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Abstract: The transport behavior of strongly anisotropic systems is significantly richer

compared to isotropic ones. The most dramatic spatial anisotropy at a critical point occurs

at a Lifshitz transition, found in systems with merging Dirac or Weyl point or near the

superconductor-insulator quantum phase transition. Previous work found that in these

systems a famous conjecture on the existence of a lower bound for the ratio of a shear

viscosity to entropy is violated, and proposed a generalization of this bound for anisotropic

systems near charge neutrality involving the electric conductivities. The present study

uses scaling arguments and the gauge-gravity duality to confirm the previous analysis of

universal bounds in anisotropic Dirac systems. We investigate the strongly-coupled phase of

quantum Lifshitz systems in a gravitational Einstein-Maxwell-dilaton model with a linear

massless scalar which breaks translations in the boundary dual field theory and sources

the anisotropy. The holographic computation demonstrates that some elements of the

viscosity tensor can be related to the ratio of the electric conductivities through a simple

geometric ratio of elements of the bulk metric evaluated at the horizon, and thus obey a

generalized bound, while others violate it. From the IR critical geometry, we express the

charge diffusion constants in terms of the square butterfly velocities. The proportionality

factor turns out to be direction-independent, linear in the inverse temperature, and related

to the critical exponents which parametrize the anisotropic scaling of the dual field theory.
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1 Introduction

Bounds on transport coefficients are an important tool to quantify the strength of correla-

tions in quantum many-body systems. If one can identify a theoretical value for a minimal

electrical conductivity or viscosity, then one can judge how strongly-interacting a system

is. A highly influential bound for momentum conserving scattering of quantum fluids was

proposed by Kovtun, Son, and Starinets [1] (KSS) for the ratio of the shear viscosity and

entropy density

η/s ≥ ~

4πkB
. (1.1)

It is obeyed in systems like the quark gluon plasma [2] or cold atoms in the unitary scat-

tering limit [3]. Graphene at charge neutrality is another example that is expected to be
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close to this bound [4]. Within the Boltzmann transport theory one finds that a bound for

η/s can be related to the ratio lmfp/λ of the mean-free path lmfp and the mean distance λ

between carriers. However, eq. (1.1) is valid even for systems that cannot be described in

terms of the quasi-classical Boltzmann theory. Indeed, the bound is saturated for quantum

field theories in the strong coupling limit as was shown in ref. [1] using the holographic

duality of conformal field theory and gravity in anti-de-Sitter spacetime [5–7].

Limiting bounds for the charge transport like the electrical conductivity are somewhat

more subtle. A much discussed example is the Mott-Ioffe-Regel limit [8–10] that corre-

sponds to a threshold value of the electrical resistivity when lmfp/λ ∼ O (1). While some

systems clearly show a saturation of the resistivity once λ/lmfp reaches unity, materials like

the cuprate or iron-based superconductors violate this limit [11]. For a detailed discussion

of correlated materials that obey or systematically violate the Mott-Ioffe-Regel bound, see

ref. [12]. Transport properties in quantum critical systems were argued under certain cir-

cumstances to be governed by a Planckian relaxation rate ~τ−1 ≈ kBT [13, 14], which

would also limit the electrical conductivity at quantum critical points. A bound on charge

transport that is less restrictive and theoretically better justified than the Mott-Ioffe-Regel

limit was proposed in ref. [15]. It constrains the value of the charge diffusivity:

Dc ≥ CD
~v2

kBT
, (1.2)

with CD is a numerical coefficient of order unity. Here v is a characteristic velocity of the

problem. At charge neutrality the heat and electric currents are decoupled, and the charge

diffusivity is determined by the Einstein relation Dc = σ/χρ. σ is the electrical conductivity,

and χρ = ∂ρ/∂µ the charge susceptibility with particle density ρ and chemical potential µ.

The latter is related to the charge compressibility since χρ = −ρ2

V
∂V
∂p . If v2χρ stays constant

as T → 0, the electrical resistivity cannot vanish slower than linearly in T [15]. Refs. [16, 17]

proposed the butterfly velocity v = vB as the characteristic velocity. vB follows from the

analysis of out-of-time-order (OTOC) correlations C (x, t) = −
〈

[A (x, t) , B (0, 0)]2
〉

that

are discussed in the context of chaos and information scrambling [18–22]. It can be obtained

from the long-distance behavior, e.g. via

C (x, t) ∼ e
2λL

(

t−
|x|
vB

)

. (1.3)

The scrambling rate λL that enters the OTOC is also subject to the bound λL ≤2πkBT/~ [22].

While the interpretation of λL and its relation to transport and thermalization rates is

not always correct [23–28], the butterfly velocity seems to yield a natural scale for the

characteristic velocity of a system, even if no clear quasiparticle description is available.

A caveat applies when a symmetry of the system is weakly broken and triggers a sound-

to-diffusion crossover: in this case, the resulting diffusivity is more naturally expressed in

terms of the sound velocity and the gap [25, 29, 30].

The focus of this paper is the investigation of anisotropic systems, where the conduc-

tivity tensor σαβ and the viscosity tensor ηαβγδ exhibit a more complex structure with

potentially different temperature dependencies for distinct tensor elements [31, 32]. The
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anisotropy that we consider is most naturally expressed in terms of the relation between

characteristic energies and momenta along different directions. For a system with two space

dimensions, it holds then that:

ω ∼ |kx|z/φ

ω ∼ |ky|z (1.4)

with dynamical exponent z. We characterize the anisotropy in terms of the exponent φ

that relates typical momenta along the two directions according to

|kx| ∼ |ky|φ . (1.5)

A single particle dispersion that is consistent with such scaling would be ε (k) ∼ |kx|z/φ +

a |ky|z that corresponds to a system at a Lifshitz point [33–40]. However, our conclusions

do not require the existence of well defined quasiparticles with this dispersion relation.

Anisotropic systems, that obey scaling behavior of a Lifshitz transition were recently

shown to violate the viscosity bound [32, 41–43, 43–48]. In ref. [32] a model of anisotropic

Dirac fermions that emerged from two ordinary Dirac cones was analyzed as an explicit

condensed matter realization [49]. Within a quasiparticle description of the transport

processes and a Boltzmann equation approach, the conductivity anisotropy was found to

diverge: one direction is metallic and another one insulating. Based on the quasiparticle

transport theory, a modified bound was conjectured, that involves not just the viscosity

tensor elements ηαβαβ and the entropy density s (T ), but also the conductivities [32]:

ηαβαβ

s

σββ

σαα
≥ ~

4πkB
. (1.6)

Here, no summation over repeated indices is implied.

Other tensor elements like ηαββα continue to obey eq. (1.1). The origin for this com-

bined viscosity-conductivity bound is the different scaling behavior of the typical velocities

vα for different directions. Candidate materials with Lifshitz transitions are the or-

ganic conductor α − (BEDT-TTF2)I3 under pressure [50], and the heterostructure of the

5/3TiO2/VO2 supercell [51, 52]. Moreover, the surface modes of topological crystalline

insulators with unpinned surface Dirac cones [53] and quadratic double Weyl fermions [54]

are expected to exhibit such a behavior.

The analysis of ref. [32] was based on the Boltzmann equation and did not allow to

explicitly analyze a model that satisfies this bound or determine the precise numerical

coefficient in eq. (1.6), i.e. the factor 1/4π. This can only be done within a formalism

that addresses transport in strongly-coupled non-quasi-particle many-body systems. In

the same context it is of interest to address the related question of whether the diffusivity

bound, eq. (1.2), is also modified for anisotropic systems.

In this paper we perform a holographic analysis of anisotropic transport, exploiting the

duality between strongly coupled quantum field theories in d + 1 dimensions and gravity

theories in one additional dimension [5]. The calculation is based on an Einstein-Maxwell-

dilaton (EMD) action, where the anisotropy is generated by massless scalars, linear in the
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boundary spatial coordinates. See refs. [41–44, 46–48, 55–60] for previous studies of these

holographic systems. As a consequence, the scalars also break translations and momen-

tum is not conserved. If the symmetry breaking occurs explicitly, the viscosity cannot

be interpreted as a hydrodynamic coefficient. It is well known that in such holographic

frameworks the KSS bound is violated [41–43, 43–48, 61–67].

We will also investigate the case where translations are broken spontaneously through

the use of a so-called Q-lattice homogeneous Ansatz [68–70], in which case momentum is

still conserved and the shear viscosity remains well-defined at all temperatures.

As our focus in this work is on the anisotropy of the system, we will choose a geometry

where momentum is conserved along one of the spatial directions, say the β-direction. Thus,

the stress tensor elements Tαβ serves as currents of the conserved momentum density along

the direction β. Consequently, the viscosity elements ηαβγβ maintain their meaning as

hydrodynamic coefficients, for all α and γ.

We compute the anisotropic electric conductivities in this holographic system, and find

that, at charge neutrality, their ratio is given by a simple geometric ratio of the spatial

elements of the bulk metric evaluated at the bulk black hole horizon. Their temperature

dependence indicates metallic behavior along one spatial direction and insulating behavior

along the other, as in ref. [32].

