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We present the first experimental realization of a quantum critical point in an itinerant antifer-
romagnet composed of non-magnetic constituents, TiAu. By partially substituting Ti with Sc in
Ti1−xScxAu, a doping amount of xc = 0.13 ± 0.01 induces a quantum critical point with minimal
disorder effects. The accompanying non-Fermi liquid behavior is observed in both the resistivity
ρ ∝ T and specific heat Cp/T ∝ - lnT , characteristic of a 2D antiferromagnet. The quantum critical
point is accompanied by an enhancement of the spin fluctuations, as indicated by the diverging
Sommerfeld coefficient γ at x = xc.

PACS numbers: 75.50.Ee, 74.40.Kb, 64.70.Tg, 75.10.Lp

Quantum criticality is one of the central tenants of
condensed matter physics. Intense research on quan-
tum critical systems has brought several questions to
the forefront: What are the differences between ferro-
magnetic (FM) and antiferromagnetic (AFM) quantum
critical fluctuations? Is the quantum critical behavior
analogous in local and itinerant moment systems? The
former question is motivated by the many known AFM
systems with quantum critical points (QCPs), with corre-
spondingly fewer known FM analogues. The latter ques-
tion has numerous ramifications, considering the com-
plexity of the phenomena accompanying QCPs in both d-
and f -electron systems: unconventional superconductiv-
ity (SC) [1–4], non-Fermi liquid (NFL) [5–8] and heavy
fermion (HF) behavior [7, 9–12]. In this paper we re-
port a QCP in the first itinerant antiferomagnetic metal
(IAFM) without magnetic constituents, TiAu [13]. By
comparison with the only two other itinerant magnets
with no magnetic elements, ZrZn2 [14] and Sc3.1In [15],
both ferromagnets, we will articulate the differences and
similarities stemming from the two kinds of magnetic or-
der.

The d-electron (transition metal) systems showing
quantum criticality are noticeably fewer than the f -
electron (rare earth) ones, with remarkably few (only
three) transition metal itinerant magnets (IMs) with no
magnetic elements: the itinerant ferromagnets (IFMs)
ZrZn2 [14], Sc3.1In [15], and the itinerant antiferromagnet
(IAFM) TiAu [13]. Surprising similarities and substan-
tive differences exist between the FM and AFM ordered
states, in both local and itinerant moment systems: (i)
pressure [16] and doping [17] both suppress the FM or-
der in ZrZn2, but have opposite effects in the IFM Sc3.1In
[18, 19]; (ii) NFL behavior accompanies the QCP in the
doped FMs, the d-electron Sc3.1In [19] and f -electron
HF URu2Si2 [20], with non-mean-field scaling in both
compounds contrasting the mean-field and Fermi liquid
(FL) behavior in the IFM ZrZn2 [17]; (iii) modest pres-
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sure increases the magnetic ordering temperature in both
the IAFM TiAu [21] and the IFM Sc3.1In [18]. Here we
present experimental data compatible with a 2D AFM
QCP in the d-electron system Ti1−xScxAu, with a critical
composition xc = 0.13±0.01. The evidence for 2D quan-
tum fluctuations stems from the continuous suppression
of TN with x in Ti1−xScxAu, accompanied by both a log-
arithmically divergent Sommerfeld coefficient γ(T ) and a
linear electrical resistivity ρ(T ) close to the QCP. Min-
imal disorder effects can be deduced from the electrical
transport behavior, and the relative elastic and inelastic
contributions to ρ(T ) at and away from the QCP.

