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Inspired by the works of Givental (see for examples [Giv96℄ and [Giv98℄), many authorslook at quantum ohomology with a di�erential module approah : see Kim [Kim99℄ forhomogeneous spaes, see Coates-Corti-Lee-Tseng [CCLT06℄ and Guest-Sakai [GS08℄ forweighted projetive spaes , see also the works of Iritani [Iri06℄, [Iri07℄, [Iri08℄ and [Iri09℄,the book of Cox-Katz [CK99℄ and the one of Guest [Gue10℄.From the small quantum produt on a smooth projetive variety, we an de�ne a trivialvetor bundle over H0(X,C)× V ×C where V ⊂ (C∗)r and r := dimCH
2(X,C) whose �beris H∗(X,C). This bundle is endowed with a �at onnetion and a non-degenerated pairing.This onnetion is sometimes alled the Dubrovin-Givental onnetion. When X is a torismooth Fano variety, Givental (see also Iritani [Iri09℄ for tori weak Fano orbifolds) givesan expliit presentation of this D-module using GKZ systems. To prove this isomorphism,he uses the equality, up to a mirror map, between the so alled I and J funtions.In the very nie artile [Iri09℄, Iritani enrihes this quantum D-module by adding a naturalintegral struture i.e., he de�nes a Z-loal system whih is ompatible with the onnetion.We all quantum D-module, denoted by QDM(X), the trivial bundle endowed with a �atonnetion, a �at non-degenerated pairing and a natural integral struture. This Z-loalsystem is natural in the following sense. Assume that X has a mirror (for instane X is aweak Fano tori orbifolds) that is a Laurent polynomial suh that its Brieskorn lattie (whihis a vetor bundle with a �at onnetion) is isomorphi to the quantum D-module of X . Onthis Brieskorn lattie, we have a natural integral struture that omes from the Lefshetz'sthimbles. The integral struture de�ned by Iritani is natural beause it orresponds tothe natural one on the mirror. Notie that the bundle, the onnetion, the pairing and theintegral struture is part of the de�nition of a TERP struture de�ned by Hertling in [Her06℄or a variation of non-ommutative Hodge struture de�ned by Kontsevih, Katzarkov andPantev in [KKP08℄.In this paper, we investigate the same kind of objets assoiated to a smooth projetivevariety X together with a splitted vetor bundle E whih is globally generated.We use the twisted Gromov-Witten invariants and the twisted quantum produts to de�nea trivial vetor bundle, denoted by F , on H0(X,C) × V × C where V is an open in (C∗)rwhere the twisted quantum produt is onvergent. Inspired by the lassial ase, we de�nea �at onnetion ∇, a �at pairing S and an integral struture FZ on it. We all twistedquantum D-module, the quadruple QDM(X, E) := (F,∇, S, FZ). It satis�es all the propertiesof the lassial QDM(X) exept that the pairing S is degenerated. We quotient by thekernel of S and we get a better objet, alled redued quantum D-module and denoted by

QDM(X, E) := (F ,∇, S, F Z). More preisely, we onsider the trivial vetor bundle F withthe �bers H2∗(X,C)/ kermctop where mctop : α → ctop(E)∪α for any ohomology lass α. Thedata (F,∇, S, FZ) pass to this quotient and we get QDM(X, E) that satis�es all the lassialproperties and now S is non-degenerated. So it really looks like a quantum D-module of avariety. Indeed, we have a geometri interpretation of QDM(X, E):Theorem 1.1 (See Theorem 2.42). � Let L1, . . . ,Lk be ample line bundles on X, andassume that dimCX ≥ k + 3. Let Z be the zero of a generi setion of E := ⊕k
i=1Li. Denoteby ι : Z →֒ X the losed embedding. Then the redued quantum D-module QDM(X, E) is iso-morphi to the sub-quantum D-module QDMamb(Z) of QDM(Z) whose �ber is ι∗H2∗(X,C).Notie that our integral struture FZ de�ned on QDM(X, E) is natural beause it induesthe natural one on QDMamb(Z).Then the next natural question is : an we �nd a presentation of QDM(X, E) and

QDM(X, E) when X is a tori smooth variety in terms of GKZ systems ?Denote by D the sheaf of di�erential operators on the basis spae of the F (this is notreally true, the operators that we onsider are zqa∂qa where qa are variable in H2(X,C) and2



z is the oordinate on C). Denote by Y the total spae of the dual vetor bundle E∨. Denoteby G the ideal sheaf assoiated to the GKZ system of the tori variety Y . We have thefollowing result.Theorem 1.2 (see Theorem 5.10). � Let X be a smooth tori variety with k line bundles
L1, . . . ,Lk suh that (ωX ⊗ L1 ⊗ . . .⊗ Lk)

∨ is nef. We put E := ⊕k
i=1Li.1. If the line bundles L1, . . . ,Lk are globally generated then we have the following isomor-phism :

D/G ∼−→ Mir∗(F ,∇)where Mir is the mirror map of Givental and F is the sheaf of setions of F .2. If the line bundles L1, . . . ,Lk are ample, we have the following ommutative diagram
D/G ∼

Mir∗(F ,∇)

D/Quot(ĉtop,G) ∼
Mir∗(F ,∇)where ĉtop is an operator attah to the ohomology lass ctop(E) (f. Notation 4.1) and

Quot(ĉtop,G) is the left quotient ideal 〈P ∈ D, ĉtopP ∈ G〉.Notie that, unlike the ommutative ase, the set {P ∈ D, ĉtopP ∈ G} is not an ideal.The ideal sheaf Quot(ĉtop,G) answer to the following question whih is addressed in the[CK99, p.94-95 and p.101℄: What di�erential equations shall we add to G to get an isomor-phism with QDMamb(Z) ?The isomorphisms above are based on the equality (up to the mirror map) between thetwisted J-funtion and the twisted I-funtion of Givental (see [Giv96℄ and [Giv98℄) and aareful analysis of the loal freeness and rank of GKZ modules. Freeness and rank requiresthe study of Batyrev rings of the tori variety Y �the total spae of E∨� whih will appearas the restrition of the D-modules at z = 0, and an be thought as a twisted Batyrev ringof the pair (X, E).Proving this theorem leads to develop quite a lot of materials and results whih deservesome preisions. Let us sketh our strategy of proof.For the �rst point of the theorem above, we show that D/G is a loally free sheaf of rank
dimCH

2∗(X,C) = rkF (see Theorem 4.10). This is done in 2 steps.� We �rst prove the oherene of D/G (see Theorem 4.5). This implies the loal freenessover z 6= 0 and we use Adolphson's result in [Ado94℄ to ompute the rank.� On z = 0, we have a tautologial isomorphism between D/G |z=0 and the Batyrev ringof Y . We prove that this ring is loally free of rank rkF over a suitable algebraineighborhood U (see below).For seond point of the theorem above, we show in Theorem 4.14 :� On z = 0, we prove that the natural morphism between D/Quot(ĉtop,G) |z=0 and theresidual Batyrev ring (see De�nition 3.39) of Y is an isomorphism. We prove that thisresidual ring is loally free of rank rkF = dimH2∗(X)− dimkermctop over U .� on z 6= 0 the oherene of D/G implies that D/Quot(ĉtop,G) is loally free of rank lessthan rkF .Let us ollet the preise results that we prove on the Batyrev rings, whih are interestingon their own :Theorem 1.3. � Let X be a smooth tori variety with k globally generated line bundles
L1, . . . ,Lk suh that the total spae of the vetor bundle E := ⊕k

i=1Li has a nef antianonial3



divisor. Denote by U the good neighborhood in the spetrum of the Novikov ring de�ned inNotation 3.34.1. (See Theorem 3.26) Denote by B the Batyrev ring (see De�nition 3.12) of the totalspae of E∨.The morphism : Spec(B) |U−→ U is �nite, �at, of degree dimH2∗(X,C).2. (See Proposition 3.40) Moreover, if the line bundles L1, . . . ,Lk are ample then themorphism : Spec(Bres) |U−→ U is �nite, �at, of degree dimH2∗(X,C) where Bres isthe residual Batyrev ring (see De�nition 3.39).The plan of this artile is the following.In Setion 2, we de�ne �rst (Subsetion 2.1) the twisted quantum D-module QDM(X, E)with all its properties and its natural integral struture. Then we de�ne the redued quantum
D-module QDM(X, E) in Subsetion 2.2. Finally, we give the geometri interpretation inSubsetion 2.3 where we prove the �rst Theorem 1.1.In Setion 3, we fous on Batyrev rings for tori varieties. Notie that this setion anbe read independently of the rest of the paper. The �rst Subsetion 3.1 is devoted to somerealls on tori geometry. In Subsetion 3.1 we onstrut the fan of the total spae of thevetor bundle E . In Subsetion 3.2, we de�ne the Batyrev rings. Subsetion 3.3 is devotedto some realls on the primitive olletions. In Subsetion 3.4, we prove that the quantumStanley-Reisner ideal has a Groebner basis indexed by primitive olletions (See Theorem3.22). In Subsetions 3.5 and 3.6, we prove the Theorem 3.26 and Proposition 3.40 quotedabove in Theorem 1.3.In Setion 4, we fous on GKZ modules. We prove �rst that the GKZ module D/G isoherent in Theorem 4.5. Then we prove that it is loally free of rank rkF in Theorem 4.10.We �nish by a result on the residual GKZ module D/Quot(ĉtop,G) (see Theorem 4.14).These results use Theorem 3.26 and Proposition 3.40 of the previous setion.In Setion 5, we start by some reall on Givental's mirror symmetry in Subsetion 5.1 thenwe state and prove Theorem 1.2 in Subsetion 5.2.We �nish this paper by two appendies. Appendix A ontains the proof of the twistedGromov-Witten invariants in genus 0 that are known from the experts. We add it by lakof referenes.Appendix B is a omplete proof of the �atness of the onnetion ∇ using the twistedaxioms.Aknowledgment : We thank Thomas Reihelt, Claude Sabbah and Christian Sevenhekfor useful disussions. The seminar in Paris organized by Serguei Barannikov and ClaudeSabbah on the non-ommutative Hodge strutures was the starting point of this paper. Wealso thank Antoine Douai for helping in the organization of the workshop in Luminy onthe work of Iritani. We are also grateful to Hiroshi Iritani that pointed out the referene[Mav00℄ (see Remark 2.40) The �rst author is supported by the ANR New symetries inGromov-Witten theories number ANR- 09-JCJC-0104-01.Notation 1.4. � We use alligraphi letters for the sheaves like M,Mres,G,B,L, E . Weuse bold letters for modules or ideals on non ommutative rings M,Mres,G,A, . . ..2. Twisted and redued quantum D-modules with geometri interpretationLet X be a smooth projetive omplex variety of dimension n and k globally generatedline bundles L1, . . . ,Lk. Denote by E the sum E := L1 ⊕ · · · ⊕ Lk.We �rst de�ne the twisted quantum D-module, denoted by QDM(X, E), assoiated to thesedata (De�nition 2.24). This is a trivial bundle of rank dimCH

2∗(X,C) with an integrableonnetion, a �at pairing and an integral struture.4



It turns out that the pairing of the twisted quantum D-module is degenerated, whihmakes QDM(X, E) a not so natural objet, without lear geometri meaning. In a seondparagraph we introdue the redued quantum D-module QDM(X, E) (De�nition 2.34) ; it isonstruted as the quotient of QDM(X, E) by the kernel of the endomorphism mctop, whihis the up multipliation by the Euler lass ctop(E) of E :
mctop : H2∗(X,C) −→ H2∗(X,C)

α 7−→ α ∪ ctop(E).The redued quantum D-module is a trivial bundle of rank dimH2∗(X,C) − dimkermctopwith an integrable onnetion, a �at non�degenerated pairing and an integral struture.If dimX ≥ k + 3, we also onsider a generi setion of E and denote by Z the ompleteintersetion subvariety de�ned as the zero lous of this setion. By Bertini's theorem over
C, the subvariety Z is smooth and onneted. Assuming moreover that the Li are ampleline bundles, the Lefshetz theorem gives an isomorphism between H2(X,C) and H2(Z,C).We an ompare QDM(X, E), QDM(X, E) and the lassial, untwisted, quantum D-module of Z, QDM(Z). This will be made in the last subsetion.Notation 2.1. � For 0 ≤ i ≤ 2n, denote by H i(X) := H i(X,C) the omplex ohomol-ogy group of lasses of degree i. Also denote by H∗(X) the omplex ohomology ring
⊕2n

i=0H
i(X) ; the even part of this ring will be written H2∗(X). Put s = dimCH

2∗(X) and
r = dimCH

2(X).We �x, one and for all, a homogeneous basis (T0, . . . , Ts−1) of H2∗(X) suh that T0 = 1 isthe unit for the up produt and that the lasses T1, . . . , Tr form a basis of H2(X,Z) modulotorsion. Denote by (t0, . . . , ts−1) the assoiated oordinates and put τ :=
∑s−1

a=0 taTa and τ2 :=∑r
a=1 taTa. Also denote by (T 0, . . . , T s−1) the Poinaré dual in H2∗(X) of (T0, . . . , Ts−1).As a onvention, We will write H2(X,Z) for the degree 2 integer homology modulo torsion.Denote by (B1, . . . , Br) the dual basis of (T1, . . . , Tr) inH2(X,Z). The assoiated oordinateswill be denoted by (d1, . . . , dr).We denote by TX the tangent bundle of X , ωX the anonial sheaf, and �x a anonialdivisor KX .As a onvention, we will make no notational distintion between vetor bundles and loallyfree sheaves, writing �for example� E and Li for both.2.1. Twisted quantum D-module. � In this subsetion, we de�ne the twisted quantum

D-module QDM(X, E) = (F,∇, S, FZ).2.1.a. Twisted quantum produt. � First reall the de�nition of the twisted Gromov-Witteninvariant (f. [Giv96℄ and [CG07℄ or [CK99, Setion 11.2.1℄ and [Pan98℄).Let ℓ be in N and d be in H2(X,Z). Denote by X0,ℓ,d the moduli spae of stable maps ofdegree d from rational urves with ℓ marked points to X . The universal urve over X0,ℓ,d is
X0,ℓ+1,d :

X0,ℓ+1,d

π

eℓ+1

X

X0,ℓ,dwhere π is the map that forgets the (ℓ+1)-th point and stabilizes, and eℓ+1 is the evaluationat the (ℓ+ 1)-th marked point.Reall that a onvex bundle N on X is a vetor bundle suh that, for any stable map
f : C → X where C is a rational nodal urve, H1(C, f ∗N ) = 0.5



Proposition 2.2. � Let N be a globally generated vetor bundle (not neessarily splitted) ofrank b then N is onvex and the sheaf N0,ℓ,d := R0π∗ e
∗
ℓ+1N is loally free of rank ∫

d
c1(N )+b.Proof. � Let us prove the onvexity of N . We follow [FP97, Lemma 10℄.Let f : C −→ X be a stable map and p be a non singular point on C. We will prove byindution on the number of irreduible omponents of C that

H1(C, f ∗N ⊗OC(−p)) = 0.(2.3)First, assume that C ≃ P1. We an write f ∗(N ) ≃ ⊕b
i=1OP1(ai) with a1, . . . , ab in Z. Sine

N is globally generated, f ∗(N ) also is, whih implies ai ≥ 0 for any i in {1, . . . , b}. It followsthat H1(P1, f ∗N ⊗OC(−p)) = ⊕b
i=1H

1(P1,OP1(ai − 1)) = 0.Assume now that C = C ′∪C0 where C0 ≃ P1 and p in C0. Denote by p1, . . . , pq the pointsof C0 ∩ C ′. Notie that C ′ has exatly q onneted omponents interseting C0 on exatlyone point. Eah pi is a smooth point of one of these omponents. We have the followingexat sequene
0 f ∗N ⊗OC′(−∑q

i=1 pi) f ∗N ⊗OC(−p) f ∗N ⊗OC0(−p) 0From the assoiated long exat sequene and by the indutive assumption on the onnetedomponents of C ′, we dedue the equality (2.3). The exat sequene :
0 f ∗N ⊗OC(−p) f ∗N f ∗N ⊗Op 0gives H1(C, f ∗N ) = 0.Now, the stalk at a point (C, x1, . . . , xℓ, f : C → X) in X0,ℓ,d of the K-theoreti push-forward N0,ℓ,d is H0(C, f ∗N ) − H1(C, f ∗N ). Sine N is onvex H1(C, f ∗N ) = 0 and

H0(C, f ∗N ) has dimension ∫
d
c1(N ) + b by Riemann-Roh. Thus, N0,ℓ,d is loally free ofdimension ∫

d
c1(N ) + b on X0,ℓ,d.Let E0,ℓ,d be the sheaf R0π∗ e

∗
ℓ+1 E as in Proposition 2.2. For j in {1, . . . , ℓ}, we de�ne thesurjetive morphism E0,ℓ,d → e∗j E by evaluating the setion to the j-th marked point. Wede�ne E0,ℓ,d(j) to be the kernel of this map that is we have the following exat sequene

0 E0,ℓ,d(j) E0,ℓ,d e∗j E 0(2.4)By Proposition 2.2, for any j ∈ {1, . . . , ℓ} the bundle E0,ℓ,d(j) has rank ∫d c1(E).For i ∈ {1, . . . , ℓ}, let Ni be the line bundle on X0,ℓ,d whose �ber at a point (C, x1, . . . , xℓ,
f : C → X) is the otangent spae T ∗Cxi

. Put ψi := c1(Ni) in H2(X0,ℓ,d).De�nition 2.5. � Let ℓ be in N, γ1, . . . , γℓ be lasses in H2∗(X), d be in H2(X,Z) and
(m1, . . . , mℓ) be in Nℓ. For j in {1, . . . , ℓ}, the (j-th) twisted Gromov-Witten invariant withdesendants of these data is de�ned and denoted by

〈
τm1(γ1), . . . ,

˜τmj
(γj), . . . , τmℓ

(γℓ)
〉
0,ℓ,d

:=

∫

[X0,ℓ,d]vir
ctop(E0,ℓ,d(j))

ℓ∏

i=1

ψmi
i e∗i γiwhere ei : X0,ℓ,d → X (1 ≤ i ≤ ℓ) is the evaluation morphism to the ith marked point and

[X0,ℓ,d]
vir is the virtual lass on X0,ℓ,d.De�nition 2.6. � Let τ2 be a lass of H2(X) and γ1, γ2 be in H2∗(X). The twisted smallquantum produt (with respet to E) of γ1 and γ2 is de�ned by

γ1 •twτ2 γ2 :=
s−1∑

a=0

∑

d∈H2(X,Z)

e
∫
d τ2
〈
γ1, γ2, T̃a

〉
0,3,d

T awhenever this sum is onvergent. 6



Remark 2.7. � 1. Using the notation of orrelators (see (A.19)) one an de�ne, for any
τ in H2∗(X), a big twisted quantum produt :

γ1 •twτ γ2 :=

s−1∑

a=0

〈〈
γ1, γ2, T̃a

〉〉
0
T a.As usual, we have : •twτ2 := •twτ |τ=τ2 . We will not use of big twisted quantum produts.2. One an also de�ne the small twisted quantum produt without hoosing a basis by :

γ1 •twτ2 γ2 :=
∑

d∈H2(X,Z)

e
∫
d
τ2e3∗

(
e∗1 γ1 ∪ e∗2 γ2 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
)(2.8)2.1.b. Parameters. � The quantum produt written in De�nition 2.6 depends on the pa-rameter τ2 in H2(X). The Piard group Pic(X) ats on H2(X) in the following way : for Lin Pic(X), L.τ2 = τ2 + 2

√
−1πc1(L). The number e∫d τ2 being invariant by this ation, thequantum produt is naturally de�ned over H2(X)/Pic(X) = H2(X)/2

√
−1πH2(X,Z).Let us extend the lous of the parameter. Denote by NE(X)Z ⊂ H2(X,Z) the Mori oneof X , generated as a semi-group by numerial lasses of irreduible urves in X .Notation 2.9. � The semigroup algebras of NE(X)Z and H2(X,Z) will be respetivelydenoted by Λ and Π :

Λ = C[NE(X)Z] = C[Qd, d ∈ NE(X)Z], Π = C[H2(X,Z)] = C[Qd, d ∈ H2(X,Z)]where Qd are indeterminates satisfying relations : Qd.Qd′ = Qd+d′ .The sheme Spec Λ is an irreduible, possibly singular, a�ne variety of dimension r. De-note by V the set of omplex points of Spec Λ. Points of V are haraters(1) of NE(X)Z.If q is suh a harater, denote by qd its evaluation on d in NE(X)Z. Sine X is proje-tive, the Mori one is stritly onvex and there exists a unique harater sending any d in
H2(X,Z) \ {0} to 0. We will denote this harater by 0 and all it, as usual, the large radiuslimit of X .The sheme SpecΠ is a torus of dimension r = rkH2(X,Z). The set of omplex points of
SpecΠ will be denoted by T ; a point of T is a harater of H2(X,Z) and T is a smoothsubset of V. We will identify T and H2(X)/2

√
−1πH2(X,Z) via the natural surjetivemorphism of omplex variety :

Ψ : H2(X,C) −→ T(2.10)
τ 7−→ qτ :=

[
d ∈ H2(X,Z) 7→ qdτ = e

∫
d
τ
]The kernel of Ψ is 2√−1πH2(X,Z). Thus, the large radius limit 0 in V ⊃ T is a limit in

H2(X)/2
√
−1πH2(X,Z).The small quantum produt an now be de�ned with parameter q in V :De�nition 2.11. � Let q be in V and γ1, γ2 be in H2∗(X). The twisted small quantumprodut is de�ned by

γ1 •twq γ2 :=
s−1∑

a=0

∑

d∈H2(X,Z)

qd
〈
γ1, γ2, T̃a

〉
0,3,d

T a

(1) By a harater of a semi-group R of H2(X,Z) we mean an appliation q : R −→ C suh that q(0) = 1and q(d+ d′) = q(d).q(d′) for any d, d′ in R. If R is a group the image of q is in C∗. If q is suh a harater,we will write qd := q(d). A harater q of a semi-group R gives a omplex point SpecC −→ SpecC[R] whihwill also be denoted by q ; this orrespondene is a bijetion. Notie that, if d is in R, Qd is a funtion on
SpecC C[R] and we have : Qd(q) = qd. 7



whenever this sum is onvergent.De�nition 2.11 and De�nition 2.6 are ompatible : For any τ2 in H2(X), Ψ(τ2) is in T and
γ1 •twτ2 γ2 = γ1 •twΨ(τ2)