Returning to the viscosities, we find that in the direction where momentum is con-

served, the viscosity matrix elements are governed by the same geometric ratio as the

electric conductivities, so that, [32]:

ηαβαβ

s
=

~

4πkB

σαα

σββ
. (1.7)

The generalized bound eq. (1.7) has to be understood as a relation between hydrodynamic

coefficients, which holds at all temperatures, including the low temperature regime where

the anisotropy is large. Moreover, the combination
ηαβαβ

s
σββ

σαα
serves as an indicator of

strong coupling behavior in anisotropic systems. In figure 1 we show typical temperature

dependencies for these transport coefficients for a specific value of the crossover exponent

φ that characterizes the anisotropy. When translations are broken along the β-direction,

ηαβγβ loses its hydrodynamic meaning and just gives the stress-tensor correlation function.

The tensor element satisfies a holographic relation which we analyze in both the limits of

high and low temperature.

In addition, we determine the anisotropic butterfly velocity vB,α (see refs. [23, 45, 48,

55, 71–74] for previous studies) and the compressibility, and obtain for the anisotropic

diffusivity the generalization of eq. (1.2)

Dc,α =
deff − θ

∆χ

~v2
B,α

2πkBT
, (1.8)

where deff is the effective spatial dimensionality — see eq. (2.3) below, θ the hyperscaling

violating exponent, and ∆χ the scaling dimension of the charge susceptibility. Thus, the

bound of eq. (1.2) can be generalized to anisotropic systems. In distinction to the viscosity

bound, the anisotropy only changes the universal coefficient that now depends on the
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Figure 1. Main panel: temperature dependence of the η/s tensor. In the anisotropic case the

KSS bound (orange) can be parametrically violated (green line). Here, T0 is a temperature scale

below which the anisotropy effects are dominant. The conductivity ratio might constitute a new

lower bound when rotations are broken (green). Inset: temperature dependence of the conductivity

tensor elements σxx and σyy. φ is the crossover exponent that characterizes the anisotropy between

the different spatial directions kx ∼ k
1/φ
y . Once φ 6= 0 one element of the conductivity of a two-

dimensional system must be insulating and the other must be metallic.

exponents φ, z, and θ. Furthermore, (1.8) recovers the limit of isotropic charge neutral

theories [16]. In ref. [55], the thermal diffusivity was computed in anisotropic setups and

also found to obey a relation similar to (1.8). See ref. [45] for an alternative proposal

to (1.8) at an anisotropic QCP.

Before we present the theories that yield these results, we give some general scaling

arguments, assuming charge and momentum conservation. This analysis motivates us to

consider the appropriate combinations of transport quantities that enter eq. (1.6) and

eq. (1.8). The scaling analysis is then followed by a holographic analysis of the combined

viscosity-conductivity bound, the charge susceptibility, and the butterfly velocity within

an anisotropic gravity theory.

2 Scaling arguments

We consider the scaling behavior of transport coefficients in anisotropic systems near a

quantum critical Lifshitz point. As we will see, scaling arguments can be efficiently used to

make statements about transport bounds. Once a combination of physical observables has

scaling dimension zero, it naturally approaches a universal value in the limit T, µ, ω · · · → 0,

that corresponds to an underlying quantum critical state. If one can argue, usually based
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on an analysis of conservation laws, that this value is neither zero nor infinity, it should

be some dimensionless number times the natural unit of the observable. In other words,

this combination should be insensitive to irrelevant deformations of the quantum critical

point. As an example we consider the electrical conductivity at zero density. For isotropic

systems its scaling dimension is d − 2, a result that follows from single-parameter scaling

and charge conservation. Thus the conductivity of a zero density two-dimensional system

is expected to reach a universal value in units of the natural scale e2/h. Under the same

conditions, both the viscosity and the entropy density have scale dimension d such that

their ratio has scaling dimension zero. Then η/s should approach a universal value times

~/kB which yields the correct physical unit. This observation helps to rationalize a result

like eq. (1.1). As an aside, these scaling considerations also offer a natural explanation

why the bound eq. (1.1), while applicable, is not very relevant for Fermi liquids. Here, the

existence of a large Fermi surface gives rise to hyper-scaling violating exponents [75]. If one

performs the appropriate scaling near the Fermi surface [76], then it seems more natural

to use ηs2 as the natural bound, a quantity that approaches a constant value as T → 0.

The conclusions of this section require that scaling relations are valid, i.e that the

system under consideration behaves critical and is below its upper critical dimension. In

the remainder of this section we assume that this is the case. To be specific, we analyze

a d-dimensional system and allow for one direction to be governed by a characteristic

length scale with a different scaling dimension φ 6= 1 than the other spatial directions, see

eqs. (1.4), (1.5) above. In addition, the temporal direction is characterized by a dynamic

scaling exponent z. Let us then consider a physical observable O (k, ω). By assumption

the observable obeys the scaling relation

O
(

k⊥,k‖, ω
)

= b−∆OO
(

bφk⊥, bk‖, b
zω
)

. (2.1)

Here ∆O is the scaling dimension of the observable. The d-dimensional momentum vector

k =
(

k⊥,k‖

)

consists of one component k⊥ that is governed by the exponent φ and a d− 1

dimensional component k‖. In the subsequent holographic analysis we focus on a system

with two spatial coordinates and use the notation k⊥ = kx and k‖ = ky. While the scaling

analysis presented here cannot determine the values of the exponents, it allows for rather

general conclusions once those exponents are known. For an explicit model with nontrivial

exponents z and φ, see ref. [32].

2.1 Scaling of thermodynamic quantities

We begin our discussion of scaling laws with thermodynamic quantities. For the free-energy

density of the system holds the following scaling law:

F (T, µ) = b−deff−zF (bzT, bzµ) , (2.2)

with effective dimension

deff = d− 1 + φ. (2.3)

As an energy density, F should scale like unit energy per unit volume. To obtain its scaling

dimension it is then easiest to start from the usual result d + z for isotropic systems [14]
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and replace d by deff . This takes into account the different weight of the directions k‖ and

k⊥. With s = −∂F/∂T and ρ = ∂F/∂µ we obtain immediately the scaling dimensions

∆s = ∆ρ = deff (2.4)

for the entropy density s and particle density ρ, respectively. Away from zero density, the

relation ∆ρ = deff generally does not hold [25, 77, 78]. The second derivative of the free

energy with respect to the chemical potential yields charge susceptibility

χρ (T, µ) = b−∆χχρ (bzT, bzµ) (2.5)

with ∆χ = deff − z. We can now use these thermodynamic relations to determine the

scaling behavior of the conductivity and viscosity. To do so is possible because of the

restrictions that follow from charge and momentum conservation.

2.2 Scaling of transport coefficients

The conductivity is determined via a Kubo formula from the current-current correlation

function, e.g.

Reσαβ (ω) =
Im Παβ (ω)

ω
. (2.6)

At zero density, the system has a finite d.c. conductivity. Παβ (ω) is the Fourier transform

of the retarded current-current correlation function Παβ (t) = −iθ (t) 〈[jα (t) , jβ]〉. In order

to exploit the implications of charge conservation we use the continuity equation

∂tρ+ ∂αjα = 0 (2.7)

and obtain the well known relation between the longitudinal conductivity σαα (ω) and the

density-density correlation χ̄ρ (k, ω)

σαα (ω) = lim
k→0

ω

k2
α

χ̄ρ (k, ω) . (2.8)

Here χ̄ρ (k, ω) is the temporal Fourier transform of χ̄ρ (k, t) = −iθ (t) 〈[ρ (k, t) , ρ (−k, 0)]〉,
where ρ (k, t) is the spatial Fourier transform of the density ρ (x, t). Since χρ = limk→0 χ̄ρ

(k, ω = 0), the scaling dimension of χρ is also ∆χ, given below eq. (2.5). Thus we find

∆σ,‖ = ∆χ + z − 2 = deff − 2,

∆σ,⊥ = ∆χ + z − 2φ = deff − 2φ, (2.9)

for the conductivities along the two directions. This yields for the conductivities:

σ‖ (T, ω) = b3−φ−dσ‖ (bzT, bzω) ,

σ⊥ (T, ω) = bφ+1−dσ⊥ (bzT, bzω) . (2.10)

If we return to the isotropic limit, where φ = 1, both components of the conductivity

behave the same with usual conductivity scaling dimension d − 2. Interestingly, in the

anisotropic case, this continues to be the dimension of the geometric mean
√
σ‖σ⊥. Distinct
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scaling exponents for the tensor elements imply a different temperature dependency of the

conductivity for different directions. Thus, a more insulating behavior along one direction

will force the other direction to be more metallic. For a two-dimensional system, one

direction will have to be insulating and the other then has to be metallic as long as φ 6= 1.

Finally, the ratio σ‖/σ⊥ of the conductivity is governed by ∆σ,‖ − ∆σ,⊥ = 2 (φ− 1), i.e.

