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Abstract
We consider charge transport properties of 2+1 dimensional conformal field theories at non-zero

temperature. For theories with only Abelian U(1) charges, we describe the action of particle-vortex

duality on the hydrodynamic-to-collisionless crossover function: this leads to powerful functional

constraints for self-dual theories. For N=8 supersymmetric, SU(N) Yang-Mills theory at the

conformal fixed point, exact hydrodynamic-to-collisionless crossover functions of the SO(8) R-

currents can be obtained in the large N limit by applying the AdS/CFT correspondence to M-

theory. In the gravity theory, fluctuating currents are mapped to fluctuating gauge fields in the

background of a black hole in 3+1 dimensional anti-de Sitter space. The electromagnetic self-duality

of the 3+1 dimensional theory implies that the correlators of the R-currents obey a functional

constraint similar to that found from particle-vortex duality in 2+1 dimensional Abelian theories.

Thus the 2+1 dimensional, superconformal Yang Mills theory obeys a “holographic self duality”

in the large N limit, and perhaps more generally.
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I. INTRODUCTION

The quantum phase transitions of two (spatial) dimensional systems have been the fo-

cus of much study in the condensed matter community. Prominent examples include the

superfluid-insulator transition in thin films [1–3], the transitions between various quantum

Hall states [4, 5], and magnetic ordering transitions of Mott insulators and superconductors

which have applications to the cuprate compounds [6–8]. Of particular interest in this paper

are the transport properties of conserved quantities such as the electrical charge or the total

spin: these are characterized by a (charge or spin) conductivity σ, which can in general be

a complicated function of frequency ω, wavevector k, temperature T , and various couplings

characterizing the ground state.

It is often the case that the quantum critical point is described by a strongly interacting

quantum field theory in 2+1 spacetime dimensions D. Examples are (i) the superfluid-

insulator transition in the boson Hubbard model at integer filling [9–11], which is described

by the ϕ4 field theory with O(2) symmetry, and so is controlled by the Wilson-Fisher fixed

point in D = 2+1; (ii) the spin-gap paramagnet to Néel order transition of coupled spin

dimers/ladders/layers which is described by the O(3) ϕ4 field theory [12, 13]; and (iii) the

‘deconfined’ critical point of a S = 1/2 antiferromagnet between a Néel and a valence bond

solid state [14, 15], which is described by the CP1 model with a non-compact U(1) gauge field

[16]. In all these cases the critical point is described by a relativistic conformal field theory

(CFT). With an eye towards such experimentally motivated applications, our purpose here

is to explore the transport properties of general interacting CFTs in D = 2+1.

A crucial property of CFTs in D = 2+1 (which actually applies more generally to any

critical theory in 2 spatial dimensions which obeys hyperscaling) is that the conductivity is

1/! times a dimensionless number. For U(1) currents, there is also a prefactor of (e∗)2 where

e∗ is the unit of charge — we will drop this factor below. For non-Abelian Noether currents,

the normalization of charge is set by a conventional normalization of the generators of the

Lie algebra. We will be working with relativistic theories, and therefore set ! = kB = c = 1.

Initial discussions [17–19] of this dimensionless conductivity at the quantum critical point

were expressed in terms of ground state correlations of the CFT. Let Ja
µ represent the set

of conserved currents of the theory; here µ = 0, 1, 2 is a spacetime index, and a labels the

generators of the global symmetry. In the CFT, Ja
µ(x) has dimension 2, and so current

conservation combined with Lorentz and scale invariance imply for the Fourier transform of

the retarded correlator Cab
µν(x) at zero temperature1:

Cab
µν(p)

∣∣
T=0

=
√

p2

(
ηµν −

pµpν

p2

)
Kab , (1.1)

1 If needed, a “diamagnetic” or “contact” term has been subtracted to ensure current conservation. In

theories with Chern-Simons terms, an additional term proportional to ϵµνλpλ is permitted in Eq. (1.1)

and the T > 0 generalization in Eq. (1.4). See Appendix B.
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where ηµν = diag(−1, 1, 1), pµ = (−ω, k) is spacetime momentum, and p2 = k2 − ω2. We

define
√

p2 so that it is analytic in the upper-half-plane of ω and Im
√

p2 ≤ 0 for ω > 0.

The parameters Kab are a set of universal, momentum-independent dimensionless constants

characterizing the CFT, which are the analog of the central charge of the Kac-Moody algebra

of CFTs in D = 1+1. Application of the Kubo formula at T=0 shows that [17, 19] the Kab

are equal to the conductivities σab = Kab, thus setting up the possibility of observing these

in experiments.

It was also noted [18, 19] that particle-vortex duality [20–22] of theories with Abelian

symmetry mapped the T = 0 conductivities to their inverse (we review this mapping in

Section II). In self-dual theories, this imposes constraints on the values of the Kab, possibly

allowing them to be determined exactly. However, the field theories considered in these

early works were not self-dual (see Appendix B). Duality, and possible self-duality, was also

considered in the context of theories containing Chern-Simons terms, relevant to quantum

Hall systems [23–28]. We comment on these works in Appendix B, but the body of the

paper considers only theories without Chern-Simons terms. For our purposes, more relevant

is the self-dual field theory proposed recently by Motrunich and Vishwanath [16], and we

discuss its charge transport properties below.

It was subsequently pointed out [29–31] that the Kab are not the d.c. conductivities

observed at small but non-zero temperature. The key point [31–33] is that at non-zero T ,

the time 1/T is a characteristic ‘collision’ or ‘decoherence’ time of the excitations of the

CFT. Consequently the transport at ω ≪ T obeys ‘collision-dominated’ hydrodynamics,

while that at ω ≫ T involves ‘collisionless’ motion of excitations above the ground state.

Therefore, the limits ω → 0 and T → 0 do not, in general, commute, and must be taken

with great care; the constants Kab above are computed in the limit ω/T → ∞, while the

d.c. conductivities involve ω/T → 0.

This contrast between the collisionless and collision-dominated behavior is most clearly

displayed in the correlations of the conserved densities. Taking the tt component of Eq. (1.1)

we obtain the response

Cab
tt (ω, k) = Kab

−k2

√
k2 − ω2

, ||ω|− k| ≫ T , (1.2)

which characterizes the ‘collisionless’ response of the CFT at T = 0. We have also noted

above that we expect the same result to apply at T > 0 provided ω and k = |k| are large

enough, and away from the light cone. The T > 0 correlations are the Fourier transform

of the retarded real time correlators. These are related by analytic continuation to the

Euclidean space correlations defined at the Matsubara frequencies, which are integer mul-

tiples of 2πT . The low frequency hydrodynamic regime ω ≪ T is only defined in real time

(Minkowski space). In this regime, the arguments of Ref. [29] imply that the ‘collision-
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dominated’ response has the structure

Cab
tt (ω, k) =

∑

λ

χλ
ab

−Dλk2

−iω + Dλk2
, |ω|, k ≪ T , (1.3)

where Dλ are the diffusion constants of a set of diffusive eigenmodes labelled by λ, and χλ
ab

are the corresponding susceptibilities. Scaling arguments imply that [34] Dλ = Dλ/T and

χλ
ab = Cλ

abT , where the Dλ, Cλ
ab are a set of universal numbers characterizing the hydrodynamic

response of the CFT. The d.c. conductivities can be obtained from the Kubo formula by

σab = limω→0 limk→0(iω/k2)Cab
tt , where the order of limits is significant. At any fixed T > 0,

the limits of small k and ω imply that this Kubo formula has to be applied to Eq. (1.3),

and leads to Einstein relations between the T -independent universal conductivities and the

diffusivities. The distinct forms of Eqs. (1.2) and (1.3) make it clear that, in general, the

universal d.c. conductivities bear no direct relationship to the Kab; the latter, as we will see

below in Eq. (1.7), are related to the high frequency conductivity.

It is worth noting here in passing that the structure in Eq. (1.3) does not apply to CFTs

in D = 1+1, where a result analogous to Eq. (1.2) holds also in the low frequency and low

momentum limit; see Appendix A for further discussion of this important point.

Returning to consideration of all the components of the Cab
µν in D = 2+1, an alternative

presentation of the collisionless-to-hydrodynamic crossover is obtained by writing down the

generalization of Eq. (1.1) to T > 0. Current conservation and spatial rotational invariance,

without Lorentz invariance at T > 0, generalize Eq. (1.1) to

Cab
µν(ω, k) =

√
p2

(
P T

µν KT
ab(ω, k) + P L

µν KL
ab(ω, k)

)
(1.4)

where k = |k|, and P T
µν and P L

µν are orthogonal projectors defined by

P T
00 = P T

0i = P T
i0 = 0 , P T

ij = δij −
kikj

k2
, P L

µν =
(
ηµν −

pµpν

p2

)
− P T

µν , (1.5)

with the indices i, j running over the 2 spatial components. The constants Kab have each

been replaced by two dimensionless, universal, temperature-dependent functions KL,T
ab (ω, k),

characterizing the longitudinal and transverse response. These functions are dimensionless,

and hence they can only depend upon the dimensionless ratios ω/T and k/T , as is also

the case for the conductivities. Spatial rotational invariance, and the existence of finite

correlation length at T > 0 which ensures analyticity at small k, imply that the longitudinal

and transverse response are equal to each other at k = 0, and, by the Kubo formula, are

both equal to the zero momentum, frequency dependent complex conductivity, σab(ω/T ):

σab(ω/T ) = KL
ab(ω, 0) = KT

ab(ω, 0). (1.6)

Also at T = 0, these functions reduce to the constants in Eq. (1.1):

σab(∞) = Kab = KL
ab(ω, k)

∣∣
T=0

= KT
ab(ω, k)

∣∣
T=0

. (1.7)
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The functions KL,T
ab (ω, k) are clearly of great physical interest, and it would be useful to

compute them for a variety of CFTs. A number of computations have appeared [29, 30, 35–

38], and show interesting structure in the conductivity as a function of ω/T , encoding

the hydrodynamic-to-collisionless crossover for a variety of tractable models. Here we will

present some additional results which shed light on the role duality can play on the form of

these functions.

In Section II we will consider the role of duality in Abelian systems, by examining the self-

dual non-compact, easy-plane, CP
1 field theory discussed by Motrunich and Vishwanath [16].

Closely related results apply to other Abelian CFTs whose particle-vortex duals have been

described in the literature [28, 39–42], some of which are supersymmetric (in which case,

particle-vortex duality is known as ‘mirror symmetry’). The Lagrangian formulation of the

CP1 theory involves two complex scalar fields and one gauge field Aµ, which is coupled to

a gauge current J1µ. The theory has a global U(1)×Z2 symmetry, and we will denote by

J2µ the Noether current arising from the U(1) global symmetry. There is another conserved

current, the topological current Jµ
top = ϵµνλ∂νAλ, which is conserved by the Bianchi identity.

