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Quantum critical states and phase transitions in the presence of non equilibrium noise
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Quantum critical points are characterized by scale invariant correlations and correspondingly long
ranged entanglement. As such, they present fascinating examples of quantum states of matter, the
study of which has been an important theme in modern physics. Nevertheless very little is known
about the fate of quantum criticality under non equilibrium conditions. In this paper we investigate
the effect of external noise sources on quantum critical points. It is natural to expect that noise
will have a similar effect to finite temperature, destroying the subtle correlations underlying the
quantum critical behavior. Surprisingly we find that the ubiquitous 1/f noise does preserve the
critical correlations. The emergent states show intriguing interplay of intrinsic quantum critical and
external noise driven fluctuations. We demonstrate this general phenomenon with specific examples
in solid state and ultracold atomic systems. Moreover our approach shows that genuine quantum
phase transitions can exist even under non equilibrium conditions.

I. INTRODUCTION

An important motivation for investigating the behav-
ior of non-equilibrium quantum states comes from state
of the art experiments in atomic physics. Of particu-
lar interest in this regard are systems of ultracold po-
lar molecules[1, 2] and long chains of ultracold trapped
ions[3]. On the one hand these systems offer unique pos-
sibilities to realize strongly correlated many-body states,
which undergo interesting quantum phase transitions[4–
6]. But on the other hand they are controlled by large
external electric fields, which are inherently noisy and
easily drive the system out of equilibrium[7, 8]. It is nat-
ural to ask what remains of the quantum states, and in
particular, the critical behavior under such conditions.
The effect of non-equilibrium noise on quantum criti-

cal points is also relevant to more traditional solid-state
systems. Josephson junctions, for example, are known
to be affected by non-equilibrium circuit noise, such as
1/f noise. Without this noise a single quantum Joseph-
son junction should undergo a text-book quantum phase
transition[9, 10]: depending on the value of a shunt resis-
tor, the junction can be in either a normal or a supercon-
ducting state. A phase transition occurs at a universal
value of the shunt resistance Rs = RQ = h/(2e)2, inde-
pendent of the strength of the Josephson coupling. This
is closely related to the problem of macroscopic quantum
tunneling of a two level system (or q-bit) coupled to a
dissipative environment[11].
There is a large body of work on 1/f noise as a source of

decoherence for superconducting q-bits (see e.g. [12, 13]).
However the effect of such noise on the quantum phase
transitions and the non equilibrium steady states of
Josephson junctions poses fundamental open questions.
Do the different phases (superconducting or normal) re-
tain their integrity in presence of the noise? Is the phase
transition between them sharply defined?
In certain cases it was argued that a non equilib-

rium drive may act as an effective temperature[14, 15].
And temperature is known to be a relevant perturbation,

which destroys quantum criticality[16, 17]. In contrast,
we find that the external 1/f noise is only a marginal per-
turbation at the critical point in many cases of interest.
This is exemplified in Sec. II for a shunted Josephson
junction subject to charge noise. In section III we inves-
tigate the potentially richer physics of one-dimensional
systems of ultra cold polar molecules or trapped ions.
These systems form a critical state at T = 0, which
can undergo pinning in the presence of a commensurate
lattice or a single impurity. Pinning occurs as a quan-
tum phase transition at a critical value of the correla-
tion exponent[18] (For application to ion traps see Ref.
[6]). Another interesting phenomenon in ion chains is the
zigzag instability[19], which is expected to evolve into a
true quantum phase transition in the limit of long chains.

Again the relevant issue is the fate of these critical
states and quantum phase transitions in the presence of
noisy electrodes. Such noise has been characterized in re-
cent experiments with ion traps[7, 8], where it was found
to have a 1/f power spectrum and attributed to localized
charge patches on the electrodes. A crucial result of our
analysis is that such noise preserves the critical states,
and the exponents are continuously tuned by it. The fact
that the system is out of equilibrium is betrayed by the
linear response to an external probe, such as light scat-
tering. The energy dissipation function of the scattered
light can become negative for sufficiently strong external
noise, exhibiting gain instead of loss.

