂Φ2 − Z0

4
eΓΦF 2 − W0

2
eEΦA2 + V0

]

, (E.26)
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and reduce along

ds2 = e−∆ϕds2(p+1) + e
2ϕ

(p−1)∆(1−
p−1
2

∆2)dR2
(n),

p− 1

2
∆2 =

n

p+ n− 1
. (E.27)

Then, the reduced action is

S =

∫

dp+1x
√−g

[

R− 1

2
∂Φ2 − 1

2
∂ϕ2 − Z0

4
eΓΦ+∆ϕF 2 − W0

2
eEΦA2 + V0e

−∆ϕ

]

, (E.28)

from which we can derive the field equations for the two scalars

�Φ =
ΓZ0

4
eΓΦ+∆ϕF 2 +

EW0

2
eEΦA2 (E.29)

�ϕ =
∆Z0

4
eΓΦ+∆ϕF 2 +∆V0e

−∆ϕ. (E.30)

We would like to truncate to a single scalar theory, and to that end, we set

Φ = αϕ , (E.31)

which, combining (E.29) and (E.30), implies that

0 =
Z0

4
(Γ− α∆)2 F 2e(αΓ+∆)ϕ +

EW0

2
eαEϕA2 − α∆V0e

−∆ϕ. (E.32)

Setting

ϕ =
φ√

1 + α2
, δ =

∆√
1 + α2

, γ =
αΓ +∆√
1 + α2

, ǫ =
αE√
1 + α2

(E.33)

allows to transform the consistency equation (E.32) to

0 =
Z0

4

(

γ − δ − α2δ
)

F 2eγφ +
ǫW0

2
eǫφA2 − α2δV0e

−δφ, (E.34)

as well as the action (E.28)

S =

∫

dp+1x
√−g

[

R− 1

2
∂φ2 − Z0

4
eγφF 2 − W0

2
eǫφA2 + V0e

−δφ

]

, (E.35)

which was what we aimed at. Moreover, note that setting ǫ = γ−δ in the lower-dimensional

theory implies that E = Γ in the higher-dimensional theory from (E.33), which is its direct

transcription in terms of higher-dimensional variables.

Solving (E.34) for α after replacing with the solution (3.22), we find that

α2 =
θ

δ2(θ − 2)
− 1 . (E.36)

The higher-dimensional solution is Lifshitz with a massive gauge field and a running scalar:

ds2 = −dt2

ρ2z
+

dR2
(n+2) + L̃2dρ2

ρ2
, (E.37)

eΦ = ρΓ(z−1) , L̃2 =
Z0

4W0

[

2(n+ 2) + Γ2(z − 1)
] [

2z + Γ2(z − 1)
]

, (E.38)

At = Qρ−z+Γ
2
(z−1) , Q2 =

4(z − 1)

Z0 [2z + (z − 1)Γ2]
(E.39)

Moreover, we find that θ = −n < 0, and deff = 2 + n. For Γ = 0, we recover the solution

without running scalar of section E.1.
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E.3.2 And a (q + 1)-form field

We start from the higher-dimensional action

S̃ = M̃2

∫

dp+n+1x
√

−g̃
[

R̃+ V0 −
1

2
∂Φ2 − Z0e

ΓΦ

2(n+ 2)!

(

G̃[n+2]

)2
− W0e

EΦ

2(n+ 1)!