σ‖ (T )

σ⊥ (T )
= b−2(φ−1) σ‖ (bzT )

σ⊥ (bzT )
. (2.11)

We can perform a similar analysis for the viscosity tensor. It is given by a different

Kubo formula

Re ηαβγδ (ω) =
Im Παβγδ (ω)

ω
, (2.12)

with Παβγδ (ω) the Fourier transform of the retarded stress-tensor correlation function

Παβγδ (t) = −iθ (t) 〈[Tαβ (t) , Tγδ]〉. Momentum conservation gives rise to the continuity

equation for the momentum density gα ≡ T 0
α:

∂tgβ + ∂αTαβ = 0. (2.13)

We are considering a system without rotation invariance. In this case it is important to

keep track of the order of the tensor indices as Tαβ cannot be brought into a symmetric

form [79]. From the continuity equation for the momentum follows for the viscosity

ηαβγδ (ω) = lim
k→0

ω

kαkγ
χ

(g)
βδ (k, ω) , (2.14)

with momentum-density correlation function χ
(g)
βδ (k, ω), i.e. the Fourier transform of

χ
(g)
βδ (k, t) = −iθ (t) 〈[gβ (k, t) , gδ (−k, 0)]〉. Thus, we only need to know the scaling di-

mension of χ
(g)
βδ to determine the behavior of the viscosity. The easiest way to obtain this

scaling dimension is to realize that under a boost operation, a velocity field is thermody-

namically conjugate to the momentum density. A velocity has scaling dimension z − 1 for

the directions along k‖ and z−φ for k⊥. To capture all the options we write this as z−ϕα

where ϕα = 1 for all directions but along k⊥ where we have ϕα = φ. Thus, it holds

χ
(g)
βδ

(

k⊥,k‖, ω
)

= b−∆g,βδχ
(g)
βδ

(

bφk⊥, bk‖, b
zω
)

, (2.15)

with ∆g,βδ = deff − z + ϕβ + ϕδ. In the appendix A we obtain the same behavior from an

analysis of strain generators, following refs. [79, 80]. Using ∆g,βδ allows us to determine

the scaling behavior of the viscosity tensor

ηαβγδ (T ) = b−∆η,αβγδηαβγδ (bzT ) (2.16)

with

∆η,αβγδ = ∆g,βδ + z − ϕα − ϕγ

= deff − ϕα + ϕβ − ϕγ + ϕδ. (2.17)

– 8 –



J
H
E
P
1
1
(
2
0
2
0
)
0
8
8

For isotropic systems, this gives the well known result that the scaling dimension of the

viscosity is d, i.e. the same as for the entropy or particle density. For an anisotropic system

the scaling dimensions of the viscosity and the entropy density can still be the same. This

is the case whenever ϕα + ϕγ = ϕβ + ϕδ. Examples are η⊥⊥⊥⊥, η⊥⊥cd, ηab⊥⊥,ηa⊥⊥d, or

η⊥bc⊥, where a,b etc. stand for components of k‖.

However, the scaling dimension of the viscosity can also be different from the one of

the entropy density. This is the case for

ηa⊥c⊥ (T ) = b−(d−3+3φ)ηa⊥c⊥ (bzT )

η⊥b⊥d (T ) = b−(d+1−φ)η⊥b⊥d (bzT ) . (2.18)

If we now take the ratio of the viscosity to entropy density, we find

ηa⊥c⊥ (T )

s (T )
= b−2(φ−1) ηa⊥c⊥ (bzT )

s (bzT )
,

η⊥b⊥d (T )

s (T )
= b2(φ−1) η⊥b⊥d (bzT )

s (bzT )
. (2.19)

Thus, for φ 6= 1 there is always one tensor element of the viscosity, where ηαβγδ/s diverges

as T → 0 and another one that vanishes. The latter will then obviously violate any bound

for the ratio of a viscosity to entropy density. In ref. [32] it was shown that precisely

these tensor elements turn out to be important for the hydrodynamic Poiseuille flow of

anisotropic fluids.

The origin of unconventional scaling of both the conductivities and the viscosities is

geometric, i.e. rooted in the anisotropic scaling of spatial coordinates at the Lifshitz point.

If one combines eqs. (2.11) and (2.19), it is straightforward to see that the combinations

that enter eq. (1.6) always have scaling dimension zero. While it certainly does not offer

a proof of eq. (1.6) this is necessary for such quantity to approach a universal, constant

low-temperature value.

Finally we comment on the scaling behavior of the diffusivity bound, eq. (1.8). To

check whether this bound even makes sense for an anisotropic system, we consider the

quantity

Xα = kBTDc,α/~v
2
α (2.20)

where vα is the characteristic velocity along the α-th direction and Dc,α = σαα/χρ the

diffusivity along this direction. It obviously holds

∆Xα = z + ∆σ,α − ∆χ − 2 (z − ϕα) (2.21)

where we used again that a velocity scales as z − ϕα. If we now insert our above results,

it follows

∆X‖
= ∆X⊥

= 0. (2.22)

This implies that Xα should approach a universal constant times ~/kB. Thus, we expect

eq. (1.2) to be valid even for anisotropic systems, which yields eq. (1.8). In this sense is

this bound even more general than the original viscosity bound of eq. (1.1).
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3 Holographic analysis of the viscosity-conductivity bound

The correspondence between gravity theories and quantum field theories, as it occurs in

the anti-de Sitter space/conformal field theory duality [5–7], is a powerful tool to analyze

the universal properties of strongly-coupled field theories. In what follows we analyze

an anisotropic bulk geometry in order to determine the relationships between distinct

transport coefficients of anisotropic quantum many-body problems in the strong-coupling

limit. To this end we use the membrane paradigm [81] to express boundary theory transport

coefficients in terms of geometric quantities at the horizon [82]. To be specific, we consider

a system of two space dimensions, i.e. with D = 2 + 1 space-time coordinates at the

boundary. The relation between the generating functional of the quantum field theory and

the gravity action for imaginary time is given by [6, 7]

〈

e−
∫

d3xΦ0O
〉

= e−S[Φ]
∣

∣

∣

Φ(r→0)=Φ0

, (3.1)

where O is an operator of the field theory, Φ0 a conjugate source, Φ the dual field, and S

a gravitational action in the D + 1 dimensional bulk, with additional coordinate r. Here

we chose a system of coordinates where the boundary lies at r = 0. Following ref. [82],

retarded Green’s functions of the field theory can be obtained from

〈O (x, t)〉Φ0
= lim

r→0
Π (r,x, t) , (3.2)

where Π is the canonical momentum conjugate to Φ, as follows from the gravitational

version of the Hamilton-Jacobi formalism. This finally allows for the determination of

retarded Green’s functions G (x, t) = −iθ (t) 〈[O (x, t) , O (0, 0)]〉 . For the Fourier transform

with respect to momentum and frequency follows

G (k, ω) = − lim
r→0

Π (r,k, ω)

Φ (r,k, ω)
. (3.3)

Causality is preserved if one considers Φ that satisfies in-falling boundary conditions

at the black hole horizon [83, 84]. The related transport coefficient is given by

− limω,k→0
1
ω ImG (k, ω).

Anisotropic, static bulk geometries cannot come from a pure gravitational action.

Thus, we need to couple gravity with axial gauge fields or massless scalar fields. See also

refs. [47, 60, 85] for generalities on anisotropic studies in holography.

We start from the Einstein-Maxwell-dilaton action

S =

∫

d3+1x
√−g (R+ LM) , (3.4)

with Lagrangian

LM = −1

2
(∇ϕ)2 − V (ϕ) − Y (ϕ)

2
(∇ψ)2 − Z (ϕ)

4
F 2. (3.5)

ϕ is referred to as the dilaton. It is a scalar field which enters the action modifying all

the couplings involved. V (ϕ) is its own potential. We include the dilaton as it will allow
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us to consider anisotropic geometries that arise near the horizon of near-extremal black

holes. In the absence of the dilaton field, the model reduces to the usual AdS4 system with

electromagnetic field, i.e V (0) = 2Λ with cosmological constant Λ = −3/ℓ2, Z (0) = 1

and Y (0) = 0. ℓ is the radius of curvature of the AdS space. As we will shortly see, by

considering a bulk profile that depends linearly on one of the boundary spatial coordinates,

the massless scalar ψ will break the rotation and translation symmetries of the dual field

theory. For related work on this family of holographic models, see refs. [29, 41–44, 48, 57–

59, 61, 65, 66, 68, 86–88].

F 2 is the Maxwell Lagrangian with Fµν = ∇µAν − ∇νAµ the usual field tensor with

vector potential Aµ. This term is needed to implement a U (1) global symmetry in the

boundary theory and to determine the electrical conductivity.

We summarize the field equations of motion that follow from eq. (3.4) varying the

action with respect to the fields gµν , Aµ, ψ, ϕ.