The long wavelength description of the noise-driven
steady state allows us to study its stability to vari-
ous static perturbations within a renormalization group
framework. In this way we describe pinning by a static
impurity and by a lattice potential. We show that
pinning-depinning occurs as a phase transition driven by
interplay of the intrinsic quantum fluctuations and the
external noise. Before proceeding we note previous work
which found modified quantum criticality in cases where
the non equilibrium conditions were due to an imposed
current[20, 21].

http://arxiv.org/abs/0908.0868v2
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FIG. 1: Effects of non-equilibrium noise on the localization quantum phase transition of a single shunted Josephson junction:
(a) Electronic circuit relevant to a resistively shunted Josephson junction with charging noise. (b) Critical resistance R/RQ

as function of the noise strength F0, in the weak coupling limit. (c) Critical conductance R/RQ as function of the noise
strength F0, in the strong coupling limit. Figures (a) and (b) are related by the duality transformation R/RQ → RQ/R
and ”superconductor”↔”insulator”. (d) Schematic phase diagram at equilibrium (dotted line) and in the presence of non-
equilibrium one-over-f noise (dashed line)

II. PHASE TRANSITION IN A NOISY
JOSEPHSON JUNCTION

In our discussion of the Josephson junction we con-
sider the standard circuit shown in Fig. 1(a). The offset
charge eN0 on the capacitor has random time dependent
fluctuations with a 1/f spectrum [22] 〈N∗

0 (ω)N0(ω)〉 =
F0/|ω|. This is modeled by the fluctuating voltage source
VN (t) = eN0(t)/C.
Weak coupling – Consider first the system at vanishing

Josephson coupling, which is then just an RC circuit.
Treating the resistor as an ohmic bath in thermal contact
with the system[23] results in the Langevin equation for
a damped quantum oscillator:

1

2
cθ̈ + ηθ̇ = ζ(t) +

1

2
Ṅ0(t). (1)

Here c = ~C/2e2 and η = (1/2π)RQ/R. The ran-
dom forcing term ζ(t) originates from the equilibrium
bath, and therefore at T = 0 has the power spectrum
〈ζ⋆ωζω〉 = η|ω|. The other random forcing term is the
time derivative of the charge noise. Since the charge fluc-
tuations have a spectrum ∼ F0/|ω|, the power spectrum

of Ṅ0 is ∼ F0|ω|, which mimics the resistor noise. Un-
like the resistor, however, external fluctuations do not
have an associated dissipation term. This is because the
noise source is not in thermal contact with the system.
Thus the fluctuation dissipation theorem is violated in
the presence of the non-equilibrium noise source.
Using the linear equation of motion (1) we can compute

the phase autocorrelation function:

〈cos [θ(t)− θ(0)]〉 ∼ t−(1+F0/η)/πη (2)

Interestingly, the non equilibrium noise does not destroy
the power-law scaling, but modifies the exponent. We

conclude that a critical (scale-invariant) non-equilibrium
steady state obtains in presence of the external noise.
The important question to address in the context of

weak coupling, is under what conditions the critical
steady-state we just described is stable to introduction
of the Josephson coupling as a perturbation. That is,
we should find how the perturbation transforms under a
scale transformation that leaves the critical steady state
invariant. To investigate this we turn to formulation of
the dynamics in terms of the Keldysh action described in
the methods section. The quadratic action (7) describing
the RC circuit is scale invariant, whereas the Josephson
coupling term

SJ = J

∫

dt [cos θf (t)− cos θb(t)] (3)

is not in general. Here θf (θb) is the field on the for-
ward (backward) part of the Keldysh contour. From
the decay of the correlation function (2) we can directly
read off the anomalous scaling dimension of the per-
turbation, which is α = 1 − (1 + F0/η)/2πη. When
α > 0 the perturbation grows under renormalization
and ultimately destabilizes the critical steady-state. We
therefore predict a phase transition at a critical resis-
tance R∗/RQ =

(√
8πF0 + 1− 1

)