Recently, we reported orthorhombic TiAu as the first
IAFM metal with no magnetic constituents [13]. The
AFM order in TiAu develops below 36 K, and TN is
slightly enhanced by the application of pressure [21], in
a manner reminiscent of the IFM Sc3.1In [18]. Since Ti
bands contribute the most to the density of states (DOS)
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FIG. 1: The Néel temperature TN (indicated by arrows) for
Ti1−xScxAu, determined from the peak in d(MT )/dT . Bot-
tom inset: Inverse susceptibility H/(M−M0) (symbols) along
with the Curie-Weiss-like fit (line) for x = 0.13 (1 e.m.u =
10 A cm−2). Top inset: The density of states calculated for
x = 0, 0.2, and 0.4.
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FIG. 2: Resistivity ρ(T ) = ρ0+AnT
n as a function of temper-

ature Tn for Ti1−xScxAu for the AFM state (top row) (a),(b)
x ≤ xc, T ≤ TN ; and the PM state (middle row) (c),(d)
x ≤ xc, T ≥ TN ; (bottom row) (e)-(f) x ≥ xc. (a)-(d): The
ordering temperature TN is marked by vertical arrows.

at the Fermi energy EF [13], doping on the Ti sublattice
is a promising avenue for experimentally suppressing TN
towards zero. In this paper, Sc was chosen as a dopant in
Ti1−xScxAu because of its similarity in ionic radius to Ti
(r[Sc3+] = 0.75 Å and r[Ti4+] = 0.61 Å) [22]. Magnetiza-
tion, specific heat, and electrical resistivity data reveal a
continuous suppression of the AFM order in Ti1−xScxAu
as a function of x. Quantum criticality is accompanied
by linear electrical resistivity ρ and diverging Sommer-
feld coefficient γ, both consistent with a 2D NFL. This
is the first observation of a 2D AFM QCP in a transition
metal system.

Crystallographically, orthorhombic TiAu can be
viewed as a 3D structure (Fig. 1(b) in Ref. [13]), even
though the inter-planar bond lengths are only slightly
larger than the intra-planar Ti-Au distances. Even
though doping TiAu with the slightly larger Sc ion re-
sults in a modest unit cell volume V increase of about
4 % between the x = 0 and 0.25 samples (diamonds,

Fig. S1(a) [23]), this is due mostly to an increase in
the intra-planar lattice parameter b (circles), with the
inter-planar spacing c (triangles) virtually independent
of x. It would appear that, crystallographically, TiAu
remains nearly 3D, even though it will be shown be-
low that the quantum critical behavior induced by Sc
doping points toward quasi-2D spin fluctuations. Such
dimensional discrepancy has been observed in the HF
compound CeCu6−xAux [24], with a possible explana-
tion attributed to a dimensional crossover in the vicinity
of an AFM QCP [25].

In Ti1−xScxAu, the suppression of the magnetic or-
der with increasing x is first signaled by the magnetic
susceptibility. In Fig. 1, a cusp in d(MT )/dT , rem-
iniscent of the Néel temperature TN signature in local
moment antiferromagnets [26], moves down in T with in-
creasing x and is suppressed to below 0.4 K for x ≥ 0.13.
The band structure calculations reenforce this point, as
a peak in the DOS (top inset, Fig. 1) occurs at the
Fermi energy for x = 0, and moves away from EF with
doping. The continuous decrease of TN with doping x,
similar to what has been seen in the AFM Cr1−xVx

[27], is consistent with a second order AFM QCP. At
high temperatures (T > TN ), the H = 0.01 T mag-
netic susceptibility M/H exhibits Curie-Weiss-like be-
havior, rendering the inverse susceptibility H/(M −M0)
linear (bottom inset, Fig. 1), where M0 is a temperature-
independent susceptibility contribution. The linear fits
in the paramagnetic (PM) state (with an example shown
as a solid line for x = 0.13) indicate that the PM mo-
ment µPM ∼ 0.8µB F.U.−1 remains nearly unaffected
by the increasing x even beyond the AFM state. This
was also the case in the IFM (Sc1−xLux)3.1In [19]. The
Curie-Weiss-like behavior has been observed in the doped
IFMs ZrZn2 and Sc3.1In [17, 19], but not in the archetyp-
ical 3D IAFM Cr, in which the magnetization increased
on warming [28]. The magnetic susceptibility of Cr is
in disagreement with the self-consistent renormalization
(SCR) theory, which predicts Curie-Weiss-like behavior
for both the 2D [29] and 3D [30] antiferromagnets.