The topological and Noether currents exchange under the self-duality. As we will see in

Section II, the two-point correlator of Jµ
top is the inverse of that of J1µ. We use the notations

of Eqs. (1.1), (1.4) with a, b = 1, 2.

The Z2 symmetry ensures that the cross-correlations of the J1µ, J2µ currents vanish,

and consequently there are only two constants K1 ≡ K11 and K2 ≡ K22 in Eq. (1.1), and

similarly for the T > 0 functions in Eq. (1.4). We examine the duality transformations of

these function in Section II and show that the existence of a self-dual critical point leads to

the functional relations2

KL
1 (ω, k) KT

2 (ω, k) =
1

π2
, (1.8a)

KL
2 (ω, k) KT

1 (ω, k) =
1

π2
, (1.8b)

which hold for general T , while for the constants in Eq. (1.1) this implies K1K2 = 1/π2.

Note that these relations are not sufficient to determine the conductivities σ1,2(ω/T ); from

Eq. (1.6), only their product obeys σ1(ω/T ) σ2(ω/T ) = 1/π2, at all ω/T . Thus we expect

that for this self-dual model, the conductivities will remain non-trivial functions of ω/T

exhibiting the hydrodynamic-collisionless crossover, and their functional form has to be

determined from the solution of a quantum Boltzmann equation.

In Section III, we turn to a field theory with non-Abelian symmetries: the supersymmetric

Yang Mills (SYM) gauge theory with a SU(N) gauge group and N=8 supersymmetry [43].

At long distances, the theory flows under the renormalization group to a strongly coupled

2+1 dimensional N=8 superconformal field theory (SCFT), which is believed to describe

2 We only keep the one-photon irreducible (1PI) part in KL,T
1 , as explained in Section II.
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degrees of freedom on a stack of N M2-branes [44, 45]. In the limit of large N , the SCFT

can be analyzed by using the AdS/CFT correspondence [46]. The gravity description of the

SCFT is given by M-theory on 3+1 dimensional anti-de Sitter space times a seven-sphere,

and in the large N limit corresponds to 10+1 dimensional supergravity on AdS4 × S7. The

AdS/CFT correspondence provides a method to compute real-time response functions at

finite temperature [47, 48], in which case the gravity theory contains a black hole in AdS4.

In the limit of low frequency and momentum ω ≪ T , k ≪ T one finds hydrodynamic

behavior in the SCFT [49].3 The surprising solvability in this limit therefore demands our

attention.4

The 2+1 dimensional SCFT has a global SO(8) R-symmetry (the symmetry of the seven-

sphere in the supergravity description), and therefore has a set of conserved currents Ja
µ,

a = 1, . . . , 28. The SO(8) symmetry implies that Kab = Kδab, and so there is only a

single universal constant K at zero temperature. Similarly, in Eq. (1.4) there are only two

independent functions KL(ω, k) and KT (ω, k) which characterize the CFT response at finite

temperature. In Section III we will compute these functions in the N→∞ limit, for all

values of ω/T and k/T . We also prove that these functions obey the identity

KL(ω, k) KT (ω, k) =
N3

18π2
, (1.9)

at general T , which is strikingly similar to Eqs. (1.8). Now this relation and Eq. (1.6) do

indeed determine σ(ω/T ) (and K) to be the frequency-independent constant which is the

square root of the right-hand-side of Eq. (1.9). In other words, for this model, the hydrody-

namic and high-frequency collisionless conductivities are equal to each other. Nevertheless,

the theory does have a hydrodynamic-to-collisionless crossover at all nonzero k (as we will

review in Section III), where KL(ω, k) ̸= KT (ω, k), and so Eq. (1.9) is not sufficient to fix

the correlators at k ̸=0. Thus the identity Eq. (1.9) causes all signals of the hydrodynamic-

collisionless crossover to disappear only at k=0.

The similarity of Eq. (1.9) to Eq. (1.8) suggests that explanation of the frequency in-

dependence of the conductivity of the N = 8 SYM SCFT lies in a self-duality property.

3 Hydrodynamic charge transport at small ω and k is of course not specific to the N=8 SCFT in 2+1

dimensions. Hydrodynamics from the supergravity description was first found in strongly coupled N=4

SYM in 3+1 dimensions [50], and later in a variety of other strongly coupled field theories [51–54]. In

strongly coupled N=4 SYM in D=3+1, hydrodynamic to collisionless crossover functions KL,T (ω, k) were

computed in [55]. Note that in D = 3 + 1 the conductivity is not dimensionless [31], but is proportional

to T in the hydrodynamic limit ω ≪ T .
4 Of course, there are other well-known D = 2+1 CFTs which are solvable in the large N limit, such

as the O(N) ϕ4 field theory. However, all of these are theories of particles which are infinitely long-

lived at N = ∞, and so do not exhibit hydrodynamic behavior in this limit. Indeed, an infinite-order

resummation of the 1/N expansion is invariably necessary [31] (via the quantum Boltzmann equation) to

obtain hydrodynamics. These solvable theories become weakly coupled as N → ∞, while the N=8 SYM

remains strongly coupled even as N → ∞.
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Section III demonstrates that this is indeed the case. Under the AdS/CFT correspondence,

the two-point correlation function of the SO(8) R-currents in D = 2+1 is holographically

equivalent to the correlator of a SO(8) gauge field on an asymptotically AdS4 background.

In the large N limit, the action of the SO(8) gauge field is Gaussian, and is easily shown

to possess electromagnetic (EM) self-duality under which the electric and magnetic fields

are interchanged. We demonstrate in Section IIID that it is precisely this EM self-duality

of the 3+1 dimensional gauge field which leads to the constraint (1.9) in the SCFT. Thus

the SYM theory obeys a self-duality which is not readily detected in 2+1 dimensions, but

becomes explicit in the holographic theory in 3+1 dimensions. The generalization of the

particle-vortex duality of Abelian CFTs in D = 2 + 1 to non-Abelian CFTs is facilitated by

the holographic extension to the theory on AdS4.

There have been a few earlier studies connecting dualities in D = 4 to those in D = 3.

Sethi [56] considered the Kaluza-Klein reduction of S-duality from D = 4 to D = 3 by

compactifying the D = 4 theory on a circle in one dimension. This is quite different from

the connection above, using a holographic extension. The work of Witten [28] makes a

connection which is the same as ours above (see also the work of Leigh and Petkou [57]).

He examined the connection between Abelian particle-vortex duality (‘mirror symmetry’)

of CFTs in D = 2 + 1 to the action of SL(2,Z) on Abelian gauge theories on AdS4 at zero

temperature. We have considered a similar connection at non-zero temperature for the N=8

SCFT, and shown that it is “holographically self dual” in the large N limit; combined with

the non-Abelian SO(8) symmetry (which implies a single K), the constraints for the current

correlators are stronger than those for Abelian theories.

We will also consider in Appendix E other non-Abelian theories with known gravity

descriptions. In particular, we will show that for a theory on a stack of D2 branes, a non-

trivial dilaton profile prevents EM self-duality. In this case, we do not have the constraint

(1.9), and so find a frequency dependent conductivity.

II. ABELIAN, NON-COMPACT CP1 MODEL

This section will consider duality properties and current correlations of the Abelian, easy-

plane CP1 model of Ref. [16]. This is a theory of two complex scalars z1,2 and a non-compact

U(1) gauge field Aµ; the non-compactness is necessary to suppress instantons (monopoles),

and we indicate below Eq. (2.13) the modifications required when monopoles are present.

More generally, one can consider dualities of the non-compact CPN−1 model where the

global SU(N) flavor symmetry has been explicitly broken down to U(1)N−1 ×GN , with GN

some subgroup of the permutation group of N objects [42]. The N = 1 case, which is better

known as the Abelian Higgs model, will be described in Appendix B. The N = 2 case (with

G2 = Z2) is described below. The T > 0 results below have a generalization to all N > 2,

with the mappings spelled out in Ref. [42]. Only the N = 2 case is self-dual, and this is our
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reason for focusing on it.

It is interesting to note that the duality properties of the non-compact CPN−1 models have

strikingly similar counterparts in D = 2+1 theories with N = 4 supersymmetry [39–41]. In

particular, the correspondence is to the theories with one U(1) vector (gauge) multiplet and

N matter hypermultiplets (SQED-N). SQED-1 is dual to a theory of a single hypermultiplet,

with no vector multiplet5; this corresponds to the duality, reviewed in Appendix B, of the

Abelian Higgs model to the theory of a single complex scalar with no gauge field (also known

as the XY model or the O(2) ϕ4 field theory). Next, SQED-2 is self-dual, as is our N = 2

case. For N > 2, the dual of SQED-N is a quiver gauge theory, as is the case for the CPN−1

models [42].6 Our results below for T > 0 should have straightforward extensions to these

N = 4 supersymmetric theories.

A. Conserved currents

Let us now begin our analysis of the non-supersymmetric N = 2 case. The action of the

non-compact CP1 theory is

S =

∫
d2x dt

[
|(∂µ − iAµ) z1|2 + |(∂µ − iAµ) z2|2 + s

(
|z1|2 + |z2|2

)
+ u

(
|z1|2 + |z2|2

)2

+ v|z1|2|z2|2 +
1

2e2

(
ϵµνλ∂νAλ

)2
]
, (2.1)

with u > 0 and −4u < v < 0. For these negative values of v, the phase for s sufficiently

negative has |⟨z1⟩| = |⟨z2⟩| ≠ 0. We can also define a gauge-invariant vector order parameter

N⃗ = z∗σ⃗z, where σ⃗ are the Pauli matrices, and the constraint v < 0 implies that N⃗ prefers

to lie in the xy plane: hence ‘easy-plane’ (for v > 0, N⃗ would be oriented along the z

‘easy-axis’, realizing an Ising order parameter). The CP1 model is usually defined with fixed

length constraint |z1|2 + |z2|2 = 1, but here we have only implemented a soft constraint by

the quartic term proportional to u; we expect that the models with soft and hard constraints

have the same critical properties. We are interested in the nature of the quantum phase

transition accessed by tuning the value of s to a critical value s = sc. For s > sc, we have

a ‘Coulomb’ phase ⟨N⃗⟩ = 0 with a gapless photon, while for s < sc there is a ‘Higgs’ phase

with ⟨N⃗⟩ ≠ 0. The phase diagram [16] of the model in the s, T plane is shown in Fig. 1.