/4πF0, below which,
the Josephson coupling term becomes relevant. Note
that we recover the equilibrium dissipative transition at
R∗ = RQ in a ”quiet” circuit (F0 = 0). We can tune
across the transition also by maintaining a constant resis-
tance R < RQ and increasing the non-equilibrium noise
”power” F0, as shown in Figure 1 (b).
Within the weak coupling theory we do not have direct

access to the properties of the steady-state at R < R∗.
However because the Josephson coupling grows under
renormalization it is reasonable to expect that the junc-
tion would be superconducting. To determine this with
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more confidence we shall now take the opposite, strong
coupling viewpoint.
Strong coupling – We employ a well known duality

between weak and strong coupling [9, 24], under which
cooper pair tunneling J

∫

dt cos(θ) is mapped to tunnel-
ing of phase slips across the junction Sg = g

∫

dt cos(φ).
Concomitantly the resistance R/RQ is mapped to a nor-
malized conductance RQ/R. In the strong coupling limit
of the Josephson junction J >> e2/c, the dual action,
with a phase slip tunneling Sg, is at weak coupling.
The scaling analysis can proceed in the same way as
above, giving a transition at the value of shunt resistance
R∗/RQ = 4πF0/(

√
8πF0 + 1−1). For R < R∗ the phase-

slip tunneling Sg is irrelevant. That is at asymptotically
long times all phase slip events making the supercon-
ducting state stable for R < R∗, at least in the strong
coupling limit.
The combined results of the weak and strong coupling

analysis imply a phase diagram of the form shown in
Figure 1(d). At weak coupling the critical resistance,
in presence of noise, occurs at R∗ which is smaller than
RQ, while at strong coupling R∗ is larger than RQ. The
dashed line in this figure shows a simple interpolation of
the phase boundary between the two limiting regimes.
However, we cannot exclude the possibility that new
phases, such as a metallic phase arise at intermediate
coupling.

III. ONE DIMENSIONAL CHAINS OF POLAR
MOLECULES OR TRAPPED IONS

We now turn to investigate the interplay between crit-
ical quantum fluctuations and external classical noise in
one-dimensional systems. Good laboratories for studying
such effects are ions in Ring or linear Paul traps, as well
as Polar molecules confined to one dimension. Because
of the confinement to one dimension both systems are af-
fected by quantum fluctuations. On the other hand they
are also subject to noisy electric fields that can influence
the steady state correlations.
In ion traps, the fluctuations of the electric potential,

which couples to the ionic charge density have been care-
fully characterized[7, 8]. The noise power spectrum was
found to be very close to 1/f and with spatial structure
indicating moderately short range correlations. In the
molecule system electric fields are used to polarize the
molecules, and fluctuations in these fields couple to the
molecule density via the molecular polarizability.
Our starting point for theoretical analysis is the univer-

sal harmonic theory describing long wavelength phonons
in the one dimensional system[25], which is written in
terms of the displacement field φ(x, t) of the parti-
cles from a putative Wigner lattice. The long wave-
length density fluctuations are represented by the gra-
dient of the displacement field, (−1/π)∂xφ(x, t). The
part of the density with fourier components of wave-
lengths near the inter-particle spacing are encoded by

ÔDW = ρ0 cos(2πρ0x + 2φ(x, t))[18, 25], where ρ0 is the
average density. The operator ODW = ρ0 cos(2φ(x, t))
is density wave (or solid) order parameter field of the
Wigner lattice. As in the Josephson junction, we wish
to address two questions; (i) How does the external noise
affect the steady-state, which in equilibrium exhibits al-
gebraic correlations; (ii) How does it influence phase tran-
sitions, such as the lattice pinning transition.
We model the external electric noise as a random

time dependant field coupled to the particle density.
In general, the noise couples to both components of
the density via the terms −f(x, t)π−1∂xφ(x, t) and
ζ(x, t)ρ0 cos(2φ(x, t)). For now we assume that the noise
source is correlated over sufficiently long distances, that
its component at spatial frequencies near the particle
density (ζ(x, t)) is very small and can be neglected.
In this case the long wave-length theory remains har-
monic. We shall characterize the noise by its power spec-
trum F (q, ω) = 〈f(q, ω)f(−q,−ω)〉. We take this to be
1/f noise with short range spatial correlations, that is
F (q, ω) = F0/|ω|.
When the system is irradiated with external noise we

expect it to absorb energy. In order to stabilize a steady
state we need a dissipative bath that can take this energy
from the system. In the Josephson junction problem,
the resistor naturally played this role. Is there a similar
dissipative coupling in the one dimensional systems under
consideration here?
In the ion traps, there is a natural dissipative coupling