γ2.Assumption 2.12. � We will assume that there exists an open subset V of V ontainingthe large radius limit 0 suh that :
∀q ∈ V , ∀γ1, γ2 ∈ H2∗(X), γ1 •twq γ2 is onvergent.This assumption is easily shown to be true when the line bundle (ωX ⊗L1 ⊗ · · · ⊗ Lk)

∨ isample, that is when the omplete intersetion variety Z de�ned by E is Fano. In other ases,suh as Calabi-Yau subvarieties of tori varieties onsidered below, one may use [Iri07℄ tohek this assumption.Notation 2.13. � We denote by V the omplex nonsingular variety V := V ∩T.Thus, V is a smooth lous in V where the quantum produt is onvergent. We have :large radius limit = 0 ∈ V (onvergent produt) ⊂ V = SpecC Λ
∪ ∪

0 /∈ V (onvergent produt) ⊂ T = SpecC Π
∼−→ (C∗)rAs a onvention, we will denote neighborhood of 0 in V by an overlined apital letter, andits intersetion with T by the same apital letter without overlining (V is a ompati�ationof T in the neighbourhood of the large radius limit).Let us reall some properties of the twisted quantum produt :Proposition 2.14. � For any q in V the twisted quantum produt •twq is assoiative, om-mutative, with unity T0 := 1.Proof. � This is a lassial proof, as soon as the twisted Gromov-Witten axioms are known.The twisted axioms are shown in Appendix A. Suh proves are given by Pandharipande in[Pan98℄, Proposition 3, for a smooth hypersurfae of Pn and by Iritani in Remark 2.2. of[Iri11℄, in the general ase.2.1.. The trivial bundle with an integrable onnexion. � Using basis T1, . . . , Tr and B1, . . . ,

Br de�ned in 2.1, we have : Π = C[H2(X,Z)]
∼−→ C[q±1 , . . . , q

±
r ] where qa := QBa (f. footnote1). Thus if d =

∑r
a=1 daBa we get Qd =

∏r
a=1 q

da
a in Π. Viewing the qa's as oordinates of

T, we get : qd =∏r
a=1 q

da
a for any q ∈ T.For a in {1, . . . , r}, we put :
δa := qa∂qa δz := z∂z .Reall that t0 is the oordinate on H0(X).Notation 2.15. � We denote by F the trivial holomorphi vetor bundle of �ber H2∗(X)over H0(X)× V × C :

F :=
[
H2∗(X)×

(
H0(X)× V × C

)
→
(
H0(X)× V × C

) ]together with the following meromorphi onnetion :
∇∂t0

:= ∂t0 +
1

z
1•twq , ∇δa := δa +

1

z
Ta•twq , ∇δz := δz −

1

z
E •twq +µwhere µ is the diagonal morphism de�ned by µ(Ta) := 1

2
(deg(Ta)− (dimCX − rk E))Ta and

E(t0, q, z) := t01 + c1(TX ⊗ E∨). This global setion E of F orresponds to the Euler �eld.Notie that the twisted produt •twq does not depend on t0 beause of the twisted fundamentallass Axiom (f. Proposition A.4). 8



In the untwisted ase, it is known that ∇ is a �at onnetion and its �at setions an bedesribed expliitly. Let us give the equivalent property in the twisted ase. We de�ne themulti-valuated ohomologial meromorphi funtion Ltw(t0, q, z) :

H2∗(X) −→ H2∗(X)

γ 7−→ Ltw(t0, q, z)γ = e−t0/z


q

−T/zγ −
s−1∑

a=0

∑

H2(X,Z)

d6=0

qd
〈
q−T/zγ

z + ψ
, T̃a

〉

0,2,d

T a


(2.16)where

ψ := ψ1 = c1(N1) is the lass of H2(X0,3,d) given before De�nition 2.5,
1

z + ψ
:=
∑

k∈N
(−1)kψkz−k−1,

q−T/z = q−T1/z. · · · .q−Tr/z := e−z−1
∑r

a=1 Ta log(qa) and
log(qa) is the multi-valuated funtion, or any determination of the logarithmon a simply onneted open subset of V .For an endomorphism u, we denote zu := exp(u log z). The following Proposition is the�twisted� version of Proposition 2.4 in [Iri09℄.Proposition 2.17. � 1. The onnetion ∇ is �at.2. For a in {1, . . . , r} and γ ∈ H2∗(X) we have

∇∂t0
Ltw(t0, q, z)γ = 0, ∇δaL

tw(t0, q, z)γ = 0

∇δzL
tw(t0, q, z)γ = Ltw(t0, q, z)

(
µ− c1(TX ⊗ E∨)

z

)
γ3. The multi-valued ohomologial funtion Ltw(t0, q, z)z

−µzc1(TX⊗E∨) is a fundamental so-lution of ∇ above H0(X)× V × C.Notie that, as a fundamental solution, Ltw is onvergent above H0(X)× V × C.This kind of result is lassial in the untwisted ase ([CK99℄, [Iri09℄). By lak refereneson twisted Gromov-Witten invariants, we write down a proof in full details in Appendix B.2.1.d. The degenerated pairing.� Denote by (·, ·) the Poinaré duality on H2∗(X). As〈
γ1, γ2, T̃a

〉
0,3,d

is not symmetri in the three arguments we do not have the Frobenius rela-tion, that is :
(γ1 •twq γ2, γ3) 6= (γ1, γ2 •twq γ3).Nevertheless we an de�ne a symmetri bilinear form :De�nition 2.18. � The twisted pairing on H2∗(X) is de�ned by :

∀γ1, γ2 ∈ H2∗(X), (γ1, γ2)
tw :=

∫

X

γ1 ∪ γ2 ∪ ctop(E).Proposition 2.19. � 1. The bilinear form (·, ·)tw is degenerated with kernel kermctopwhere mctop is de�ne as :
mctop : H

2∗(X) −→ H2∗(X)

α 7−→ ctop(E) ∪ α9



2. For γ1, γ2, γ3 in H∗(X), we have the Frobenius relation :
(γ1 •twq γ2, γ3)

tw = (γ1, γ2 •twq γ3)
tw.Proof. � The �rst laim is obvious.By De�nition 2.18 and Remark 2.8, it is enough to prove the following equality for any

d ∈ H2(X,Z) :
∫

X

e3∗
(
e∗1 γ1 ∪ e∗2 γ2 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
)
∪ γ3 ∪ ctop(E)

=

∫

X

e3∗
(
e∗1 γ2 ∪ e∗2 γ3 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
)
∪ γ1 ∪ ctop(E).The exat sequene :

0 E0,3,d(3) E0,3,d e∗3 E 0gives ctop(E0,3,d(3)).ctop(e∗3 E) = ctop(E0,3,d). By projetion formula we get :
∫

X

e3∗
(
e∗1 γ1 ∪ e∗2 γ2 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
)
∪ γ3 ∪ ctop(E)

=

∫

[X0,3,d]vir
e∗1 γ1 ∪ e∗2 γ2 ∪ e∗3 γ3 ∪ ctop(E0,3,d)As the last number is invariant by permuting the lass γi, we dedue the proposition.Let O := OH0(X)×V×C be the sheaf of holomorphi funtions on H0(X) × V × C, and Fbe the sheaf of holomorphi setions of F . Let Γ(O) be the ring of global setions of O, and

Γ(F) be the Γ(O)-modules of global setion of F ; Γ(O) is endowed with the involution :
κ : Γ(O) −→ Γ(O)

f(t0, q, z) 7−→ fκ := f(t0, q,−z)Denote by Γ(F)κ the Γ(O)-module equals, as a set, to Γ(F) and endowed with the followingmultipliation : ∀f ∈ Γ(O), s ∈ Γ(F), f.s := fκ.s. We de�ne a a sesquilinear pairing
S : Γ(F)κ ⊗ Γ(F) −→ Γ(O)by �xing its value on onstant setions of F :

∀γ1, γ2 ∈ H2∗(X), S(γ1, γ2) = (γ1, γ2)
tw.As a onsequene, we get :

∀s1, s2 ∈ Γ(F), ∀(t0, q, z) ∈ H0(X)× V × C,

S(s1, s2)(t0, q, z) = (s1(t0, q,−z), s2(t0, q, z))tw .Proposition 2.20. � 1. The pairing S is ∇-�at.2. For any s1, s2 in Γ(F),
S(Ltw.s1, L

tw.s2) = S(s1, s2).3. For any γ1, γ2 in H2∗(X) we have
S(Ltw(t0, q, z)z

−µzc1(TX⊗E∨)γ1, L
tw(t0, q, z)z

−µzc1(TX⊗E∨)γ2)

=S(e
√
−1πc1(TX⊗E∨)γ1, e

√
−1πµγ2).10



Proof. � 1. By the Frobenius property of Proposition 2.19.(2), for any a ∈ {1, . . . , r} andfor any s1, s2 ∈ Γ(F), we have :
δaS(s1, s2) = S(∇δas1, s2) + S(s1,∇δas2)

∂t0S(s1, s2) = S(∇∂t0
s1, s2) + S(s1,∇∂t0

s2).By the de�nition of µ and Proposition 2.19.(2), for any s1, s2 ∈ Γ(F) we have
δzS(s1, s2) = S(∇δzs1, s2) + S(s1,∇δzs2).Hene, S is ∇-�at.2. By �atness of S and Proposition 2.17.(2), we dedue that
∀γ1, γ2 ∈ H2∗(X), δaS(L

twγ1, L
twγ2) = 0.So the expression (Ltw(t0, q,−z)γ1, Ltw(t0, q, z)γ2)

tw does not depend on q. By theasymptoti of Ltw at the large radius limit, we get
(Ltw(t0, q,−z)γ1, Ltw(t0, q, z)γ2)

tw ∼q=0 (q
−T/zγ1, q

T/zγ2)
tw = (γ1, γ2)

tw.The relation S(Ltw.s1, L
tw.s2) = S(s1, s2) is also true for any s1, s2 ∈ Γ(F) by sesquilin-earity.3. By the previous formula and the �atness, we dedue that the left hand side does notdepends on z. So we an put z = 1. We dedue that the left hand side is equal to
S(e−

√
−1πµe

√
−1πc1(TX⊗E∨)γ1, γ2).As S(−µ(γ1), γ2) = S(γ1, µ(γ2)) for any γ1, γ2 in H2∗(X), we dedue the formula.2.1.e. Integral struture.� In the same way than Iritani [Iri09, De�nition 2.9℄ (see also[Iri11, footnote 8 p.20℄), we de�ne an integral struture on the vetor bundle F with on-netion ∇, ompatible to the pairing S.Denote by γ the Euler onstant. For a vetor bundle N on X of rank b, we onsider theinvertible ohomology lass

Γ̂(N ) :=

b∏

i=1

Γ(1 + νi) = exp

(
−γc1(N ) +

∑

b≥2

(−1)b(b− 1)!ζ(b) Chb(N )

)where ν1, . . . , νb are the Chern roots of N and Chb(N ) is the lass of degree 2b of the Chernharater Ch(N ). Denote by K(X) the Grothendiek group of vetor bundles on X . Reallthat the morphism Ch : K(X) → H2∗(X,Z) beome an isomorphism after tensored by C(see for instane Theorem 3.25 p.283 in [Kar78℄).De�nition 2.21. � For any v in K(X), we put
Ztw(v) := (2π)−(n−k)/2Ltw(t0, q, z)z

−µzc1(TX⊗E∨)Γ̂(TX)Γ̂(E)−1(2
√
−1π)deg /2Ch(v).We all Ztw(K(X)) the Γ̂-integral struture on QDM(X, E) and we denote it by FZ.Remark 2.22. � Notie that Ztw(v) is a multi-valued �at setion of the bundle (F,∇) andthat Ztw(K(X))⊗Z C is the set of �at setions of F . We an understand the formula of Ztwabove as �the twist� by Γ̂(TX)Γ̂(E)−1 of the natural integral struture given by K(X).

K(X)
(2
√
−1π)deg /2 Ch

(F, d)
Γ̂(TX)Γ̂(E)−1

(F, d)
(2π)−n/2Ltw(t0,q,z)z−µzc1(TX⊗E∨)

(F,∇)Proposition 2.23. � For any v1, v2 in K(X), we have :
S(Ztw(v1),Ztw(v2)) =

∫

X

ctop(E) Td(TX) Td(E)−1Ch(v1 ⊗ v∨

2 )11



Proof. � Using Proposition 2.20.(3) and e√−1πµ = (−1)deg /2(
√
−1)k−n, we dedue that

S(Ztw(v1),Ztw(v2))

=(2
√
−1π)k−n

∫

X

ctop(E)e
√
−1πc1(TX⊗E∨)Γ̂(TX)Γ̂(E)−1(2

√
−1π)deg /2Ch(v1)

∪ (−1)deg /2Γ̂(TX)Γ̂(E)−1(2
√
−1π)deg /2Ch(v2)We have the following fats : for any α, β in H2∗(X), for any v in K(X) and for any

δ ∈ H2(X),
β ∪ (2

√
−1π)deg /2α = (2

√
−1π)deg /2(β/(2

√
−1π)deg β/2 ∪ α)

∫

X

(2
√
−1π)deg /2α = (2

√
−1π)n

∫

X

α

(−1)deg /2Γ(1 + δ) = Γ(1− δ)(−1)deg /2

(−1)deg /2Ch(v) = Ch(v∨).Denote by ν1, . . . , νn the Chern root of TX and ǫ1, . . . , ǫk the Chern roots of E . From theabove properties, we dedue that
S(Ztw(v1),Ztw(v2)) =

∫

X

ctop(E)ec1(TX⊗E∨)/2

n∏

i=1

Γ

(
1 +

νi

2
√
−1π

)
Γ

(
1− νi

2
√
−1π

)

∪
k∏

j=1

Γ

(
1 +

ǫj

2
√
−1π

)−1

Γ

(
1− ǫj

2
√
−1π

)−1

Ch(v1 ⊗ v∨

2 )Using the formal identity Γ(z)Γ(1− z) = π
sin(πz)

, we dedue that
Γ(1− z)Γ(1 + z) =

ze−z/2

1− e−z
.This implies the formula.Reall from De�nition 2.21 that we denote FZ the integral struture Ztw(K(X)).De�nition 2.24. � The twisted quantum D-module denoted by QDM(X, E) is the quadru-ple (F,∇, S, FZ).2.2. Redued quantum D-module. � In this subsetion we de�ne the redued quantum

D-module, denoted by QDM(X, E), whih is a quadruple (F ,∇, S, F Z

). The pairing S isnon-degenerated.Reall that mctop is the endomorphism
mctop : H

2∗(X) −→ H2∗(X)

α 7−→ ctop(E) ∪ α.Put H2∗(X) := H2∗(X)/ kermctop and all it the redued ohomology ring of (X, E). Sine
mctop is a graded morphism, the vetor spae H2∗(X) is naturally graded. For γ ∈ H2∗(X),we denote by γ its lass in H2∗(X).Denote by F the trivial bundle H2∗(X)×H0(X)× V × C → H0(X)× V × C. On F , wewill de�ne a onnetion ∇ and a non-degenerated paring S. They will be indued by thoseon F .For any γ1, γ2 ∈ H2∗(X), de�ne the redued pairing (·, ·)red whih is a bilinear form on
H2∗(X) by

(γ1, γ2)
red := (γ1, γ2)

tw.(2.25) 12



By Proposition 2.19, kermctop is the kernel of the twisted pairing. It follows that the reduedpairing is a well de�ned and non degenerated bilinear form.We de�ne the pairing S as we did for S but hanging (·, ·)tw by (·, ·)red (f. before Propo-sition 2.20). From (2.25), for any s1, s2 ∈ Γ(H0(X)× V × C,F), we dedue that
S(s1, s2) = S(s1, s2)(2.26)Let (φ0, . . . , φs′−1) be a homogeneous basis of H2∗(X) and denote (φ0, . . . , φs′−1) its dualbasis with respet to (·, ·)red.De�nition 2.27. � Let γ1, . . . , γn be lasses in H2∗(X).1. Let d be in H2(X,Z). The redued Gromov-Witten invariant is

〈γ1, . . . , γn〉red0,ℓ,d := 〈γ1, . . . , ˜ctop(E)γn〉0,ℓ,d2. The redued quantum produt is
γ1 •redq γ2 :=

s−1∑

a=0

∑

d∈H2(X,Z)

qd 〈γ1, γ2, φa〉red0,3,d φ
aRemark 2.28. � By the twisted Sn-symmetri axiom (f. Proposition A.2), the reduedGromov-Witten invariants are well de�ned on the lass in H2∗(X). Notie that the reduedGromov-Witten invariant are Sn symmetri. The onvergene domain of •redq ontains V .We will restrit ourselves to V .Proposition 2.29. � For any γ1, γ2 in H2∗(X), we have

γ1 •twq γ2 = γ1 •redq γ2Proof. � Using Formula (2.8) for the twisted quantum produt we get :
γ1 •twq γ2 =

∑

d∈H2(X,Z)

qde3∗αwhere we put α :=
(
e∗1 γ1 ∪ e∗2 γ2 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
). Denote by φ̂a ∈ H2∗(X) a liftof φa. By De�nition (2.25), we have

e3∗α =

s′−1∑

a=0

(e3∗α, φa)
red φa =

s′−1∑

a=0

(
e3∗α, φ̂a

)tw
φaUsing projetion formula, the proposition follows from

〈γ1, γ2, φa〉red0,3,d = 〈γ1, γ2, ˜
ctop(E)φ̂a〉0,3,d =

(
e3∗α, φ̂a

)twDe�ne the following onnexion on the bundle F :
∇∂t0

:= ∂t0 +
1

z
1•redq , ∀a ∈ {1, . . . , r}, ∇δa := δa +

1

z
T a•redq

∇δz := δz −
1

z
E •redq +µwhere µ is the diagonal morphism de�ned by µ(φa) :=

1
2
(deg(φa)− (dimCX − rk E))φa and

E := t01+ c1(TX ⊗ E∨).Corollary 2.30. � For any γ ∈ H2∗(X), we have :
∇γ = ∇γ13



Proof. � This follows from Proposition 2.29 and from µ(Ta) = µ(Ta).Lemma 2.31. � For any (t0, q, z) in H0(X)× V × C, we have :
Ltw(t0, q, z)(kermctop) = kermctop.Proof. � Let γ be in kermctop and α ∈ H2∗(X). Sine Ltw(t0, q, z) is an automorphism of

H2∗(X) and kermctop is the kernel of the twisted pairing (·, ·)tw we �nd, using Proposition2.20 :
(
α, Ltw(t0, q, z)γ

)tw
=
(
Ltw(t0, q,−z).(Ltw(t0, q,−z))−1.α, Ltw(t0, q, z)γ

)tw

=
(
Ltw(t0, q,−z)−1α, γ

)tw
= 0.Then Ltw(t0, q, z)γ belongs to kermctop.This lemma permit us to de�ne a redued L funtion : for any (t0, q, z) ∈ V × C put

L(t0, q, z) : H2∗(X) −→ H2∗(X)(2.32)
γ 7−→ L(t0, q, z)γ = Ltw(t0, q, z)γIn the same spirit of �2.1.e, we also get an indued integral struture on QDM(X, E). Denoteby

K(X) := K(X) / {v | Ch(v) ∈ kermctop}.The Chern harater Ch : K(X) → H2∗(X) indues a redued Chern harater Ch : K(X) →
H2∗(X) whih beome an isomorphism after tensored by C. For any v ∈ K(X), we put

Z(v) := (2π)−(n−k)/2L(t0, q, z)z
−µzc1(TX⊗E∨)Γ̂(TX)Γ̂(E)−1(2

√
−1π)deg /2Ch(v).In the same spirit of De�nition 2.21, the redued Γ̂-integral struture on QDM(X, E) is givenby Z(K(X)) and we denote it by F Z.Corollary 2.33. � The triple (F,∇, S) satis�es the following properties.1. The onnetion ∇ is �at and S is non-degenerated and ∇-�at.2. A fundamental solution of ∇ is given by L(t0, q, z)z−µzc1(TX⊗E∨).3. For any s1, s2 ∈ Γ(F), we have

S(L(q, z)s1, L(q, z)s2) = S(s1, s2)4. For any v in K(X), we have Z(v) = Ztw(v).5. For any v1, v2 in K(X), we have
S(Z(v1),Z(v2)) =

∫

X

ctop(E) Td(TX) Td(E)−1Ch(v1 ⊗ v2
∨).Proof. � (1) Proposition 2.17 and Corollary 2.30 implies the �atness for ∇. The �atness of

S follows from Proposition 2.20 and Equality (2.26).(2) This statement follows easily from Corollary 2.30 and Proposition 2.17.(3) The equality follows from Proposition 2.20 and Equality (2.26).(4) This follows from the statement (2).(5) The equality follows from the previous equality, Equation (2.26) and Proposition 2.23.De�nition 2.34. � The redued quantum D-module assoiated to the pair (X, E) is thequadruple (F,∇, S, FZ) denoted by QDM(X, E).Remark 2.35. � 1. The set Z(K(X))⊗Z C is the set of �at setions of QDM(X, E),14



2. The redued Γ̂-integral struture on QDM(X, E) de�ned above is the one indued by the
Γ̂-integral struture on QDM(X, E) de�ned in De�nition 2.21 i.e., we have Z(K(X)) =

Ztw(K(X)).2.3. Geometri interpretation of the Redued Quantum D-module for ompleteintersetion subvarieties. �Assumption 2.36. � In this setion, we assume that dimCX ≥ k + 3 and that the linebundles L1, . . . ,Lk are ample. This makes it possible to use Hyperplane and Hard Lefshetz'sTheorems.Notation 2.37. � Fix a generi setion of E , and denote by Z the projetive subvarietyde�ned by this setion. By Bertini's theorem, Z is a smooth omplete intersetion subvarietyof X . Denote by ι : Z →֒ X the orresponding losed embedding.By Lefshetz's theorem we have
H2∗(Z) = Im ι∗ ⊕ ker ι∗(2.38)and ker ι∗ ⊂ HdimC Z(Z). We put H2∗
amb(Z) := Im ι∗, this is the part of the ohomology of Zoming from the ambient spae X . We have the following ommutative diagram

H2∗(X)
mctop

p

ι∗

H2∗(X)
p

H2∗(X)

f

H2∗
amb(Z)