Both the Higgs and Coulomb phases have phase transitions as the temperature is raised: for

the former it is driven by the loss of the Higgs (quasi)-long-range order, while for the latter it

5 The theory of a single hypermultiplet is free. This is because the Gaussian fixed point is protected by

N = 4 supersymmetry [41]. In the non-supersymmetric case, the Gaussian fixed point is unstable to the

interacting Wilson- Fisher fixed point.
6 A quiver gauge theory consists of a direct product of gauge group factors along with matter fields trans-

forming in the bifundamental representation of pairs of group factors. The word quiver is used because

the bifundamental fields are often represented as arrows.
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FIG. 1: Phase diagram [16] of the easy-plane non-compact CP1 model (Eq. (2.1)) in 2 spatial

dimensions as a function of the coupling s and temperature T . The quantum critical point is

at s = sc, T = 0. The finite T correlations of the CFT describe the shaded quantum critical

region; the boundary of the shaded region is a crossover into a different physical region, not a

phase transition. The full lines are Kosterlitz-Thouless (KT) phase transitions. The KT line for

s < sc describes the disappearance of quasi-long-range xy order of N⃗ . The KT transition for

s > sc describes the deconfinement of z quanta which are logarithmically bound by the Coulomb

interaction in the low temperature phase into particle-anti-particle pairs. The phase diagram can

also be described in terms of the dual w theory in Eq. (2.11). Duality interchanges the two sides of

s = sc (T remains invariant under duality), and the z Coulomb phase is interpreted as a w Higgs

phase and vice versa.

is a “confinement-deconfinement” transition of the z particle-anti-particle pairs formed from

the logarithmic Coulomb force. Neither of these transitions is of interest to us in this paper.

Rather, we will compute T > 0 correlations of the CFT associated with the quantum critical

point, and these describe the physical properties of the shaded quantum critical region in

Fig. 1.

The theory has a discrete Z2 symmetry which exchanges z1 and z2. The continuous

symmetries are a gauge U(1) symmetry

z1 → z1e
iφ ; z2 → z2e

iφ ; Aµ → Aµ + ∂µφ (2.2)

and a global U(1) symmetry

z1 → z1e
iϕ ; z2 → z2e

−iϕ. (2.3)

Associated with these symmetries we can define two currents

J1µ = i (z∗1(∂µ − iAµ)z1 − z1(∂µ + iAµ)z∗1) + i (z∗2(∂µ − iAµ)z2 − z2(∂µ + iAµ)z∗2) . (2.4)

and

J2µ = i (z∗1∂µz1 − z1∂µz
∗

1) − i (z∗2∂µz2 − z2∂µz∗2) . (2.5)
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Note that J1 is even under the Z2 symmetry, while J2 is odd. Current conservation implies

that at T > 0 these have two-point correlators of the form in Eq. (1.4), with the 4 distinct

functions KL,T
1,2 .

Now consider the correlators of the gauge field Aµ. It is useful to write this in terms of

the leading quadratic terms in the Coleman-Weinberg effective potential:

W =
1

2

∫

k,ω

{

−(kiA0 + ωAi)
2

[
1

e2
+

ΠL(k,ω)

−ω2 + k2

]

+ AiAj

(
δij −

kikj

k2

) [
k2

e2
+ ΠT (k,ω) +

ΠL(k,ω)ω2

−ω2 + k2

]}

+ . . . (2.6)

where ΠL,T are the two components of the photon self energy (the ‘polarization’ operator);

these are related to the current correlations by ΠL,T =
√

p2KL,T
1 .

A key point is that at the conformal fixed point describing the phase transition at the

quantum critical point s = sc we can safely take the limit e → ∞ in the above. This

is because dim[Π] = 1, and so the induced polarizations are more singular than the bare

Maxwell term. This is a very generic property of CFTs with gauge fields in D = 2+1. From

the effective potential we can obtain the form of the gauge-invariant two-point correlators

in the critical regime (it is easiest to work this out in the Coulomb gauge kiAi = 0):

⟨ϵijkiAj ; ϵi′j′ki′Aj′⟩ =
k2

ΠT (k,ω)
,

⟨ϵi′j′ki′Aj′ ; (kiA0 + ωAi)⟩ = ϵi′i
ωki′

ΠT (k,ω)
,

⟨(kiA0 + ωAi) ; (kjA0 + ωAj)⟩ =

(
δij −

kikj

k2

)
ω2

ΠT (k,ω)
− kikj

k2

(−ω2 + k2)

ΠL(k,ω)
. (2.7)

B. Vortices and duality

Here we will build a dual description of the CP1 model, treating the vortices of the

original model as complex scalar fields in the dual description. Consider the topological

vortex excitations in the Higgs state of the action (2.1). These are characterized [58] by

a pair of winding numbers (n1, n2) associated with the phases of z1 and z2 out at spatial

infinity. In general, such a vortex has a logarithmically diverging energy because the currents

are only partially screened by the gauge field Aµ. By an extension of the Abrikosov-Nielsen-

Olesen argument, it can be seen that the co-efficient of the logarithmically divergent energy

is proportional to
(

2πn1 −
∫

d2x ϵij∂iAj

)2

+

(
2πn2 −

∫
d2x ϵij∂iAj

)2

, (2.8)

and this is minimized when the total Aµ flux is quantized as [16, 42, 58]
∫

d2x ϵij∂iAj = π(n1 + n2). (2.9)
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Let us now identify the (1, 0) vortex as the worldline of a dual particle w1, the (0, 1) vortex

as the worldline of a dual particle w2, and try to construct a dual theory by introducing

complex scalar fields w1(x), w2(x). Then from Eq. (2.9), Lorentz covariance implies that

the total w current is related to the Aµ flux:

1

π
ϵµνλ∂

νAλ = i (w∗
1∂µw1 − w1∂µw∗

1) + i (w∗
2∂µw2 − w2∂µw∗

2) . (2.10)

A second key property is that there are forces with a logarithmic potential between the

w1,2 particles. These are also easily seen from the structure of the classical vortex solutions

of Eq. (2.1). Also, it is the difference of the z1 and z2 currents, which is not screened

by the Aµ field, which contributes to an attractive logarithmic potential between the w1

and w2 particles. Another way to see this is to consider the configuration of the gauge-

invariant Higgs field (Nx, Ny) around each vortex: the w1 has an anti-clockwise winding of

the arg(Nx + iNy), while the w2 has a clockwise winding. Because there is a finite stiffness

associated with this Higgs order, a w1 particle will attract a w2 particle, while two w1 (or

w2) particles will repel each other.

We can now guess the form of the effective theory for the w1,2 particles. We mediate that

logarithmic potential as the Coulomb potential due to a new ‘dual’ gauge field Ãµ. Then

general symmetry arguments and the constraints above imply the dual theory [16]

S̃ =

∫
d2x dt

[∣∣∣
(
∂µ−iÃµ

)
w1

∣∣∣
2

+
∣∣∣
(
∂µ+iÃµ

)
w2

∣∣∣
2

+ s̃
(
|w1|2 + |w2|2

)
+ ũ

(
|w1|2 + |w2|2

)2

+ ṽ|w1|2|w2|2 +
1

2ẽ2

(
ϵµνλ∂νÃλ

)2]
. (2.11)

Note especially the difference in the charge assignments from (2.1)—now the w1,2 particles

have opposite charges under Ãµ. Apart from this, the theories have an identical form, and so

current correlation functions K̃L,T
1,2 , associated with the global and gauge U(1) symmetries,

will have the same dependence upon the couplings in S̃ as the KL,T
1,2 have on S. However, the

explicit expressions for the current in terms of the field operators have a sign interchanged:

J̃1µ = i
(
w∗

1(∂µ − iÃµ)w1 − w1(∂µ + iÃµ)w∗

1

)
− i

(
w∗

2(∂µ + iÃµ)w2 − w2(∂µ − iÃµ)w∗

2

)

(2.12)

and

J̃2µ = i (w∗

1∂µw1 − w1∂µw∗

1) + i (w∗

2∂µw2 − w2∂µw
∗

2) . (2.13)

We note in passing the extension of the above analysis to a compact CP1 theory of the z

particles. Following Polyakov [59], we have to include monopoles which change the Aµ flux

by 2π. This can be achieved by adding the term −ym(w1w2+w∗
1w

∗
2) to the w action S̃, where

ym is the monopole fugacity. This monopole operator is neutral under Ãµ charge and, from

Eq. (2.10), catalyzes the required change in Aµ flux. This is a relevant perturbation: the

theories for the z and w particles are no longer equivalent under duality, and the universality
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class of the transition is changed. We will not consider the compact case further; for more

details, see the review [60].

Returning to the non-compact theory, we note the duality mapping can now also be

carried backwards from the w theory to the z theory, and from (2.10) we see that the

theories S and S̃ are connected by the relations

1

π
ϵµνλ∂

νAλ = J̃2µ, (2.14a)

1

π
ϵµνλ∂

νÃλ = J2µ. (2.14b)

From these relations, Eq. (2.7), and the definition (1.4), we immediately obtain the relation

between K1 and K2:

KT
1 (ω, k) K̃L

2 (ω, k) =
1

π2
, K̃T

1 (ω, k) KL
2 (ω, k) =

1

π2
, (2.15a)

KL
1 (ω, k) K̃T

2 (ω, k) =
1

π2
, K̃L

1 (ω, k) KT
2 (ω, k) =

1

π2
. (2.15b)

Now, assuming a single second-order transition obtained by tuning the parameter s, the

above reasoning implies that this critical point must be self-dual, KT,L
1 = K̃T,L

1 , and KT,L
2 =

K̃T,L
2 . Self-duality thus immediately implies relation (1.8), as claimed in the Introduction.

Monte Carlo simulations [61] of a current loop model related to S observe a weak first-

order transition. This is possibly because they are using a particular lattice action which

is not within the domain of attraction of the self-dual point. In any case, the duality

mappings between the two phases on either side of the transition apply, and the constraints

on a possible CFT remain instructive.

III. THE M2-BRANE THEORY

This section examines the transport properties of the non-Abelian SU(N) Yang Mills

theory in D = 2+1 with N = 8 supersymmetry. The weak- coupling action and field

content of this theory is most directly understood by dimensional reduction of the N = 1

SYM theory in D = 9+1 on the flat torus T 7 [62]. This reduction shows that the D = 2+1

theory has an explicit SO(7) R-charge global symmetry. The D = 9+1 SYM theory has only

a single gauge coupling constant, and therefore, so does the D = 2+1 theory. The latter

coupling has a positive scaling dimension, and flows to strong-coupling in the infrared. It

is believed [43] that the flow is to an infrared-stable fixed point that describes a SCFT. It

was also argued that this SCFT has an emergent R-charge symmetry which is expanded

to SO(8). We shall be interested in the transport properties of this SO(8) R-charge in the

SCFT at T > 0 in the present section.