because these systems can be continuously laser cooled.
Thus the system can reach a steady state, which reflects a
balance between the laser cooling and the external noise
(see Appendix A). The polar molecules do not couple to a
natural source of dissipation, however a thermal bath can
in principle be realized by immersion in a large atomic
condensate[26]. In the Appendix we show that the bath
generated by a two dimensional weakly interacting con-
densate provides the needed dissipation.
The combined effects of interactions, external noise

and dissipation, are described by a quadratic Keldysh
action as shown in the methods section (8). This is the
natural extension from the single junction (7) to the one
dimensional chain. But there is an important difference.
The harmonic chain, is scale invariant only without the
noise and dissipation terms, which are strictly speak-
ing relevant perturbations of this fixed point. Indeed,
the dissipative coupling generates a relaxation time-scale
τ ∼ 1/η, which breaks the scale invariance. To retain the
scale invariance and still drive the system out of equilib-
rium we can consider the interesting limiting regime in
which both η → 0 and F0 → 0, while the ratio F0/η
tends to a constant. Then the correlation function is
easily calculated and seen to be a power law

〈cos(2φcl(x)) cos(2φcl(0))〉 ∼ x−2K(1+π−2F0/η) (4)

where K is the Luttinger parameter, which determines
the decay of correlations at equilibrium (F0 = 0). The
same exponent holds for the temporal correlations. We
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FIG. 2: Effects of non-equilibrium noise on the response to
Bragg spectroscopy: (a) Imaginary part of the response func-
tion χ′′(q, ω) in a one dimensional system with K = 0.5, at
equilibrium (F0 = 0). (b) Same plot, in the presence of a
strong 1/f noise with F0/η = 4π2.

see that the dimensionless ratio F0/η, which measures the
deviation from equilibrium, acts as a marginal perturba-
tion. In practice η and F0 are non vanishing. Then the
result (4) will be valid at scales shorter than 1/η. Cor-
relations will decay exponentially at longer scales. Thus
η serves as an infrared cutoff of the critical steady-state.
In practice however the system size or cutoff of the 1/f
spectrum may set more stringent infrared cutoffs.

The density-density correlations can be measured di-
rectly by light scattering. The (energy integrated) light
diffraction pattern in the far field limit gives directly the
static structure factor S(q) = 〈ρ−qρq〉 of the sample. In
particular, the power-law singularity in S(q) near wave-
vector q0 ∼ 2πρ0 is just the Fourier transform of the
power law decay of the Wigner crystal correlations (4).

We can also compute the decay of phase correlations
〈cos[θ(x) − θ(0)]〉, which in the system of cold molecules
may be measured by interference experiments [27]. By
considering the dual representation of the harmonic ac-
tion (8) we find a decay exponent (1 + F0/η)/2K.

At equilibrium both crystalline and phase correlations
are controlled by K alone: reducing K (by increasing
interactions) leads to a slower decay of density-wave cor-
relations and concomitantly faster decay of phase correla-
tions. This duality, a consequence of minimal uncertainty
between phase and density in the harmonic ground state,
is violated in the presence of noise. Increasing the noise
leads to a faster decay of both the density and phase
correlations.

A. Response

Under the non-equilibrium conditions, the fluctuation
dissipation theorem does not hold in general and we
should consider response functions separately from the
correlations. Here we discuss the density-density re-
sponse, whose fourier-transform gives the linear response
of the density of the system to a dynamic perturbation
consisting of a weak periodic potential with wave-vector
q, oscillating at a frequency ω. This is the response func-
tion probed by Bragg spectroscopy[28–30].
The combined response at small wave-vectors q ≪ q0 =

2πρ0 is unmodified by the noise. This is because the
probe field at couples linearly to φ via the smooth part
of the density ∼ ∂xφ. Since the system is harmonic,
any two perturbations that couple linearly to the oscil-
lator field simply add up independently. Hence we have
χ′′(q, ω) = K|q|Θ(ω)δ(ω − q) as in equilibrium. On the
other hand, the response at wave-vectors near the inverse
inter-particle distance involves a non-linear coupling via
the component of the density ρq0(x, t) = cos(q0x + 2φ).
We calculate this exactly and obtain (see Appendix B)

χ′′(q, ω) = C (K,K⋆) (ω
2 − δq2)K⋆−1Θ(ω2 − δq2)

C(K,K⋆) =
1

4Γ2(K⋆)

sin(πK)

sin(πK⋆)
(5)

Here Γ is the Gamma function, δq ≡ q− q0, and we have
defined K⋆ ≡ K(1 + π−2F0/η).
The response near q = 0 and q = q0 is shown in Fig. 2.