The differences between doped TiAu and Cr deepen
in the electrical transport properties. The resistivity of
TiAu [13] decreases below TN , a likely indication that the
loss of spin-disorder scattering overcomes the expected
enhancement of the resistivity due to the partial gapping
of the Fermi surface with the AFM order. By contrast,
the partial gapping of the Fermi surface upon magnetic
ordering [31] is dominant in Cr, resulting in a resistiv-
ity increase below TN . A more significant distinction
between TiAu and Cr occurs in their respective quan-
tum critical regimes: while magnon scattering results in
ρ = ρ0 +AnT

n, n = 3 [32] for both TiAu and Cr, doping
affects the resistivity exponent n(x;T ) differently. In Cr,
n(x;T ) remains constant even across the QCP [27], but
in Ti1−xScxAu n ≈ 1 close to the QCP at xc ≈ 0.13.
These n(x;T ) values are best reflected in the ρ vs. Tn

plots, shown in Fig. 2: the top row panels (a)-(b) de-
pict the ρ ∼ Tn behavior in the AFM state (T ≤ TN ;
x ≤ xc). The two bottom rows correspond to the PM
state: for panels (c)-(d) x ≤ xc and T > TN , while for
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FIG. 3: (a) Specific heat Cp/T vs. lnT for Ti1−xScxAu with
0.09 ≤ x ≤ 0.12. (b) Specific heat Cp/T ∝ T 2 for x = 0.08
and x = 0.25.

panels (e)-(f) x ≥ xc.
In the AFM state, n decreases from 3 to 1, while

in the PM state, n has a non-monotonic dependence on
x. A drastic change in the resistivity slope at TN for
x = 0 (Fig. 2(c)) marks the crossover from the magnon-
dominated transport with n ≈ 3, to the FL behavior in
the PM state n ≈ 2 for T > TN . With increasing x up to
0.08 (Fig. S3(g-i) [23]), n remains close to the FL value
in the PM state.

Upon approaching the QCP from both below (x ≤
0.13) and above (x > 0.13) (Fig. S3(j) and (k)-(o) [23]),
n decreases towards 1 in the quantum critical region, cor-
roborating the NFL scenario close to the QCP, which is
also evident from the specific heat data shown in Fig. 3.
In the quantum critical region 0.09 ≤ x ≤ 0.20, Cp/T
increases on cooling, and it has a logarithmic divergence
γ = Cp/T ∝ lnT , a signature of NFL behavior close to
a QCP. The logarithmic Cp/T persists over a decade in
temperature for x ∼ xc (Fig. 3(a)). Away from the QCP
(Fig. 3(b)), linear Cp/T vs. T 2 indicates FL behav-
ior. The resulting γ values increase from 16 mJ mol−1

K−2 for x = 0 to 30 mJ mol−1 K−2 upon approaching
xc. The x dependence of the Sommerfeld coefficient γ is
summarized in the Fig. S2(c) [23]: the full symbols are
determined from the T = 0 intercepts of Cp/T vs. T 2

in Fig. S2(a) [23]; the open symbols correspond to the
T = 0.4 K Cp/T values (Fig. S2 [23]), which represent
underestimates of the γ(T = 0) values due to the diver-
gent specific heat in the NFL regime. With this in mind,
the strong enhancement of γ(x) at xc (Fig. S2(c) [23])
actually signals the divergence of γ(x) on one or both
sides of the QCP (gray line), akin to the behavior noted
for Cr1−xVx [33]. This strongly suggests a spin fluctua-
tion contribution to the γSF [34]. According to the SCR
theory for antiferromagnets [30], TN ∝ (2Iχs−1)2/3 and
γSF ∝ (2Iχs − 1)1/2, where I is the exchange interac-