We are faced by a strongly-coupled SCFT, and a perturbative analysis of the field the-

ory described above is not very useful. Instead, remarkable progress is possible using the

12



connection to string theory and the AdS/CFT correspondence. The D = 2+1 SYM theory

is contained in the low energy description of Type IIA string theory in the presence of a

stack of N D2-branes. The flow to strong coupling of the SYM theory corresponds in string

theory to the lift of ten-dimensional Type IIA strings to eleven-dimensional M-theory [46].

So we can directly access the D = 2+1 SYM SCFT by considering M-theory in the presence

of a stack of N M2-branes [45]. In the large N limit, M-theory can be described by the

semiclassical theory of eleven-dimensional supergravity, and this will be our main tool in

the analysis described below. This formulation also makes the SO(8) R-charge symmetry

explicit, because the M2-branes curve the spacetime of eleven-dimensional supergravity to

AdS4 × S7.

Another powerful feature of the supergravity formulation is that it can be extended to T >

0. We have to consider supergravity in a spacetime which is asymptotically AdS4, but which

also contains a black hole. The Hawking temperature of the black hole then corresponds

to the temperature of the SCFT [63] (for example, fluctuation-dissipation theorems are

satisfied [48]). Hydrodynamics of the SCFT emerges from the semiclassical supergravity

dynamics in the presence of the black hole.7

Turning to our explicit computation of dynamics in M-theory, we consider the gravita-

tional background associated with a stack of N M2-branes, with N ≫ 1 [45, 49, 65],

ds2 =
r4

R4

[
−f(r)dt2 + dx2 + dy2

]
+

R2

r2

[
dr2

f(r)
+ r2dΩ2

7

]
, (3.1)

where f(r) = 1 − r6
0/r

6. It is more convenient for us to change coordinates from r to

u = (r0/r)2, in terms of which

ds2 =
r4
0

R4u2
[−f(u)dt2 + dx2 + dy2] +

R2

4u2f
du2 + R2dΩ2

7 (3.2)

and f(u) = 1 − u3. The horizon of the black hole is located at u = 1, and the boundary of

AdS4 is at u = 0.

The relationship between the quantities in the worldvolume SCFT (N and temperature

T ) and those of the metric (R and r0) are given by [45, 49]

π5R9 =
√

2 N3/2κ2, T =
3

2π

r2
0

R3
, (3.3)

where κ is the gravitational coupling strength of D = 10+1 supergravity.

There is a precise correspondence between correlation functions computed in the D=2+1

CFT and correlation functions of supergravity fields computed in the metric (3.1) [46–48].

We will use this to compute charge transport properties.

7 Strictly speaking, the appearance of a black hole is dual to being at finite temperature and being in a

deconfined phase; it is possible to have a finite temperature gravitational description without a black hole

[63, 64].

13



In the metric (3.1) a 7-sphere factors out: R2dΩ2
7. The spacetime thus has a SO(8)

symmetry. This matches with the global symmetry in the M2 worldvolume theory: there

is a R-charge which transforms under the same global symmetry. The following subsections

will compute the two-point correlations of the R-charge currents, Jaµ, with a = 1, . . . , 28.

The existence of a compact 7-sphere makes it possible to do Kaluza-Klein reduction on

this space. We expand all fields in terms of spherical harmonics on the 7-sphere. The original

fields of M-theory are the metric tensor gµν and a three-index antisymmetric tensor Aµνλ.

Upon Kaluza-Klein reduction, an SO(8) gauge field appears from the components of the

metric and the three-form where only one index is in the AdS4 directions (t, x, y, and u)

and the others are in the S7 directions (see Appendix C for details). The action for this

gauge field is

S = − 1

4g2
4D

∫
d4x

√
−g gMAgNBF a

MNF a
AB, (3.4)

where uppercase Latin indices A, B, M , N run four values of t, x, y, and u (in contrast

to Greek indices α, β, µ, ν which run t, x and y). The four-dimensional gauge coupling

constant g4D is dimensionless, and its large N value is computed in Appendix C

1

g2
4D

=

√
2

6π
N3/2. (3.5)

Although we focus on the gravity background constructed from a stack of N M2-branes in

flat 11-dimensional space, there are a number of related examples which are easily understood

from considering (3.4). The key observation, which we discuss further in Section IIID, is

that (3.4) exhibits classical electric-magnetic duality. In the case of our M2-brane theory,

this duality is close enough to a self-duality to enforce a relation on the current-current two

point functions and result in a frequency independent conductivity. In fact, this self-duality

holds in a more general context. Consider an eleven dimensional space which factorizes into

R2,1 and a Calabi-Yau four-fold which develops a local singularity. By placing a stack of

M2-branes at the singularity, we should obtain a more exotic 2+1 dimensional conformal

field theory which still has at least a U(1) global R-symmetry. Kaluza-Klein reduction of

the gravity theory will yield precisely (3.4) and our results on holographic self-duality will

carry over to these more general cases.

There are two other interesting generalizations to consider in which holographic self-

duality fails. After Kaluza-Klein reduction, the gauge fields FAB will support electrically

charged black holes [66]. These black holes are dual to introducing an R-charge chemical

potential to the field theory. Another interesting 2+1 dimensional field theory with a holo-

graphic description is the theory living on a stack of D2-branes in type IIA string theory. In

both cases, there is generically a nontrivial scalar which appears in a modification of (3.4) as

a coupling constant which depends on the holographic radial direction. The relation on the

two-point functions will be between a theory with coupling g4D(u) and one with coupling

1/g4D(u). For details concerning this more general perspective, see Appendix E.
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A. Current-current correlators

We now proceed to the computation of the two-point correlators of the Jaµ in the CFT at

T > 0. Here we will work in Minkowski space (real frequencies and time), and so define the

current correlation as follows:

Cµν(x − y)δab = −i θ(x0−y0)⟨[Jaµ(x), Jaν(y)]⟩. (3.6)

The δab follows from SO(8) symmetry. The expectation value is taken in a translation-

invariant state, so we can Fourier transform to Cµν(p), where pµ = (−ω, k). Spectral density

is proportional to the imaginary part of the retarded function,

ρµν(p) = −2 Im Cµν(p). (3.7)

It is an odd, real function of p, whose diagonal components are positive (for positive fre-

quency). Expectation values of all global conserved charges are assumed to vanish in the

equilibrium state; in other words we consider systems without chemical potentials. Conser-

vation of Jaµ(x) implies that the correlation functions may be defined so that they satisfy

the Ward identity8 pµCµν(p) = 0. Then, as in Section I and in Eq. (1.4), we can write Cµν

in the form

Cµν(p) = P T
µν ΠT (ω, k) + P L

µν ΠL(ω, k) . (3.8)

(The relationship between Π and K is ΠT,L =
√

p2KT,L.) Without loss of generality one

can take the spatial momentum oriented along the x direction, so that p = (ω, k, 0). Then

the components of the retarded current-current correlation function are

Cyy(ω, k) = ΠT (ω, k) , (3.9)

as well as

Ctt=
k2

ω2−k2
ΠL(ω, k), Ctx=Cxt=

−ωk

ω2−k2
ΠL(ω, k), Cxx=

ω2

ω2−k2
ΠL(ω, k) . (3.10)

B. Correlation functions from AdS/CFT

In order to find the retarded function, one needs to study fluctuations of vector fields on the

background spacetime created by a stack of M2-branes. At the linear order the fields satisfy

the equations

∂M(
√
−g gMAgNBFAB) = 0. (3.11)

8 One may choose to define the correlation functions in such a way that local (in position space) counter-

terms appear on the right-hand side of the Ward identities. The correlation functions defined in this way

will differ from Cµν(p) by analytic functions of ω and k.
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These equations are to be solved with the boundary conditions

lim
u→0

Aµ(u, x) = A0
µ(x), (3.12)

at u=0. Near u=1 one imposes the outgoing-wave boundary condition, which means that

for u slightly less than 1 the solution is purely a wave that propagates toward the horizon.

Due to translational invariance with respect to x one can solve for each Fourier mode eip·x

separately. The result can be represented in the form

Aµ(u, p) = Mµ
ν(u, p)A0

ν(p). (3.13)

Then, according to the AdS/CFT prescription formulated in Ref. [47], the current-current

correlator can be found from the formula9

Cµν(p) = −χ lim
u→0

M ′
µν(u, p), (3.14)

where χ is the constant that appears in the normalization of the action,

S =
χ

2

∫
du d3x

(
A′2

t − fA′2
x − fA′2

y + . . .
)

, (3.15)

(only terms with two derivatives with respect to u are written). In our case χ = 4πT/3g2
4D.

It turns out that χ is precisely the charge susceptibility.10

The prescription given above might appear ad-hoc. However it is a special case of a

more general AdS/CFT prescription that gives real-time correlators of any number of oper-

ators [48]. For our task, however, the above prescription is technically most straightforward

to implement.

We work in the radial gauge Au = 0, and take all fields Aµ(x) to be proportional to

e−iωt+ik·x. Taking momentum k along the x direction, k = (k, 0), one finds that the fluctu-

ating vector fields satisfy the following equations [49]

wA′

t + qfA′

x = 0 , (3.16)

A′′

t −
1

f
(wqAx + q2At) = 0 , (3.17)

A′′
x +

f ′

f
A′

x +
1

f 2
(wqAt + w2Ax) = 0 , (3.18)

A′′

y +
f ′

f
A′

y +
1

f 2
(w2 − q2f)Ay = 0 . (3.19)

Here prime denotes derivative with respect to u; w and q are the dimensionless frequency

and momentum, w ≡ 3ω/(4πT ), q ≡ 3k/(4πT ). Note that the equation for the transverse

9 Greek indices on Mµν are raised using the flat space Minkowski metric.
10 The hydrodynamic density-density response function found in [49] is Ctt = (1/g2

4D
)k2/(iω−Dck2). Com-

paring this to the hydrodynamic form Ctt = χDck2/(iω−Dck2), we find the above value for charge

susceptibility χ.
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potential Ay decouples from the rest. Moreover, Eq. (3.18) can be shown to follow from

Eqs. (3.16) and (3.17) and so is not independent. Combining Eqs. (3.16) and (3.17) one can

obtain an equation that does not involve Ax,

A′′′

t +
f ′

f
A′′

t +
1

f 2
(w2 − q2f)A′

t = 0. (3.20)

One can think about this equation as a second-order equation for A′
t. It was observed in

[49] that Eq. (3.20) has the same form as the equation for Ay. Such degeneracy is unusual,

and we now proceed to explore its implications.