ι∗

(2.39)
where p is the natural projetion and f : γ 7→ ι∗γ. By the deomposition (2.38), themorphism f is an isomorphism. In partiular we have an isomorphism H2(X) ≃ H2(Z) and
H0(X) ≃ H0(Z).Remark 2.40. � It should be possible to improve Assumption 2.36, at least for tori vari-eties. For example, if X is a tori projetive variety of dimension at least 3, k = 1 and L1 isa nef (not neessary ample) line bundle on X , then Theorem 5.1 of [Mav00℄ ensures that Zis a smooth onneted hypersurfae satisfying : H2∗(Z) = Im ι∗ ⊕ ker ι∗.Proposition 2.41. � Using Notation 2.37, and under Assumption 2.36, for any γ1, γ2 ∈
H2∗(X), τ2 ∈ H2(X),

ι∗(γ1 •twτ2 γ2) = ι∗(γ1) •Zι∗(τ2) ι∗(γ2),where •Z is the quantum produt on Z.Proof. � The proof is given in Proposition 4 of [Pan98℄, for a smooth hypersurfae of Pn.The general ase is treated by Iritani ([Iri11℄, Corollary 2.3.) using funtoriality of virtuallasses (f. [KKP03℄).Reall that we identify H0(Z) with H0(X). The lassial quantum D-module assoiatedto Z, denoted by QDM(Z), is the triple (FZ ,∇Z , SZ) where1. FZ is the trivial bundle H2∗(Z)×H0(X)×VZ ×C → H0(X)×VZ ×C where VZ is thesubset of H2(Z)/Pic(Z) where the quantum produt on Z is onvergent(2),
(2)We use the same parameter q beause of the isomorphism ι∗ : H2(X) ≃ H2(Z)15



2. the onnetion ∇Z is de�ned via the same formula than ∇ with the quantum produtof Z and E := c1(TZ) + t01 and
µZ(ψa) =

1

2
(deg(ψa)− dimC Z)ψa.where (ψa) is a basis of H2∗(Z).3. The non-degenerated pairing SZ is de�ned in the same way of S but with the Poinaréduality of H2∗(Z).Moreover, on QDM(Z) Iritani de�ned the Γ̂-integral struture (see De�nition 2.9 [Iri09℄) via

ZZ(K(Z)) where for any w in K(Z), he puts
ZZ(w) = (2π)−(n−k)/2LZ(t0, q, z)z

−µZ

zc1(TZ )Γ̂(TZ)(2
√
−1π)deg /2Ch(w).In Proposition 2.10 of [Iri09℄, he proves that ZZ(w) ⊗Z C is the set of �at setions of

QDM(Z).We onsider the trivial sub-bundle of FZ whose �bers are H2∗
amb(Z). This sub-bundle isstable by ∇Z and the pairing is still non-degenerated on it. We denote QDMamb(Z) thissub-quantum D-module. By Proposition 2.41, the base spae of this bundle FZ ould berestrited to H0(X) × V × C. We put Kamb(Z) := ι∗K(X). We have that Kamb(Z) ⊗Z Cis isomorphi to H2∗

amb(Z) via the Chern harater. So ZZ(Kamb(Z)) ⊗Z C is the set of �atsetions of QDMamb(Z) that is ZZ(Kamb(Z)) de�ne a Γ̂-integral struture on QDMamb(Z).The integral struture put on QDM(X, E) in �2.1.e is ompatible with the one de�ned byIritani, that is we have the following theorem.Theorem 2.42. � Using Notation 2.37, and under Assumption 2.36. The redued quantum
D-module QDM(X, E) is isomorphi to the sub-quantum D-module QDMamb(Z) of QDM(Z).Proof. � First, we get an isomorphism of bundles. We still denote it f . From Proposition2.29 and Proposition 2.41, we have :

f(γ1 •redq γ2) = f(γ1 •twq γ2) = ι∗(γ1 •twq γ2) = (ι∗γ1) •Zq (ι∗γ2) = f(γ1) •Zq f(γ2).The adjuntion formula gives : c1(TZ) = ι∗c1(TX ⊗ E∨). Sine the dimension of Z is thedimension of X minus the rank of E , we dedue that µZ(f(γ)) = f(µ(γ)). It follows thatthe isomorphism of bundle f satis�es :
∇Zf(γ) = f(∇γ) and S(γ1, γ2) = SZ(f(γ1), f(γ2)).(2.43)Let show that for any γ be in H2∗(X)

f
(
L(t0q, z)z

−µzc1(TX⊗E∨)γ
)
= LZ(t0, q, z)z

−µZ

zc1(TZ)f(γ)(2.44)By equation (2.43), both side are fundamental solutions of QDMamb(Z), so they di�er bythe onjugation of a onstant matrix. At the large radius limit, they are both equivalent to
f(et0/zz−µzc1(TX⊗E∨)γ) = et0/zz−µZ

zc1(TZ )f(γ).This implies that the onstant matrix is the identity that is we have Equality (2.44).Let show the ompatibility between the integral strutures that is f(Z(v)) = ZZ(ι∗v) for
v in K(X). We use Equality (2.44) with γ := Γ̂(TX)Γ̂(E)−1(−1)deg /2 Ch(v). As we have

f(γ) = ι∗
(
Γ̂(TX)Γ̂(E)−1

)
(−1)deg /2ι∗Ch(v).As we are in omplete intersetion, the normal bundle NZ|X = ι∗E . So we have the followingexat sequene

0 TZ ι∗TX ι∗E 0(2.45) 16



This implies that the Chern roots if ι∗TX are the Chern roots of TZ and the Chern roots of
ι∗E . We dedue that Γ̂(ι∗TX) = Γ̂(ι∗E)Γ̂(TZ). As the lass Γ̂(v) is ompatible with pull-bak,we dedue that f(Z(v)) = ZZ(ι∗v).Denote by (·, ·)K(Z) the Mukai pairing that is (w1, w2)K(Z) := χ(w∨

2 ⊗ w1). The followingproposition show a relation between the Mukai pairing in K(Z) and the three pairings
S(·, ·), S(·, ·), SZ(·, ·) on respetive �at setions.Proposition 2.46. � For any v1, v2 in K(X), we have

(ι∗v1, ι
∗v2)K(Z) = SZ(ZZ(ι∗v1),ZZ(ι∗v2))

= S(Z(v1),Z(v2))

= S(Ztw(v1),Ztw(v2)).Proof. � The �rst equality follows from Proposition 2.10 of [Iri09℄. From Proposition 2.23and Corollary 2.33, it is enough to prove that
(ι∗v1, ι

∗v2)K(Z) =

∫

X

ctop(E) Td(TX) Td(E)−1Ch(v1 ⊗ v∨

2 ).(2.47)From the exat sequene (2.45), we dedue that Td(TZ) = ι∗(Td(E)−1Td(TX)). By Riemann-Roh and the projetion formula, we have
(ι∗v1, ι

∗v2)K(Z) = χ(ι∗v1 ⊗ ι∗v∨

2 )

=

∫

Z

Td(TZ)ι
∗Ch(v1 ⊗ v∨

2 )

=

∫

X

ι∗ι
∗ (Td(E)−1Td(TX) Ch(v1 ⊗ v∨

2 )
)The last equality is exatly (2.47).3. Batyrev rings for tori varieties with a splitted vetor bundleFrom now on, X is a tori smooth projetive variety endowed with k globally generatedline bundles L1, . . . ,Lk.In [Bat93℄, Batyrev onstruts a ring based on the ombinatorial data of a smooth tori,projetive variety. In the Fano ase, it is the quantum ohomology ring of this variety. Asshown in [Iri11℄, it is also the restrition at z = 0 of the quantum D-module.In this setion, we de�ne the Batyrev ring assoiated to the data (X,L1, . . . ,Lk). It isonstruted as the lassial Batyrev ring of a quasi-projetive tori variety, namely the totalspae of E∨, denoted by Y . This onstrution ould be generalized to any quasi-projetive,smooth tori variety de�ned by a onvex fan.More preisely, we prove the three following results that will be used in the rest of thepaper.1. The total spae Y of E∨ is a quasi-projetive smooth tori variety de�ned by a onvexfan ∆. The Batyrev ring B of a Y is a quotient of the ring Λ[xρ] := Λ[xρ, ρ ∈ ∆(1)],where Λ is the Novikov ring previously de�ned, and ∆(1) is the set of rays of the fan ∆.The quotient is made by the sum of two ideals, respetively denoted by QSR (QuantumStanley-Reisner ideal) and Lin (Linear ideal). Our �rst result in Theorem 3.22 gives aGroebner basis of QSR in terms of primitive olletions of the fan (see Notation 3.19).2. Moreover, assuming that the antianonial divisor of Y is nef then there exists a Zariskineighborhood U of the large radius limit in Λ suh that SpecB → U is �nite, �at ofdegree dimH2∗(X) (see Theorem 3.26).17



3. To set up our last result we �rst de�ne the residual Batyrev ring, denoted by Bres(see De�nition 3.39) : it is the quotient of Λ[xρ] by the quotient ideal (G : xtop)of G := QSR+Lin by a monomial xtop de�ned in terms of the Li. We show that
SpecBres → U is �nite, �at of degree dimH2∗(X) − dim kermctop (see Proposition3.40).Subsetions 3.1, 3.2 and 3.3 are preliminary results :� some realls of tori geometry to onstrut the fan of Y ,� the de�nition of the Batyrev ring,� the de�nition of primitive olletions and lasses.Subsetion 3.4 is devoted to the proof of Theorem 3.22 on Groebner basis. In the last twosubsetions, we prove Theorem 3.26 on Batyrev ring and then Proposition 3.40 on residualBatyrev ring.3.1. Notations for tori varieties. � This setion is mainly based on [Ful93℄ and[Mus℄.Denote by N a n-dimensional lattie and by M its dual lattie. Consider a fan Σ of

NR = N ⊗ R and denote by Σ(l) the set of l-dimensional ones of σ. The set of rays of Σ is
Σ(1) = {θ1, . . . , θm}, and for any θ ∈ Σ(1) we denote by wθ the generator of θ ∩N .The n-dimensional tori variety de�ned by Σ is denoted by X . For any one σ ∈ Σ wedenote by U(σ) the a�ne variety :

SpecC[σ∨] := SpecC[χu, u ∈M, ∀x ∈ σ, 〈u, x〉 ≥ 0]where χu are indeterminates. To any ray θ ∈ Σ(1), there is an assoiated tori Weil divisorsdenoted by Dθ.We assume that :1. Σ is non singular i.e., for any ray σ ∈ Σ, the set {wθ, θ ∈ Σ(1), θ ⊂ σ} is part of a basisof the lattie N . This is equivalent to X being smooth.2. X is projetive.Let L1, . . . ,Lk be k globally generated line bundle overX , and E := ⊕k
i=1Li. Let L1, . . . , Lkbe k tori divisors suh that Li = O(Li). We write :

Li =
∑

θ∈Σ(1)

ℓiθDθ, ℓiθ ∈ Z, i = 1, . . . , kFan of the total spae of E∨. � Consider the n + k dimensional lattie N ′ := N ⊕ Zk. Let
(ǫ1, . . . , ǫk) be the anonial base of Zk. Denote by :

φ : N ′ = N × Zk −→ Nthe natural projetion. De�ne a fan ∆ in N ′
R := N ′ ⊗ R in the following way :� The rays of ∆ are indexed by Σ(1) ∪ {L1, . . . , Lk} :

{For θ ∈ Σ(1), put vθ := (wθ, 0) +
∑k

i=1 ℓ
i
θ(0, ǫi),For i = 1, . . . , k, put vLi

:= (0, ǫi).Then,
∆(1) := {ρθ := R+vθ, θ ∈ Σ(1)} ∪ {ρLi

:= R+vLi
, i = 1, . . . , k}.� a strongly onvex polyhedral one σ is in ∆ if and only if φ(σ) ∈ Σ.By assumption, the line bundles Li are globally generated and the funtion ψLi

assoiatedto eah tori divisor Li is onave. This gives :Fat 3.1. � As the line bundles L1, . . . ,Lk are globally generated, the support |∆| = ∪σ∈∆σof the fan ∆ in N ′
R is onvex (we will say that ∆ is onvex).18



It will be onvenient to make the distintion between rays ρθ oming from the base variety
X , and rays ρLi

oming from the splitted vetor bundle E .Notation 3.2. � We put :
∆

base

(1)= {ρθ, θ ∈ Σ(1)}, ∆
v.b.

(1)= {ρL1 , . . . , ρLk
}.so that ∆(1) = ∆

base

(1) ⊔∆v.b.

(1) .Let Y be the tori variety assoiated to ∆. As X is smooth, Y is also smooth. We denoteby the same letter
φ : Y −→ Xthe sheme morphism indued by the projetion φ : N ′ −→ N .The next proposition gives a geometri interpretation of the tori variety Y :Proposition 3.3 ([CLS11℄, Proposition 7.3.1 and Exerise 7.3.3)The tori variety Y is the total spae of the dual vetor bundle E∨ ; the tori morphism

φ : Y → X is the natural projetion of this vetor bundle.One an easily hek the following result about ohomology lasses :Proposition 3.4. � The projetion φ : Y −→ X indues an isomorphism :
φ∗ : H∗(X)

∼−→ H∗(Y ).Moreover, if i is in {1, . . . , k} and Di is the divisor of Y orresponding to the ray ρLi
(seeonstrution 3.1), we have :

[Li] = φ∗[−Di] in H2(X).Example 3.5. � Consider the fan of P1 given by (N = Z, w1 = 1, w2 = −1), L = O(2) and
L = 2D1. The fan ∆ is given by the rays vθ1 = (1, 2), vθ2 = (−1, 0) an vL = (0, 1) (f. Figure1).

vρθ1

ρθ1

vρθ2ρθ2

vρL

ρL

•

Fan ∆ in N ′
R,

N ′ = N × Z.
φ

wθ1 θ1wθ2θ2 •
Fan Σ in NR,
N = Z.

!

!

Y , total spaeof OP1(2)∨

φ

X = P1Figure 1. Fans Σ and ∆ assoiated to X = P1, L = O(2D1)19



3.2. Batyrev ring of a quasi-projetive fan.� We de�ne and study the Batyrev ringof the fan ∆ de�ned in setion 3.1.Remark 3.6. � Notie that all the results of this part remain true for any fan Γ in a lattie
L suh that :1. Γ is non singular i.e., de�nes a smooth variety.2. The support of Γ is onvex of maximal dimension dimL.3. Γ de�nes a quasi-projetive variety.Denote by NE(Y )Z ⊂ H2(Y,Z) the (integral) Mori one of Y :NE(Y )Z =

{ ∑�nite sumnC [C], nC ∈ N, [C] numeri lass of irreduible urve}.The (integral) nef one in H2(Y,Z) is the dual one to NE(Y )Z. It is generated by globallygenerated divisors.Following [CvR08℄, to eah tori Weil divisor L =
∑

θ∈∆(1) ℓθDθ is assoiated a pieewiselinear funtions ψL from the support |∆| of ∆ to R whih is linear on any one of ∆, integralon N ′, and satis�es :
∀θ ∈ ∆(1), ψL(wθ) = −ℓθ.Denote by PL(∆) the set of pieewise linear funtions from |∆| to R whih are linear onany one of ∆ and integral on N ′. PL(∆) is isomorphi to the set of tori divisors of Y ,whih is also isomorphi to the set⊕ρ∈∆(1) ZDρ (reall that Y is smooth). There is an exatsequene :(3.7) 0 −→M ′ −→ PL(∆) = Z∆(1) −→ H2(Y,Z) −→ 0.Let CPL(∆) ⊂ PL(∆) be the subset of onave funtions, then the image of CPL(∆) by themap PL(∆) −→ H2(Y,Q) is the Nef one of Y .Also reall that the ample one of Y is the interior of the nef one. It is the image by

PL(∆) ⊗ R −→ H2(Y,R) of the set of stritly onave pieewise linear funtions of |∆|(f. [Mus℄, Chap. 6). Sine Y is a quasi projetive variety, the ample one is non emptyand its dimension is equal to r = dimH2(Y,R).We de�ne the oe�ient ring of Y by :
Λ := C[NE(Y )Z] = C[Qd, d ∈ NE(Y )Z].Remark 3.8. � In this artile, Y is a �ber bundle of base X . As a onsequene, theohomology groups, nef ones, Mori ones of X and Y are isomorphi, and Λ = C[NE(Y )Z] =

C[NE(X)Z] (see Proposition 3.4).Let d be a lass of H2(Y,Q). We put
dρ := Dρ.d =

∫

d

Dρ.For any ray ρ of ∆. Dualizing the exat sequene 3.7 gives :(3.9) 0 −→ H2(Y,Q) −→ Q∆(1) −→ NQ −→ 0,Where the image of d ∈ H2(Y,Q) by the left arrow is (dρ)ρ∈∆(1) ∈ Q∆(1).For any real number a, we also put a+ = max(a, 0), a− = max(−a, 0) so that : a = a+−a−.Finally put d+ = (d+ρ )ρ∈∆(1) and d− = (d−ρ )ρ∈∆(1). Identifying d ∈ H2(Y,Z) and its image in
Z∆(1) (see the exat sequene 3.9), we have :

d = d+ − d−.20



Consider a set of indeterminate xρ, ρ ∈ ∆(1), orresponding to the set of rays of ∆, andthe single indeterminate z. We put :
Λ[xρ] := Λ[xρ, ρ ∈ ∆(1)].For any d ∈ H2(Y,Z) denote by Rd the polynomial :(3.10) Rd := xd

+ −Qdxd
−

=
∏

ρ∈∆(1)

xd
+
ρ

ρ −Qd
∏

ρ∈∆(1)

xd
−
ρ

ρ .The quantum Stanley-Reisner ideal of Λ[xρ] is the ideal QSR generated by the Rd :
QSR := 〈Rd, d ∈ NE(Y )Z〉(3.11)The linear ideal of Λ[xρ], is the ideal Lin generated by the following linear polynomials

Zu's :
Lin :=

〈
Zu :=

∑

ρ∈∆(1)

〈u, vρ〉xρ, u ∈M ′

〉De�nition 3.12. � The Batyrev ring of ∆ is the ring :
B := Λ[xρ]/G,where G := QSR+Lin is the sum of the quantum Stanley-Reisner and linear ideal.Remark 3.13. � Suppose that N ′ is equipped with a basis (e1, . . . , en′). In that situation,we will put

∀i = 1, . . . , n′, Zi := Ze∗i
,where (e∗1, . . . , e

∗
n′) is the dual basis of (e1, . . . , en′) in M ′. The linear ideal Lin is generatedby Z1, . . . , Zn′.3.3. Primitive olletions. � Following Batyrev ([Bat93℄) and Cox ([CvR08℄) we de-�ne :De�nition 3.14. � A subset {ρ1, . . . , ρl} of ∆(1) is alled a primitive olletion for ∆ if

{ρ1, . . . , ρl} is not ontained in a single one of ∆ but every proper subset is.Let C = {ρ1, . . . , ρl} be a primitive olletion, and v1, . . . , vl be the generating vetors of
ρ1 ∩ N ′, . . . , ρl ∩ N ′. Let σ be the minimal one of ∆ ontaining v =

∑l
i=1 vi. Denote by

ρ′1, . . . , ρ
′
s the rays of σ and v′1, . . . , v′s the primitive vetors of the ρ′i. Sine σ is the minimalone of ∆ ontaining v, the vetor v is in the relative interior of σ and there exists s positivenumbers ai suh that : v = a1v

′
1 + · · ·+ asv

′
s. Moreover, sine v is in N ′ and the v′j are partof a basis of N ′ (∆ is non singular), then the aj's are uniquely de�ned in N>0.Remark 3.15. � With the above notations : {v1, . . . , vl} ∩ {v′1, . . . , v′s} = ∅. (See propo-sition 1.9 of [CvR08℄).Let C = {ρ1, . . . , ρl} be a primitive olletion and v =

∑l
i=1 vi = a1v

′
1 + · · ·+ asv

′
s be asabove. Then

l∑

i=1

vi −
s∑

j=1

ajv
′
j = 0.The exat sequene 3.9 shows that H2(Y,Z) = ker(Z∆(1) −→ N ′), and there exists a wellde�ned element dC ∈ H2(Y,Z)) suh that :

dCρ = Dρ.d
C =

∫

dC
Dρ =





1 if ρ ∈ C,
−aj if ρ = R+v′j , j ∈ {1, . . . , s},
0 otherwise.21



De�nition 3.16. � The lass of a primitive olletion C is the lass dC ∈ H2(Y,Z) de�nedas above.Lemma 3.17. � Let C be a primitive olletion, then dC ∈ NE(Y )Z.Proof. � See [CvR08℄, proposition 1.9.Also reall the following result from [CvR08℄ (Proposition 1.10) :Proposition 3.18. � The Mori one NE(Y )Z is generated by lasses of primitive olle-tions.A similar proposition for the Stanley-Reisner ideal will be proved in the next setion.Notation 3.19. � The set of primitive lasses of ∆ is :
P := {dC | C primitive olletion of ∆}.3.4. Monomial order and Groebner basis.3.4.a. Monomial order on the variables xρ.� We �x, one and for all, a monomial order ≺on the variables xρ and a stritly onave pieewise-linear funtion ϕ of |∆|, rational on N ′.Sine ∆ is quasi-projetive, suh a funtion exists. Denote by O =

∑
ρ∈∆(1) −ϕ(vρ)Dρ theample linear Q-divisor de�ned by ϕ.Let xa :=∏ρ∈∆(1) x

aρ
ρ (a ∈ N∆(1)) be a monomial in Λ[xρ]. Put :

ω(xa) =
∑

ρ∈∆(1)

−aρϕ(vρ),and de�ne a monomial order ≺ϕ as follows :
xa ≺ϕ x

a′ ⇐⇒





ω(xa) < ω(xa
′
)or

ω(xa) = ω(xa
′
) and xa ≺ xa

′
.Let P ∈ Λ[xρ] be a polynomial. The leading term of P for ≺ϕ will be denoted by Lt(P ).If Lt(P ) = αxa with α ∈ Λ and a ∈ N∆(1), then α is the leading oe�ient of P , denotedby Lc(P ) and xa is its leading monomial, denoted by Lm(P ). Sine Λ is not a �eld, thisdistintion between leading terms and leading monomials is neessary.Lemma 3.20. � Let d be in the Mori one NE(Y )Z, Rd = xd

+ − Qdxd
− , then Lt(Rd) =

Lm(Rd) = xd
+
.Proof. � We have : Rd = xd

+ −Qdxd
− , and :

ω(xd
+

)− ω(xd
−

) =
∑

ρ∈∆(1)

−d+ρ ϕ(vρ)−
∑

ρ∈∆(1)

−d−ρ ϕ(vρ) =
∑

ρ∈∆(1)

−dρϕ(vρ) = O.d > 0.3.4.b. Groebner basis of the quantum Stanley-Reisner ideal.�De�nition 3.21. � Let a be in H2(Y,Z) or in Z∆(1). We say that a is supported by a oneif the set {ρ ∈ ∆(1) | aρ 6= 0} is ontained in a one of ∆.We an now give a Groebner basis of QSR for the monomial order ≺ϕ. Reall that the setof primitive lasses is denoted by P (Notation 3.19). We have :22



Theorem 3.22. � The set {Rd, d ∈ P} is a Groebner basis with respet to the order ≺ϕof the quantum Stanley-Reisner ideal QSR de�ned in 3.11. Moreover, the set Lt(QSR) :=
{Lt(P ), P ∈ QSR}, is :

Lt(QSR) = {αxa | α ∈ Λ, a is not supported by a one.}.Remark 3.23. � (1) Being a Groebner basis over the oe�ient ring Λ �whih is nota �eld�, means that the initial terms of the polynomials Rd, d ∈ P, generate the ideal
〈Lt(QSR)〉 in Λ[xρ]. Notie that all the Rd, d ∈ P have a leading oe�ient equals to 1, sothat the Groebner basis property remains true at any point of SpecΛ.