By comparing the plot in panel (a), showing the case of
vanishing noise, to panel (b) where F0/η = 4π2, we see
that the noise turned the divergent response at q = q0 to
a power law suppression. What betrays the fact that the
spectrum (b) stems from non-equilibrium conditions and
not just weaker interactions? Consider the relation be-
tween the the response and the energy dissipation func-
tions Ė(q, ω) = ωχ′′(q, ω), i.e. the rate by which the
probe is doing work on the system. Inspecting the pre-
factor C(K,K⋆) in Eq. (5) we find, that for sufficiently
strong noise F0/η > π2(1 − K)/K (for K < 1), the en-
ergy dissipated by the probe can become negative, which
would be strictly prohibited if the system was at equilib-
rium.
The situation is analogous to a laser, where gain is

achieved by pumping the medium out of equilibrium to
“population inversion”. Here the external 1/f noise plays
the role of the pump. In contrast to a laser the gain spec-
trum is continuous and reflects the critical properties of
the many-body steady state. Eq. (5) implies a com-
mensurability effect between the noise and the intrinsic
interactions that leads to oscillations between gain and
loss as a function of the noise power.

B. Non equilibrium phase transitions

We have seen that by changing the 1/f noise one can
continuously tune the critical exponent associated with
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the power-law decay of correlations in one dimensional
quantum systems. As in the case of the Josephson junc-
tion, we can ask if it is possible to use the new knob to
tune across a phase transition.
A text book[18] phase transition in one dimensional

quantum systems is that of pinning by a commensurate
periodic lattice potential. In equilibrium it occurs be-
low a universal critical value of the Luttinger parameter
Kc = 2, regardless of the strength of the potential. In the
context of the real time dynamics, the periodic potential
is added as a perturbation to the action (8)

Sg = g

∫

dxdt cos(2φ(x, t)) (6)

The scaling of the perturbation (6) in the critical steady
state is determined with the help of the correlation func-
tion (4). We find that the action of the periodic lattice
has the scaling dimension αp = 2−K(1+π−2F0/η). This
implies an instability, which signals a phase transition to
a pinned state for F0/η < π2(2K−1 − 1). In particular
for F0 = 0 we recover the equilibrium pinning (or Mott)
transition at the universal value of the Luttinger param-
eter Kc = 2. Note that for K > 2 the system is always
unpinned because F0 is non-negative.
A pinning transition can also occur in the presence of

a single impurity [31]. The main difference from the pre-
vious case is that this perturbation is completely local
and therefore its scaling dimension is reduced by 1 rela-
tive to the periodic potential: αi = 1−K(1+ π−2F0/η).
Accordingly the de-pinning transition occurs at a lower
critical noise F0/η = π2(K−1 − 1), than in the case of
the periodic potential.

IV. DISCUSSION AND CONCLUSIONS

We described a new class of non-equilibrium quantum
critical states and phase transitions, which emerge in the
presence of external classical noise sources. Physical ex-
amples include a Josephson junction and one dimensional
chains of trapped ions or polar molecules coupled to 1/f
noise. In contrast to thermal noise, which destroys quan-
tum criticality, the 1/f noise preserves the algebraic de-
cay of correlations and thus acts as a marginal pertur-
bation at the quantum critical point in these systems.
A noise that deviates from 1/f at low frequencies, e.g.
1/f1+ǫ, is relevant (irrelevant) for ǫ > 0 (ǫ < 0). How-
ever, for |ǫ| << 1 the critical correlations will be main-
tained below the crossover scale t∗ ∼ t0 exp(1/|ǫ|), where
t0 is the short time cutoff.
The critical exponents associated with both phase and

density correlations are varied continuously by the noise,
which also destroys the well known duality between the
two. An even more dramatic effect of the non-equilibrium
conditions is betrayed by the dissipative response of the
critical steady-state to an external probe field, which for
strong noise can change sign and turn from loss to gain.