(

B̃[n+1]

)2
]

(E.40)

where G[n+2] = dB[n+1] is a two-form field strength for a Maxwell potential, g̃ the (p+n+1)-

dimensional metric and

(

G̃[n+2]

)2
= g̃A1B1 . . . g̃An+2Bn+2G[2]A1...An+2

G[2]B1...Bn+2
(E.41)

(

B̃[n+1]

)2
= g̃A1C1 . . . g̃An+1Cn+1B[1]A1...An+1

B[1]C1...Cn+2
(E.42)

ds2 = e−∆ϕds2(p+1) + e
2ϕ

(p−1)∆(1−
p−1
2

∆2)dR2
(n),

p− 1

2
∆2 =

n

p+ n− 1
. (E.43)

Then, the reduced action is

S =

∫

dp+1x
√−g

[

R− 1

2
∂Φ2− 1

2
∂ϕ2−Z0

4
eΓΦ−(p−2)∆ϕF 2−W0

2
eEΦ−(p−1)∆ϕA2 + V0e

−∆ϕ

]

,

(E.44)

from which we can derive the field equations for the two scalars

�Φ =
ΓZ0

4
eΓΦ−(p−2)∆ϕF 2 +

EW0

2
eEΦ−(p−1)∆ϕA2

�ϕ = ∆V0e
−∆ϕ − (p− 2)∆ϕZ0

4
eΓΦ−(p−2)∆ϕF 2 − (p− 1)∆W0

2
eEΦ−(p−1)∆ϕA2.

(E.45)

We would like to truncate to a single scalar theory, and to that end, we set

Φ = αϕ , (E.46)

which, combining the two equations in (E.45), implies that

0 =
Z0

4
(Γ+(p−2)α∆)F 2e(αΓ−(p−2)∆)ϕ+

(E+(p−1)α∆)W0

2
e(αE−(p−1)∆)ϕA2−α∆V0e−∆ϕ.

(E.47)

Setting

ϕ =
φ√

1 + α2
, δ =

∆√
1 + α2

, γ =
αΓ− (p− 2)∆√

1 + α2
, ǫ =

αE − (p− 1)∆√
1 + α2

(E.48)

allows to transform the consistency equation (E.47) to

0 =
Z0

4

(

γ + (p− 2)(1 + α2)δ
)

F 2eγφ +

(

ǫ+ (p− 1)(1 + α2)δ
)

W0

2
eǫφA2 − α2δV0e

−δφ,

(E.49)

as well as the action (E.44)

S =

∫

dp+1x
√−g

[

R− 1

2
∂φ2 − Z0

4
eγφF 2 − W0

2
eǫφA2 + V0e

−δφ

]

, (E.50)
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which was what we aimed at. Moreover, note that setting ǫ = γ−δ in the lower-dimensional

theory implies that E = Γ in the higher-dimensional theory from (E.48), which is its direct

transcription in terms of higher-dimensional variables.

Solving (E.49) for α after replacing with the solution (3.22), we find that

α2 =
θ

δ2(θ − 2z)
− 1 . (E.51)

The higher-dimensional solution is a Lifshitz n-brane with a massive (n+1)-potential and

a running scalar:

ds2 = −
dt2 + dR2

(n)

ρ2z
+

dR2
(2) + L2dρ2

ρ2
, eΦ = ρ−Γ(z−1) , (E.52)

L2 =
1

2V0

[

8 + 2(3n+ 1)z + 2(n+ 1)2z2 + Γ2(z − 1)2
]

, (E.53)

B[n+1] = Qρ−(n+1)z−Γ2

2
(z−1)dt ∧ dR[n] , Q2 =

4(z − 1)

Z0 [2(n+ 1)z + (z − 1)Γ2]
(E.54)

W0

Z0V0
=

[

4 + (1− z)Γ2
] [

2(n+ 1)z − (1− z)Γ2
]

2 (8 + 2(3n+ 1)z + 2(n+ 1)2z2 + Γ2(z − 1)2)
(E.55)

Moreover, we find that θ = −nz < 0, and deff = 2+nz. For Γ = 0, we recover the solution

without running scalar of section E.2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective Holographic

Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151

[arXiv:1005.4690] [INSPIRE].

[2] A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field

Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].

[3] M. Lassig, Geometry of the renormalization group with an application in two-dimensions,

Nucl. Phys. B 334 (1990) 652 [INSPIRE].

[4] S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev.

D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

[5] D.T. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the

Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

[6] K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev.

Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].
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