tion and χs is the staggered susceptibility. This yields
that the spin fluctuation contribution to γSF increases

as T
3/4
N . Indeed, assuming γSF is proportional to the

amount of dopant x, this power law dependence is re-
flected in the T δN vs. x plot in Fig. 4 (triangles), where
δ ≈ (3±0.3)/4. Such power law dependence attests both
to the presence of strong spin fluctuations and the valid-
ity of the SCR theory in Ti1−xScxAu [35]. Remarkably,
the lower limit for this exponent, δ ≈ (3− 0.3)/4 = 2/3,
coincides with that predicted for the quantum critical
suppression of the ordering temperature with pressure
[36]. This prediction is in disagreement with several
doping- or pressure-induced AFM QCPs, for which δ = 1
[27, 37, 38] or δ = 1/2 [39]. The origin of this dis-
agreement is an important open problem [36], with the
Ti1−xScxAu system providing the first experimental re-
alization of the predicted δ > 1 value.

The continuous suppression of the Néel temperature
with x is shown in Fig. 4 for Ti1−xScxAu (circles), to-
gether with a contour plot of n in ρ(T ) = ρ0 + AnT

n.
The experimental data for Ti1−xScxAu point to a QCP
at xc = 0.13±0.01, with associated 2D quantum fluctua-
tions. The evidence for a QCP comes from (i) the second
order transition as TN → 0, suggested by the continuous
decrease of TN with x, (ii) a power-law temperature de-
pendence of the resistivity ρ = ρ0 + AnT

n (Fig. 2) with
n ≈ 1, and (iii) a diverging Sommerfeld coefficient γ (Fig.
S2(c) [23]) when TN → 0. Away from the QCP, the spe-
cific heat becomes FL-like Cp = γT + βT 3 (Fig. 3(b)).
The resistivity exponent n(x;T ) (contour plot in Fig. 4)
has a minimum around n = 1 at the critical composition.
Below the QCP n(x;T ) increases with increasing |x−xc|,
up to n = 3 and n = 2 in the AFM and PM states, re-
spectively, while above xc n(x;T ) increases from 1 to 1.5
for the composition range under study. Resistivity expo-
nent values n < 1.5 close to a QCP have been attributed
to reduced dimensionality [3], with n = 1.5 and 1 ex-
pected, respectively, for a 3D and 2D AFM QCPs [40].
This suggests that the quantum critical fluctuations in
Ti1−xScxAu are more 2D than 3D [24, 41]. In IAFMs, the
deviations from FL behavior have also been discussed in
terms of resistivity contributions due to quantum critical
AFM spin fluctuations and disorder scattering [42–44].
However, the role of disorder in quantum critical sys-
tems is not easily resolved, with the difficulty inherent in
the convoluted effects of doping (charge doping together
with some atomic disorder, chemical pressure, etc.). For
example, in the case of V-doped Cr, small ρ0 (ρ0 ≈ 5 µΩ
cm) indicated likely negligible disorder effects [27], as was
the case in the IFMs (Sc1−xLux)3.1In (20 µΩ cm) [19]
and ZrZn2 (5 µΩ cm) [45]. In the IAFM Ti1−xScxAu,
ρ0 ≈ 30 µΩ cm at xc, which is to be expected for good
metals in polycrystalline form. The residual resistivity
ratios (RRR) = ρ(300 K)/ρ0 ∼ 2 for Ti1−xScxAu are
also comparable with those of other polycrystalline IM
systems, e.g. (Sc1−xLux)3.1In (RRR < 4 [19]). These
are all indications that disorder scattering represents a
small contribution to the resistivity in Ti1−xScxAu. A
further argument that discredits dominant disorder ef-
fects in Ti1−xScxAu is the resistivity change ∆ρ in the
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FIG. 4: TN−x phase diagram (symbols) with the contour plot
rendering the resistivity exponent n(x;T ). Inset: Ti1−xScxAu
crystal structure.

linear range compared to the residual (defect) resistivity
contribution ρ0. Strong disorder effects are typically sig-
naled by ∆ρ << ρ0. For all of the Ti1−xScxAu samples,
∆ρ and ρ0 are of the same order of magnitude (Fig. 2).
The issue of clean versus dirty limit in doped TiAu still
remains, with the added complications that these sam-
ples are polycrystalline. Single crystals will allow us to
perform a detailed study of the electrical transport in
this system, and this is an on-going effort in our lab.