1. Transverse channel

Let us start with the retarded function for transverse currents, Cyy(ω, k). According to the

AdS/CFT prescription (3.14),

Cyy(p) = −χ lim
u→0

M ′
yy(u, p). (3.21)

The function Myy(u, p) is the solution to Eq. (3.19) which satisfies the outgoing-wave bound-

ary condition on the horizon u=1, and Myy(0, p) = 1 at the boundary u=0.

Let us denote a solution to Eq. (3.19) which satisfies the outgoing boundary condition

at the horizon as ψ(u). The normalization of ψ(u) is left arbitrary. Near u=0, Eq. (3.19)

allows two asymptotic solutions, which can be expressed in terms of the Frobenius series,

ZI(u) = 1 + hZII(u) lnu + b(1)
I u + . . . , (3.22)

ZII(u) = u(1 + b(1)
II u + b(2)

II u2 + . . . ). (3.23)

The coefficient b(1)
I is arbitrary, and we set it to zero. All other coefficients are determined

by substituting expansion (3.25) in the original equation (3.19). In particular, we find that

h=0, therefore

ZI(0) = 1, Z ′

I(0) = 0,

ZII(0) = 0, Z ′

II(0) = 1. (3.24)

The outgoing-wave solution ψ(u) can be exprressed as

ψ(u) = AZI(u) + BZII(u), (3.25)

where A and B depend on the parameters of the equation, in particular on w and q. From

Eq. (3.24) it follows that ψ(0) = A and ψ′(0) = B. The properly normalized mode function

is Myy(u, p) = ψ(u)/ψ(0), and therefore we find

Cyy(w, q) = −χ B(w, q)

A(w, q)
. (3.26)
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2. Longitudinal channel

Let us now look at the correlators in the longitudinal channel: Ctt, Ctx, and Cxx. For that we

need to solve Eqs. (3.16) and (3.17). First, we know that A′
t(u) satisfies the same equation as

Ay(u). Therefore, we can write A′
t(u) = cψ(u), where c is some coefficient. This coefficient

can be fixed from the boundary conditions at u = 0 by employing Eqs. (3.17) and ψ′(0) = B.

We find

A′

t(u) =

[
A
B

ZI(u) + ZII(u)

]
(wqA0

x + q2A0
t ). (3.27)

From Eq. (3.16) we also find

A′

x(u) = −1

f

[
A
B

ZI(u) + ZII(u)

]
(w2A0

x + wqA0
t ). (3.28)

These equations are to be compared with Eq. (3.13), from which one extracts M ′
µν(u, p).

Putting u = 0, one find the correlators

Ctt(w, q) = χq2 A(w, q)

B(w, q)
, Cxx(w, q) = χw2 A(w, q)

B(w, q)
. (3.29)

In Appendix D we show that at zero momentum, q=0, the mode equation (3.19) can be

solved analytically, which allows one to determine ΠT (w, 0) = ΠL(w, 0). However, one can

determine the conductivity without explicitly solving the mode equation, as we now show.

C. Conductivity

We see that both Cyy and Cxx are expressed in terms of the same connection coefficients A
and B. Eliminating the coefficients, we find

Cxx(w, q)Cyy(w, q) = −χ2w2 , Ctt(w, q)Cyy(w, q) = −χ2q2 . (3.30)

Expressed in terms of the self-energies ΠT , ΠL this reads

ΠT (w, q) ΠL(w, q) = −χ2(w2−q2). (3.31)

Note that this relation holds for all w and q: we have not made any small-frequency approx-

imations anywhere. In fact, we did not even have to solve the mode equations! Combining

Eqs. (1.4), (3.8), and (3.31), we obtain our main result in Eq. (1.9).

As discussed in Section I, at zero momentum, rotation invariance implies that ΠT =ΠL,

therefore relation (3.31) uniquely determines the self-energy11 ΠT (ω, 0) = ΠL(ω, 0) = −iχw

for all w. The conductivity is given by σ(ω/T ) = iΠT (ω, 0)/ω, and we find

σ(ω/T ) = χ
3

4πT
= χDc =

1

g2
4D

, (3.32)

11 Up to a sign, which can be fixed by requiring positivity of the spectral function ρyy = −2 ImΠT .
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where Dc = 3/(4πT ) is the diffusion constant found in [49]. Note that the Einstein relation

between the conductivity and the diffusion constant is satisfied. Also, as noted earlier, it

is surprising that σ(ω/T ) is actually independent of ω/T . [Dependence upon ω/T is found

at all non-zero k, as is shown below.] This ω-independence is a consequence of the relation

(3.31), which in turn follows from the fact that A′
t and Ay satisfy the same equation in the

bulk. It can be traced back to the electromagnetic duality of the classical action (3.4), as

we now show.

D. Electric-magnetic duality

Even though the origin of the relation (3.31) is puzzling from the point of view of the

microscopic degrees of freedom in the N=8 SCFT, its origin from the bulk point of view

can be traced to electric-magnetic (EM) duality of an abelian gauge field. Indeed, current-

current correlators are computed from the Maxwell equations in the four-dimensional bulk,

and it is precisely in four dimensions that Maxwell equations may possess EM duality.

Although in general the R-symmetry may be non-abelian and hence be dual to a non-

abelian gauge field in the bulk, we work in the classical supergravity limit and must keep N

large. At large N , the gauge coupling g4D ∝ N−3/4 is very small, and our non-abelian gauge

field factorizes into a number of effectively abelian pieces to leading order in 1/N .

If we write equations of motion in terms of the gauge-invariant FMN (rather than the

vector potential), then Maxwell equations have to be supplemented by a Bianchi identity,

∂M(
√
−g F MN) = 0 (3.33a)

∂M(
√
−g

1

2
εMNABFAB) = 0 , (3.33b)

where εMNAB is the totally antisymmetric tensor, with ε0123 = 1/
√
−g. Now, one can

introduce GMN defined as F MN = 1
2ε

MNABGAB, which can be inverted to give GMN =

−1
2ε

MNABFAB. Expressed in terms of G, the equations of motion become

∂M (
√
−g

1

2
εMNABGAB) = 0 , (3.34a)

∂M (
√
−g GMN) = 0 . (3.34b)

Maxwell equations for F become a Bianchi identity for G, and vice versa. GMN is the dual

field strength tensor, and we can also define a dual vector potential BM by GMN = ∂MBN −
∂NBM . Note that the validity of EM duality does not depend on the background spacetime

having any particular symmetries such as Lorentz symmetry, or rotational symmetry.

From the point of view of AdS/CFT, the EM dual theory in the bulk will correspond

to some theory on the boundary, which is a dual of the original SCFT. In particular, the

dual vector potential Bµ will couple to the dual current J̃µ, and one can compute two-point

functions Cdual
µν (ω, k) in the dual theory.

19



w w
1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

FIG. 2: Imaginary part of the retarded function Cyy(ω, k), plotted in units of (−χ), as a function

of dimensionless frequency w ≡ 3ω/(4πT ), for several values of dimensionless momentum q ≡
3k/(4πT ). Curves from left to right correspond to q = 0, 0.5, 1.0, 2.0, 3.0. Left: Im Cyy(w, q),

Right: ImCyy(w, q)/w.

In components we have F tz = Gxy/
√
−g. This means that the equation for

√
−gF tz

obtained from equations (3.33) is the same as the equation for Gxy, obtained from the dual

equations (3.34). In our particular example of the non-extremal M2 background metric, we

have
√
−gF tu ∝ A′

t(u), and Gxy ∝ kBy(u) (in the radial gauge). Thus the equation for

A′
t(u) is the same as the equation for By(u). Then, by the argument in section IIIB we find

a relation between the self-energies ΠT,L in the original theory, and the self-energies Π̃T,L in

the dual theory:

ΠT (w, q) Π̃L(w, q) = −χ2(w2−q2) , (3.35a)

Π̃T (w, q) ΠL(w, q) = −χ2(w2−q2) . (3.35b)

For our M2-branes, EM duality is a self-duality, and the EM dual theory is the same as

the original theory, as is evident from equations (3.33), (3.34). Therefore, Cµν = Cdual
µν , and

Π̃T = ΠT , Π̃L = ΠL. This gives back our main result (3.31).12 In the case when there are

non-trivial background profiles for scalar fields, the EM dual theory is not equivalent to the

original theory. This is discussed in Appendix E.

E. Full spectral functions

We will now evaluate the spectral functions numerically, for all ω and k. To do so, we find

a solution ψ(u) to the mode equation (3.19) with the outgoing boundary conditions at the

12 The present discussion assumes that the coupling constant g2
4D

is not inverted in the dual theory, which

is justified for a free, sourceless, abelian gauge field. One could formally repeat the same steps leading

to Eq. (3.31), assuming g̃2
4D

= 1/g2
4D

, as is standard in EM duality. However, in this case the coupling

constant g̃2
4D ∝ N3/2 becomes large, invalidating the bulk description in terms of a classical gauge field.
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FIG. 3: Imaginary part of the retarded function Ctt(w, q)/q2, plotted in units of (−χ), as a

function of dimensionless frequency w ≡ 3ω/(4πT ), for several values of dimensionless momen-

tum q ≡ 3k/(4πT ). Curves from left to right correspond to q = 0.2, 0.5, 1.0 (left panel), and

q = 1.0, 2.0, 3.0, 4.0 (right panel). The dashed curves are plots of Eq. (3.37) divided by k2.

horizon u=1. Then, as described in Section IIIB, the retarded two-point function Cyy(ω, k)

is proportional to ψ′(0)/ψ(0), while Ctt(ω, k) is proportional to ψ(0)/ψ′(0).

Figure 2 shows the imaginary part of the transverse current-current correlation function,

plotted in units of (−χ). At zero momentum, Im Cyy is a linear function of w ≡ 3ω/(4πT )

for all w, as shown in the previous subsection. At large frequency, the spectral function

asymptotes to Im Cyy ∼ (−χ)w, regardless of the value of q ≡ 3k/(4πT ).