Varying the metric, we obtain the Einstein equations

Rµν − 1

2
Rgµν = − 1√−g

δ(
√−gLM)

δgµν
. (3.6)

The variation of the gauge field yields the Maxwell equations

∂µ(
√−gZ(ϕ)Fµν) = 0. (3.7)

Notice that both the scalar fields are neutral such that the Maxwell equations are bulk con-

servation equations for the two-form F . Ultimately, this will let us evaluate the boundary

charge current at the black hole horizon. Finally, the wave equations for the two scalars

are:

∂µ(
√−g Y (ϕ)∂µψ) = 0, (3.8)

∂µ(
√−g ∂µϕ) = ∂ϕVeff, (3.9)

where
Veff√−g = V (ϕ) +

Y (ϕ)

2
(∂ψ)2 +

Z(ϕ)

4
F 2. (3.10)

In the absence of external perturbations, we use the following ansatz

ds2 = −gtt(r)dt
2 + grr(r)dr2 +

∑

α

gαα(r)dx2
α

ϕ = ϕ(r), A = At(r)dt, ψ = ay, (3.11)

where a is real and α = {x, y}. The Ansatz for ψ is consistent with the field equations and

preserves the homogeneity of the other fields. Indeed, ψ back-reacts on the equations of

motion only through gradients so that all dependence on y drops out of the field equations.

However, translations along the y-direction are broken and momentum is dissipated at a

strength set by a. On the other hand, momentum along x direction is conserved which

allows us to perform a hydrodynamic analysis of the viscosity tensor elements ηαxβx. The

metric in (3.11) describes anisotropic bulk geometries since, in general, gxx (r) 6= gyy (r).
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Figure 2. Cartoon of an AdS black hole geometry in (D+1)-spacetime dimensions. The extra

coordinate r is between r = 0 and r = r+ where the boundary and the horizon of the AdS

are located, respectively. The evolution along r is dual to the RG-flow of the dual D-spacetime

dimensional QFT [89]. Furthermore, in order to underline how the spatial anisotropy becomes

higher as one approaches the IR region, we have depicted how an ellipse is distorted in the spatial

directions as r decreases.

The coefficient a determines the temperature scale T0 below which the anisotropy effects

are large. Setting a = 0 restores both rotations and translations in the dual field theory.

In its more general formulation, the holographic correspondence maps the RG-flow of

the dual (strongly coupled) field theory to the evolution along the radial direction [89] —

see figure 2. The near boundary region captures the UV of the dual field theory, while the

near horizon region describes the IR. In the UV (r → 0) the geometry is assumed to be

asymptotically AdS4:

ds2 =
1

r2

(

−dt2 +
dr2

r2
+ dx2 + dy2

)

+ . . . (3.12)

where the dots denote subleading terms as r → 0. This requires

VUV ≡ V (0) = −6, YUV ≡ Y (0) = 0,

ZUV ≡ Z(0) = 1
(3.13)

with the dilaton vanishing like ϕ = ϕsr
3−∆ϕ +ϕvr

∆ϕ + . . . coming from the near boundary

expansion of eq. (3.9). ∆ϕ < 3 is the largest solution of M2 = ∆ϕ(∆ϕ − 3), M being the

mass of the field. The dilaton field is thus dual to a relevant deformation of the UV CFT,

with source ϕs and vacuum expectation value ϕv [89].

From this discussion, we also see that the bulk field ψ sources a marginal deformation

of the UV CFT. Similarly, At = µ− ρr+ . . . with chemical potential µ and charge density

ρ. In the following we analyze the charge neutral case At = 0.
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Since both scalars are dual to relevant/marginal deformations of the UV CFT, we

expect the system to be able to flow to a non-trivial quantum critical phase in the IR. This

IR endpoint of the RG flow is represented in the bulk by a power law geometry, which arises

in the near horizon region at very low temperatures compared to the sources of the UV

CFT. To find such geometries, we assume that the dilaton runs logarithmically in the IR

(r → +∞) ϕ = 2κ log(r̂/L), where r̂ is an appropriate IR radial coordinate. It is valid in

the regime r̂ ≫ L, where L is the length scale at which the spacetime is well-approximated

by its IR scaling form, see (3.15) below. It is generally distinct from the coordinate r,

which covers all of spacetime. In the region r̂ ≫ L, the scalar potentials take the following

form [77, 90]

VIR = −V0e
δ ϕ, YIR = eλϕ, ZIR = eζϕ . (3.14)

The critical scaling of the previous section is holographically realized by a hyperscaling-

violating Lifshitz geometry of the form

ds2 = r̂θ

(

−dt2

r̂2z
+ L2dr̂

2

r̂2
+
dx2

r̂2φ
+
dy2

r̂2

)

, (3.15)

which is covariant under the scale transformation (t, r̂, x, y) → (b−zt, b−1r̂, b−φx, b−1y), up

to a conformal factor ds2 → b−θds2. Therefore, φ and z coincide with the anisotropic and

dynamical exponents, and θ quantifies the violation of scale invariance in the metric [48,

75, 91]. All the parameters involved are real and V0, δ, L > 0. The explicit derivation of

such a solution can be found in appendix B, for the (marginally) relevant single massless

scalar case, which has z = φ 6= 1, the marginally double massless scalars case, which has

z > 1, φ 6= 1, and the irrelevant single massless scalar case, which has z = 1, φ = 1 (and

where rotations/translations along x are only broken away from the IR endpoint through

the irrelevant deformation).

A finite temperature can be introduced via the emblackening factor1

ds2 = r̂θ

(

−f dt
2

r̂2z
+ L2 dr̂

2

fr̂2
+
dx2

r̂2φ
+
dy2

r̂2

)

, f(r̂) = 1 −
(

r̂

r̂+

)δ0

, (3.16)

where r̂+ denotes the location of the event horizon and δ0 = 1 + φ+ z − θ. The Hawking

temperature is

4πT =
|δ0|
L
r̂−z

+ (3.17)

and satisfies T → bzT , consistently with the scaling analysis. The fact that scaling stops at

a finite value of the flow is reflected in the event horizon at finite r̂+. The entropy density

follows from the area of the horizon s = 4πr̂φ+1
+ .

Thus, with an appropriate choice of V (ϕ), and Y (ϕ) we can “engineer” a holographic

dual that generates a desired crossover exponent φ. Without more constructive statements

1We observe that this is an exact solution only when the massless scalar sources only a marginal de-

formation in the IR. Otherwise the interplay between the irrelevant deformation and temperature is more

complicated, although the scaling relation between the location of the event horizon and the temperature

still holds.
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about the field theory-gravity dual, it is not possible to determine the values of φ for a

given quantum field theory. However, we can make statements about a number of physical

observables for a given value of φ.

3.1 Analysis of the conductivity

In this section we review the results of refs. [56, 59, 82] to express the electric conductiv-

ities in terms of IR quantities. In particular, we calculate the d.c. conductivity along the

α-direction

σαα = lim
ω→0
r→0

Im
jα(r, ω)

ωAα(r, ω)
, (3.18)

working directly at zero frequency and switching on a constant and small electric field. Aα

is the fluctuation respect to which we linearize the gauge equations, and jα is the associated

canonical momentum.

Within the homogeneous ansatz (3.11), Maxwell equations assume the form

∂r(
√−gZ(ϕ)Fµr) = 0. (3.19)

The quantity in brackets coincides with the conjugate momentum of the gauge field

jµ = δS/δ (∂rAµ). From the holographic dictionary (3.2) follows that the boundary value

jµ (r = 0) of this quantity is the electric current density of the dual field theory. From (3.19)

jµ is radially conserved, i.e. ∂rj
µ = 0. Thus, we can determine the current at the boundary

from the behavior of jµ at the horizon

jµ (r = 0,x, t) = lim
r→r+

jµ (r,x, t) . (3.20)

In the absence of external fields, the only non zero component of jµ is the temporal one

jt =
√−gZ (ϕ)F tr which corresponds to the charge density ρ of the field theory. In the

following we focus on the charge neutral case ρ = 0.

In order to determine the conductivity, we add a small electric field Eα = Fαt in the

α-direction, e.g. via

Aext
α = −Eαt. (3.21)

This electric field will polarize the system and therefore induce small corrections to the

metric and matter fields. We parametrize those corrections via

Aα = −Eαt+ δAα (r) ,

gtα = δgtα (r) ,

grα = gαα (r) δhrα (r) , (3.22)

and ψ = ay + δψ (r) if α = y.

All terms δAα etc. are assumed to be of first order in the electric field. They can be

related to each other through a perturbative solution of the field equations. The above

ansatz yields at first order and for zero density ρ = 0:

jα = −
√−gZ (ϕ)

grrgαα
∂rδAα. (3.23)
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This result further simplifies our analysis as we only need to determine δAα. To this end we

perform a transformation to a set of coordinates that is free of singularities at the horizon.