Given the small disorder effects in Ti1−xScxAu, a
comparison with the SCR theory of spin fluctuations is
justified: While HF QCPs are strongly affected by dis-
order [42], incorporating these effects into the SCR the-
ory of spin fluctuations for IMs has not yet been accom-
plished [46]. The description of the behavior close to
a QCP for d-electron systems was established for both
FM [35] and AFM materials [40]. However, while these
predictions were validated experimentally in a number of
FM QCPs [17, 19, 32, 37, 44, 47–50], the limited num-
ber of d-electron antiferromagnets hinders an analogous
analysis in AFM systems [6]. Among d-electron magnets,
an AFM QCP has so far only been reached in V2−yO3

[31, 51] and Cr [27, 33, 39, 52–55]. In vanadium oxide,
the QCP is accompanied by a insulator-to-metal tran-
sition [51] and the AFM order arises from local rather
than itinerant moments. Cr, on the other hand, is the
archetypical 3D IAFM metal for which charge carriers
are lost as they become localized upon cooling through
the Néel temperature TN . Interestingly enough, no sig-
natures of quantum criticality in resistivity data were
observed in Cr with either doping or pressure, making
it impossible to compare the resistivity exponents with
those expected from the SCR theory [46]. While it was
suggested that a 2D AFM metal should exhibit a contin-
uous second order QPT [56], experimentally this has not

yet been realized until the current doped TiAu, perhaps
explaining why the characteristics of metallic 2D AFM
QPTs remained one of the pressing questions from both
theoretical and experimental viewpoints [6]. The results
in Ti1−xScxAu ought to be compared with the behav-
ior of 4f QCPs. Doped CeCu6 provides the closest HF
analogue, in light of its potential 2D AFM QCP and di-
mensional crossover: In CeCu6−xAux, NFL close to, and
FL behavior away from the QCP, were evident from both
specific heat and resistivity data [5]. Even though the
compound has a 3D orthorhombic crystal structure, the
quantum critical regime of CeCu6−xAux was consistent
with a 2D AFM QCP [46], suggesting the possibility of
a dimensional crossover close to the QCP [25]. A similar
dimensional crossover likely occurs in TiAu upon doping.

In this work, the suppression of the AFM order in
the IAFM TiAu to a QCP was possible via partial sub-
stitution of Ti with Sc in Ti1−xScxAu, with a critical
composition xc = 0.13± 0.01. Moreover, the suppression
of the AFM transition with Sc doping was also confirmed
by band structure calculations, in which a gradual shift
of the peak in the DOS at EF was observed. This is
consistent with a decreasing number of d electrons upon
substituting Ti with Sc. Neutron diffraction measure-
ments also indicate the absence of magnetic order close to
xc [57]. Although 2D AFM QCPs have been reported for
4f -electron systems such as YbRh2Si2 [7], CeIn3 [10], and
CeRhIn5 [11], this behavior in Ti1−xScxAu is the first ex-
perimental observation in d-electron materials. Ongoing
pressure experiments are expected to reveal the quantum
critical scaling in the absence of doping-induced disorder,
while the study of V-doped TiAu [58] will allow for a com-
parison between electron (V) and hole (Sc) doping effects
in TiAu.
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a. Schröder, M. Sieck, and T. Trappmann, Physical Re-
view Letters 72, 3262 (1994).
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