(2) The ideal QSR should be seen as a tori ideal over a ring. Tori ideals over a �eld, arestudied in [Stu96℄ where a similar result to Theorem 3.22 is proved.First prove the following proposition :Proposition 3.24. � Let K be the fration �eld of Λ. Let QSR′ be the ideal of K[xρ]generated by {Rd, d ∈ NE(Y )Z}, then :(i) QSR′ = 〈Rd, d ∈ P〉 = 〈Rd, d ∈ H2(Y,Z)〉 in K[xρ].(ii) The set {Rd, d ∈ P} is a Groebner basis of QSR′ in K[xρ].Proof. � Put A := {Rd, d ∈ P}, and apply the multivariate algorithm to A (see [Eis95℄,algorithm 15.7). Consider the set
E := {Rd, d ∈ H2(Y,Z) | any possible remainder of amultivariate division of Rd by A is not zero}.Let us prove that E is empty. Assume that it is not. Denote by d ∈ H2(Y,Z) a lass suhthat Rd is in E, and is a minimal element of E for the order ≺ϕ. Sine Rd = xd

+ −Qdxd
− ,two ases an our :

a) Lt(Rd) = xd
+ .In this ase d+ is not supported by a one. Beause if d+ is supported by a one, then

−d ∈ NE(Y )Z by Lemma 3.25.(2) and Lt(R−d) = x(−d)+ = xd
− by Lemma 3.20; this gives

Lt(Rd) = Qdxd
− whih is a ontradition.Then there exists a primitive olletion C ontained in the support of d+. Denote by cthe lass of C and put a = d+ − c+ ∈ N∆(1). By Lemma 3.25.(3), we have :

Rd − xaRc = Qcxmin(d−,a+c−)Rd−c = −Qdxd
−

+Qcxa+c− .Sine Lm(Rd) = xd
+ , xd− ≺ϕ x

d+ and sine Lm(Rc) = xc
+ , xa+c− ≺ϕ x

a+c+ = xd
+ . It followsthat

Lm(Rd−c) �ϕ Lm(Qcxmin(d−,a+c−)Rd−c)

= Lm(Qdxd
− −Qcxa+c−) ∈ {xd− , xa+c−}

≺ϕ x
d+ = Lm(Rd).Sine Lm(Rd) is minimal in E, the polynomial Rd−c is not in E, and we have

Rd = xaRc +Qcxmin(d−,a+c−)Rd−c. We dedue that Rd is not in E whih is a ontradition.
b) Lt(Rd) = xd

− .Consider the polynomialR−d = xd
−−Q−dxd

+ . Then we have Lm(R−d) = Lm(Rd) = x(−d)+and R−d is not in E by a). Sine Rd = −QdR−d, we dedue that Rd is not in E whih is aontradition.Thus, E is empty that is, for any d ∈ H2(Y,Z) there exists a remainder of the division of
Rd by A whih is zero. We are now able to prove (i) and (ii) :23



(i) By Lemma 3.17 any lass of a primitive olletion is in the Mori one, and we have :
〈A〉 ⊂ QSR′ ⊂ 〈Rd, d ∈ H2(Y,Z)〉.Moreover, for any d ∈ H2(Y,Z) there exists a remainder of the division of Rd by A whih iszero, hene Rd is in the ideal 〈A〉 generated by A and 〈Rd, d ∈ H2(Y,Z)〉 = 〈A〉 = QSR′.

(ii) By (i) the set A = {Rd, d ∈ P} generates QSR′. Let us apply the Buhberger's algorithmto A. Let C1, C2 be two primitive olletions of respetive lasses c1, c2 ∈ NE(Y )Z. For
i ∈ {1, 2} we onsider the monomial :

xa1 =
LCM(Lm(Rc1),Lm(Rc2))

Lm(Rci)
= xmax(c+1 ,c+2 )−c+i .By lemma 3.25.(3) we have :

xa1Rc1 − xa2Rc2 = xmin(a1+c−1 ,a2+c−2 )Qc2Rc1−c2.Sine the remainder of the division of Rc1−c2 by A is zero, the set A is a Groebner basis of
QSR′.Proof of Theorem 3.22. � Either in K[xρ] or in Λ[xρ] we have :

〈Lt(Rd), d ∈ P〉 = 〈xd+ , d ∈ P〉
= 〈xa, a ∈ N∆(1) | a is not supported by a one〉.Let P ∈ QSR ⊂ Λ[xρ]. As an element of K[xρ], the element P is in QSR′. By Proposition3.24, Lt(QSR′) = 〈Lt(Rd), d ∈ P〉 ; then Lt(P ) = αxa, α ∈ K and a not supported by aone. Sine P is in Λ[xρ], α is in Λ and we are done.Lemma 3.25. � 1. Let d be in H2(Y,Z), d 6= 0, then either d+ or d− is not supportedby a one.2. Let d be in H2(Y,Z), if d− is supported by a one, then d ∈ NE(Y )Z.3. Let c, d be in H2(Y,Z), a, b be in N∆(1). Suppose that c+ + a = d+ + b, then in

C[H2(Y,Z)][z][xρ], we have : xaRc − xbRd = xmin(a+c−,b+d−)QdRc−dProof. � 1. We have : ∑ρ∈∆(1) d
+
ρ vρ =

∑
ρ∈∆(1) d

−
ρ vρ. Let σ+ be the minimal one of

∆(1) supporting d+, and σ− be the minimal one of ∆ supporting d−.Put v :=
∑

ρ∈∆(1) d
+
ρ vρ =

∑
ρ∈∆(1) d

−
ρ vρ. Then v is in the interior of σ+ and σ−. Itfollows that σ+ = σ− and, sine ∆ is non singular, d+ = d− and d = 0.2. We have to show that, for any nef tori divisor T , we have T.d ≥ 0. Let T be suh adivisor and ψ the pieewise linear onave funtion assoiated to T :

T.d =
∑

ρ

−ψ(vρ)d+ρ −
∑

ρ

−ψ(vρ)d−ρ

=
∑

ρ

−ψ(vρ)d+ρ + ψ(
∑

ρ

d−ρ vρ) (d− supported by σ)
≥ −ψ(

∑

ρ

d+ρ vρ) + ψ(
∑

ρ

d−ρ vρ) = 0 (ψ onave, and (∑
ρ

d+ρ vρ =
∑

ρ

d−ρ vρ))3. Sine a+ c+ = b+ d+, c+ − c− = c and d+ − d− = d, we have :
min(a + c−, b+ d−) = min(a + c+ − c, b+ d−) = min(b+ d+ − c, b+ d−)

= min(b+ d− + d− c, b+ d−) = b+ d− +min(d− c, 0)

= b+ d− − (c− d)+.24



Similarly, min(a+ c−, b+ d−) = a+ c− − (c− d)−. Then we get :
xaRc − xbRd = xa+c+ −Qcxa+c− − xb+d+ +Qdxb+d−

= xmin(a+c−,b+d−)Qd×
(
xb+d−−min(a+c−,b+d−) −Qc−dxa+c−−min(a+c−,b+d−)

)

= xmin(a+c−,b+d−)Qd
(
x(c−d)+ −Qc−dx(c−d)−

)

= xmin(a+c−,b+d−)QdRc−d.3.5. Flatness, �niteness and degree of the Batyrev ring over the oe�ient ring.� The aim of this setion is to prove the following result :Theorem 3.26. � Let L1, . . . ,Lk be globally generated line bundles on X suh that (ωX ⊗
L1 ⊗ · · · ⊗ Lk)

∨ is nef. Let B be the Batyrev ring of (X,L1, . . . ,Lk) de�ned above. Thereexists a Zariski neighbourhood U ⊂ SpecΛ of the large radius limit suh that the restritedsheme morphism :
Spec(B)|U −→ Uis �nite, �at, of degree dimH2∗(X).Remark 3.27. � 1. Notie that the de�nition of B depends on the hoie of the toridivisors Li of eah Li. Di�erents hoies of tori divisors give isomorphi rings.2. The open subset U will be de�ned in paragraph 3.5.d. We all it the freeness neigh-bourhood of ∆. It only depends on X , not on the vetor bundle E and an be expliitelyomputed by elimination algorithm.Reall that Y is the total spae of E∨, de�ned by the fan ∆, that NE(Y )Z = NE(X)Z and

[KY ] ∈ H2(Y ) = [KX + L1 + . . .+ Lk] ∈ H2(X) via the isomorphism de�ned in Proposition3.4. We will rephrase Theorem 3.26 and atually prove :If ∆ is a smooth, quasi-projetive, onvex, fan de�ning a variety Y and if the antianonialdivisor −KY is nef, then there exists a neighbourhood U ⊂ SpecΛ of the large radiuslimit suh that the restrited sheme morphism : Spec(B)|U −→ U is �nite, �at, of degree
dimH2∗(Y ).First onsider the �ber of B over the large radius limit.3.5.a. Large radius limit.� Using Notations 3.34, Spec Λ = V. Let 0 be the "large radiuslimit" point. It is de�ned by the maximal ideal m = 〈Qd, d ∈ NE(Y )Z, d 6= 0〉 in Λ. The�ber of SpecB over this point is well known :Notation 3.28. � Put :

SR =
〈
xd

+

, d ∈ NE(Y )Z〉 =
〈
xa, a ∈ N∆(1) not supported by a one.〉(3.29)

Lin =

〈
∑

ρ∈∆(1)

〈u, vρ〉xρ, u ∈M ′

〉(3.30)The ideal SR is the Stanley-Reisner ideal of ∆ (see [BH93℄ for example).Proposition 3.31. � Let L1, . . . ,Lk be globally generated line bundles. The image of QSR(resp. Lin) in Λ/m is SR (resp. Lin) ; there is a well de�ned isomorphism :
B/mB = C[xρ]/ 〈SR+Lin〉 ∼−→ H2∗(Y,C) = H2∗(X,C)

xρ 7−→ [Dρ]where [Dρ] ∈ H2(Y ) is the lass of the tori divisor Dρ.25



Proof. � Sine ∆ is onvex and quasi-projetive, the proof of [Ful93℄ in the omplete asean be adapted to our ase ; then there is a well de�ned isomorphism :
Z[xρ]/(SR+Lin)

∼−→ H2∗(Y,Z)

xρ 7−→ [Dρ],whih proves the proposition.Notie that the �ber at m does not depend on the vetor bundle E .3.5.b. Flatness of Λ → Λ[xρ]/QSR.�Lemma 3.32. � The morphism Λ −→ Λ[xρ]/QSR is a �at morphism of relative dimension
n′ = dimY ; Λ and Λ[xρ]/QSR both are Cohen-Maaulay rings.Proof. � Flatness. For P in Λ[xρ], denote by P its image in Λ[xρ]/QSR. Let A be the setof monomials of Λ[xρ] not ontained in Lm(QSR). By Theorem 3.22, A = {xa ∈ N∆(1) |
a is supported by a one}. As in [Eis95℄ (theorem 15.17) we prove that Λ[xρ]/QSR is a free
Λ-module with basis A = {P, P ∈ A} :Let xa1 , . . . , xal be in A and α1, . . . , αl be in Λ. If∑i αixai = 0, then∑i αix

ai ∈ QSR and
Lm(

∑
i αix

ai) ∈ Lm(QSR). Sine all the a′is are supported by a one, we get αi = 0 for any
i = 1, . . . , l, and A is free over Λ.Suppose now that A does not generate Λ[xρ]/QSR as a Λ-module. Let xa be the smallestmonomial for ≺ϕ suh that xa /∈ Λ.A. The m′-tuple a is not supported by a one, and thereexists a lass d of a primitive olletion, and b ∈ N∆(1) suh that xa = xbRd + Qdxb+d− . Wededue that xa = Qdxb+d− . By assumption, and sine xb+d− ≺ϕ x

a, the lass xb+d− belongsto Λ.A, hene we onlude that xa is in Λ.A whih is a ontradition.Fiber over the large radius limit is Cohen-Maaulay of dimension n′.Let m be the ideal of the point 0 in V, as in Paragraph 3.5.a. The image of QSR in
Λ[xρ]/m is the Stanley-Reisner ring SR (see Notation 3.29). By [BH93℄, Theorem 5.1.4, andCorollary 5.4.6, C[xρ]/ SR is a Cohen-Maaulay ring of dimension n′.Fibers over Spec Λ are Cohen-Maaulay of dimension n′.Let n be any maximal ideal of Λ, and denote by QSR the image of QSR in (Λ/n)[xρ] =

C[xρ]. By Theorem 3.22, the set {Rd, d ∈ P} is a Groebner basis of QSR. The initial idealof QSR is 〈xa, a ∈ N∆(1), not supported by a one〉 ; this is the ideal SR studied above.By [Eis95℄, there exists a �at morphism of algebras C[t] −→ C whose �ber C ⊗ C[t]/(t)over 0 is C[xρ]/ SR and whose �ber Cp = C ⊗ C[t]/p over any other point p of SpecC[t] isisomorphi to C[xρ]/QSR.The set of p ∈ SpecC[t] suh that the �ber of Spec(C) −→ SpecC[t] over p is Cohen-Maaulay is open ([Gro66℄, orollary 12.1.7). It is not empty sine it ontains 0 hene itontains a point p 6= 0 of C. It follows that C[xρ]/QSR is Cohen-Maaulay. Moreover, by�atness of C[t] −→ C, dimC[xρ]/QSR = dimC[xρ]/ SR = n′.As a onlusion, Λ −→ Λ[xρ]/QSR is �at, of relative dimension n′, and its �bers all areCohen-Maaulay. Sine Spec Λ is a tori a�ne variety, it is also Cohen-Maaulay. It followsthat Λ[xρ]/QSR is Cohen-Maaulay ([BH93℄, Theorem 2.1.7).We now ome to the study of the Batyrev ring B = Λ[xρ]/(QSR+Lin). By de�nition,
Spec(B) is a subsheme of Spec Λ[xρ] and there is a natural projetion :

Spec(B) −→ SpecΛ.26



3.5.. Homogenization of Λ[xρ].Put m′ = Card∆(1), onsider a new variable h and denote by Pm′

V
the projetive shemeProj Λ[xρ, h], with the grading given by deg(h) = 1 and deg(xρ) = 1. Also denote by H thehyperplane at in�nity de�ned by h = 0, and by Am′

V
the a�ne subspae Spec Λ[xρ] = Pm′

V
\H .The homogenization of a polynomial P ∈ Λ[xρ] is P h :

P h := hdeg PP
(xρ
h

)
∈ Λ[xρ, h].The linear polynomials Zu (u ∈ M ′) being homogeneous, we have Zh

u = Zu. As for thehomogenization of Rd, notie that for any d ∈ H2(Y,Z), we have deg(xd
+
) − deg(xd

−
) =∑

ρDρ.d = −KY .d. We get :Remark 3.33. � If −KY is nef, then for any d in NE(Y )Z,
Rh

d = xd
+ −Qdh−KY .dxd

−

.Let Γ be the losed subsheme of Pm′

V
de�ned by the homogeneous polynomials Rh

d for
d ∈ NE(Y )Z. Let χ be the losed subsheme of Γ ⊂ Pm′

V
de�ned by the polynomials Rh

d for
d ∈ NE(Y )Z and Zu for u ∈M ′. We have :

χ ⊂ Γ and SpecB = χ ∩ Am′

V
.The losed subsheme χ ∩H is de�ned in Proj Λ[xρ] by the homogeneous polynomials: R∞

dand Zu where :
∀d ∈ NE(Y )Z R∞

d = Rh
d |h=0 ∈ Λ[xρ]

∀u ∈M ′ Zu =
∑

ρ∈∆(1) 〈u, vρ〉 xρ.Let π be the natural morphism :
π : Pm′

V
−→ VThe image π(χ ∩H) is a losed subset of V.Notation 3.34. � The losed subset of V

U := V \ π(χ ∩H)is alled the freeness neighborhoods of the large radius limit. Its intersetion U := U∩T withthe torus is also alled freeness neighbourhood. This terminology is justi�ed by Theorem3.26 and Proposition 3.40.Remark 3.35. � 1. Using primitive olletions and elimination algorithms, we an givean expliit desription of the algebrai open subset U . Let (e1, . . . , en′) be a basis of
N ′ as in Remark 3.13. The losed subsheme χ ∩ H is de�ned by the �nite set ofpolynomials : Zi =

∑
ρ∈∆(1) 〈e∗i , vρ〉xρ and, for d in the set P of primitive lasses,
R∞

d =

{
xd

+ if ∑ρ dρ > 0,

xd
+ −Qdxd

− if ∑ρ dρ = 0,The ideal in Λ of the losed subset π(χ ∩ H) an be obtained by elimination of thevariables xρ.2. The homogenization of an ideal I of Λ[h, xρ] is : Ih =
〈
P h, P ∈ I

〉
. Reall that, if

I is generated by P1, . . . , Pl, we do not have in general : Ih =
〈
P h
1 , . . . , P

h
l

〉. In oursituation, if χ′ is the losed subsheme of Pm′

V
de�ned by the homogenized ideal Gh, weonly get χ′ ⊂ χ.Lemma 3.36. � The large radius limit is in U .27



Proof. � Using notations above, let 0 ∈ V be the large radius limit, and χ
0
be the �ber of

χ −→ V over it. The intersetion χ
0
∩H is de�ned by the homogeneous ideal : 〈h〉+SR+Linin Pm′

C . And we have :
C[xρ, h]/(〈h〉+ SR+Lin)

∼−→ C[xρ]/(SR+Lin),this last ring being isomorphi to H2∗(Y,C) by Proposition 3.31. It follows that the zerolous in Cm′ of the ideal SR+Lin ⊂ C[xρ] is de�ned by xρ = 0 for any ρ ∈ ∆(1). Then, theredued ideal of 〈h〉+SR+Lin is the irrelevant ideal of the graded ring C[h, xρ] and χ0
∩His empty.Remark 3.37. � (Fano subvariety) If −KY is ample, that is, in our ase, if the ompleteintersetion subvariety de�ned by a generi setion of E is Fano, then the freeness neighbor-hood U is equal to the whole set V. Atually, sine −KY .d > 0 for any d ∈ NE(Y )Z, theprojetivized polynomials R∞

d are equals to 〈xd+ , d ∈ NE(Y )Z〉. Eah �ber of χ −→ V isisomorphi to χ
0
and χ ∩H = ∅.3.5.d. Proof of Theorem 3.26. � Consider the following diagram :

χUrel.dim. 0 ΓU rel. dim. n′

= dimX + rk E

Uwhere ΓU is the restrition of Γ = Proj Λ[h, xρ]/
〈
Rh

d

〉 to U . By Lemma 3.32. Am′

U
∩ΓU −→

U is a �at morphism of relative dimension n′ between Cohen-Maaulay shemes.Above U and χ are ontained in the a�ne part of Γ (away from the hyperplane H) andhas relative dimension zero sine the �bers do not meet the hyperplane H . Thus, χU → Uis a �nite and proper morphism.Let (e1, . . . , en′) be a basis of N ′. We use of notations of Remark 3.13. Let p be a point of
U and denote by Z i the image of Zi in the quotient of Λ[xρ] by the maximal ideal de�ning
p. In the Cohen-Maaulay �ber Am′

p ∩ Γp over p, the sheme χp has odimension n′ andis de�ned by a sequene of length n′ (namely (Z1, . . . , Zn′)). By [BH93℄, theorem 2.1.2,
(Z1, . . . , Zn′) is a regular sequene.By the orollary to the theorem 22.5 of [Mat86℄, sine Am′

U
∩ ΓU → U is �at, and

(Z1, . . . , Zn′) are regular sequenes over any point of U , then χU −→ U is �at.The degree of this �nite morphism an be omputed as the length of the �ber χ
0
over thelarge radius limit. By proposition 3.31 it is equal to dimH2∗(Y ).Remark 3.38. � If Y is Fano, one an also proof by indution on the degree that B isa free Λ-module. A basis of B is given by a free subset of the set of monomials {xa, a ∈

N∆(1), a is supported by a one, aρ ∈ {0, 1}} whih generates B.3.6. Flatness, �niteness and degree of the residual Batyrev ring over U .� Aswe have H2(X) ≃ H2(Y ) and, via this isomorphism, we have : [Li] = [−Dρi ] for ρi ∈ ∆
v.b.