The longitudinal correlators are directly related to the conserved R-charge density, and

so are more direct probes of hydrodynamic behavior, and the hydrodynamic-to-collisionless

crossover. Figure 3 shows the imaginary part of the density-density correlation function

divided by q2. At small momentum and frequency, one clearly sees the diffusive peak,

consistent with the hydrodynamic expression in Eq. (1.3)

Im Ctt(ω, k) = Dcχ
−ωk2

ω2 + (Dck2)2
, |ω| ≪ T and k ≪ T . (3.36)

At large frequency, the asymptotic form of the spectral function is expected to be determined

by the ‘collisionless’ ground state correlator. The latter was presented in Eq. (1.2), and here

has the form

Im Ctt(ω, k) =
1

g2
4D

sgn(ω)
(−k2)√
ω2 − k2

, |ω|− k ≫ T. (3.37)

Fig. 3, right, shows that this form is indeed well obeyed. Indeed, Eqs. (3.36) and (3.37) are

exactly the correlators expected across a hydrodynamic-to-collisionless crossover in a generic

system [67]: the prefactor of k2 in Eq. (3.37) is required by charge conservation even at large

ω, while the factor of 1/
√
ω2 − k2 is set by the CFT current scaling dimension and Lorentz

invariance.

In Fig. 4, we illustrate the crossover from the hydrodynamic regime to the collisionless

regime. For each value of q we find the value wmax where the function Im Ctt(w, q) reaches

its maximal value, and plot the resulting function wmax(q). As we see on Fig. 4, at small
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FIG. 4: The position of the peak of the spectral function in Fig. 3. The dashed line is w = q.

q the location of the peak is wmax = q2, in accordance with hydrodynamics. At large q it

slowly reaches the asymptotic collisionless behavior wmax = q.

What is unexpected, is that the two prefactors in Eqs. (3.36) and (3.37), Dcχ and g−2
4D ,

happen to be equal to each other, as we saw in Eq. (3.32). We have also seen that this

surprising feature is a consequence of the general functional relations in Eqs. (3.31) and

(1.9). As we have discussed, such functional relations are not expected to apply to a typical

D = 2+1 CFT, but only those which enjoy special self-duality symmetries. Here the self-

duality of the gauge theory on AdS4 led to the identical form of Eqs. (3.19) and (3.20)

which was shown eventually to lead to Eqs. (3.31) and (1.9). In Appendix E, we consider

a R-symmetry gauge field action with a non-trivial dilaton which spoils the holographic

self-duality and the frequency independent conductivity. The field theory on a D2-brane in

type IIA string theory is an example with such a dilaton.

IV. CONCLUSIONS

We considered finite temperature charge transport of quantum field theories in D = 2+1

dimensions: the easy-plane CP
1 model, and the CFT living on a stack of N M2-branes in

M-theory (the N = 8, SU(N) SYM theory). In the former theory, Abelian particle-vortex

self-duality imposes a relationship (Eq. (1.8)) between different current correlators. In the

latter theory, we found a strikingly similar relationship (Eq. (1.9)) between longitudinal and

transverse components of the correlators of the SO(8) R-charge. This relationship led to a

frequency-independent conductivity for the M2 worldvolume theory at zero wavevector, but

hydrodynamic behavior and the hydrodynamic-collisionless crossover did appear at non-

zero wavevectors. We also demonstrated that for the D2-brane theory, our argument for

frequency independent conductivity fails because of a nontrivial dilaton background.

We traced the origin of the SO(8) charge correlation constraint of the SYM theory, and
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its frequency-independent conductivity, to an electromagnetic self-duality of the holographic

theory on AdS4. Thus, the generalization of three-dimensional Abelian particle-vortex du-

ality to non-Abelian theories becomes manifest only after a holographic extension to a four-

dimensional theory. For Abelian theories, the AdS/CFT connection between particle- vortex

duality in three dimensions and the SL(2,Z) invariance of four- dimensional Abelian gauge

theories was explored earlier in [28, 57].

Our results for the SU(N) SYM theory were established at large N . Does holographic

self-duality, and the relationship13 Eq. (1.9), hold also for finite N? The fact that the large

N theory has hydrodynamic behavior is evidence for the “generic” nature of this limit.

Furthermore, Eq. (1.9) has the same structure as Eq. (1.8), and the latter is believed to be

an exact relationship, obtained without a large N limit. While these facts are encouraging,

establishing self-duality at finite N requires looking at the full M-theory on AdS4. Its low

energy limit is N = 8 supergravity [66, 68–71] (Section III considered only the SO(8) gauge

fields of this theory), and its “generalized E7(7) duality invariance” [69] (which appears to

include EM duality) has remnants in M-theory [72].

It would be very interesting to find an Abelian field theory which obeyed a relationship

as simple as Eq. (1.9), found here for the SYM theory. An unsuccessful attempt to find

such a theory is described in Appendix B. The closest we could get is Eq. (1.8), obeyed by

the easy-plane CP
1 model [16] and its expected generalization to the SQED-2 theory with

N = 4 supersymmetry [39–41]. A fundamental feature of Abelian particle-vortex duality is

exchange of U(1) ‘flavor’ and ‘topological’ currents, and we have not been able to construct

a theory in which these currents are equivalent to each other (which would lead to a single K

in Eq. (1.1)). However, non-Abelian theories can have additional symmetries which rotate

different U(1) currents into each other; this was important for the simplicity of Eq. (1.9).

Finally, we would like to emphasize that the unexpected relation between the self-energies

found in this paper,

KL(ω, k) KT (ω, k) = const , (4.1)

holds beyond the N = 8 SYM theory.14 It applies to the CFTs whose electromagnetic

response is described by the Maxwell action (3.4) in the 3+1 dimensional asymptotically

AdS space. Thus the relation (4.1) should be viewed as another example of universality

that characterizes finite-temperature response in the AdS/CFT correspondence. Previous

examples of such universality include the universal value of the viscosity to entropy density

ratio η/s = 1/4π [77], and a possible universal value of the friction coefficient for a heavy

13 Of course, the constant on the right-hand-side of Eq. (1.9) would have finite N corrections. The issue is

whether the right-hand-side remains independent of ω and k for T > 0 also at finite N .
14 As described in Appendix C, there is a whole class of 2+1 dimensional CFTs satisfying Eq. (4.1). For

large-N field theories which are dual to M-theory on AdS4 × X , where X is a seven dimensional Sasaki-

Einstein manifold, with currents normalized as in Appendix C, the value of the constant in the right-hand

side of Eq. (4.1) is N3/(2π10)Vol(X)2.
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particle [78]. Unlike these other examples, the universal relation (4.1) applies only to 2+1

dimensional CFTs at finite temperature. On the other hand, unlike these other examples,

the universal relation (4.1) applies at arbitrary ω and k.
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APPENDIX A: THERMAL CORRELATORS OF CFTs IN D = 1+1

First, let us consider an arbitrary Lorentz-scalar observable O of a CFT in D = 1+1 with

scaling dimension h. Then, at T = 0, its two-point correlator in Euclidean space is

CO(τ, x)|T=0 ∼
1

(x2 + τ 2)h
, (A1)

while the corresponding correlator in momentum and imaginary frequency is ∼ (ω2+k2)h−1.

By the conformal map from the infinite plane to the cylinder with circumference 1/T , we

can obtain the form of the correlation at T > 0:

CO(τ, x) ∼
[

π2T 2

sin(πT (τ − ix)) sin(πT (τ + ix))

]h

. (A2)

Notice that this expression is periodic in τ , with period 1/T . Now let us Fourier transform

Eq. (A2) to momenta k and Matsubara frequencies ωn; because of the periodicity, the ωn

must be integer multiples of 2πT , and the result is

CO(iωn, k) ∼ T 2h−2Γ(1 − h)

Γ(h)

Γ

(
h

2
+

|ωn| + ik

4πT

)
Γ

(
h

2
+

|ωn|− ik

4πT

)

Γ

(
1 − h

2
+

|ωn| + ik

4πT

)
Γ

(
1 − h

2
+

|ωn|− ik

4πT

) . (A3)

Finally, we analytically continue this expression to real frequencies from the upper-half

frequency plane (ωn > 0) with the mapping iωn → ω to obtain the retarded two-point

correlator at T > 0. This is a non-trivial function of ω and k, which describes relaxation of

O correlations at T > 0. See Chapter 4 of Ref. [31] for more details.
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Now let us consider the special case of a conserved current, and search for the collisionless-

to-hydrodynamic crossover. In this case, h = 1. Note that Eq. (A3) has a pole at h = 1 with

a residue which is ω and k independent; this reflects a logarithmic cutoff dependence in the

Fourier transform of Eq. (A2), and the finite ω and k dependent contribution is obtained by

subtracting the pole. However, the current is not a Lorentz scalar, so the above results do

not directly apply anyway. The density correlator at T = 0 in Euclidean space is

Ctt(τ, x)|T=0 ∼
1

(τ − ix)2
+

1

(τ + ix)2
. (A4)

In momentum and real frequency space, the Fourier transform of this is cutoff independent

because of the non-zero Lorentz spin:

Ctt(ω, k)|T=0 ∼
−k2

k2 − ω2
. (A5)

This is, of course, the generalization of Eq. (1.2) to D = 1+1. We can obtain the T > 0

density correlator by a conformal mapping of Eq. (A4), as was done earlier in Eq. (A2); here

the corresponding expression is

Ctt(τ, x) ∼
[

πT

sin(πT (τ − ix))

]2

+

[
πT

sin(πT (τ + ix))

]2

. (A6)

Finally, let us Fourier transform Eq. (A6) to momentum and Matsubara frequency space.

Carrying out this transformation yields an initially surprising result. Although the real

space result in Eq. (A6) depends upon temperature, the T > 0 result in momentum and

frequency space has the same form as that at T = 0 in Eq. (A5):

Ctt(iωn, k) ∼ −k2

k2 + ω2
n

. (A7)

The inverse Fourier transforms of Eqs. (A5) and (A7) differ only because the frequency ωn

is discrete, while ω is continuous. So there is no hydrodynamic behavior at T > 0, and no

analog of the result in Eq. (1.3).

The physical interpretation of the absence of hydrodynamic behavior is simple. CFTs in

D = 1+1 can be holomorphically factorized, and consequently, there are no interactions or

collisions between left and right movers. To obtain collisions, one has to consider the influ-

ence of formally irrelevant perturbations which can couple left and right movers. Only then

will hydrodynamic behavior emerge: see Ref. [74]. In contrast, in D = 2+1, hydrodynamics

emerges already in the conformal scaling limit [29].