This is accomplished by the Eddington-Finkelstein (EF) coordinates [92, 93] t′ = t+ r⋆(r),

where dr⋆ = dr/γ(r) is the tortoise coordinate, γ(r) =
√

gtt(r)/grr(r). In these variables

holds that near the horizon

Aα = −Eαt
′ + Eαr⋆(r) + δAα. (3.24)

If we now demand regularity of Aα in the EF coordinates it follows for the leading, singular

contribution:

δAα (r → r+) = −Eαr⋆(r). (3.25)

It is now straightforward to determine the conductivities

σαα = lim
r→r+

jα

Eα
=

√

gαα

gαα
Z (ϕ)

∣

∣

∣

∣

r+

, (3.26)

where x = y and y = x.

3.2 Analysis of the viscosity

In order to compute the correlation function (2.12), we act on the bulk-metric field which

is dual to the boundary stress tensor [1]. To get the shear viscosity components, we switch

on small off-diagonal fluctuations of the spatial sector

ds2 7→ ds2 + e−iωtδhxy(r)dxdy. (3.27)

In the following we linearize Einstein equations with respect to the one-index-up

parametrization hβ
α = gββδhαβ and compute the viscosity through

ηαβαβ = lim
ω→0
r→0

1

ω
Im

Πα
β(r, ω)

hβ
α(r, ω)

, (3.28)

where Πα
β is the associated radial momentum.2 Since the model is anisotropic, there will

be two fluctuations satisfying different equations of motion.

We start with the simpler case to review the standard derivation of the viscosity, and

consider δhxy = gxxh
x
y . The Einstein equations (3.6) yield

∂µ

(
√−g

N ∂µhx
y

)

= 0, (3.29)

which describes the dynamics of a massless scalar with radial dependent coupling

N (r) = gyy(r)gxx(r). The canonical momentum is

Πy
x =

√−g
N ∂rhx

y , (3.30)

2Strictly speaking, the most natural notation in eq. (3.18) and (3.28) would have been σ
αα and η

α α
β β .

Since however the boundary is flat, we could choose the notation with all indices down in order to be

consistent with section 2.
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satisfying N∂rΠy
x = −ω2√−ghx

y . In the low frequency limit, i.e. ω → 0 keeping ωhx
y and

Π fixed [82], both the fluctuation and the momentum are radially conserved allowing to

perform a near horizon limit in eq. (3.28). Here the fluctuation satisfies the in-falling

conditions

hx
y(r, ω) → h0(r) e−iωr⋆(r). (3.31)

h0 is the real solution to the frequency independent wave equation, which asymptotes to

a constant at the boundary and is regular at the horizon. Due to the radial conservation

h0(r) = const ≡ 1. We then obtain

ηyxyx

s
=

1

4π

gxx

gyy

∣

∣

∣

∣

r+

, (3.32)

which reproduces the bound of eq. (1.1) in the isotropic limit gxx = gyy. These results, to-

gether with our findings of eq. (3.26) for the conductivities immediately yield the expression

eq. (1.7) given in the introduction.

For the y-index-up parametrization we find

∂µ
(√−gN ∂µhy

x

)

=
√−gN m2hy

x (3.33)

with radially-dependent mass of the shear graviton m2(r) = a2Y (ϕ)gyy(r) arising due to

the breaking of translations along y. As before, we define the conjugate momentum via

Πx
y =

√−gN ∂rhy
x, (3.34)

with ∂rΠx
y =

√−gN (m2 − ω2gtt)hy
x. The non vanishing mass makes the evolution along r

non trivial even at zero frequency. However, from the equations follows that Im
[

Πx
y h

y⋆
x

]

is radially conserved [42], h⋆ denoting the complex conjugate fluctuation. In particular we

can switch to the near horizon limit in the numerator

ηxyxy = lim
ω→0

limr→r+ Im
[

Πx
y h

y⋆
x

]

limr→0 ω|hy
x|2 . (3.35)

Using the in-falling conditions in the numerator we obtain

ηxyxy

s
=

1

4π

gyy

gxx

∣

∣

∣

∣

r+

h2
0(r+) (3.36)

so that the viscosity-conductivity ratio that appears in the conjectured bound (1.6) becomes

ηxyxy

s

σyy

σxx
=

1

4π

∣

∣

∣

∣

r+

h2
0(r+). (3.37)

h0(r+) denotes the horizon value assumed by hy
x(r). A similar result obtains in isotropic

backgrounds with momentum relaxation [61, 62, 64]. h0(r+) originates from the simulta-

neous breaking of rotations and translations along y caused by the massless scalar. Since it

has a non-trivial radial evolution, we expect that it will differ from unity as temperature de-

creases, i.e. as the system flows away from the UV AdS4. If the mass squared in eq. (3.33)
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is positive (which is a sufficient condition for stability of the fluctuation spectrum, and

always the case for the setups considered in this work), the metric fluctuation decreases

towards the horizon — see ref. [61] for the analogue in the isotropic case. In anisotropic

backgrounds where m2 = 0, the viscosity-conductivity bound holds exactly also for the

tensor element in (3.36) — see e.g. ref. [94].

3.3 Analysis of the viscosity-conductivity bound

We would now like to discuss the temperature dependence of h0(r+), both at high and low

temperatures, and dependending on whether translations are broken explicitly or sponta-

neously. We first discuss the explicit case.

3.3.1 Explicit breaking of translations

When Y (ϕ(r → 0)) → 1 near the UV, the massless scalar induces a coordinate-dependent

source, and translations are broken explicitly [77, 87].

At high temperature, i.e. T ≫ a, the black hole horizon gets closer to the asymptotic

region, and the geometry can be approximated by AdS4-Schwarzschild. The massless

scalar ψ sources deviations from isotropy by inducing a2 corrections on the metric. Since

the source in the eq. (3.33) depends on a2, the second order correction to hy
x is determined

by the isotropic background [70]. Eq. (3.36) becomes

4π
σyy

σxx

ηxyxy

s
= 1 − 2

∫ r+

0

grr√−g

(
∫ r+

r1

√
grrgtt Y (ϕ)

)

a=0

a2 +O(a4). (3.38)

The integral is positive-definite and the viscosity violates the lower conductivity-

bound (1.6). This effect has been related to the positivity of the graviton mass in ref. [61].

Using AdS-Schwarzschild background, we obtain:

4π
σyy

σxx

ηxyxy

s
≈ 1 − cesb

(

a

T

)2

, (3.39)

with cesb = (9 log 3 −
√

3π)/16π2 ≈ 0.0281553, which is similar to the results in the

isotropic case, ref. [61].

We can also discuss the temperature dependence of h0(r+) at low temperatures. First,

we discuss the case where the massless scalar ψ vanishes faster than other bulk fields

towards the extremal horizon. Then, the IR endpoint enjoys rotation and translation

symmetries, which are broken only through an irrelevant deformation sourced by ψ, see

also [25, 26]. These scaling solutions are discussed in appendix B.2. Since ψ sources an

irrelevant deformation, the formula (3.38) still applies and we obtain

4π
σyy

σxx

ηxyxy

s
≈ 1 − cir

esb

(

a

T∆a

)2

, (3.40)

where ∆a < 0 is the infrared scaling dimension of a.

Alternatively, the translation/rotation breaking field ψ can source a marginal defor-

mation at T = 0. In this case, there is no notion of momentum, although of course we can

still compute the response to shear strain using the Kubo formula. But then the object we
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are computing does not have the interpretation of a shear viscosity. Its temperature depen-

dence follows from an asymptotic analysis near the boundary of the IR region and yields:

σyy

σxx

ηxyxy

s
∼ T

δ0−2(φ−1)

z

(

−1+

√

1+

(

2aL
δ0−2(φ−1)

)2

)

. (3.41)

The sign of the exponent is not fixed, hence the tensor element can vanish or diverge — for

details on the parameter range see appendix B. This result is still valid when two massless

scalars are taken into account (B.6). The isotropic limit of this last case is consistent with

refs. [65, 66] at charge neutrality.

3.3.2 Spontaneous breaking of translations

When Y (ϕ(r → 0)) → ϕ2, the massless scalar and the dilaton can be rearranged as the

phase and the norm of a single complex scalar field Φ — see e.g. refs. [59, 68, 69]. The model

then describes a CFT deformed by a relevant complex coordinate-dependent operator,

determined by the asymptotic expansion Φ(r → 0, x) = Φs(x) r3−∆ϕ + Φv(x) r∆ϕ . Picking

appropriate UV boundary conditions for Φ allows translations to be broken spontaneously

(SSB), restoring the hydrodynamic meaning of the viscosity.3 In such a setup, η can be

directly extracted from the Kubo formula eq. (2.12), see e.g. ref. [96].