(1)(f. Proposition 3.4).We put :
ci := [Li] = [−Dρi ] ∈ H2(X), ctop(E) :=

∏k
i=1 ci ∈ H2k(X)

xi := xρi whih is a variable in Λ[xρ], xtop := (−1)k
∏k

i=1 xi ∈ Λ[xρ]We also de�ne the quotient ideal :
(G : xtop) := {P ∈ Λ[xρ], xtop.P ∈ QSR+Lin = G}.28



Finally reall that we denoted bymctop : H2∗(Y ) −→ H2∗(Y ) the morphism of multipliationby ctop(E).De�nition 3.39. � The residual Batyrev ring of (Σ, L1, . . . , Lk) with respet to E is the
Λ-algebra :

BRes = Λ[xρ]/(G : xtop).Proposition 3.40. � Let L1, . . . ,Lk be ample line bundle on X suh that (ωX ⊗L1⊗· · ·⊗
Lk)

∨ is nef. Denote by U ⊂ V the freeness neighborhood de�ned in 3.34. Then the restritedmorphism Spec(BRes)|U −→ U is �nite, �at of degree dimCH
2∗(X)− dim kermctop.Proof. � Denote by xtop the image of xtop in B = Λ[xρ]/(QSR+Lin), and by mctop : B −→

B the morphism of multipliation by xtop in B. This multipliation indues an isomorphism :
BRes = Λ[xρ]/(G : xtop)

∼−→ xtopB = Im(mctop).(well de�ned and injetive by de�nition of the quotient ideal (G : xtop)). Moreover, there isan exat sequene :(3.41) 0 −→ xtopB −→ B −→ B/xtopB −→ 0By de�nition B/xtopB is isomorphi to Λ[xρ]/(QSR+Lin+〈xtop〉).Let d be a lass of NE(Y )Z. For any ρ = ρLi
∈ ∆

v.b.

(1), sine [−Dρ] = [Li] is ample,
dρ = Dρ.d < 0 and we have :

Rd = xd
+ −Qdxtopx

d−−ǫ,where ǫ = (ǫρ)ρ∈∆(1), ǫρ = 1 if ρ ∈ ∆
v.b.

(1), ǫρ = 0 otherwise.As a onsequene, in Λ[xρ]/(QSR+Lin+〈xtop〉), Rd = xd
+ and we an write :

Λ[xρ]/(QSR+Lin+〈xtop〉) ∼−→ Λ[xρ]/(〈xd
+

, d ∈ NE(Y )Z〉+ 〈Zu, u ∈M ′〉+ 〈xtop〉)
∼−→ Λ⊗

(
C[z][xρ]/(〈xd

+

, d ∈ NE(Y )Z〉+ 〈Zu, u ∈M ′〉+ 〈xtop〉)
)Using Proposition 3.31, we get :

C[z][xρ]/(〈xd
+

, d ∈ NE(Y )Z〉+ 〈Zu, u ∈ M ′〉+ 〈xtop〉) ∼−→ H2∗(X,C)/
〈∏k

i=1c1(Li)
〉
.We get

Λ[xρ]/(QSR+Lin+〈xtop〉) ∼−→ Λ⊗
(
H2∗(X,C)/ 〈ctop(E)〉

)
.Thus, B/xtopB is a �at Λ-module. Its rank an be omputed, and is equal to :

dimCH
2∗(Y ) / ctop(E)H2∗(Y ) = dimH2∗(Y )− dimC Immctop = dimC kermctop.Restriting the exat sequene (3.41) to U , and using the isomorphism BRes ∼−→ xtopB weget : (BRes)|U is a �at module of rank (dimH2∗(Y )− dim kermctop) over U .4. GKZ systems, quotient ideals and residual D-modulesGKZ systems were de�ned and studied by Gelfand-Kapranov-Zelevinski�� in the end of theeighties (f. [GGZ87℄, [GZK88℄, [GZK89℄ and [GKZ90℄). Nevertheless, our approah isloser to the one of [Giv95℄, [Giv98℄, [CK99, �5.5.3 and �11.2℄ or [Iri09℄.Here we de�ne the GKZ ideal and the quotient GKZ ideal assoiated to (X, E). Thisgives us two di�erential modules, whih will be ompared (in Setion 5) to the twisted andredued Quantum D-modules of Setion 2.Consider, as above, the tori variety X endowed with the k tori divisors L1, . . . , Lk suhthat Li = O(Li). 29



Notation 4.1. � Let d be a lass of H2(X,Z). We put
∀θ ∈ Σ(1), dθ := Dθ.d =

∫
d
Dθ =

∫
d
[Dθ]

∀i ∈ {1, . . . , k} dLi
:= Li.d =

∫
d
Li =

∫
d
c1(Li)Also reall that, for any real number a, we put a+ = max(a, 0), a− = max(−a, 0) so that :

a = a+ − a−.Consider the non-ommutative ring :
D := C[q±1

1 , . . . , q±1
r , z]〈zδq1 , . . . , zδqr , zδz〉.For simpliity, we will write D = C[q±, z]〈zδq, zδz〉.Notation 4.2. � (Quantization) Reall that T1, . . . , Tr is a �xed basis of H2(X). To anylass τ =

∑r
a=1 taTa ∈ H2(X) we assoiate the operator

τ̂ :=
r∑

a=1

tazδqa ∈ DIn the same way, if L is a line bundle or a divisor we write L̂ := ĉ1(L). Finally put :
ĉtop :=

k∏

i=1

L̂i ∈ D.De�nition 4.3. � (GKZ-ideal, and quotient ideal with respet to ĉtop)1. The GKZ-ideal G assoiated to (Σ,L1, . . . ,Lk) is the left ideal generated by the oper-ators �d, d ∈ H2(X,Z), and Ê :
�d :=

k∏

i=1

d−Li∏

ν=1

(
L̂i + νz

) ∏

θ∈Σ(1)

d+θ −1∏

ν=0

(
D̂θ − zν

)
−

qd
k∏

i=1

d+Li∏

ν=1

(
L̂i + νz

) ∏

θ∈Σ(1)

d−θ −1∏

ν=0

(
D̂θ − zν

)
(d ∈ H2(X,Z))

Ê := zδz + ̂c1(TX ⊗ E∨)where we use Notation 4.1 and qd =∏r
a=1 q

∫
d Ta

a =
∏r

a=1 q
da
a (d =∑r

a=1 daBa).2. The quotient ideal Quot(ĉtop,G) of G with respet to ĉtop, is the left ideal of D generatedby :
{P ∈ D | ĉtopP ∈ G}.Notie that, unlike the ommutative ase, the set {P ∈ D | ĉtopP ∈ G} is not an ideal,but only a C[z]-module(3). However, it ontains the ideal G and should be seen as a biggersystem of equations.De�nition 4.4. � (GKZ-module, and residual module with respet to ĉtop)1. The GKZ module assoiated to (Σ,L1, . . . ,Lk) is the left quotient D-module

M := D/G.

(3) For a simple example, onsider the Weyl algebra C[q] 〈δq〉, the left ideal I = 〈δq〉 and ĉ = δq. Then 1satis�es ĉ.1 ∈ I, hene Quot(ĉ, I) = C[q] 〈δq〉 and q ∈ Quot(ĉ, I). However, ĉ.q = δqq = qδq + q is not in I (itwould imply that q is in I, whih is impossible for degree reasons).30



2. The residual GKZ-module Mres is the left quotient D-module
Mres := D/Quot(ĉtop,G)In the following, we denote by D the sheaf of OT×C-algebras assoiated to the ring D over

T×C. Denote by M (resp. MRes) the sheaf of OT×C-modules assoiated to M (resp. MRes).These D-modules may not be oherent over the whole set T × C. However, onsideringthe freeness neighborhood U de�ned in Notation 3.34, we have :Theorem 4.5. � Let L1, . . . ,Lk be globally generated line bundles suh that (ωX ⊗ L1 ⊗
· · · ⊗ Lk)

∨ is a nef line bundle. The restrited sheaves M|U×C and Mres|U×C are oherent
OU×C-modules.Proof. � If M is oherent then Mres is also oherent : the surjetive morphism M → Mresimplies that Mres is �nitely generated.Reall from De�nition 4.4 that M = D/G. This module M is isomorphi, as a C[q±, z]-module, to

M′ := D′/G′(4.6)where D′ := C[q±, z]〈zδq〉 and G′ = 〈�d, d ∈ H2(X,Z)〉 : the Euler operator Ê of the ideal
G enables us to remove zδz in the quotient.Hene, we are led to show that the sheaf M′ assoiated to M′ and restrited to U × Cis C[q±, z]-oherent. For a lassial di�erential modules, one ould �nd a good �ltrationand show that the harateristi variety is supported by the zero setion of the otangentbundle (f. [RS10, �3℄ and [Sab05, Proposition 1.2.8℄). Sine M′ is a D′-module (andnot a C[q±, z]〈∂q, ∂z〉-module), we will rewrite the lassial proof (f. for instane [HTT08,Proposition 2.2.5℄) in our ase.Let us de�ne the following inreasing �ltration of D′ :

FkD
′ :=

{
P ∈ D′ | P (q, z, zδq) =

∑

α∈Nr

|α|≤k

Pα(q, z)(zδq)
α

}where (zδq)
α := (zδq1)

α1 · · · (zδqr)αr . One an easily hek that this �ltration satis�es thefollowing properties(a) FkD′ = 0 for k < 0,(b) ∪k∈NFkD′ = D′,() for any k, ℓ in N, we have (FkD′) · (FℓD′) = Fk+ℓD′,(d) for any k in N, FkD′ is a free C[q±, z]-module,(e) for any P in FkD′ and for any Q in FℓD′, [P,Q] is in Fk+ℓ−1D′.Let grD′ be the graduated ring of D′ de�ned by the �ltration F . Property (e) proves that
grD′ is ommutative. For a in {1, . . . , r}, denote by ya the lass of zδqa in grD′, then grD′is isomorphi to C[q±, z][y1, . . . , yr]. Let P (q, z, zδq) := ∑α∈Nr Pα(q, z)(zδq)

α in D′, then itslass in grD′, denoted by σ(P ), is
σ(P ) =

∑

α∈Nr

|α|=degP

Pα(q, z)y
αwhere yα := yα1

1 · · · yαr
r .We dedue an inreasing �ltration on M′ de�ned by

FkM
′ := FkD

′/G′
kwhere G′

k := FkD′ ∩G′. We have :1. FkM′ = 0 for k < 0, 31



2. ∪k∈NFkM′ = M′,3. for any k in N, FkM′ is a oherent C[q±, z]-module as it is a �nitely generated moduleover the Noetherian ring C[q±, z],4. for any k, ℓ in N, we have (FkD′) · (FℓM′) = Fk+ℓM′.For lassial di�erential module, the last two properties mean that the �ltration (FkM)k∈Nis good. Sine we have
grM′ = grD′/ grG′,(4.7)we dedue that the annihilator AnngrD′ grM′ is grG′.In order to use Lemma 4.8, we shea�fy everything. We will denote by alligraphi lettersfor the sheaves assoiated to the C[q±, z]-modules and restrited to U × C. Consider theideal sheaf I := 〈y1, . . . , yr〉 in grD′.By Lemma 4.8, there exists(4) m0 in N suh that Im0 is a subsheaf of grG′. Let P bea setion of FkM′ for k ≤ m0. By property (4), for α in Nr suh that |α| = m0, we have

(zδq)
αP is in Fk+m0M

′. But we have σ((zδq)α) = yα ∈ Im0 ⊂ grG′. This implies that thelass of (zδq)αP in grM′ is zero. We dedue that (zδq)αP in Fk+m0−1M′. The property (4)implies that for any k in N we have
Fm0+kM

′ = (Fm0D
′) · FkM

′

=



∑

α∈Nr

|α|=m0

OU×C(zδq)
α


 .FkM

′ +



∑

α∈Nr

|α|<m0

OU×C(zδq)
α


 .FkM

′

⊂ Fk+m0−1M
′.We dedue that the inreasing �ltration FkM′ is stationary after m0. Property (2) impliesthat Fm0M

′ = M′ and Property (3) implies the theorem.The following Lemma is used in Theorem 4.5. We use the notations de�ned along theproof of this theorem : grD′ = C[q±1 , . . . , q
±
r , z][y1, . . . , yr] and σ is the symbol. Reall thatthe harateristi variety of M is the algebrai variety C in Spec grD′ de�ned by the ideal :√

AnngrD′ grM′. There is a natural morphism : Spec grD′ −→ T×C, where T = SpecC[q±],and we get a artesian diagram :
C|U×C →֒ C ⊂ Spec grD′

↓ ↓
U × C →֒ T× CLemma 4.8. � Assume that (ωX ⊗L1 ⊗ · · ·⊗Lk)

∨ is a nef line bundle. Let U be the opensubset of T de�ned in Notation 3.34. The harateristi variety C|U×C is the zero setion of
grD′|U×C → U × C de�ned by the ideal 〈y1, . . . , yr〉.Proof. � In order to onnet the de�nitions of U and grD′, we onsider the ring
C[q±, z][xρ, ρ ∈ ∆(1)]. There is a natural surjetive morphism of C[q±, z]-algebra :

α : C[q±, z][xρ, ρ ∈ ∆(1)] −→ grD′ = C[q±, z][y1, . . . , yr]

xρ 7−→
{∑r

a=1D
a
ρya if ρ ∈ ∆

base

(1)

−(
∑r

a=1D
a
ρya) if ρ ∈ ∆

v.b.

(1)Where the Da
ρ are numbers de�ned by : [Dρ] =

∑r
a=1D

a
ρTa in H2(Y,Z). Note that sine, in

2d, the sign in front of Dρ in is not the same for rays oming from the bases or from the line
(4)For example take m0 := m1 + · · ·+mr where ymi

i ∈ grG′.32



bundles Li, the de�nition of α(xρ) admit two ases. Atually, c1(Li) = −[Dρi ] for ρi ∈ ∆
v.b.

(1)whih reate this additional sign. We refer the reader to [CK99℄ and to the Erratum toProposition 5.5.4 for de�nitions of 2d with onventional signs).The kernel of this morphism is the linear ideal Lin generated by the Zu, u ∈ M ′ : Zu =∑
ρ∈∆(1)〈u, vρ〉xρ where vρ is the generating vetor of ρ ∩N ′. We get an isomorphism :

α : C[q±, z][xρ, ρ ∈ ∆(1)]/Lin −→ C[q±, z][y1, . . . , yr].The harateristi variety is ontained in the losed subset K ′
1 of Spec grD′ de�ned by theideal

J1 = 〈σ(�d), d ∈ H2(X,Z)〉 ⊂ C[q±, z][y1, . . . , yr].Let d be in H2(X,Z). We hek that σ(�d) = α(R∞
d ) where R∞

d is the polynomial :
R∞

d :=

{
xd

+ if ∑ρ∈∆(1) dρ < 0

xd
+ − qdxd

− if ∑ρ∈∆(1) dρ = 0.Whih lead us to onsider the ideal :
J2 = 〈R∞

d , d ∈ H2(X,Z) ; Zu, u ∈M ′〉 ⊂ C[q±, z][xρ, ρ ∈ ∆(1)],Considering C[q±, z][xρ, ρ ∈ ∆(1)] and C[q±, z][y1, . . . , yr] as graded C[q±, z]-algebras (with
deg(xρ) = 1 and deg(ya) = 1), The morphism α de�ned above is a graded morphism. Ideals
J1 and J2 both are homogeneous ideals, and α(J2) = J1.LetK1 (resp. K2) be the losed subsheme of the projetive sheme ProjC[q±, z][y1, . . . , yr](resp. ProjC[q±, z][xρ, ρ ∈ ∆(1)]) de�ned by J1 (resp. J2). Also put :

π1 : ProjC[q
±, z][y1, . . . , yr] −→ SpecC[q±, z] = T× C

π2 : ProjC[q
±, z][xρ, ρ ∈ ∆(1)] −→ SpecC[q±, z] = T× Cthe natural projetions.By De�nition of U (Notation 3.34), and using Remark 3.35, we �nd : (T×C) \ π2(K2) =

U × C. Sine the isomorphism α satis�es α(J2) = J1, we have(4.9) (T× C) \ π1(K1) = U × C.Consider now the a�ne spae SpecC[q±, z][y1, . . . , yr] (before projetivization) and thelosed subvariety K ′
1 de�ned by J1. By de�nition, the harateristi variety C is the reduedsheme of K ′

1.The ideal J1 is ontained in 〈y1, . . . , yr〉 (this an be heked by onsidering the polynomials
R∞

d and the relation α(R∞
d ) = σ(�d)). It follows that the zero setion of the morphism :

π′
1 : SpecC[q

±, z][y1, . . . , yr] −→ SpecC[q±, z] = T× Cis ontained in the support K ′
1.On the other hand, the relation (4.9) implies that π−1

1 (U) ∩ K1 = ∅ whih means thatthe support of π′−1
1 (U × C) ∩ K ′

1 is ontained in the zero setion of π′
1. Indeed, the ideal

〈y1, . . . , yr〉 is the irrelevant ideal of the graded ring C[q±, z][y1, . . . , yr].This shows that the support of π′−1
1 (U × C) ∩K ′

1, i.e., the harateristi variety C of Grestrited to U × C, is equal to the zero setion of π′
1|U .Theorem 4.10. � Let L1, . . . ,Lk be globally generated line bundles suh that (ωX ⊗ L1 ⊗

· · · ⊗ Lk)
∨ is nef. Let U be the open subset of T de�ned in Notation 3.34. The D-module

M|U×C is loally free of rank dimH2∗(X). 33



Proof. � The following proof is similar to the proof of Theorem 2.14 of [RS10℄. Modi�a-tions as to be made in order to take are of the twisted fan and the q's variables.Theorem 4.5 implies that M|U×C is a oherent OU×C-modules. By standard arguments(see for instane Theorem 1.4.10 of [HTT08℄), for z 6= 0 this implies that M|U×C∗ is loallyfree. It is enough to prove that M/zM is loally free of rank dimH2∗(X) and that theloally free sheaf M |U×C∗ is of the same rank.Step 1. Show that M/zM is loally free of rank H2∗(X).Let B be the Batyrev ring Λ[xρ]/ 〈QSR+Lin〉. Loalizing the ring Λ by inverting Qd, d ∈NE(X)Z, we obtain the ring C[q±] = C[q±1 , . . . , q
±
r ]. Using Notation 3.2, there is an isomor-phism of C[q±]-algebra :

B ⊗ C[q±] = C[q±, xρ]/〈QSR+Lin〉 −→ M/zM = D′/(〈z〉+G′)

(4.11)
xρ 7−→

{∑r
a=1D

a
ρzδqa if ρ ∈ ∆

base

(1)= {ρθ, θ ∈ Σ(1)}
∑r

a=1 L
a
i zδqa if ρ = ρLi

∈ ∆
v.b.

(1)= {ρL1 , . . . , ρLk
}(where[Li] =

∑
a L

a
i Ta). By Theorem 3.26, the Batyrev ring B is loally free of rank

dimH2∗(X) over the neighbourhood U . Hene M/zM is loally free of rank dimH2∗(X)over the open subset U = U ∩T.Step 2. We use the notation of the beginning of the proof of Theorem 4.5. On z 6= 0, weshow that the loally free sheaf M |U×C∗ is of rank H2∗(X). To prove this, we will use 2substeps.2.1 Show that the module M := D/G ≃ M′ := D′/G′ (see (4.6)) is isomorphi to a lassialGKZ-system of Adolphson (see [Ado94℄). Notie that most of this step is done for any
z ∈ C (inluded z = 0).2.2 We ompute that the rank is dimH2∗(X) at one point using orollary 5.11 of [Ado94℄.Step 2.1 We �rst write the GKZ system M′ := D′/G′ in a more lassial way in view ofAdolphson's result ([Ado94℄).Let {λρ, ρ ∈ ∆(1)} be a set of indeterminates. Consider the following non ommutativerings :� A1 := C[λ±, z]〈z∂λ〉 = C[λρ, λ−1

ρ , ρ ∈ ∆(1), z]〈z∂λρ , ρ ∈ ∆(1)〉. where the relations are :
z∂λρ .λρ = λρ.z∂λρ + z and all the other variables are ommuting ;� A2 := C[q±, z]〈zδλ〉 = C[qa, q−1

a , a ∈ {1, . . . , r}, z]〈zδλρ , ρ ∈ ∆(1)〉. where the rela-tions are : zδλρ .qa = qa.zδλρ + Da
ρzqa where the Da

ρ are numbers de�ned by : [Dρ] =∑r
a=1D

a
ρTa in H2(Y,Z) .In view of [CK99℄ and its Erratum to proposition 5.5.4, we put in A1 : ℓ :=

∏
ρ∈∆

v.b.

(1)
λρ.There exists two morphisms of nonommutative C[z]-algebras, f and g de�ned by :

f : A2 −֒→ A1

zδλρ 7−→ ℓ−1(λρ.z∂λρ)ℓ =

{
λρ.z∂λρ if ρ ∈ ∆

base

(1)

λρ.z∂λρ + z if ρ ∈ ∆
v.b.

(1)

qa 7−→ (−1)c1(E).Baλd =
∏

ρ∈∆
base

(1)

λ
Da

ρ
ρ .

∏

ρ∈∆
v.b.

(1)

(−λρ)D
a
ρ ,and 34



g : A2 −→ D′

zδλρ 7−→
{
D̂ρ :=

∑r
a=1D

a
ρzδqa , if ρ ∈ ∆

base

(1)

−L̂i := −∑r
a=1 L

a
ρzδqa , if ρi ∈ ∆

v.b.

(1)and g(qa) = qa. The minus sign omes beause the fan ∆ is the one of the dual bundle (seeProposition 3.3). The morphism f is injetive. The morphism g is surjetive and its kernelis the left ideal generated by the following set :
{
Zu =

∑

ρ∈∆(1)

〈vρ, u〉zδλρ , u ∈M ′
}

⊂ A2.The GKZ ideal an be de�ned in A1 and A2 :In A1, set 2
′′
d := (z∂λ)

d+ − (z∂λ)
d− for any d ∈ H2(X,Z) and Z ′

u :=
∑

ρ〈u, vρ〉λρz∂λρ −
〈u, β〉z for any u ∈M ′, where β is the onstant vetor (0N ,−1, . . . ,−1) ∈ N×Zk. The GKZideal is

G1 = 〈2′′
d,Z ′

u, d ∈ H2(X,Z), u ∈M ′〉 ⊂ A1.In A2 set :
2

′
d :=

∏

ρ∈∆
base

(1)

d+ρ −1∏

ν=0

(zδλρ − νz)
∏

ρ∈∆
v.b.

(1)

d+ρ∏

ν=1

(−zδλρ + νz)(4.12)
− qd

∏

ρ∈∆
base

(1)

d−ρ −1∏

ν=0

(zδλρ − νz)
∏

ρ∈∆
v.b.

(1)

d−ρ∏

ν=1

(−zδλρ + νz),and Zu :=
∑

ρ〈u, vρ〉zδλρ . The GKZ ideal in A2 is G2 := 〈2′
d,Zu, d ∈ H2(X,Z), u ∈M ′〉 .As g(zδλρi

) = −L̂i for any ρi ∈ ∆
v.b.

(1), we have :
f(2′

d) =
∏

ρ∈∆
base

(1)

λd
+
ρ

ρ

∏

ρ∈∆
v.b.