Quantum phase transitions, such as pinning of the
crystal by an impurity or by a commensurate lattice po-
tential can take place in the presence of the external,
non-equilibrium noise. In particular the system can be
tuned across the depinning transition by tuning the noise
power.
It would be interesting to extend these ideas to higher

dimensional systems, such as one or two dimensional ar-
rays of coupled tubes of polar molecules. The natural
phases in equilibrium are the broken symmetry phases,
either superfluid or charge density wave. The intrigu-
ing sliding Luttinger liquid phase, which retains the one
dimensional power-law correlations despite the higher di-
mensional coupling, is expected to be stable only in a nar-
row parameter regime[32]. Because the 1/f noise acts to
suppress both the phase and density correlations it will
act to stabilize this phase in a much wider regime. It
would also be interesting to consider the effect of the
noise on more complex phase transitions, such as the
zigzag instability of ion chains[19] as well as Josephson
junction arrays[33].
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V. METHODS

a. Keldysh action of the quantum Josephson Junction
The linear quantum Langevin equation (1) is equivalent
to the quadratic Keldysh action [34]

S0 =
∑

ω,q

(θ∗cl θ̂∗)
(

0 1
2cω

2 − iηω
1
2cω

2 + iηω −2iη|ω| − 2iω2 F0

|ω|

)(

θcl
θ̂

)

(7)

Here θcl, and θ̂ are the ”classical” and ”quantum” fields.
As usual they are defined as the symmetric and anti-
symmetric combinations, respectively, of the fields asso-
ciated with forward and backward time propagation of

operators: θcl = (θf + θb)/2, θ̂ = θf − θb. The josephson
coupling (3) is added to this action.
We note that the contribution of the non equilibrium

noise has the same scaling dimension as the terms coming
from the resistor ∝ |ω|. By contrast the capacitive term
∝ ω2 is irrelevant, at low frequencies. As a result, the
fixed-point action, governing the exponent of (2), does
not depend on c.
b. Keldysh action for one-dimensional systems The

Keldysh action that describes the long wavelength den-
sity fluctuations, coupled to the external noise and the
dissipative bath is given by
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S0 =
∑

ω,q

(φ∗
cl φ̂∗)

(

0 1
πK (ω2 − q2)− iηω

1
πK (ω2 − q2) + iηω −2iη|ω| − 2i q

2

π2

F0

|ω|

)

(

φcl

φ̂

)

(8)

Here F0/|ω| is power spectrum of the external noise. The
factor of q2/π2 in front of this term appears because the
noise couples to (1/π)∂xφ, the smooth part of the density.
η denotes the dissipative coupling, which is derived in
Appendix A.

Appendix A: Microscopic model for the dissipative
bath

To reach a steady state, the models studied in the pa-
per require coupling to a dissipative bath, that can take
away the excess energy produced by the external noise
sources. In the Josephson junction the dissipation was
naturally provided by a resistor. In the one dimensional
systems which we addressed, the dissipation must be pro-
vided by some kind of cooling apparatus. In the ion chain
this is done with continuous laser cooling. For the system
of dipolar molecules we proposed to realize the required
dissipation by sympathetic cooling, via immersion in a
large condensate.
In this appendix we describe the two methods in some

detail and show that they indeed lead to the required
dissipative term in the action, proportional to |ω|.

Laser Cooling

The motion of a laser cooled ion is described[35] by the
Langevin equation

ṗi(t) = −γpi(t) + Fi(t) + ζi(t), (A1)

where pi(t) is the momenutum of the ion, γ the damping
rate (in the case of doppler cooling γ equals half the re-
coil energy). Fi(t) is the force affected on the ion i by the
confining potential and the neighboring ions. For exam-
ple the harmonic force from the neighboring ions would
be K(xi+1 +xi−1 − 2xi). The stochastic force ζ(t) stems
from spontaneous emission events. Note that both the
dissipation γ and the fluctuations ζi(t) are completely
local. This is because they originate from absorption
and emission of photons of very short wavelength (much
shorter than the inter ion distance) corresponding to an
atomic transition. Moreover, the master equation associ-
ated with laser cooling alone (i.e. in absence of any exter-
nal noise) has only one attractive steady state solution,
which is a thermal state of the harmonic oscillators at
some effective temperature Teff [35]. The quantum recoil
noise due to spontaneous emissions must therefore have
the thermal spectrum 〈ζ⋆ωζω〉 = 2γ Teff coth(ω/2Teff).
The Langevin equations are easily transferred to the