Since we are interested in O(a2) corrections at high temperatures, it is enough to

consider the dilaton as a probe field in the AdS4-Schwarzschild spacetime. Solving its

decoupled equation of motion for ∆ϕ = 2,4 the solution reads:

Φ(r) = r

[

2F1

(

1

3
,
1

3
;
2

3
;
r3

r3
+

)

Φs + 2F1

(

2

3
,
2

3
;
4

3
;
r3

r3
+

)

rΦv

]

(3.42)

where the F s are hypergeometric functions. We wish to impose horizon regularity in this

solution
[

ΦsΓ3
(

2
3

)

+ 9Φvr+Γ3
(

4
3

)]

log
(

1− r
r+

)

= 0, which yields a linear relation between

the asymptotic coefficients

Φv = − 12π3/2

r+Γ3
(

1
6

) Φs. (3.43)

This implies that standard Dirichlet boundary conditions cannot consistently be imposed,

and SSB cannot be realized in the standard way by setting Φs = 0. Indeed, it is well-known

that when the squared-mass of the complex scalar lies in the window [−9/4,−5/4], we can

choose mixed boundary conditions for which the field is dual to an operator with 〈O〉 = Φs

sourced by J = −Φv −F ′(Φs) — see e.g. refs. [97, 98]. F is a polynomial whose degree lies

in the interval [2, 3/(3 − ∆ϕ)]. In the following we choose the mass such that ∆ϕ = 2, and

fix the form of F by setting SSB conditions J = 0. In particular, we find F (Φs) ∝ Φ2
s as

in eq. (3.43). As pointed out in ref. [98], the mixed boundary conditions generate an extra

contact term in the dual stress-energy tensor. Since this contact term is real, it does not

3Similar results would also obtain in so-called holographic massive gravity models, [95].
4Using other values of the scaling dimension presents no conceptual obstacle, but the solution in these

other cases cannot be obtained analytically.
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change the imaginary part of the retarded Green’s function nor the shear Kubo formula for

the shear viscosity eq. (2.12). As such, previous relations such as eq. (3.38) continue to hold.

We note that the leading deviations in (3.38) appear at O(Φ2
sa

2). This means we

do not need to consider the backreaction of the dilaton or the massless scalars on the

metric, which would source higher order terms. Evaluating the integral on the isotropic

background, we find:

4π
σyy

σxx

ηxyxy

s
≈ 1 − cssb

(Φs

T

)2
(

a

T

)2

, (3.44)

with cssb ≈ 0.000435607. We observe that compared to the explicit breaking case (3.39),

violations of the bound are further suppressed by extra powers of T and will generally

become sizable for lower temperatures than in the explicit breaking case.

At low temperatures and under the same assumptions for the scalar couplings (3.14)

as in the explicit breaking case, the same temperature dependences are obtained, both for

the irrelevant (3.40) and marginal cases (3.41). We emphasize that since translations are

broken spontaneously, the shear viscosity remains a well-defined hydrodynamic coefficient

that can be computed via the usual shear Kubo formula.

In any case, the viscosity-conductivity bound stated through the scaling analysis is

holographically realized at least for one of the η/s-tensor elements.

4 Holographic analysis of the charge-diffusivity bound

The charge diffusivity in the α-direction is determined by the electrical conductivity and the

charge susceptibility via the Einstein relation Dc,α = σαα/χρ. In section 2 we demonstrated

that the combination

Xα =
kBTDc,α

~v2
α

(4.1)

has scaling dimension zero, which suggests that it approaches at low temperatures a uni-

versal value. In the subsequent sections we will use eq. (3.26) for the conductivity, obtained

through the holographic approach and determine, within the same theory, the charge sus-

ceptibility and the butterfly velocity of the system. Without loss of generality we set

ζ = 0, as in the charge neutral case the exponent of ZIR = eζϕ is not constrained — see

appendix B. We then obtain the result that

Xα =
1

2π

1 + φ− θ

1 + φ− z
(4.2)

independent on the space direction α leads to eq. (1.8).

4.1 Analysis of the diffusivity

An important ingredient for the bound on the diffusivity in eq. (1.2) is the isothermal

charge susceptibility χρ = (∂ρ/∂µ)T . In order to derive the correspondent holographic

relation, we formally solve Maxwell equations (3.19):

At(r) = At(r+) − ρ

∫ r

r+

dr√−gZ(ϕ)grrgtt
. (4.3)
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As mentioned, At yields the chemical potential near the boundary and vanishes at the

horizon, therefore

χ−1
ρ =

∫ r+

0

dr√−gZ(ϕ)grrgtt
, (4.4)

see also ref. [82]. Due to the non locality of the above formula, the integral can only be

worked out by explicitly solving the RG flow from the boundary to the horizon. Keeping

in mind that r+ ∝ T−1/z, we observe that the near horizon geometry contribution scales

as T−∆χ/z. Within a low temperature analysis, this is the dominant term if ∆χ/z > 0 and

the charge diffusion is uniquely controlled by the IR physics, in accord with the isotropic

analysis of refs. [16, 17]. In this case we obtain

χ−1
ρ = − L

∆χ

r∆χ

Z(ϕ)

∣

∣

∣

∣

r+

. (4.5)

We can alternatively Taylor-expand the integrand i(r) of (4.4) near the horizon. From the

IR scaling behavior follows the recursion rule

i(n)(r) =
(−1)n

rn

[

n
∏

k=1

(k − ∆χ)

]

i(r), (4.6)

i(n)(r) denotes the n-th radial derivative of i(r). Plugging this expression into the Taylor

expansion we find

i(r) = i(r+)
∞
∑

n=0

(

n− ∆χ

n

)

(

1 − r

r+

)n

(4.7)

Performing the binomial series we obtain i(r) = i(r+)(r/r+)∆χ−1, which yields the same

result as the previous analysis.

The susceptibility together with the holographic conductivities (3.26) yields the diffu-

sion constants

Dc,α = − L

∆χ

rθ−z

gαα(r)

∣

∣

∣

∣

r+

. (4.8)

The above results are still valid in the ζ 6= 0 case.

4.2 Analysis of the butterfly velocity in anisotropic systems

Following ref. [18], we determine the butterfly velocity for an anisotropic holographic system

using a shock-wave analysis. As mentioned in the introduction, the butterfly velocity can

be thought of as the velocity of growth of out-of-time-order correlation functions of local

operators. Holographically, it can be calculated from the back-reaction of the metric due

to a massless particle falling towards the horizon of the black hole. The velocity of growth

of this back-reaction can then be identified as the butterfly velocity.

For the subsequent analysis it is convenient to use Kruskal-coordinates

uv = −eγ′(r+)r⋆(r), u/v = −e−γ′(r+)t, (4.9)
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Figure 3. Black hole AdS space in Kruskal coordinates. The (x, y)-space, which is attached at each

point, is not shown. The boundary (left/right edge) is located at uv = −1, the horizon (diagonal

lines) is located at uv = 0 and the singularity (upper/lower edge) is located at uv = 1. Dashed

lines represent surfaces of constant u. Time t is flowing upwards in the right wedge and downwards

in the left wedge.

where γ′ denotes the radial derivative. uv = 0 and uv = −1 correspond to the horizon and

to the boundary respectively — see figure 3. The anisotropic metric (3.11) takes the form

ds2 = −guv (uv) dudv +
∑

α

gαα (uv) dx2
α.

Next we perturb the system by adding δTuu ∝ Ee2πT twδ(u)δ(x)δ(y) to the holographic

stress-energy tensor, which represents a particle of energy E released at the left boundary

at time tw in the past and propagating towards the u = 0 horizon [18, 99]. The perturbed

metric can then be expressed in the following shock-wave form

ds2 = −guv (uv) dudv + guv (uv)h(x, y)du2

+
∑

α

gαα (uv) dx2
α. (4.10)

The equation of motion for h (x, y) follows from Einstein equations at near the u = 0

horizon:
(

∑

α

∂2
α

c2
α

−m2
h

)

h(x, y) = bδ(x)δ(y), (4.11)

with cα =
√

gαα(0), b ∝ Ee2πT tw/guv(0) and mass

m2
h =

1

guv

∂ log(gxxgyy)

∂(uv)

∣

∣

∣

∣

∣

u=0

. (4.12)

Eq. (4.11) is consistent with the isotropic case of ref. [17]. The solution can be expressed

in terms of the 0th modified Bessel function of the second kind K0 as

h(x, y) ∝ −b cxcy

2π
K0(mh̺), (4.13)
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where ̺2 = c2
xx

2 + c2
yy

2. At large values of ̺, i.e. at large spatial distances, this gives

h(x, y) ∝ 1√
̺

exp

[

2πT

(

tw − mh

2πT
̺

)]

. (4.14)

From the exponent we can extract the direction-averaged scale for the velocity

v̄B =
2πT

mh
. (4.15)

In order to switch to the original system of coordinates, we use the identity uv guv(uv) =

gtt(r)/∂rgtt(r+)2 and obtain

v̄2
B = − 2πTL

deff − θ
rθ−z

+ . (4.16)

To determine the butterfly velocity along x, we consider the case where y = 0 and we move

in the x-direction. This gives
̺

v̄B
=
cx|x|
v̄B

≡ |x|
vB,x

. (4.17)

It then follows for the velocity along the α-direction

vB,α =
v̄B

√

gαα(r+)
, (4.18)

in accord with refs. [23, 45, 48, 55, 71, 72]. This result violates the upper bound of the

isotropic case pointed out in ref. [100], consistently with refs. [73, 74]

Considering the ratio between the diffusion constant (4.8) and the square butterfly

velocity we finally obtain
Dc,α

v2
B,α

=
deff − θ

∆χ

1

2πT
, (4.19)

which yields the result eq. (1.8) for the diffusivity bound.