(1)

(−λρ)d
+
ρ · 2′′

d f(Zu) = Z ′
u

g(2′
d) = 2dwhih gives f(G2) = G1 and g(G2) = G′. Passing to the quotient, the morphism g gives anisomorphism :

A2/G2
∼−→ D′/G′ = MMoreover, viewing C[λ±, z] as a C[q±, z]-algebra via the injetive morphism

ϕ : C[q±] −֒→ C[λ±](4.13)
qa 7−→ (−1)c1(E).Baλdwe get an isomorphism :

A2 ⊗C[q±,z] C[λ
±, z]

∼−→ A1whih sends zδρ to λρ.z∂q . This gives an isomorphism :
A2/G2 ⊗C[q±,z] C[λ

±, z]
∼−→ A1/G1.In the following, we will write �the module is loally free over an open� meaning �the sheafassoiated to the module is loally free�. As ϕ is injetive, we have A2/G2 ≃ D′/G′ isloally free at a point n of SpecC[q±, z] if and only A1/G1 is loally free at any point n′ of

SpecC[λ±, z] ontained in the �ber of the surjetive morphism SpecC[λ±, z] → SpecC[q±, z].35



Now we loalize this C[q±, z]-module above z 6= 0. By Theorem 4.5, the module
D′/G′ ⊗C[q±,z] C[q±, z±] is loally free over U ×C∗. By the above isomorphisms, the module
A1/G1⊗C[λ±,z]C[λ±, z±] is also loally free over ((ϕ#)−1(U))×C∗ where ϕ# : (C∗)∆(1) → (C∗)ris the sheme morphism assoiated to ϕ (see (4.13)). On the other hand, we have the iso-morphism :

A1 ⊗C[λ±,z] C[λ
±, z±]

∼−→ C[λ±, z±] 〈∂λ〉
λρ 7−→ zλρ

(z∂λρ) 7−→ ∂λρ

z 7−→ zwhih sends 2′′
d = (z∂λ)

d+−(z∂λ)
d− to 2′′′

d := ∂d
+

λ −∂d−λ and Z ′
u to z.(∑ρ〈u, vρ〉λρ∂λρ−〈u, β〉).Put Z ′′

u :=
∑

ρ〈u, vρ〉λρ∂λρ − 〈u, β〉, the module A1/G1 ⊗C[λ±,z] C[λ±, z±] is isomorphi, as a
C[λ±]⊗C C[z±]-module to

C[λ±]〈∂λ〉/ 〈2′′′
d ,Z ′′

u〉 ⊗C C[z±].We dedue that C[λ±]〈∂λ〉/ 〈2′′′
d ,Z ′′

u〉 is loally free over (ϕ#)−1(U).Step 2.2 Let us ompute the rank of the loally free module C[λ±]〈∂λ〉/ 〈2′′′
d ,Z ′′

u〉 over
(ϕ#)−1(U) using Corollary 5.11 of [Ado94℄. In view of the loal freeness, we just need toompute the rank at one point.Adolphson assoiates a Laurent polynomial to the module C[λ±]〈∂λ〉/ 〈2′′′

d ,Z ′′
u〉, denotedby fλ. We do not need to give the preise expression of fλ for the following. Corollary 5.11of [Ado94℄ tells us that over the following set

{(λρ) ∈ (C∗)∆(1) | fλ is non degenerated}the rank is (n+k)!Vol(Γ∆) where Γ∆ is the onvex hull in N ′
R of the points {0, vρ, ρ ∈ ∆(1)}.This set is a nonempty Zariski open subset of (C∗)∆(1). By density, this Zariski open intersetsthe Zariski open subset (ϕ#)−1(U) so that the rank is equal to (n + k)!Vol(Γ∆).Denote by ΓΣ the onvex hull in NR of the points {0, vρ, ρ ∈ Σ(1)}. Show that (n +

k)!Vol(Γ∆) = n!Vol(ΓΣ) = dimH2∗(X). When all the Li are nef, the fan ∆ is onvex, and
0 is a vertex of this onvex hull. As the divisor −KX −∑k

i=1 Li is nef, then the vetors
(v1, . . . , vk) ∈ N × Zk de�ned by the tori divisors Li all are either verties or ontained infaes of Γ∆ whih do not ontain 0. Hene, Γ∆ is a disjoint union of the simplexes Γ∆(τ) :=
(v1, . . . , vk, vρθ , θ ∈ τ) where τ is any simplex de�ned by generating vetors of the rays in Σ(we use the notations of Setion 3.1). The volume of a simplex Γ∆(τ) an be omputed by adeterminant on these vetors whih simpli�es into the volume of ΓΣ(τ) := (vρθ , θ ∈ τ). Sinethe union of these simplexes is ΓΣ, we have (n + k)!Vol(Γ∆) = n!Vol(ΓΣ) whih is exatly
dimH2∗(X).Theorem 4.14. � Let L1, . . . ,Lk be ample line bundles suh that (ωX ⊗L1 ⊗ · · · ⊗Lk)

∨ isnef. Let U be the open subset of T de�ned in Notation 3.34.1. On z = 0, the OU -module (Mres/zMres)|U is loally free of rank dimCH2∗(X) =
dimCH

2∗(X)− dimC ker(mctop).2. On z 6= 0, the OU×C∗-module Mres |U×C∗ is loally free of rank less than dimCH2∗(X).Remark 4.15. � Using Mirror symmetry, we will also prove that Mres |U×C is loally freeof rank dimCH2∗(X). We refer to Remark 5.11 for a preise explanation.Proof of Theorem 4.14. � On z 6= 0, Mres|U×C∗ is loally free. By Nakayama's lemma, it isenough to prove the �rst statement.Consider the residual Batyrev ring BRes = Λ[xρ]/(G : xtop) de�ned in Subsetion 3.6. Thisis a Λ-algebras. Denote by Bres the assoiated sheaf of rings on V = SpecΛ. When restrited36



to the neighbourhood U of the large radius limit, Bres is loally free of rank dimCH2∗(X) byProposition 3.40. Then, Lemma 4.16 below shows that the sheaf Mres/zMres is a sheaf ofommutative rings de�ned over U whih is isomorphi to the Bres|U .In the following, we use notations of the proof of Theorem 4.10. The set P of primitivelasses is de�ned in Notation 3.19. Let S := 〈2′
d, d ∈ P〉 be the �square� ideal in A2 :=

C[q±, z]〈zδλ〉. Put ĉ λ
top :=

∏
ρ∈∆

v.b.

(1)
zδλρ ∈ A2. Do not onfuse it with ĉtop :=

∏k
i=1 L̂i ∈ D′written in terms of zδq's operators. Reall that

QSR := 〈Rd := xd
+ − qdxd

−

, d ∈ NE(Y )Z〉We put :
Quot(ĉ λ

top, S) :=
〈
P ∈ A2, ĉ

λ
topP ∈ S

〉

(QSR : xtop) :=
{
P ∈ C[q±][xρ], P.xtop ∈ QSR

}We introdued xtop :=
∏

ρ∈∆
v.b.

(1)
xρ in the beginning of Subsetion 3.6. Notie that (QSR : xtop)is the usual quotient ideal of ommutative algebra. The set {P ∈ C[q±][xρ], xtopP ∈ QSR}is an ideal. However, in the non ommutative ring A2, the set {P ∈ A2, ĉ

λ
topP ∈ S

} is not anideal anymore (f. footnote 3).Lemma 4.16. � 1. There exists an isomorphism of ommutative C[q±]-algebras :
h : A2/(Quot(ĉ λ

top,G2) + 〈z〉) −→ C[q±][xρ]/(QSR : xtop)

z 7−→ 0

zδλρ 7−→
{
xρ if ρ ∈ ∆

base

(1)

−xρ if ρ ∈ ∆
v.b.

(1)2. We pass to the quotient by linear ideals i.e.,� on the left side, we quotient by 〈Zu :=
∑

ρ∈∆(1)〈u, vρ〉zδρ, for u ∈M ′, 〉� on the right side, we quotient by 〈Zu :=
∑

ρ∈∆(1)〈u, vρ〉xρ, for u ∈M ′.to obtain an isomorphism :
Mres/zMres −→ Bres.between the residual GKZ-module restrited to z = 0 and the residual Batyrev ring.Proof. � The seond statement follows easily from the �rst one.The morphism h is well de�ned sine h(2d) = Rd, h(ĉ λ

top) = xtop and that setting z = 0makes the algebra A2 beomes ommutative. It is surjetive by onstrution. We onstrutits inverse morphism. Consider the isomorphism of ommutative C[q±]-algebras, where P issent on P̂ :
C[q±][xρ] −→ A2/ 〈z〉(4.17)

xρ 7−→ x̂ρ = zδλρWhere the overline notation means its image in the quotient A2/ 〈z〉. Reall that for d ∈
H2(Y,Z), we denote Rd := xd

+ − qdxd
− . We have R̂d = 2

′
d, and any element of QSR mapsto G2 (see after (4.12) for the de�nition of G2).Let P be in (QSR : xtop), we show that P̂ belongs to Quot(ĉ λ

top,G2). Then the morphismde�ned in (4.17) will indue the inverse of h.There exists a set of polynomials {Ad, d ∈ P} suh that:
xtopP =

∑

d∈P
Ad(q, x)Rd(q, x)(4.18) 37



For suh an expression above onsider the biggest (using the order ≺ϕ see �3.4.a), leadingmonomial that appears in Ad(q, x)Rd(q, x) for d ∈ P. Among all the expression of (4.18),denote by m(P ) the smallest of these leading monomials that is :
m(P ) := min

(Ad)d∈P
P=

∑
AdRd

max {Lm(AdRd), d ∈ P}where Lm(S) is the leading monomial of a polynomial S. Notie thatm(P ) ould be di�erentthan Lm(P ).As the funtion ϕ used to de�ne the order ≺ϕ is assoiated to an ample divisor we anassume �up to a hange of ample divisor� that ϕ(xρ) < 0 for any ρ ∈ ∆(1). In partiular, theset of monomial smaller than a �xed monomial m is �nite, and possess a smaller element,namely the monomial 1. We will prove by indution on the monomial m :
H(m) = “∀P ∈ (xtop : QSR), m(P ) ≺ϕ m =⇒ P̂ ∈ Quot(ĉ λ

top, S)”If m = 1, then xtopP is a onstant polynomials, whih is only possible if P = 0. Then wehave P̂ ∈ Quot(ĉ λ
top, S).Put m := m(P ) and onsider a minimal expression for (4.18) i.e., polynomials Ad for

d ∈ P suh that :
xtopP =

∑

d∈P
AdRd with max {Lm(AdRd), d ∈ P} = m.Let P∗ be the subset of P suh that Lm(AdRd) = m. This set is not empty by assumption.If d is in P∗, Ad an be written :

Ad = αdnd +Bd,where αd ∈ C[q±], nd = Lm(Ad), Lm(AdRd) = Lm(Ad).Lm(Rd) = nd.x
d+ = m and

Lm(BdRd) ≺ϕ m.If d ∈ P \ P∗ we simply set Bd := Ad, so that :
xtopP =

∑

d∈P∗

αdndRd +
∑

d∈P
BdRdwith Lm(BdRd) ≺ϕ m for any d ∈ P.Consider two ases :Case 1 : xtop divides m. Then, for any d ∈ P∗, xtop divides ndx

d+ . Sine for any ρ ∈ ∆
v.b.

(1),the variable xρ does not appear in xd+ (beause the Li's are ample and P ⊂ NE(Y )), then
xtop divides nd for any d ∈ P∗. Set nd = xtopn

′
d. We �nd :

xtopP = xtop

(
∑

d∈P∗

αdn
′
dRd

)
+
∑

d∈P
BdRd.and the polynomial S = P −∑d∈P∗ n′

dRd is in (QSR : xtop) and satisfy m(S) ≺ϕ m(P ). Byindution, the operator Ŝ ∈ A2/〈z〉 is in Quot(ĉ λ
top, S). Moreover, the operator

P̂ = Ŝ +
∑

d∈P∗

αdn̂
′
dR̂d = Ŝ +

∑

d∈P∗

αdn̂
′
d2

′
dis also in Quot(ĉ λ

top, S).Case 2 : xtop does not divide m. Sine (∑d∈P∗ αdndRd

)
+
∑

d∈P BdRd = xtopP , theoe�ient of m in the sum (
∑

d∈P∗ αdndRd) must be zero. This oe�ient is exatly∑d αd.Fix a lass c in P∗; then αc = −∑d∈P∗\{c} αd, and we have :
∑

d∈P∗

αdndRd = αcncRc +
∑

d∈P∗\{c}
αdndRd =

∑

d∈P∗\{c}
αd(ndRd − ncRc)38



But we have ndRd − ncRc = nd(x
d+ − qdxd

−
) − nc(x

c+ − qdxc
−
) and ndx

d+ = ncx
c+ = m,whih gives

ndRd − ncRc = −ndq
dxd

−

+ ncq
dxc

−

.(4.19)Moreover, xtop divides any xd
− for any d ∈ P (beause the Li's are ample and P ⊂

NE(Y )). Denote by ǫ = (ǫρ)ρ∈∆(1) the multi-index that equals to 0 for ρ ∈ ∆
base

(1) and 1 for
ρ ∈ ∆

v.b.

(1). We have xd− = xtopx
d−−ǫ. This gives, in (4.19) :

ndRd − ncRc = xtop

(
ncq

dxc
−−ǫ − ndq

dxd
−−ǫ
)
.For d ∈ P∗ \ {c} set Cd := ncq

dxc
−−ǫ − ndq

dxd
−−ǫ. We get :

xtopP = xtop


 ∑

d∈P∗\{c}
αdCd


+

∑

d∈P
BdRd.The polynomial S := P−

(∑
d∈P∗\{c} αdCd

) is in (QSR : xtop) and satis�esm(S) ≺ϕ m(P ).By indution, the operator Ŝ is in Quot(ĉ λ
top, S). Moreover, for any d ∈ P∗ \{c}, the equality

xtopCd = ndRd − ncRc gives in A2/〈z〉 :
ĉ λ
topĈd = n̂d2

′
d − n̂c2

′
c.We dedue that Ĉd is in Quot(ĉ λ

top, S). Finally, we have
P̂ =


 ∑

d∈P∗\{c}
αdĈd


+ Ŝ ∈ Quot(ĉtop\S).

5. Isomorphisms between quantum D-modules and GKZ systems via mirrorsymmetry5.1. Realls on Mirror symmetry. � We start by some realls on mirror symmetry inthe framework of Givental. Here, we suppose that X is a smooth tori projetive varietyendowed with k globally generated line bundles L1, . . . ,Lk suh that (ωX ⊗L1 ⊗ · · · ⊗ Lk)
∨is nef. We put E = ⊕k

i=1Li.We introdue a ohomologial multi-valued funtion whih will play a entral role in mirrorsymmetry. Reall that t0 is the oordinate on H0(X). In the de�nition below, we use thenotation E0,1,d(1) for the vetor bundle on X0,1,d de�ned in Subsetion 2.1.a.De�nition 5.1. � We de�ne loal setion J tw of F = H2∗(X) × (H0(X) × V × C) →
(H0(X)× V × C) by :

J tw(t0, q, z) := et0/zqT/z


1 + z−1

∑

d∈H2(X,Z)

d6=0

qde1∗

(
ctop(E0,1,d(1))

z − ψ
∩ [X0,1,d]

vir

)

where t0 is in H0(X), q is in V , z is in C, ψ is de�ned before De�nition 2.5 and qT/z =

q
T1/z
1 . . . . .q

Tr/z
r := ez

−1
∑r

a=1 Ta log(qa) as in the de�nition of the funtion Ltw (Formula 2.16).The relation between this funtion J tw and Ltw is given by the following proposition.39



Proposition 5.2. � We have
ctop(E)J tw(t0, q, z) = et0/zqT/zctop(E)

(
1 +O(z−2)

)

= et0/zqT/z


ctop(E) + z−1

s−1∑

a=0

∑

d∈H2(X,Z)

d6=0

qd

〈
˜Tactop(E)
z − ψ

〉

0,1,d

T a




=
s−1∑

a=0

S
(
Ltw(t0, q, z)Ta, 1

)
T a

= ctop(E)(Ltw(t0, q, z))
−1
1Proof. � The �rst equality follows from the de�nition of J tw(t0, q, z).By de�nition of twisted Gromov-Witten invariant and projetion formula, we have :

〈
˜Tactop(E)
z − ψ

〉

0,1,d

=

∫

[X0,1,d]vir
e∗1(Ta ∪ ctop(E)) ∪

ctop(E0,1,d(1))
z − ψ

=

∫

X

Ta ∪ ctop(E) ∪ e1∗
(
ctop(E0,1,d(1))

z − ψ
∩ [X0,1,d]

vir

)We dedue the seond equality from
s−1∑

a=0

〈
˜Tactop(E)
z − ψ

〉

0,1,d

T a = ctop(E)e1∗
(
ctop(E0,1,d(1))

z − ψ
∩ [X0,1,d]

vir

)
.Let us show the third equality. Using Proposition A.2 (twisted Sn invariane) and Propo-sition A.4 (twisted string equation) we dedue that for d 6= 0 in H2(X,Z),

〈
Ta

z − ψ
, c̃top(E)

〉

0,2,d

= z−1

〈
˜Tactop(E)
z − ψ

〉

0,1,d

(5.3)Using Formula (2.16) for Ltw(q, z), we have
s−1∑

a=0

S
(
Ltw(t0, q, z)Ta, 1

)
T a

= et0/z
s−1∑

a=0

(
qT/zTa, 1

)tw
T a

+ et0/z
s−1∑

a=0

s−1∑

b=0

∑

d∈H2(X,Z)

d6=0

qd
〈
qT/zTa
z − ψ

, T̃b

〉

0,2,d

(
T b, 1

)tw
T a

= et0/z


q

T/zctop(E) +
s−1∑

a=0

∑

d∈H2(X,Z)

d6=0

qd
〈
qT/zTa
z − ψ

, c̃top(E)
〉

0,2,d

T a


As the expression above does not depend on the hoie of a basis. Let us hoose the basis

(q−T/zTa)a∈{0,...,s−1} whose dual basis is (qT/zT a)a∈{0,...,s−1}. Then we get40



s−1∑

a=0

(et0/zLtw(q,−z)Ta, 1)twT a

= et0/zqT/z


ctop(E) +

s−1∑

a=0

∑

d∈H2(X,Z)

d6=0

qd
(
〈 Ta
z − ψ

, c̃top(E)
〉

0,2,d

T a


Then you apply (5.3) and we get the desired equality.Show the last equality. From Proposition 2.20, we dedue that

S(Ltw(t0, q, z)Ta, L
tw(t0, q, z)1) = S(Ta, 1).Reall that (·, ·) is the Poinaré Duality on X . We dedue that

s−1∑

a=0

S
(
Ltw(t0, q, z)Ta, 1

)
T a =

s−1∑

a=0

(
Ta, ctop(E)

(
Ltw(t0, q, z)

)−1
1

)
T a

= ctop(E)(Ltw(t0, q, z))
−1
1.We dedue a relation with L.Corollary 5.4. � We have, in the redued ohomology ring H2∗(X)/ kermctop :

J tw(t0, q, z) = (L(t0, q, z))
−1
1.Proof. � The last equality of Proposition 5.2 implies that J tw(t0, q, z) = (Ltw(t0, q, z))−11whih is (L(t0, q, z))−1

1 by de�nition of L (f. Formula (2.32)).Reall that to a ray θ ∈ Σ(1), we assoiate a tori divisor denoted by Dθ. For any lasses
d ∈ H2(X,Z), put

dθ :=

∫

d

Dθ and dLi
:=

∫

d

Li =

∫

d

c1(Li).We de�ne a ohomologial multi-valued funtion by
I(q, z) := qT/z

∑

d∈H2(X,Z)

qdAd(z)(5.5)where
Ad(z) :=

k∏

i=1

∏dLi
m=−∞([Li] +mz)∏0
m=−∞([Li] +mz)

∏

θ∈Σ(1)

∏0
m=−∞([Dθ] +mz)

∏dθ
m=−∞([Dθ] +mz)

qT/z := ez
−1

∑r
a=1 Ta log(qa).The mirror theorem of Givental (f. [Giv98, Theorem 0.1℄ and [CG07, Corrolary 5℄. Seealso [CK99, Theorem 11.2.16℄ ) tells us the following.Theorem 5.6. � [CG07, Corrolary 5℄ Let X be a smooth tori projetive variety with kglobally generated line bundles L1, . . . ,Lk suh that (ωX⊗L1⊗· · ·⊗Lk)

∨ is nef. There existsa neighborhood W of the large radius limit q = 0 in V, de�ning an open set W := W ∩T in
T (f. Notation 2.13) and there exists a single-valued map

Mir : W ⊂ T → H0(X)⊕ V ⊂ H0(X)⊕T41



suh that
Mir(q) = (0, q) +O(q) and J tw(Mir(q), z) =

I(q, z)

F (q)where F (q) is an invertible funtion whih is the �rst term in the development of the funtion
I in the power of z−1 that is

I(q, z) := F (q)1+O(z−1).Proof. � Most of the statements are proved in Corrolary 5 of [CG07℄. The single-valued ofthe map Mir is proved in the setion 4.1 of [Iri09℄. The two things that are not proved arethe statements about the existene of the neighborhood W and the asymptoti of Mir. Toompute the mirror map, we develop the funtion I in the power of z−1, we have
I(q, z) = F (q)1+ z−1

r∑

a=0

Ga(q)Ta +O(z−2).where F (0) = 1. Then we have :
Mir(q) := Ψ ◦ π

(
F (q)−1

r∑

a=0

Ga(q)Ta

)where π the quotient map H0(X) ⊕ H2(X) → H0(X) ⊕ H2(X)/H2(X,Z) and Ψ is anisomorphism between H2(X)/H2(X,Z) and T (Formula (2.10)) We will prove that
F (q)−1

r∑

a=0

Ga(q)Ta =

r∑

a=1

Ta log(qa) +O(q)(5.7)This will imply both statements on the map Mir.To prove equality (5.7), we need to develop the funtion I with respet to z−1. Denote byNE(X)Z the (integral) Mori one of X . From [CK99, Proof of Proposition 5.5.4 p.100℄ wededue that the terms in the de�nition of the I funtion (see (5.5)) vanish when d /∈ NE(X)Z,that is we have :
I(q, z) = qT/z

∑

d∈NE(X)Z

qdAd(z).(5.8)As for any i ∈ {1, . . . , k} the divisor Li is nef(5), we dedue that dLi
≥ 0 for d ∈ NE(X)Zthat is

Ad(z) =

k∏

i=1

dLi∏

m=1

([Li] +mz)
∏

θ∈Σ(1)

∏0
m=−∞([Dθ] +mz)

∏dθ
m=−∞([Dθ] +mz)We develop the ohomologial funtion I(q, z) with respet to z−1 to the order 1. For any

θ ∈ Σ(1), put ε(dθ) = 1 if dθ < 0 and 0 otherwise. We �nd that I(q, z) is equal to
∑

d∈NE(X)Z

qdzd(KX+
∑

i Li)
−∑

θ∈Σ(1) ε(dθ)(−1)
∑

θ∈Σ(1) d
−
θ

(
k∏

i=1

dLi
!