APPENDIX B: ABELIAN DUALITY WITH ONE COMPLEX SCALAR

Here we will make some remarks on the duality properties of theories of a single complex

scalar coupled to a U(1) gauge field with a Chern-Simons term in D = 2 + 1. Such theories
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have been studied extensively in the context of the quantum Hall effect [23–28, 73]. A

N = 3 supersymmetric generalization of the theory below has been studied by Kapustin

and Strassler [41] and their results are very similar to our T = 0 results below. We will

also present results for the theory without the Chern-Simons term (whose supersymmetric

analog, noted in Section II, is the N = 4 SQED-1 theory [39–41]).

We consider a theory with the following action, which is essentially the single scalar

version of Eq. (2.1), with an additional Chern-Simons term:

Scs =

∫
d2x dt

[

|(∂µ − iAµ) z|2 + s|z|2 + u|z|4

+
1

2e2

(
ϵµνλ∂νAλ

)2
+

α

4π
ϵµνλAµ∂νAλ

]

. (B1)

In general, this theory is not a CFT. However, as in Section II, we can imagine accessing

a second-order phase transition out of a Higgs phase at a critical value of the “mass” term

s = sc; we are interested here in the duality properties of such a CFT.

First, standard methods [20, 21] can be used to obtain a dual version of the action Scs:

we can either use the continuum arguments of Section IIB, or apply Poisson summation

methods to a lattice discretization [24, 25, 27]. From this we obtain a dual field theory,

which has the same formal structure at long wavelengths:

S̃cs =

∫
d2x dt

[∣∣∣
(
∂µ − iÃµ

)
w

∣∣∣
2
+ s̃|w|2 + ũ|w|4

+
1

2ẽ2

(
ϵµνλ∂νÃλ

)2
+

α̃

4π
ϵµνλÃµ∂νÃλ

]

. (B2)

The similarity between Scs and S̃cs is encouraging and suggests that we may be able to use

it to define a self-dual CFT. However, we will now argue that this is not the case.

In general, the relationship of the coupling constants in Scs and S̃cs is non-universal,

and dependent upon the nature of the ultraviolet cutoff (with one exception, see below).

However, there are a number of crucial constraints, which are readily apparent from the

explicit transformations. From these constraints we find that there are 2 distinct sets of

theories which are connected by duality:

Class A: Theories with no Chern-Simons terms: These theories have α = α̃ = 0. Then the

duality mappings show that we must have either e = 0 or ẽ = 0 but not both [20, 21]; this

is because in a theory with zero electric charge, duality maps the coefficient of the matter

kinetic energy (the “stiffness”) to the electric charge squared of the dual theory. Without

loss of generality, let us choose e = 0. Then we may set Aµ = 0, which then defines Scs as

the theory of a single scalar with a global U(1) symmetry (the XY model). The theory S̃cs

is the Abelian Higgs model which has a gauged U(1) ‘symmetry’. Thus we have obtained
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the familiar duality [21] between the XY model and the Abelian Higgs model in D = 2 + 1.

It is evident from the distinct nature of these models that they are not self-dual [20, 21].

Class B: Theories with Chern-Simons terms: Now both α and α̃ must be non-zero,

and indeed the lattice duality tranformations show that they satisfy

αα̃ = −1, (B3)

and this is the only relationship between the couplings of Scs and S̃cs which is universal.

Furthermore, the requirement that either e or ẽ vanish no longer appears; in general, both

are non-zero and finite. The duality also shows that it is not possible to eliminate the kinetic

terms of both gauge fields i.e. it is not possible to set both e = ∞ and ẽ = ∞. Even if

e.g. we eliminate the gauge kinetic term in Scs by setting e = ∞, then the duality yields

a finite ẽ because, by the particle-vortex prescription, the kinetic energy of Ã is related

to the kinetic energy of the z particles, and the latter is finite. Because we are searching

for a self-dual theory, we need to keep both e and ẽ finite. The implication of a finite e

(or ẽ) is that the flux-attachment transformation associated with the Chern-Simons term is

‘smeared out’: each z particle world-line has a total of 2π/α Aµ flux attached, but this flux

is spread out over a finite length scale determined by e. This smearing also means that the

transformation 1/α → 1/α + 1 does not map the theory onto itself. This transformation

is the T operation defined by Witten [28], who also found that T did not leave the theory

invariant. On the other hand, Fradkin and Kivelson [24] claimed T invariance for their

model, which was defined in terms of infinitely-thin particle and flux world-lines on a lattice

with long- range interactions. It is unclear to us whether their model can be mapped to a

local continuum action for a CFT.

Let us now consider correlators of the field theories without a Chern-Simons term, in

class A. As discussed above, we choose the theory Scs to have e = 0 and α = 0, so this

describes the O(2) ϕ4 theory (the XY model). We are interested in the CFT at some critical

s = sc. The two-point correlator of the U(1) current, Cµν , of Scs obeys Eqs. (1.1,1.4) with

a single constant K, and a single set of functions KL,T (ω, k). Similarly, the dual theory, S̃cs

(which has ẽ ̸= 0, α̃ = 0 and is the Abelian Higgs model), has a correlator C̃µν , and the

corresponding K̃. Then the analog of the duality considerations of Section II imply that

KT (ω, k) K̃L(ω, k) =
1

4π2
,

KL(ω, k) K̃T (ω, k) =
1

4π2
, (B4)

and its T = 0 limit KK̃ = 1/(4π2). This theory in class A is not self-dual, so the above

relations do not allow us to determine the conductivities σ(ω/T ) and σ̃(ω/T ), and only

constrain their product.

Next, we consider correlators of class B. The field theory Scs defines a CFT at some

s = sc, and we ask if this CFT can be self-dual. At T = 0, we have to generalize the form
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of the current correlator Cµν from Eq. (1.1) to [24, 27, 28]

Cµν(p)|T=0 = K
√

p2

(
ηµν −

pµpν

p2

)
+ Hϵµνλp

λ , (B5)

where K, H are two real constants characterizing the CFT. Note that, at the gapless con-

formal fixed point, there is no simple relationship15 between the coupling constant α and

the constant H , although a theory in class B is expected to have a non-zero H . At T > 0,

the generalization of Eq. (1.4) is

Cµν(ω, k) =
√

p2
(
P T

µν KT (ω, k) + P L
µν KL(ω, k)

)
+ H(ω, k)ϵµνλp

λ , (B6)

with 3 distinct functions of ω/T and k/T on the right hand side; note that even the Hall

conductivity (equal to H(ω, 0)) is a function of ω/T [30]. Similarly, we can also consider

the dual-correlator C̃µν of the theory (B2) and define a corresponding set of parameters K̃

and H̃. The analog [23–25, 27, 28] of the arguments in Section II shows the following exact

relationship between these parameters at T = 0:

(H + iK)(H̃ + iK̃) = − 1

4π2
. (B7)

The real and imaginary parts of Eq. (B7) generalize the T = 0 limit of Eq. (B4) to class B.

For T > 0, we have

K̃T (ω, k) =
KT (ω, k)

D(ω, k)
; K̃L(ω, k) =

KL(ω, k)

D(ω, k)
; H̃(ω, k) = −H(ω, k)

D(ω, k)
, (B8)

with

D(ω, k) ≡ 4π2
(
KT (ω, k)KL(ω, k) + H2(ω, k)

)
. (B9)

Note that Eqs. (B8) reduce to Eqs. (B4) when H = 0, and to Eq. (B7) at T = 0.

For the class B model to be self-dual, we clearly need K̃ = K and H̃ = H . From Eq. (B7)

we observe that this is only possible for K = 1/(2π) and H = 0. However, a model with

H = 0, which surely requires α = 0, is not in class B. It is in class A, and we argued earlier

that a class A model could not be self-dual.

To conclude, although the model Scs, and its dual S̃cs, define interesting CFTs, with their

correlators obeying Eqs. (B4,B7,B8), we have shown that such CFTs cannot be self-dual.

This conclusion is in accord with those of Kapustin and Strassler [41] and Witten [28] on

related models.

15 The one-loop expression for H obtained from Scs is exact as long as s ̸= sc, but the CFT at s = sc has

corrections at all orders [30, 73].
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APPENDIX C: NORMALIZATION OF GAUGE FIELD ACTION ON AdS4

The R-symmetry gauge field can be thought of as arising from Kaluza-Klein reduction of

an 11 dimensional supergravity solution on a regular positive curvature Sasaki-Einstein

manifold X of real dimension seven. The size of the gauge group is determined by the

isometry group of X. For instance, when X = S7, the group is SO(8). By definition, Sasaki-

Einstein manifolds have at least one U(1) isometry. In this section, we normalize the U(1)

R-symmetry gauge field action in terms of the eleven dimensional gravitational coupling

using results of Ref. [75]. Although the identification of this gauge field as a combination

of metric and F4 form perturbations in D = 11 supergravity predates Ref. [75] (see [76]),

Ref. [75] provides a convenient starting point for considering issues of normalization. The

normalization is not sensitive to temperature, and hence it is convenient to work here at

T = 0.

To first order, the vector potential A perturbs the eleven dimensional metric as follows:

ds2 =
r2

L2
ηαβdxαdxβ + L2dr2

r2
+ 4L2ds2

X , (C1)

where

ds2
X =

(q

4

)2
(

dψ +
4

q
σ +

2

q
A

)2

+ hab̄dzadz̄b . (C2)

The Minkowski tensor ηαβ runs over the three coordinates x0, x1, and x2. Together the

coordinates xi and r give four dimensional anti-de Sitter space with radius of curvature

L.16 Here hab̄ is a Kähler-Einstein metric on a complex three dimensional manifold we will

call V . Setting A = 0, X would be a U(1) fibration over the three-fold, giving rise to a

real seven-dimensional Sasaki-Einstein manifold. The one form σ is constructed such that

dσ = 2ω where ω is the K ähler form on V . With the angle ψ constrained to lie between

0 and 2π, the integer q obeys the relation ω = πqc1/4 where c1 is the first chern class of

the U(1) fibration. In general q = 1, but in certain cases where c1(V ) is divisible, q may be

more. For instance, in the case of S7, X is a U(1) fibration over CP
3 and q = 4. In [75],

the relation between ψ and A was fixed by setting the R-charge of a holomorphic four-form

associated to the cone over X to two. This four-form has a dual field theory interpretation

as a superpotential. The relation between A and ψ fixes the normalization of the gauge field

action.

In addition to this perturbed metric, the RR four form F4 is also perturbed by A:

F4 =
3r2

L3
d3x ∧ dr − 4L3(⋆4dA) ∧ ω . (C3)

Here d3x = dx0 ∧ dx1 ∧ dx2, and ⋆4 is the Hodge dual in the AdS4 directions only. With

A = 0, F4 can be thought of as the electric flux from a stack of M2-branes spanning the xi

coordinates.