5 Conclusions

Motivated by previous results in anisotropic Dirac systems [32], in this paper we analyzed

transport coefficients at a quantum Lifshitz point in the strong coupling limit, using scaling

arguments and exploiting the duality between quantum field theories and gravity theories.

We have focused on particle-hole symmetric theories at charge neutrality which admit a

gravitational dual description. We have shown that bounds on transport coefficients of the

isotropic case can be generalized to the anisotropic one.

We analyzed the behavior of several observables after a spacetime dilatation, emphasiz-

ing that the scale dimensionless ones must approach a constant value for low temperatures.

It turned out that some elements of the η/s-tensor have a nonzero dimension while the

diffusivity still exhibits the scaling of the rotational invariant case. In order to address the

former, we included the electric transport, multiplying the ratio by a specific combination

of conductivities such that the dimension of the resulting quantity is zero.

Within the Einstein-Maxwell-dilaton model considered, translational symmetry is bro-

ken along the y direction by a massless scalar in the bulk with a bulk profile linear in y.
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Thus, the x-component of the momentum is still conserved and Tαx continues to be the

current of a conserved quantity. Therefore, the viscosity tensor elements ηαxβx maintain

their meaning as hydrodynamic transport coefficients. Since we can find solutions of the

field equations that yield either φ < 1 or φ > 1, we can always construct an anisotropic

geometry that violates the isotropic viscosity bound for at least one tensor element, while

fulfilling the generalized bound given in eq. (1.7).

In the direction where translations are broken, momentum relaxes at a rate 1/τmr. In

a holographic system with slow momentum relaxation 1/τmr ≪ Λ, where Λ is a UV cutoff,

there is a range of intermediate times 1/τmr . t ≪ Λ where momentum is approximately

conserved. In this regime, the viscosity can be defined from the shear Kubo formula, yet is

still found to violate the viscosity-to-entropy-density-ratio bound. Alternatively, it is likely

that the diffusivity of transverse momentum is a better quantity to bound: the results

of ref. [63] show that it obeys a bound of the kind (1.2), with the speed of light as the

characteristic velocity.

We also discussed the effects of translational symmetry breaking on the conductivity-

viscosity bound, both in the explicit and spontaneous setups. In this latter case, deviations

from the bound are more suppressed for high enough temperatures than in the explicit one.

Differently from the other quantities, the diffusivity is not solely given by data on the

horizon and is expressed through an integral over the radial direction. Although we do

not have the full expression of bulk fields, we have derived a near horizon formula for the

compressibility, and could relate the diffusion constant to the horizon data in a simple

fashion. Indeed, the near IR geometry dominates at low temperature [16, 25, 26]. On the

other hand we have calculated the butterfly velocities by moving to the Kruskal system of

coordinates and using a generalization of the shock-wave technique. We have computed

the proportionality factor between the diffusivity to the square butterfly velocity ratio and

the inverse temperature, finding that it can be expressed in terms of the critical exponents

z, φ, and θ.

It is well-known that the KSS bound can be violated by terms containing more than two

derivatives of the metric (see ref. [101] for a review), which capture finite ’t Hooft coupling

corrections. A possible extension of our work would be to consider the effects of higher

derivative terms involving the massless scalars, along the lines of ref. [102]. Moreover,

particle-hole symmetry breaking could be taken into account as well.

In our work, the anisotropy was sourced by a massless scalar that also breaks transla-

tions. As we have discussed, only the bound involving the transverse viscosity is preserved.

In ref. [94], isotropy is broken by one of the spatial components of the gauge field acquiring

a vev. In this setup, translations are unbroken and viscosities are still well-defined hy-

drodynamic transport coefficients. Their results, specifically equation (14), show that the

bound (1.6) holds in this holographic setup. It would be interesting to further investigate

such systems, as well as different sources of spontaneous anisotropy, [103, 104].

Thus, we conclude that the transport properties of a strongly-interacting many-body

system near a quantum Lifshitz point can be efficiently described using holographic meth-

ods and requires a generalization of the viscosity bound obtained in isotropic theories.
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A Scaling of the viscosity tensor

In this appendix we offer an alternative derivation of the scaling dimension, eq. (2.17) of

the viscosity tensor. The analysis leads to results identical to those presented in section 2

of the paper.

Since the viscosity tensor describes the linear response to the temporal change of an

externally-applied strain field, we can also define it using the strain generators Jαβ . The

strain generators describe the deformation of the coordinate systems due to an applied

external strain and are given by [79, 80] Jαβ = xαkβ + i
2δαβ . Hence, the viscosity tensor is

defined as

ηαβγδ(ω) = ω Imχ
(J )
αβγδ(ω) , (A.1)

with χ
(J )
αβγδ(ω) being the Fourier transform of χJ

αβγδ(t) = −iθ(t)〈[Jαβ(t), Jγδ(0)]〉, where Jαβ

is the density of the strain generator Jαβ . In order to obtain the scaling dimension of the

correlation function, we assume for the strain generator density the same dimensionality

as the particle density ∆ρ = deff times the scaling dimension of the momentum coordinates

kβ, kδ and the spatial coordinates xα, xγ , which have the dimensionality of the inverse

momentum. We find for the correlation function of the two strain generators

χ
(J )
αβγδ(k⊥,k‖, ω) = b−∆J ,αβγδχ

(J )
αβγδ(bφk⊥, bk‖, b

zω) (A.2)

with ∆J ,αβγδ = deff − z − ϕα + ϕβ − ϕγ + ϕδ. Here we used the same notation as in the

main paper, where ϕα = 1 if the α-component is alinged along the direction of k‖ and

ϕα = φ for the direction of k⊥. Using ∆J ,αβγδ allows us to determine the scaling behavior

of the viscosity tensor

ηαβγδ(T, ω) = b−∆η,αβγδηαβγδ(bzT, bzω) (A.3)

with

∆η,αβγδ = ∆J ,αβγδ + z

= deff − ϕα + ϕβ − ϕγ + ϕδ , (A.4)

which is in agreement with eq. (2.17) of the main part of the paper.
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B IR models

In order to analyze the IR metric (3.15), we derive the hyperscaling-violating solutions in

the presence of both one and two massless scalar fields. It is worth to emphasize that the

radial coordinate parameterizing the IR geometry (3.15) does not coincide with the one in

the UV region (3.12) [26]. To be specific, we consider the matter Lagrangian

LM = −1

2
(∇ϕ)2 + V0r

2κδ −
p
∑

α=1

r2κλα

2
(∇ψα)2 − r2κζ

4
F 2, (B.1)

where p is the number of massless scalars and ψα = aαxα, with no index summation. In

the p = 1 case it reduces to (3.5).

The effective dilaton potential (3.10) looks like

Veff(r)√−g =
1

2

p
∑

α=1

a2
αr

2Λα−θ − V0r
2δκ, (B.2)

where Λ1 = κλx + φ and Λ2 = κλy + 1.

B.1 Marginally relevant case

In order to avoid radial dependences coming from the aα-terms, we set 2Λα = 2κδ + θ.

This corresponds to take the massless scalars as marginal deformations of the IR fixed

point. Furthermore, setting θ + 2δκ = 0 yields a set of algebraic equations in both the

cases p = 1, 2.

Let us start with the one single massless scalar case p = 1 — we omit the subscript

α = 1 everywhere. The solution to the field equations is given by:

z = φ, 2κδ = −θ, κλ = −1,

4κ2 = θ2 − 2θφ+ 2φ− 2,

L2 = (θ − 2φ− 1)(θ − 2φ)/V0,

a2 =
2V0(1 − φ)

θ − 2φ
. (B.3)

Note how a low momentum dissipation limit (a → 0) always restores the isotropy of the

system (φ = 1). In order to get a realistic solution, we demand the positivity of the squared

quantities and the specific heat c = T ∂T s. In addition, we require the vanishing of the line

element in the IR at T = 0, obtaining the following set of conditions:

θ < 2, θ2 + 2φ > 2θφ+ 2, φ > 1, (B.4)

θ > 2, θ2 + 2φ > 2θφ+ 2, θφ < φ2 + φ. (B.5)

In the former the IR is at r = ∞, in the latter at r = 0. The null energy condition (NEC)

turns out to be fulfilled.
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Figure 4. Parameter space for the double marginal massless scalars solution. The intersection

with the plane z = φ coincides with (B.5).

In the p = 2 case we find

2κδ = −θ, κλx = −φ, κλy = −1,

4κ2 = θ(θ − 2z) − 2φ(φ− z) − 2(1 − z),

L2 = (θ − 2z)(θ − φ− z − 1)/V0,

a2
x =

2V0(φ− z)

θ − 2z
, a2

y =
2V0(1 − z)

θ − 2z
, (B.6)

which reproduces eq. (B.3) in the ax = 0 case. The consistency conditions follows from

analogue considerations and are depicted in figure 4 — the NEC is automatically satisfied.