)
∏

θ∈Σ(1)

(−[Dθ])
ε(dθ)

(d−θ − ε(dθ))!

d+θ !

1+ z−1




r∑

a=1

Ta log(qa) +

k∑

i=1

[Li]

dLi∑

m=1

1

m
−
∑

θ∈Σ(1)

[Dθ]

|dθ|−ε(dθ)∑

m=1

1

m


+O(z−2)




(5) Reall that for a tori variety whose support of its fan is onvex, a line bundle L is globally generated ifand only if L is nef (f. [Mus, Proposition 7 p.22 hapter VI℄).42



We deompose the Mori one in four disjoint subsets :
A := {d ∈ NE(X)Z | d(KX+

∑
i Li) = 0 and dθ ≥ 0, ∀θ ∈ Σ(1)}

B := {d ∈ NE(X)Z | d(KX+
∑

i Li) = 0 and ∃!θ0 ∈ Σ(1), ε(dθ0) = 1}
C := {d ∈ NE(X)Z | d(KX+

∑
i Li) = −1 and ε(dθ) = 0, ∀θ ∈ Σ(1)}

D := NE(X)Z \ {A
∐

B
∐

C}.As −KX − L1 − · · · − Lk is nef, for any d ∈ NE(X)Z we have d(KX+L1+···+Lk) ≤ 0. So the�rst term in the Taylor expansion is the onstant term whih appears only for d ∈ A. Thisterm takes value in H0(X) i.e., it is F (q)1 with F the following salar funtion :
F (q) :=

∑

d∈A
qd
∏k

i=1 dLi
!∏

θ∈Σ(1) dθ!
.Notie that this funtion is invertible in a neighborhood of q = 0 beause d = 0 belongs to

A so that F (q) 6= 0 in a suitable neighborhood of q = 0.Compute the term in front of z−1 :1. from A, we get the following element in H2(X)

z−1


∑

d∈A
qd
∏k

i=1 dLi
!∏

θ(dθ)!



(

r∑

a=1

Ta log qa

)
+

k∑

i=1

[Li]

dLi∑

m=1

m−1 −
∑

θ∈Σ(1)

[Dθ]

dθ∑

m=1

1

m




2. from B, we get

z−1[Dθ0]

(
∑

d∈B
qd(−1)−dθ0−1

(
k∏

i=1

dLi
!

)
(−dθ0 − 1)!

∏

θ 6=θ0

1

(dθ)!

)
∈ H2(X)3. from C, we get

z−1
1

(
∑

d∈C
qd
∏k

i=1 dLi
!∏

θ dθ!

)
∈ H0(X)Now we develop with respet to q when q is near 0. As d = 0 belongs only to subset A, wededue Equality (5.7).Remark 5.9. � If we are in the most famous ase of the quinti in X := P4 that is L =

O(5). We have NE(X)Z = N, L⊗ωX is trivial, and the tori divisor Dθ satis�es [Dθ] = H ∈
H2(X), where H = c1(O(1)). For any d ∈ NE(()ZX) ⊂ H2(X,Z), we have dθ = d ≥ 0 and
dL = 5d. The subset A is N and B, C are empty so that

F (q) =
∑

d≥0

qd
(5d)!

(d!)5and the term in front of z−1 is
∑

d∈N
qd
(5d)!

(d!)5

(
H log q + 5H

5d∑

m=1

1

m
− 5H

d∑

m=1

1

m

)

=H

[
F (q) log q + 5

(
∑

d≥1

qd
(5d)!

(d!)5

5d∑

m=d+1

1

m

)]
.43



5.2. Isomorphism's theorems. � We an now state our main theorem. Reall fromSetion 2 that we de�ned QDM(X, E) := (F,∇, S, FZ) and QDM(X, E) := (F ,∇, S, F Z)where F and F are bundle over V ×C. We denote by F (resp. F) the sheaf of setions of F(resp. F ).Reall that W is a neighborhood of the large radius limit q = 0 in T ⊂ V. In Theorem5.6, we de�ned a map
Mir× id : W × C → H0(X)× V × C

(q, z) 7→ (Mir(q), z)Reall from Theorem 4.10, the sheaf M |U×C is a vetor bundle of rank dimCH2∗(X) withan integrable onnetion. Notie that for the sheaf Mres we only have the result of Theorem4.14 that we do not have a priori the loal freeness over U×C. The loal freeness forMres willfollow from Theorem 5.10 below (see Remark 5.11). Reall that M is de�ned (see De�nition4.4) as a quotient by an ideal denoted G. Using Notation 4.1, we put ĉtop :=
∏k

i=1 ĉ1(Li)that is
ĉtop :=

k∏

i=1

r∑

a=1

Li
azδawhere for i ∈ {1, . . . , k} and c1(Li) :=

∑r
a=1 L

i
aTa.Theorem 5.10. � Let X be a smooth tori variety with k line bundles L1, . . . ,Lk suh that

(ωX ⊗ L1 ⊗ . . .⊗ Lk)
∨ is nef. We put E := ⊕k

i=1Li. For a small real number ε in R>0, put
Wε := {(q1, . . . , qr) ∈ W | 0 < |qa| < ε}.There exists ε in R>0 suh that1. If the line bundles L1, . . . ,Lk are globally generated, then we have the following isomor-phism of sheaf of OWε×C-modules :

M|Wε×C
∼−→ (Mir× id)∗(F ,∇)where Mir is the mirror map of Givental.2. If the line bundles L1, . . . ,Lk are ample, then we have the following ommutative dia-gram

M|Wε×C
∼

(Mir× id)∗(F ,∇)

Mres|Wε×C
∼

(Mir× id)∗(F ,∇)Remark 5.11. � Reall that M |U×C is loally free by Theorem 4.10. However, as far asis known at this point, Mres |U×C is only loally free of expeted rank over U × {0} andloally free (of a smaller or equal rank) over U × C∗ (Theorem 4.14). Theorem 5.10, givesus loal freeness of Mres |U×C (see the end of the proof).Theorem 2.42 says that under some onditions we have QDM(X, E) ≃ QDMamb(Z). Sowe dedue the following orollary.Corollary 5.12. � Let X be a smooth tori variety with k ample line bundles L1, . . . ,Lksuh that (ωX⊗L1⊗· · ·⊗Lk)
∨ is nef. Let Z be the zeros of a generi setion of E := ⊕k

i=1Li.Assume that dimC Z ≥ 3. We have Mres|Wε×C is isomorphi to (Mir× id)∗(FZ
amb,∇Z

amb).Remark 5.13. � This orollary answer to the question addressed in the [CK99, p.94-95and p.101℄: �What di�erential equations shall we add to G to get an isomorphism with
QDMamb(Z) ?� 44



To prove the Theorem 5.10, we will need some preliminary results.We denote by Mir∗ ∇ the pullbak onnetion on the bundle (Mir× id)∗F → W ×C. Foran endomorphism u, we denote zu := exp(u log z).Proposition 5.14. � With the hypothesis of Theorem 5.10.1. The morphism
ϕ : M|Wε×C −→ (Mir× id)∗(F ,∇)

P (q, z, zδq, zδz) 7−→ Ltw(Mir(q), z)z−µzc1(TX⊗E∨)P (q, z, zδq, zδz)z
−c1(TX⊗E∨)zµJ tw(Mir(q), z)is well de�ned.2. The morphism above indued a well de�ned morphism ϕ′ that make the following dia-gram ommutative.

M|Wε×C
ϕ

(Mir× id)∗(F ,∇)

π

Mres|Wε×C
∃ϕ′

(Mir× id)∗(F ,∇)Moreover the omposition morphism π ◦ ϕ sends
P (q, z, zδq, zδz) 7−→ P (q, z, zMir∗∇δq , zMir∗∇δz)1.Remark 5.15. � We should say a word on the de�nition of ϕ that seem quite ompliated.The reason is that we want the natural expression for ϕ′ whih is the one above. All theproblem omes from J tw(t0, q, z) is not Ltw(t0, q, z)

−1
1, but they are equal after upping by

ctop(E) (see Proposition 5.2). Of ourse if we up by ctop(E) the expression above of ϕ, itsimpli�es a lot, but it will not be an isomorphism anymore.Proof of Proposition 5.14. � From Theorem 5.6 we have that J tw(Mir(q), z) = I(q, z)/F (q).Lemma 5.16 shows that the morphism ϕ is well de�ned.Lemma 5.21 implies that for any R ∈ Quot(ĉtop,G) we have
Rz−c1(TX⊗E∨)zµI(q, z) = 0.This implies that ϕ′ is well de�ned. By Corollary 5.4, we have

J tw(Mir(q), z) = (L(Mir(q), z))−1
1.We dedue that

π ◦ ϕ(P (q, z, zδq, δz)) = P (q, z, zMir∗∇δq ,Mir∗∇δz)L(Mir(q), z)J tw(Mir(q), z)

= P (q, z, zMir∗∇δq ,Mir∗∇δz)1.Lemma 5.16. � Put qd :=∏r
a=1 q

∫
d
Ta

a =
∏r

a=1 q
da
a . For any d ∈ H2(X,Z), we have

�d

(
z−c1(TX⊗E∨)zµI(q, z)

)
= 0

Ê

(
z−c1(TX⊗E∨)zµI(q, z)

)
= 0.45



where
�d :=

k∏

i=1

d−Li∏

ν=1

(
L̂i + νz

) ∏

θ∈Σ(1)

d+θ −1∏

ν=0

(
D̂θ − zν

)

− qd
k∏

i=1

d+Li∏

ν=1

(
L̂i + νz

) ∏

θ∈Σ(1)

d−θ −1∏

ν=0

(
D̂θ − zν

)

Ê := zδz + ̂c1(TX ⊗ E∨) (f. Notation 4.1)Proof. � In this proof, we denote dTX⊗E∨ :=
∫
d
c1(TX ⊗ E∨). For any α ∈ H2(X), we have

[µ, α] = α. This implies that
zµ
α

z
= αzµ.(5.17)From this we dedue that zµAd(z) = z−dTX⊗E∨Ad(1). Using the de�nition (5.5) of the oho-mologial funtion I, we dedue that

z−c1(TX⊗E∨)zµI(q, z) =
∑

d∈H2(X,Z)

qT+dz−c1(TX⊗E∨)−dTX⊗E∨Ad(1).(5.18)For any lass α ∈ H2(X), a diret omputation shows that
α̂qT+d = qT+dz(α + dα)(5.19)

zδz(z
−c1(TX⊗E∨)−dc1(TX⊗E∨)) = z(−c1(TX ⊗ E∨)− dTX⊗E∨)z−c1(TX⊗E∨)−dTX⊗E∨(5.20)We dedue that

zδz(q
T+dz−c1(TX⊗E∨)−dTX⊗E∨ ) = − ̂c1(TX ⊗ E∨)(qT+dz−c1(TX⊗E∨)−dTX⊗E∨ ).This implies the seond equality of the Lemme.Using Formula (5.19), the equality �d(z

−c1(TX⊗E∨)zµI(q, z)) = 0 for any d ∈ H2(X,Z)redued to the equality below. For any d, d′ ∈ H2(X,Z), a diret omputation show that wehave
Ad−d′(1)

k∏

i=1

d+Li∏

ν=1

([Li] + (d− d′)Li
+ ν)

∏

θ∈Σ(1)

d+θ −1∏

ν=0

([Dθ] + (d− d′)θ − ν)

= Ad(1)
k∏

i=1

d−Li∏

ν=1

([Li] + dLi
+ ν)

∏

θ∈Σ(1)

d−θ −1∏

ν=0

([Dθ] + dθ − ν).Reall that G is the ideal that de�ned G (f. De�nition 4.4)Lemma 5.21. � If R(q, z, zδq, zδz) is in the quotient ideal Quot(ĉtop,G) then the oho-mologial valued funtion R(q, z, zδq, zδz)z−c1(TX⊗E∨)zµI(q, z) belongs to kermctop where mc :
α 7→ ctop(E) ∪ α.Proof. � In this proof, we denote dTX⊗E∨ :=

∫
d
c1(TX ⊗ E∨). From Formulas (5.19) and(5.20), we dedue that

R(q, z, zδq, zδz)q
T+dz−c1(TX⊗E∨)−dTX⊗E∨(5.22)

= R (q, z, z(T + d), z(−c1(TX ⊗ E∨)− dTX⊗E∨)) qT+dz−c1(TX⊗E∨)−dTX⊗E∨ .46



We deompose
R(q, z, zδq, zδz) =

∑

d′∈H2(X,Z)�nite qd
′

Rd′(z, zδq, zδz).From Equalities (5.18) and (5.22), we dedue that
R(q, z, zδq, zδz)z

−c1(TX⊗E∨)zµI(q, z) =
∑

d∈H2(X,Z)

qd+T z−c1(TX⊗E∨)−dTX⊗E∨Bd(z)where
Bd(z) :=

∑

d′∈H2(X,Z)�nite Rd′ (z, z(T + d), z(−c1(TX ⊗ E∨)− dTX⊗E∨))Ad−d′(1).To prove the lemme, it is enough to show that ctop(E)Bd(z) = 0 for all d ∈ H2(X,Z). Fromthe de�nition of the ideal Quot(ĉtop,G) and Lemma 5.16, we have
ĉtopR(q, z, zδq, zδz)z

−c1(TX⊗E∨)zµI(q, z) = 0

∑

d∈H2(X,Z)

qd+T z−c1(TX⊗E∨)−dTX⊗E∨

(
k∏

i=1

z ([Li] + dLi
)

)
Bd(z) = 0.As ctop(E)Bd : C → H∗(X) is a polynomial funtion in z, it is enough to prove that itvanishes on C∗. Assume z ∈ C∗. As q ∈ (C∗)r, we dedue that qT and z−c1(TX⊗E∨) areinvertible in H∗(X). Denote by Id := {i ∈ {1, . . . , k} | dLi

= 0} and Icd its omplementaryset. For i ∈ Icd, the lass [Li] + dLi
is invertible in H∗(X). So we dedue that
(
∏

i∈Id

[Li]

)
Bd(z) = 0.This implies that ctop(E)Bd(z) = 0 as ctop(E) =∏k

i=1[Li].Proof of Theorem 5.10. � We �rst prove that ϕ is an isomorphism. Theorem 4.10 impliesthat rkM = rkF . So it is enough to prove that the morphisms ϕ are surjetive near thelarge radius limit point. From (5.8) and (5.19), we dedue that for any α ∈ H2(X), we have
α̂I(q, z) = qT/z(α +O(q)).As H2∗(X) is generated by H2(X), we dedue that for any a ∈ {0, s − 1}, there exits anoperator Pa(q, z, zδq) (notie that we do not need δz in the operator Pa) suh that

Pa(q, z, zδq)I(q, z)F (q)
−1 = qT/z(Ta +O(q))where F (q) is de�ned in Theorem 5.6. From the de�nition of the funtion Ltw(t0, q, z)(f. Equality (2.16)), we dedue that

Ltw(t0, q, z)γ = e−t0/zq−T/z(γ +O(q)).By the mirror Theorem 5.6 we have that
Mir(q) = q +O(q).Putting the last three arguments together, for any a ∈ {0, . . . , s− 1} we have

ϕ(Pa(q, z, zδq)) = Ltw(Mir(q), z)qT/z(Ta +O(q)) = Ta + o(1).This proves the surjetivity of ϕ near the large radius limit. As it is an open ondition, it istrue in a neighborhood of q = 0.Let prove that ϕ′ is an isomorphism. First, the surjetivity of ϕ implies the surjetivity of
π ◦ϕ. We dedue that ϕ′ is also surjetive. On z 6= 0, Theorem 4.14 implies that the rank of
Mres is less than rkF . Hene the surjetivity implies that its rank is rkF . This also implies47



that Mres is loally free on U × C of rank dimH2∗(X)C = rkF . We dedue that ϕ′ is anisomorphism. ATwisted Axioms for Gromov-Witten invariantsIn this Appendix, we will state and prove the twisted axioms for twisted Gromov-Witten in-variants. For the �untwisted� axioms, we refer to two papers of Behrend and Manin ([BM96℄and [Beh97℄). Some of the twisted axioms are stated (but not proved) by Pandharipandein [Pan98℄. One should also mention the indiret proof given by Tseng [Tse10℄ where theCorollary 4.2.3 implies the twisted axioms even though there are not stated there. Thisappendix is due to lak of referenes on twisted Gromov-Witten invariants. Its aim is to �lla gap onerning results well known by experts.Reall from Notation 2.1 and T0, . . . , Ts−1 be a basis of H2∗(X). We denote by T a thePoinaré dual of Ta for a ∈ {0, . . . , s− 1}. Let d be in H2(X,Z). Denote X0,ℓ,d the modulispae of stable map of degree d from rational urve with ℓ marked points to X . For i in
{1, . . . , ℓ}, denote by ei : X0,ℓ,d → X the evaluation map at the ith marked point. Theuniversal urve is

X0,ℓ+1,d

π

eℓ+1

X

X0,ℓ,dwhere π is the map that forgets the (ℓ+1)-th point and stabilizes and eℓ+1 is the evaluationat the (ℓ + 1)-th marked point. For the de�nition of twisted Gromov-Witten invariant, werefer to De�nition 2.5. Let E0,ℓ,d be the sheaf de�ned in Proposition 2.2. For j in {1, . . . , ℓ},we have the following exat sequene (see (2.4))where the surjetive morphism E0,ℓ,d → e∗j Eevaluates the setion to be the j-th marked point.
0 E0,ℓ,d(j) E0,ℓ,d e∗j E 0(A.1)We do not have a true Sℓ-invariane for the twisted Gromov-Witten invariants but wehave the following proposition.Proposition A.2 (Twisted Sℓ-invariane). � For any γ1, . . . , γℓ in H2∗(X), m1, . . . , mℓin N, for any σ ∈ Sℓ and j in {1, . . . , ℓ}, we have

〈
˜τm1(c1(E) ∪ γ1), . . . , τmℓ

(γℓ)
〉
0,ℓ,d

=
〈
τmσ(1)

(γσ(1)), . . . , ˜τmσ(j)
(c1(E) ∪ γσ(j)), . . . , τmσ(ℓ)

(γσ(ℓ))
〉
0,ℓ,dProof. � From the exat sequene (A.1), for any j in {0, . . . , ℓ} we have

e∗j (c1(E)) ∪ ctop(E0,ℓ,d(j)) = ctop(E0,ℓ,d)This implies the proposition.Let us reall some notations from Gathmann [Gat03℄. For i in {1, . . . , ℓ}, onsider theinjetion morphism σi : X0,ℓ,d → X0,ℓ+1,d whih replae the i-th marked point by a on-trated rational omponent with marked point xi and xℓ+1 (see Figure 2). The substak
Di := σi(X0,ℓ,d) is isomorphi to X0,ℓ,d and π(Di) = X0,ℓ,d. So Di arries a natural virtualfundamental lass denoted by [Di]

vir and it is of virtual odimension 1. Usually, we all itboundary divisors. We have the following proposition whih is proved in [Gat03℄.48



PSfrag replaements
xixi

f
f

C
C

xℓ+1

σi

f(xi)f(xi) Figure 2. L'appliation σi.Proposition A.3 (See Corollary 1.3.2 [Gat03℄). � Let ℓ be in N. Let d be in H2(X,Z).Let γ1, . . . , γℓ be in H2∗(X). Let m1, . . . , mℓ be in N. Let α be in H2∗(X0,ℓ+1,d). We have thefollowing equality in H∗(X0,ℓ,d)

π∗

(
ℓ∏

j=1

ψ
mj

j e∗j γj · α · [X0,ℓ+1,d]
vir

)
=

ℓ∏

j=1

ψ
mj

j e∗j γjπ∗(α · [X0,ℓ+1,d]
vir)

+
∑

i|mi>0


ψmi−1

i e∗i γi

ℓ∏

j=1

j 6=i

ψ
mj

j e∗j γj


 π∗(α · [Di]

vir)Proposition A.4 (Twisted Fundamental lass equation / string equation )Let ℓ be in N, d be in H2(X,Z), γ1, . . . , γℓ be in H2∗(X) and m1, . . . , mℓ be in N. Denoteby 1 the unit of the ohomology ring. For n > 2 or d 6= 0 and for k ∈ {1, . . . , n}, we have
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), 1
〉
0,ℓ+1,d

=
∑

i|mi>0

〈
τm1(γ1), . . . , τmi−1(γi), . . . , ˜τmk

(γk), . . . , τmℓ
(γℓ)

〉
0,ℓ,dRemark A.5. � From Propositions A.2 and A.4, we dedue

〈
τm1(γ1), . . . , τmℓ

(γℓ), c̃1(E)
〉
0,ℓ+1,d

=
∑

i:mi>0

〈
τm1(γ1), . . . ,

˜τmi−1(γi ∪ c1(E)), . . . , τmℓ
(γℓ)

〉
0,ℓ,d

=
∑

i:mi>0

〈
˜τm1(γ1 ∪ c1(E)), . . . , τmi−1(γi), . . . , τmℓ

(γℓ)
〉
0,ℓ,d49



Proof of Proposition A.4. � We have
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), 1
〉
0,ℓ+1,d

= deg

(
π∗

(
ℓ∏

i=1

ψmi
i e∗i γi · ctop(E0,ℓ+1,d(k)) · [X0,ℓ+1,d]

vir

))We use Proposition A.3 with α = ctop(E0,ℓ+1,d(k)). We get
π∗

(
ℓ∏

j=1

ψ
mj

j e∗j γj · ctop(E0,ℓ+1,d(k)) · [X0,ℓ+1,d]
vir

)(A.6)
=

ℓ∏

j=1

ψ
mj

j e∗j γjπ∗(ctop(E0,ℓ+1,d(k)) · [X0,ℓ+1,d]
vir)