16 The relation to R in the body of the paper is 2L = R.

29



With these formulae for F4 and ds2 in hand, we can normalize the gauge field. The 11

dimensional supergravity action is

1

2κ2

∫
d11x

√
−gR − 1

4κ2

∫ (
F4 ∧ ⋆F4 +

1

3
A3 ∧ F4 ∧ F4

)
. (C4)

The first two terms both give contributions to |F |2, where F = dA. In particular, in making

A nonzero, the Ricci scalar becomes

R = R̃ − L2

4
|F |2 +

21

2L2
, (C5)

where |F |2 = F ABFAB and R̃ is the scalar curvature in the AdS4 directions. Meanwhile, the

four form produces a term of the form

F4 ∧ ⋆F4 = −
(

9

L2
+

3

2
L2|F |2

)√
−g d11x . (C6)

We cannot simply reduce the eleven dimensional action to an effective four dimensional

action as can be seen from the form of R and |F4|2. Combining (C5) and (C6) in (C4) leads

to a Maxwell term |F |2 of the wrong sign. The reason Kaluza-Klein reduction does not

commute with computing the equations of motion is related to the fact that the Bianchi

identity dF4 = 0 imposes the equation of motion d ⋆ F = 0 on the gauge field.

Instead, we must reduce the eleven dimensional equations of motion and from the effective

four dimensional equations of motion reconstruct a four dimensional action. Along with

Maxwell’s equations for F , the eleven dimensional equations of motion reduce to

RMN = 2L2

(
FM

P FNP − 1

4
gMN |F |2

)
− 3

L2
gMN , (C7)

which can be obtained from the four dimensional action

Seff =
1

2κ2
4

∫
d4x

√
−g

(
R̃ − L2FMNF MN +

6

L2

)
. (C8)

Assuming that the four and eleven dimensional gravitational couplings are related by the

volume of the compact manifold X,

1

2κ2
4

=
(2L)7Vol(X)

2κ2
,

and using the standard normalization for κ (3.3), we find that the action for the gauge field

becomes

−
√

2N3/2

23π5
Vol(X)

∫
d4x

√
−g4|F |2 . (C9)

The volume of a seven sphere is Vol(S7) = π4/3.
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While in the case of more highly symmetric spaces, the R-symmetry gauge field transforms

under a larger group, based on the underlying Sasaki-Einstein structure, this U(1) subgroup

is in some sense the most geometrically natural.

We conclude this section by explaining, for the case of S7, which U(1) subgroup of

SO(8) we have extracted. Earlier, we stated that the U(1) is normalized in reference to a

holomorphic four-form on the cone over the Sasaki-Einstein space. For S7, the cone is C4,

and the four-form Ω = dX1 ∧ dX2 ∧ dX3 ∧ dX4 where the Xa are complex coordinates on

C4. Giving Ω R-charge two means each Xa will have R-charge one half and will transform

under the U(1) group action as Xa → eiα/2Xa for some phase angle α which runs from zero

to 2π.

The Lie algebra for SO(8) has four generators λa in its Cartan sub-algebra which we

can choose to act on the Xa as exp(iαλa)(Xb) = δabeiα/2Xa. With this normalization,

trλaλb = 1
2δab. Comparing with the action of our special U(1) subgroup, we see that our

U(1) Lie algebra element λ is a sum of the λa: λ =
∑

a λa. Thus, trλ2 = 2.

APPENDIX D: ANALYTIC SOLUTION

At zero momentum, the mode equation (3.19) for M(u) ≡ Myy(u) takes the form

f(u)∂u[f(u)∂uM(u)] + w2M(u) = 0 , (D1)

with f(u)=1−u3. By introducing a new coordinate z=
∫ u

0 dũ/f(ũ), the equation simplifies,

∂2
zM(z) + w2M(z) = 0 , (D2)

with the boundary condition M(z=0) = 1 at the boundary, and the outgoing condition at

the horizon z=∞. The solution is

M(z) = eiwz . (D3)

That it corresponds to outgoing waves can be seen from the fact that in the function e−iω(t−z)

the wave front moves toward larger z, i.e. closer to the horizon as t increases. Therefore we

find

M(u) = exp

[
iw

∫ u

0

dũ

f(ũ)

]
. (D4)

The leading asymptotics for u near zero is M(u) = 1+iwu. From the AdS/CFT prescription

(3.14) we immediately find

Cyy(w, 0) = ΠT (w, 0) = ΠL(w, 0) = −iχw . (D5)

This agrees with the result for conductivity in section IIIC, as it should.
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APPENDIX E: GAUGE FIELD WITH A DILATON

Consider a U(1) gauge field on a four dimensional manifold M with an action of the form

S = − 1

2g2
4D

∫

M

e−2φF ∧ ⋆F . (E1)

There are a number of interesting 2+1 dimensional field theories which have a dual R-

symmetry gauge field of this type – for example the M2-brane theory at finite R-charge

chemical potential and the D2-branes in type IIA string theory. Here F is the two-form

gauge field, φ a dilaton like scalar, and g4D the coupling. The Maxwell equations can be

written elegantly as dF = 0 and d ⋆ e−2φF = 0. There is an equivalent S-dual theory where

the roles of F and F̃ ≡ ⋆e−2φF are interchanged and we send g4Deφ → g̃4De
eφ ≡ 1/(g4Deφ):

S = − 1

2g̃2
4D

∫

M

e2φF̃ ∧ ⋆F̃ . (E2)

The point we would like to emphasize is that when φ is a constant, the theory is almost

self-dual in the sense that the equations of motion for F and F̃ are identical. When φ is not

a constant, the equations of motion for F and F̃ are identical up to sending φ→ −φ.

We would like to investigate the consequences of this duality in the context of the

AdS/CFT correspondence where this gauge field is interpreted as a bulk field corresponding

to some global U(1) symmetry on a 2+1 dimensional boundary theory. To this end, we

assume the metric takes the diagonal form

ds2 = −gtt(u)dt2 + du2 + gxx(u)(dx2 + dy2) , (E3)

where the metric components are only radially dependent on a coordinate we call u. By

diffeomorphism invariance, we can always set guu = 1. The boundary is taken to be located

at u = 0 and the interior for u > 0 with a horizon at u = uh > 0. We will assume that as

u → 0, −gtt ∼ gxx ∼ c2/uα where α > −2.

We will calculate two-point functions of the U(1) current J corresponding to this global

symmetry. Introducing a vector potential F = dA, the retarded two-point function can be

found using the method described in Sec. III B. Namely, one looks for the solution to the

field equation for Aν of the form vector potential of the form

Aν(x, t, u) = eip·xMν
µ(p, u)A0

µ(p) , (E4)

where Mν
µ(p, u) satisfies the radial component of the equation of motion for Aν . Further-

more, Mν
µ(p, 0) = δµ

ν and Mν
µ satisfies outgoing boundary condition at the horizon u = uh.

If the kinetic term for Aµ can be written as

− 1

2g2
4D

∫
du d3xG(u)(A′

µ)
2 (E5)
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then

Cµν(k) = − 1

g2
4D

lim
u→0

G(u)
∂

∂u
Mµν(p, u) . (E6)

In particular, we take Aµ(x, t, u) to satisfy the equation of motion

∂A

[
e−2φ√−ggABgCD(AB,D − AD,B)

]
= 0 , (E7)

and fix a radial gauge Au = 0. We also choose pµ = (ω, k, 0). In this gauge, the equation of

motion for Ay becomes

∂u

[
e−2φ√−ggxxA′

y

]
− k2√−g(gxx)2e−2φAy − ω2√−ggxxgtte−2φAy = 0 . (E8)

Because of the constraint on α, the near boundary behavior of Ay (u ∼ 0) is governed by

an expansion of the form

Myy(p, u) = (1 + O(u)) + u1+α/2B(1 + O(u)) . (E9)

In the case where α is an even integer, the two series will overlap, leading to logarithmic

terms in the first series, which complicate the story but should not alter it in any fundamental

way. The constant B is a complicated function of ω and k which is determined by fixing

outgoing boundary conditions at the horizon u = uh. For Ay, the function G(u) in (E5) is
√
−ggxx which near the boundary scales as cu−α/2 where c depends on the precise form of

our metric. By absorbing φ(0) into the value of g4D, we can choose φ(0) = 0. From this

expansion and the form of G(u), clearly

Cyy =
1

g2
4D

(1 + α/2)cB . (E10)

In our gauge, Ay can be reinterpreted as a radial magnetic field, Bu = Fxy = −ikAy . By

electric-magnetic duality, replacing φ with −φ, the equation of motion for Bu (E8) must be

the same as the equation of motion for Eu ≡ −(⋆e−2φF )xy =
√
−ggtte−2φA′

t:

∂u

[
e2φ√−ggxxE ′

u

]
− k2√−g(gxx)2e2φEu − ω2√−ggxxgtte2φEu = 0 . (E11)

We thus know that Eu has the near boundary expansion

Eu = E0
ue

ip·x
[
(1 + O(u)) + u1+α/2B̃(1 + O(u))

]
. (E12)

The tilde over B indicates it was derived from (E8) having replaced φ with −φ. In the case

φ = const, B = B̃. We now use Gauss’s law to constrain the boundary behavior of E0
u. The

equation of motion following from taking the index C = t in (E7) is

(√
−ggtte−2φA′

t

)′ − k
√
−ggttgxxe−2φ(ωAx + kAt) = 0 . (E13)

From the near boundary behavior, we find that

E0
u(1 + α/2)B̃ = −k

c
(ωA0

x + kA0
t ) . (E14)
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We can run a similar analysis of the component A′
x and construct a full boundary action.

We find that

Sb = − 1

2g2
4D

∫

R3

d3x
[
Bc(1 + α/2)(A0

y)
2−

1

B̃c(1 + α/2)

(
k2(A0

t )
2 + ω2(A0

x)
2 + ωkA0

tA
0
x

)
]

. (E15)

From this normalization, we conclude that the remaining two point functions are

Ctt = − 1

g2
4D

k2

c(1 + α/2)B̃
, (E16)

Cxt = − 1

g2
4D

kω

c(1 + α/2)B̃
, (E17)

Cxx = − 1

g2
4D

ω2

c(1 + α/2)B̃
. (E18)

In the special case where φ is a constant and hence B̃ = B, we find that

CttCyy = − 1

g4
4D

k2 ; CxtCyy = − 1

g4
4D

kω ; CxxCyy = − 1

g4
4D

ω2 . (E19)
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