continuum limit of the ion chain. The momentum p(t)
becomes the field Π(x, t), canonically conjugate to the
ion field φ(x, t), which represents the displacements of
the ions from their putative lattice. Accordingly, the
harmonic interaction between ions in the chain leads to
the force F → −(1/πK)∂2

xφ(x, t). Next we recast the
harmonic Langevin equations in the form of a Keldysh
action in the standard way[34]. For ground state cooling,
i.e. in the limit Teff << ωmin the action can be written
as

S0 =
∑

ω,q

(φ∗ φ̂∗)
(

0 1
πK (ω2 − q2)− iγω

1
πK (ω2 − q2) + iγω −2iγ|ω|

)(

φ

φ̂

)

. (A2)

Of course, to this action we must independently add the
external 1/f noise which will lead to the action of Eq. (8)
in the methods section. We see that the establishment of
laser cooling as a thermal dissipative bath stems directly
from (i) the locality of the cooling process, and (ii) the
fact that Laser cooling acting alone (without the external
noise) leads to a thermal state.

Immersion in a condensate

A practical way to provide a dissipation (and cool-
ing) mechanism in a one dimensional system of ultracold
molecules is to immerse it in a large atomic condensate.
The BEC is in turn evaporatively cooled in the standard
way. We will show below, that within a wide regime this
scheme indeed leads to the local ohmic dissipation (i.e.
∝ |ω| and independent of wave-vector), needed to bal-
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ance the 1/f noise. The crucial conditions which need to
be satisfied to obtain local ohmic dissipation as required,
are (i) that the atomic condensate is two dimensional; (ii)
that its sound velocity is much smaller than the velocity
of phonons in the molecular chain.
The coupling between the atoms and the

molecules is via a density-density interaction
Ham = g

∫

ddrδρm(r)δρa(r). To derive the dissipa-
tive term for the molecules we integrate out the density
fluctuations of the atomic condensate. This results in a
coupling term in the effective action for the molecules

Sdiss =
g2

2

∫

drdr′δρm(r′)χa(r
′ − r)δρm(r). (A3)

Here and in what follows we employ the imaginary time
(Matsubara) formalism and we have denoted r ≡ (x, τ).
The interaction is mediated by χa(r), the density density
correlation function, or phonon propagator, in the two
dimensional atomic condensate. In Fourier space: χ̃a =
q2/(ω2 + v2aq

2), where va is the sound velocity in the

atomic condensate.

To make further progress we turn to the long-
wavelength (“bosonized”) form for the density fluctua-
tion of the molecules δρm(r) = π−1∂xφ+ρ̄m cos(2πρmx+
2φm(r)), plugging it into the effective action (A3). Due
to the spatial derivative, the first term gives rise to an
irrelevant coupling ∝ q2. The other component of the
density leads to

Sdiss = −g̃2
∫

drdr′ρ2eiq0(x−x′)χa(r−r′) cos(2φm(r)−2φm(r′))

(A4)
where q0 ≡ 2πρ̄m. Because of the fast decay of the ker-
nel, only nearby molecules contribute to this interaction
appreciably. Moreover, since we are dealing with dipo-
lar molecules with strong and extended repulsive inter-
actions, the relative positions of nearby molecules are
effectively pinned, and we can safely replace the cosine
term by the quadratic expansion of its argument. We
obtain the quadratic dissipative action

Sdiss = g̃2
∑

i

ω

∫

d2q [χ̃a(q0, 0, 0)− χ̃a(qx + q0, qy, ω)]φ
⋆
m(qx, ω)φm(qx, ω)

= g̃2
∑

iω

∫

d2q

[

1

v2a
−

q2y + (qx + q0)
2

ω2 + v2aq
2
y + v2a(qx + q0)2

]

φ⋆
m(qx, ω)φm(qx, ω)

= g̃2
∑

iω

∫

dqx
va

ω2

√

ω2 + v2a(qx + q0)2
φ⋆
m(qx, ω)φm(qx, ω) (A5)