Even in this case, sending the momentum dissipation to zero restores the isotropy of the

system.

One can easily check that the above solution reproduces the single massless scalar one

when ax = 0.

B.2 Irrelevant case

Now we wish to investigate the p = 1 case, where the massless scalar acts as an irrele-

vant deformation of the IR endpoint. Details on the p = 2 mixed case can be found in

refs. [26, 55]. We firstly determine the solution when a = 0 and then consider perturbations

of the form:

Φ = Φa=0

(

1 + cΦa
2r2∆a

)

. (B.7)

Φ stands for the metric elements or the dilaton field, and cΦ are numerical coefficients that

follow from the O(a2) fields equations. Such corrections are expressed in terms of a2 as the

– 26 –



J
H
E
P
1
1
(
2
0
2
0
)
0
8
8

massless scalar enters quadratically the field equations. The leading solution is given by

z = φ = 1,

4κ2 = θ(θ − 2),

L2 = (θ − 2)(θ − 3)/V0, (B.8)

provided that θ + 2δκ = 0. Moreover we obtain

∆a = 1 + κλ (B.9)

in accord with ref. [26].5 The consistency conditions read

θ < 0, ∆a < 0, (B.10)

given that the IR is located at r → +∞.

C The holographic dual of out-of-time-order correlation functions

In the context of the butterfly velocity, we consider out-of-time-order correlation functions

(OTOCs) of the form C(~x, tw) = −〈[A(~x, tw), B(0, 0)]2〉, where A and B are hermitian

local operators. In order to translate such functions to the holographic language, it is

convenient to regularize them by rotating one of the commutators halfway around the

thermal circle [22]. This results in

C(~x, tw) = −tr [ȳ[A(~x, tw), B(0, 0)]ȳ[A(~x, tw), B(0, 0)] , (C.1)

where ȳ is the squareroot of the density matrix. Next, we introduce the thermofield-double

(TFD) state

|β〉 =
1

Z1/2

∑

n

e−βEn/2 |n〉L|n〉R , (C.2)

with the partition function Z and the inverse temperature β. This state lies in the product

space of two copies of the Hilbert space and |n〉L and |n〉R denote energy Eigenstates with

Eigenvalues En in the respective copies. Operators acting on the two copies are defined

as OL = O⊤ ⊗ 1 and OR = 1 ⊗ O. With these definitions, the regularized OTOC can be

written as an expectation value in the TFD state, i.e.

C(~x, tw) = − 〈β| [BL(0, 0), AL(~x, tw)] · [AR(~x, tw), BR(0, 0)]|β〉 . (C.3)

Furthermore, we note that the TFD state is invariant under time translations generated

by Htot = HR −HL.

To proceed, we need to investigate the transition amplitudes prepared by |β〉 in order

to identify the spacetime connecting the L and the R system. For two given states |ξ〉 and

|ζ〉, these transition amplitudes are given by

〈ξ|R〈ζ|L|β〉 ∝ 〈ζ|e−βH/2|ξ̃〉 , (C.4)

5Notice the different normalization 2κhere = κthere.
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where the conjugate state |ξ̃〉 is defined such that 〈n|ξ̃〉 = 〈ξ|n〉 for all states |n〉. This

definition is only well-defined if the states |n〉 are redefined by |n〉 → e−iarg〈ξ|n〉 |n〉 in

order to make the scalar products real. Using the fact that the Hamilton operator H is

obtained from the Hamilton density by integrating over the position space P, the transition

amplitude shows that the L and R systems are connected by the spacetime

B = [0, β/2] × P. (C.5)

According to the holographic dictionary, this spacetime is the boundary of its holographic

dual. It was shown in [105], that the holographic dual of the TFD state is given by

a two-sided black hole spacetime. For simplicity, we will demonstrate this for the case

of a one-dimensional position space P, but the results hold in any dimension. We first

consider a Euclidean black hole in three dimensions, whose metric can be written in the

two equivalent forms

ds2 = (r2 − r2
+)dτ2 +

1

r2 − r2
+

dr2 + gxx(r)dx2, (C.6)

ds2 =
4

(1 − zz⋆)2
dzdz⋆ + gxx(zz⋆)dx2. (C.7)

The coordinate x is restricted to the position space P and the two expressions are related

by z = e
2π
β

(r⋆(r)−iτ)
with the tortoise coordinate. Here, gtt(r) = gττ (r) = r2 − r2

+ and

grr(r) = 1/(r2 − r2
+).

If τ is restricted to the Euclidean time interval [0, β/2], the boundary of the Eu-

clidean black hole is equal to B. This can be achieved by cutting the spacetime along the

Im(z) = 0 surface. Furthermore, the metric is invariant under time translations of the form

z → z · e−i 2π
β

∆τ
. Such time translations change the position of the Im(z) = 0 surface, but

leave the distance between its two boundary points invariant.

What remains to be implemented, is the Lorentzian time invariance. We achieve this

analytic continuation by introducing Kruskal coordinates z = −v and z⋆ = u, yielding

ds2 =
−4

(1 + uv)2
dudv + gxx(uv)dx2. (C.8)

This metric is invariant under Lorentzian time translations u → u · e− 2π
β

∆t
, v → v · e

2π
β

∆t
.

In order to continuously connect the Kruskal coordinate frame to the Euclidean black hole,

we rewrite u = t+ w and v = t− w, giving

ds2 =
−4

(1 + t2 − w2)2
dt2 +

4

(1 + t2 − w2)2
dw2 + gxx(uv)dx2. (C.9)

At t = 0, this metric is equal to the Euclidean black hole at the Im(z) = 0 surface. Thus,

we can glue the Kruskal extension of the Lorentzian black hole to the Euclidean black hole

along these surfaces (see figure 5). The resulting spacetime is the holographic dual of the

TFD state.

Now that we have demonstrated the duality between the TFD state and a two-sided

black hole for a one-dimensional P, we can return to a two-dimensional P and implement
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τ

tt

vu

Figure 5. The plane represents the two-sided black hole in Lorentzian time. This is glued to the

Im(z) = 0 surface of the Euclidean spacetime along the t = 0 surface. The boundary regions L and

R are separated along the thermal circle by a Euclidean time interval of length β/2. Lorentzian

time flows forwards on the right boundary and backwards on the left boundary. The position space,

which is attached at each point, is omitted.

the effect of the OTOC. OTOCs are used as a measure for the butterfly effect, which

describes how a microscopic effect (on UV energy scales) can become a macroscopic effect

(on IR energy scales) at later times. This motivated Shenker and Stanford to propose that

the OTOC can be modelled hoographically by a massless particle, which is thrown into the

system at the boundary (the UV region) and has an effect at the horizon (the IR region)

at a later time [18].

In order to quantify the effect of such a particle, we start with the action of a point

particle, which can be written in the form

S[zρ] =
1

2

∫

dλ e(λ)

(

1

e(λ)2

dzα

dλ

dzβ

dλ
gαβ(zρ(λ)) −m2

)

. (C.10)

Here, zρ(λ) is a geodesic with affine parameter λ and e(λ) is a non-dynamical auxiliary field

called ‘Einbein’. In the massive case, this field is entirely fixed by the field equations and

in the massless case, it can be interpreted as a gauge degree of freedom. The stress-energy

tensor for a massless particle is given by

Tµν(xρ) =
2

√

−g(xρ)

δS
δgµν

=

∫

dλ
1

e(λ)

dzµ

dλ

dzν

dλ

δ(4)(xρ − zρ(λ))
√

−g(xρ)
. (C.11)

A light-like infalling geodesic requires dt/dr = −1/γ(r). If the particle is inserted at the

boundary at time −tw, the resulting geodesic is given by

(zµ(λ))⊤ = (−r⋆(r̄(λ)) − tw, r̄(λ), 0, 0), (C.12)

where r̄(λ) denotes the radial coordinate at position λ. If λ is identified with the radial

coordinate, e(λ) has units of inverse mass and can be identified as the inverse of the particle
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energy E. Such a parameterization may not in general be a solution of the geodesic

equation. However, for a different parameterization, the resulting stress-energy tensor

would only change by a global factor. It is thus sufficient to assume the r̄(λ) = λ case.

The stress-energy tensor is now given by

Tµν(xρ) = E
δ(x)δ(y)δ(t+ tw + r⋆(r))

√

−g(xρ)
·
(

δµtδνt

γ2(r)
− δµtδνr + δµrδνt

γ(r)
+ δµrδνr

)

. (C.13)

At large tw, after switching to Kruskal coordinates, the only non-vanishing component of

the stress-energy tensor for a particle inserted at the right boundary is given by

Tvv ∝ Ee
2π
β

twδ(x)δ(y)δ(v). (C.14)

For a particle inserted at the left boundary, time is reversed (t ↔ −t), which is equivalent

to u ↔ v. In this case, the stress-energy tensor is given by

Tuu ∝ Ee
2π
β

twδ(x)δ(y)δ(u). (C.15)

As discussed above, perturbing a two-sided black hole with this stress-energy tensor results

in a shock wave, which can be identified as the OTOC.
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