Because the atomic condensate is much more weakly in-
teracting than the dipolar molecules its sound velocity
va is naturally much smaller than that of the one dimen-
sional molecular system vm. Therefore for a wide range
of frequencies 2πρ̄mvm > ω >> 2πρ̄mva one can neglect
the q dependence in (A5). And so within this frequency
range the two dimensional condensate acts as an ohmic
bath with

Sdiss = g̃2
∑

iω

∫

dqx|ω|φ⋆
m(qx, ω)φm(qx, ω). (A6)

Note that immersion in a three dimensional super-
fluid leads to a different result. The same analysis shows
that such a condensate provides ”super-ohmic” dissipa-
tion with a frequency dependence ω2. This is not suf-
ficiently strong dissipation to balance the 1/f noise, as
required to yield the scale invariant steady states.

Appendix B: Derivation of the non equilibrium
Response function

In this section we outline the derivation of equation
(5). In real time and space, the retarded density-density
linear response function is given by:

χ(x, t) = i〈ρ (φf (x, t)) [ρ (φf (0, 0))− ρ (φb(0, 0))]〉0.
(B1)

Here 〈〉0 is the expectation value, with respect to the
Keldysh action of Eq. (8); φf (x, t) and φb(x, t) are the
components of the field on the forward and backward
paths.
The nature of the response depends in an important

way on the wavelength of the applied perturbation. Long
wavelength perturbations (compared to ρ−1

0 ) couple to
the smooth, long wavelength component of the density as
V (x)∂xφ. Since the coupling is linear, the response to it is
independent of the response to the noise and therefore the
same as in equilibrium. This is just the ”superposition
principle” in a harmonic system.
A perturbation of wavelength near q0 on the other

hand couples non linearly to the harmonic system as
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V (x) cos(2φ(x)), via the q0 component of the density fluc-
tuation. We will see that the resulting response depends

on both 〈φclφ̂〉 and 〈φclφcl〉 and it is highly affected by
the noise. Expressing equation (B1) in terms of classical
and quantum components we have:

χ(x, t) = 2〈cos(q0x+ 2φcl(x, t)) sin(2φcl(0, 0)) sin(2φ̂(0, 0))〉
(B2)

Since the action (8) is quadratic, we can use the iden-
tity: 〈exp(2iφ)〉 = exp(−2〈φ2〉). Inverting (8) we obtain:

〈φcl(x, t)φcl(0, 0)〉 = i
K∗

4
log((x2 − t2)/a2)

〈φcl(x, t)φ̂(0, 0)〉 = −i
πK

4
Θ(t− |x|). (B3)

Here K∗ = K(1 + π−2F0/η), Θ is the Heaviside step
function and a is a UV cutoff. Equation (B2) becomes:

χ(x, t) =
1

4
cos(q0x)

(

a

x2 − t2

)K∗

sin(πK)Θ(t− |x|)
(B4)

The response is zero for negative times, as required by
causality.

The energy transferred from the probe to the system
per unit time is proportional to ωχ′′(q, ω), where χ′′ is
the imaginary part of the Fourier transform of (B1). The
two dimensional Fourier transform is easily performed by
the change of variable s = (x+ t)/

√
2 and t = (x− t)/

√
2

and, for positive frequencies, it leads to (5):

ωχ′′(q, ω) = C (K,K⋆) |ω|(ω2 − δq2)K⋆−1Θ(ω2 − δq2)

C(K,K⋆) =
1

4Γ2(K⋆)

sin(πK)

sin(πK⋆)
(B5)

[1] Winkler, K. et al. Coherent optical transfer of feshbach
molecules to a lower vibrational state. Phys. Rev. Lett
98, 043201 (2007).

[2] Ni, K.-K. et al. A high phase-space-density gas of polar
molecules. Science 322, 231–235 (2008).

[3] Blatt, R. & Wineland, D. J. Entangled states of trapped
atomic ions. Nature 453, 1008–1015 (2008).

[4] Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. &
Pfau, T. The physics of dipolar bosonic quantum gases.
Rep. Prog. Phys. 72, 126401 (2009).

[5] Porras, D. & Cirac, J. I. Effective quantum spin systems
with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).
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