+
∑

i|mi>0


ψmi−1

i e∗i γi

ℓ∏

j=1

j 6=i

ψ
mj

j e∗j γj


 π∗(ctop(E0,ℓ+1,d(k)) · [Di]

vir)As k 6= ℓ+ 1, we have ctop(E0,ℓ+1,d(k)) = π∗ctop(E0,ℓ,d(k)).By Axiom IV (See De�nition 7.1) of [BM96℄ proved in [Beh97℄. We have π∗[X0,ℓ,d]
vir =

[X0,ℓ+1,d]
vir. As π is of relative dimension 1, the morphism π∗π

∗ is the zero. This impliesthat the �rst term in the right hand side of (A.6) vanishes. By de�nition of the virtuallass [Di]
vir (see paragraph before Proposition A.3), we have π∗[Di]

vir = [X0,l,d]
vir. Heneprojetion formula implies the proposition.Proposition A.7 (Twisted Divisor axiom). � Let ℓ be in N≥0, d be in H2(X,Z),

γ1, . . . , γℓ be in H∗(X,C) and m1, . . . , mℓ be in N≥0. Let γ be in H2(X,C).
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), γ
〉
0,ℓ+1,d

=

(∫

d

γ

)
〈τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ)〉0,ℓ,d

+
∑

i:mi>0

〈
τm1(γ1), . . . ,

˜τmi−1(γ ∪ γi), . . . , τmℓ
(γℓ)

〉
0,ℓ,dProof. � We use Proposition A.3 with α = e∗ℓ+1 γ. We get that

〈
τm1(γ1), . . . ,

˜τmj
(γk), . . . , τmℓ

(γℓ), γ
〉
0,ℓ+1,d

= deg π∗

(
e∗ℓ+1 γ

ℓ∏

i=1

ψmi
i e∗i γi · ctop(E0,ℓ+1,d(k)) · [X0,ℓ+1,d]

vir

)

= deg

(
ℓ∏

i=1

ψmi
i e∗i γi · [X0,ℓ,d]

vir · π∗
(
e∗ℓ+1 γ

)
)(A.8)

+
∑

i|mi>0

deg


ψ

mi−1
i e∗i γi

∏

j=1

j 6=i

ℓ

ψ
mj

j e∗j γj · π∗
(
e∗ℓ+1 γ · [Di]

vir
)

(A.9)
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As π is of relative dimension 1, we have π∗ e∗ℓ+1 γ is in A0(X0,ℓ,d), we dedue that π∗ e∗ℓ+1 γ =
deg(π∗ e

∗
ℓ+1 γ · [pt])[X0,ℓ,d]. Let [C, f, x] be a point in X0,ℓ,d. By projetion formula for π and

eℓ+1, we have
deg(π∗ e

∗
ℓ+1 γ · [C, f, x]) = deg(π∗

(
e∗ℓ+1γ · π∗[C, f, x]

)
)

= deg(e∗ℓ+1γ · π∗[C, f, x])

= deg(γ · eℓ+1∗π
∗[C, f, x])As π is the universal urve, π∗[C, f, x] is the lass of the urve (C, x, f) and eℓ+1 restrited tothis urve is f . So eℓ+1∗π

∗[C, f, x] = f∗(C, x, f) whih d by de�nition. Se we get deg(π∗e∗ℓ+1γ ·
[pt]) = deg(γ · d) =

∫
d
γ. So the term in (A.8) is exatly the �rst term in the right handside of the equality of the proposition. As π∗[Di]

vir = [X0,ℓ,d]
vir and eℓ+1 is exatly ei on Di,projetion formula implies that (A.9) is exatly the seond term of the right hand side of theequality of the proposition.Proposition A.10 (Twisted Dilaton equation). � Let ℓ be a non negative integer and

d be in H2(X,Z). Let γ1, . . . , γℓ be in H2∗(X), m1, . . . , mℓ be in N≥0. If j ∈ {1, . . . , ℓ} wehave
〈τm1(γ1), . . . ,

˜τmj
(γj), . . . , τmℓ

(γℓ), τ1(1)〉0,ℓ+1,d

= (−2 + n)〈τm1(γ1), . . . , τ̃mj
(γj), . . . , τmℓ

(γℓ)〉0,ℓ,dProof. � We use Proposition A.3 with α = ψℓ+1. We use the notation of the proof of A.7.We dedue that for a point [C, f, x] in X0,ℓ,d

π∗(ψℓ+1 · π∗[C, f, x]) = (−2 + ℓ)[C, f, x]Changing e∗ℓ+1 γ by ψℓ+1 in (A.8), we get
(−2 + ℓ)〈τm1(γ1), . . . , τ̃mj

(γj), . . . , τmℓ
(γℓ)〉0,ℓ,d.As the bundle Nℓ+1 (f. before De�nition 2.5) is trivial on Di, we dedue that hanging e∗ℓ+1 γby ψℓ+1 = 0 in (A.9) gives zero.We follow Remark 1.2.8 of [Gat03℄. Fix an integer ℓ and a homology lass d in H2(X,Z).Let I1, I2 be two subsets of {1, . . . , ℓ} suh that I1 ⊔ I2 = {1, . . . , n}. Let d1, d2 in H2(X,Z)suh that d1 + d2 = d. Denote by ∆ : X → X × X the diagonal morphism. We de�ne

D(I1, d1 | I2, d2) by the following artesian diagram
D(I1, d1 | I2, d2) ∆′

enode

X0,I1∪{⋆},d1 ×X0,I2∪{∗},d2

e=(e′⋆,e
′′
∗ )

X
∆

X ×X

(A.11)
where e′⋆ : X0,I1,d1 → X (resp. e′′∗ : X0,I2,d2 → X) is the evaluation morphism at the markedpoint ⋆ (resp. ∗). Geometrially, a point in the stak D(I1, d1 | I2, d2) is the data of two stablemaps (C1, x1, f1) in X0,I1∪{⋆},d1 and (C2, x2, f2) in X0,I2∪{∗},d2 suh that f1(x1,⋆) = f2(x2,∗).Identifying the marked points x1,⋆ and x2,∗, we get a nodal urve C = C1 ∪C2 with a stablemap f = (f1, f2) : C → X of degree d = d1 + d2. We dedue that the D(I1, d1 | I2, d2) →֒
X0,ℓ,d and that the map enode : D(I1, d1 | I2, d2) → X is the evaluation at the node whih is
C1 ∩ C2. We de�ne the virtual lass on D(I1, d1 | I2, d2) by the following

[D(I1, d1 | I2, d2)]vir := ∆!
(
[X0,I1∪{⋆},d1 ]

vir ⊗ [X0,I2∪{∗},d2 ]
vir
)51



A diret omputation shows that the virtual odimension of [D(I1, d1 | I2, d2)]vir in X0,ℓ,d is
1 that's why we all them boundary divisors(6).To prove twisted Topologial Reursion Relations and twisted WDVV, we need to provethe twisted splitting axiom.Proposition A.12 (Twisted splitting axiom). � Let ℓ be in N>0 and d be in H2(X,Z).Let γ1, . . . , γℓ be in H2∗(X) and m1, . . . , mℓ be in N≥0. Fix a partition I1

⊔
I2 = {1, . . . , ℓ}and two homology lasses d1, d2 ∈ H2(X,C) suh that d1 + d2 = d. Fix j ∈ I1. Denote by ιthe inlusion D(I1, d1 | I2, d2) →֒ X0,ℓ,d. We have

∫

[D(I1,d1|I2,d2)]vir
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

ψmi
i e∗i γi

=
s−1∑

a=0

〈
Ta, τ̃mj

(γj),
∏

i 6=j∈I1

τmi
(γi)

〉

0,#I1+1,d1

〈
T̃ a,

∏

i∈I2

τmi
(γi)

〉

0,#I2+1,d2Proof. � We use the notation of the diagram (A.11). Let p1 : X0,I1∪{⋆},d1 × X0,I2∪{∗},d2 →
X0,I1∪{⋆},d1 the projetion on the �rst fator and p2 the projetion on the seond fator. Firstwe prove the following equality

ι∗ctop(E0,ℓ,d(j)) = ctop
(
∆′∗p∗1E0,I1∪{⋆},d1(j)⊕∆′∗p∗2E0,I2∪{∗},d2(∗)

)(A.13)We de�ne the surjetive morphism ι∗E0,ℓ,d → e∗node E ⊕ e∗j E by evaluating the setion of
ι∗E0,ℓ,d at the j-th marked point and at the node(7). We de�ne E0,ℓ,d(j, node) to be the kernelof this morphism. We dedue the following exat sequene of bundles over D(I1, d1 | I2, d2).

0 E0,ℓ,d(j, node) ι∗E0,ℓ,d e∗node E ⊕ e∗j E 0(A.14)Pulling-bak the exat sequene (A.1) via the omposition p1 ◦ ∆′ (resp. p2 ◦ ∆′) on
X0,I1∪{⋆},d1 (resp. on X0,I2∪{⋆},d2), we dedue a morphism from ∆′∗p∗1E0,I1∪{⋆},d1 (resp. from
∆′∗p∗2E0,I2∪{∗},d2) to e∗node E . We dedue the following exat sequene

0 ι∗E0,ℓ,d a
∆′∗p∗1E0,I1∪{⋆},d1 ⊕∆′∗p∗2E0,I2∪{∗},d2 b

e∗node E 0(A.15)where at the stable map (C, x, f) in D(I1, d1 | I2, d2), as C = C1 ∪C2 the morphism a sendsa setion s ∈ H0(C, f ∗E) to (s|C1 , s|C2). The morphism b send (s1, s2) to s1(⋆)− s2(∗). Thesequene above is exat beause if s1(⋆) = s2(∗) then they glue in a setion in H0(C, f ∗E).From (A.14) and (A.15), we dedue the following exat sequene
0 E0,ℓ,d(j, node) ∆′∗p∗1E0,I1∪{⋆},d1(j)⊕∆′∗p∗2E0,I2∪{∗},d2(∗) e∗node E 0

(A.16)Denote by ct(E) the total Chern lass of E . From (A.14) and (A.16), we dedue that
ct
(
∆′∗p∗1E0,I1∪{⋆},d1(j)⊕∆′∗p∗2E0,I2∪{∗},d2(∗)

)
= ct(E0,ℓ,d(j, node))ct(e∗node E)
= ct(ι

∗E0,ℓ,d)ct(e∗j E)−1

= ct(ι
∗E0,ℓ,d(j))This implies the Equality (A.13).Let us prove the Equality of the Proposition A.12. Denote by X1 := X0,I1∪{⋆},d1 , X2 :=

X0,I2∪{∗},d2 , E1 := E0,I1∪{⋆},d1(j) and E2 := E0,I2∪{∗},d2(∗). We have
(6) The Di de�ned before Proposition A.3 are speial ases of D(I1, d1 | I2, d2)
(7)Notie that the evaluation at the node is not de�ned on X0,ℓ,d but only on D(I1, d1 | I2, d2).52



∫

[D(I1,d1|I2,d2)]vir
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

ψmi
i e∗i γi

= deg

(
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

ψmi
i e∗i γi∆

!
(
[X1]

vir ⊗ [X2]
vir
)
)On X1 (resp. X2), we denote by ψ′

i (resp. ψ′′
i ) the ψ's lasses and e′i (resp. e′′i ) the evaluationmap. We put αi := ψmi

i e∗i γi, α′
i := ψ′mi

i e′∗i γi and α′′
i := ψ′′mi

i e′′∗i γi. Using the Diagram(A.11) and Equality (A.13) , we push forward to X ×X and we get
∫

[D(I1,d1|I2,d2)]vir
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

αi

= deg

(
∆∗∆

∗ e∗

(
ctop(E1)⊗ ctop(E2) · [X1]

vir ⊗ [X2]
vir
∏

i∈I1

α′
i ⊗ [X2]

∏

i∈I2

[X1]⊗ α′′
i

))Now, we use that ∆∗∆
∗ is just the intersetion with the lass of the diagonal, whih is∑

a Ta ⊗ T a. Using projetion formula, we dedue the Equality of the proposition.Remark A.17. � We have also the following equality
∫

[D(I1,d1|I2,d2)]vir
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

ψmi
i e∗i γi(A.18)

=
s−1∑

a=0

〈
T̃a, ˜τmj

(γj),
∏

i 6=j∈I1

τmi
(γi)

〉

0,#I1+1,d1

〈
T a,

∏

i∈I2

τmi
(γi)

〉

0,#I2+1,d2Where the double tilde mean that we are twisting in the Gromov-Witten invariant withtwo lasses namely ctop(E0,I1∪{⋆},d1(j)) and ctop(E0,I1∪{⋆},d1(⋆)). The proof is almost the same.Instead of the exat sequene (A.16), we use
0 E0,ℓ,d(j, node) ∆′∗p∗1E0,I1∪{⋆},d1(j, ⋆)⊕∆′∗p∗2E0,I2∪{∗},d2 e∗node E 0So we get the equality

ι∗ctop(E0,ℓ,d(j)) = ctop
(
∆′∗p∗1E0,I1∪{⋆},d1(j, ⋆)⊕∆′∗p∗2E0,I2∪{∗},d2

)With the same arguments, we get Equality (A.18).Denote by τ :=
∑s−1

a=0 taTa. Denote by
〈〈τm1(γ1), . . . , τmℓ

(γℓ)〉〉0 :=
∑

ℓ≥0

∑

d∈H2(X,Z)

1

ℓ!
〈τm1(γ1), . . . , τmℓ

(γℓ), τ, . . . , τ〉 0, ℓ+ n, d(A.19)Proposition A.20 (Twisted TRR i.e., Topologial Reursion Relation)Let γ1, γ2, γ3 be in H2∗(X). Let m1, m2, m3 be in N≥0. We have the following equalities :
〈〈
τm1+1(γ1), τm2(γ2),

˜τm3(γ3)
〉〉

0
=

s−1∑

a=0

〈〈
τm2(γ2),

˜τm3(γ3), T
a
〉〉

0

〈〈
τm1(γ1), T̃a

〉〉
0

(A.21)
〈〈

˜τm1+1(γ1), τm2(γ2), τm3(γ3)
〉〉

0
=

s−1∑

a=0

〈〈
τm2(γ2), τm3(γ3), T̃

a
〉〉

0

〈〈
˜τm1(γ1), Ta

〉〉
0

(A.22) 53



Proof. � The proof is ompletely parallel to the lassial ase (f. for instane Proposition1.3.9 of [Gat03℄). We have
ψ1 · [X0,ℓ,d]

vir =
∑

d1+d2=d
I1⊔I2={1,...,ℓ}

2,3∈I1,1∈I2

[D(I1, d1 | I2, d2)]virInterseting this equality with ψ's lasses and e∗i γ and using twisted splitting axiom ofProposition A.12, we dedue the twisted TRR equality.Remark A.23. � Using Remark A.17, we get two other twisted TRR relations
〈〈
τm1+1(γ1), τm2(γ2),

˜τm3(γ3)
〉〉

0
=

s−1∑

a=0

〈〈
τm2(γ2),

˜τm3(γ3), T̃
a
〉〉

0
〈〈τm1(γ1), Ta〉〉0

〈〈
˜τm1+1(γ1), τm2(γ2), τm3(γ3)

〉〉
0
=

s−1∑

a=0

〈〈τm2(γ2), τm3(γ3), T
a〉〉0

〈〈
˜τm1(γ1), T̃a

〉〉
0Proposition A.24 (Twisted WDVV equations). � Let γ1, γ2, γ3, γ4 be in H2∗(X). Let

m1, m2, m3, m4 be in N≥0. We have the following equality :
s−1∑

a=0

〈〈
τm1(γ1), τm2(γ2), T̃a

〉〉
0

〈〈
τm3(γ3),

˜τm4(γ4), T
a
〉〉

0
(A.25)

=

s−1∑

a=0

〈〈
τm1(γ1), τm3(γ3), T̃a

〉〉
0

〈〈
τm2(γ2),

˜τm4(γ4), T
a
〉〉

0Proof. � The proof is ompletely parallel to the lassial ase (f. for instane Proposition1.3.8 of [Gat03℄). We just use the twisted splitting axiom instead of the lassial one. FromAxiom V of De�nition 7.1 in [BF97℄ proved in [Beh97℄, we have
∑

d1+d2=d
I1⊔I2={1,...,ℓ}

1,2∈I1,2,3∈I2

[D(I1, d1 | I2, d2)]
vir

=
∑

d1+d2=d
I1⊔I2={1,...,ℓ}

1,3∈I1,2,4∈I2

[D(I1, d1 | I2, d2)]
vir

.Interseting this equality with ψ's lasses and e∗i γ and using twisted splitting axiom ofProposition A.12, we dedue the twisted WDVV equality.Remark A.26. � Using the other twisted splitting axiom of Remark A.17, we get an othertwisted WDVV axiom
s−1∑

a=0

〈〈τm1(γ1), τm2(γ2), Ta〉〉0
〈〈
τm3(γ3),

˜τm4(γ4), T̃
a
〉〉

0

=
s−1∑

a=0

〈〈τm1(γ1), τm3(γ3), Ta〉〉0
〈〈
τm2(γ2),

˜τm4(γ4), T̃
a
〉〉

0BProof of Proposition 2.17Proposition B.1. � 1. The onnetion ∇ is �at.54



2. For a ∈ {1, . . . , r} and γ ∈ H2∗(X) we have
∇∂t0

Ltw(t0, q, z)γ = 0, ∇δaL
tw(t0, q, z)γ = 0

∇δzL
tw(t0, q, z)γ = Ltw(t0, q, z)

(
µ− c1(TX ⊗ E∨)

z

)
γ3. The multi-valued ohomologial funtion Ltw(t0, q, z)z

−µzc1(TX⊗E∨) is a fundamental so-lution of ∇.Proof. � (1) Let us prove the �atness of ∇. We have to prove that for any a, b ∈ {1, . . . , r}and for any c ∈ {0, . . . , s− 1}, we have
[∇δa ,∇δb]Tc = 0(B.2)
[∇δa ,∇δz ]Tc = 0(B.3)The �rst equation omes from the following.

∇δa∇δbTc =
1

z
δa(Tb •twq Tc) +

1

z2
(Ta •twq (Tb •twq Tc))

∇δb∇δaTc =
1

z
δb(Ta •twq Tc) +

1

z2
(Tb •twq (Ta •twq Tc))As a, b ∈ {1, . . . , r}, the �rst terms are equal by the divisor axiom (see Proposition A.7).The seond terms are equal by assoiativity and ommutativity of the quantum produt (seeProposition 2.14). Let us show the equation (B.3). By de�nition of the onnetion, we have

[∇δa ,∇δz ]Tc = −1

z
[δa,E•twq ]Tc + [

1

z
Ta•twq , δz]Tc −

1

z2
[Ta•twq ,E•twq ]Tc +

1

z
[Ta•twq , µ]TcThe third term vanishes by assoiativity and ommutativity of the quantum produt. FromEqualities below (B.4), (B.5), (B.6), we dedue (B.3), hene the �atness.For any a ∈ {1, . . . , r} and for any c ∈ {0, . . . , s− 1}, we have

[
1

z
Ta•twq , δz

]
Tc =

1

z
Ta •twq Tc(B.4)

[
Ta•twq , µ

]
Tc =(B.5)

(
deg(Tc)

2
− dimCX

)
Ta •twq Tc +

s−1∑

e=0

deg(Te)

2

∑

d∈H2(X,Z)

qd
〈
Ta, Tc, T̃e

〉
0,3,d

T e

[
δa,E•twq

]
Tc =(B.6)

(
1 +

deg(Tc)

2
− dimCX

)
Ta •twq Tc +

s−1∑

e=0

deg(Te)

2

∑

d∈H2(X,Z)

qd
〈
Ta, Tc, T̃e

〉
0,3,d

T eThe equality (B.4) follows from
[
1

z
Ta•twq , δz]Tc = −δz

(
1

z
Ta•twq

)
Tc =

1

z
Ta •twq Tc.55



Equality (B.5) follows from the di�erene of the two equalities below.
Ta •twq µ(Tc) =

(
deg(Tc)

2
− dimCX − rk E

2

)
Ta •twq Tc

µ(Ta •twq Tc) =
s−1∑

e=0

∑

d∈H2(X,Z)

qd
〈
Ta, Tc, T̃e

〉
0,3,d

µ(T e)

=

s−1∑

e=0

(
dimCX + rk E

2
− deg Te

2

) ∑

d∈H2(X,Z)

qd
〈
Ta, Tc, T̃e

〉
0,3,d

T e(Reall that deg T e = 2dimX − deg Te).Let us prove the last equality (B.6). By Divisor Axiom A.7 and Fundamental lass AxiomA.4, we have that
[δa,E•twq ]Tc = δa(E •twq Tc)

=
s−1∑

e=0

∑

d∈H2(X,Z)

qd
〈
Ta,E, Tc, T̃e

〉
0,3,d

T e

=

s−1∑

e=0

∑

d∈H2(X,Z)

qd
∫

d

c1(TX ⊗ E∨)
〈
Ta, Tc, T̃e

〉
0,3,d

T e(B.7)Notie that if the Gromov-Witten invariant 〈Ta,E, Tc, T̃e〉
0,3,d

does not vanish then we have :
1 +

deg(Tc)

2
+

deg(Te)

2
+

∫

d

c1(E) =
∫

d

c1(TX) + 1− dimCX.so we dedue that c1(TX ⊗ E∨) = 1 − dimCX + deg(Tc)
2

+ deg(Te)
2

. Putting this in (B.7), wededue the equality (B.6).(2) As 1 is the unit for •twq , we have the �rst equality.Let us prove the seond equality of (2). It is enough to prove it for Ltw(q, z) := Ltw(0, q, z).Let γ1, . . . , γℓ ∈ H2∗(X). Denote by
〈〈τm1(γ1), . . . , τmℓ

(γℓ)〉〉small
0the orrelator de�ned in (A.19) where τ is replae by ∑r
a=1 Ta log qa.Using the twisted divisor axiom (Proposition A.7) and after some omputations (see[CK99℄, proposition 10.2.3 for example) we have :

Ltw(q, z)γ = γ −
s−1∑

a=0

〈〈
γ

z + ψ
, T̃a

〉〉small

0

T a(B.8)where (ψ + z)−1 =
∑

ℓ≥0(−1)ℓz−ℓ−1ψℓ. For b ∈ {1, . . . , r}, we have
δbL

tw(q, z)γ = −
s−1∑

a=0

〈〈
γ

z + ψ
, Tb, T̃a

〉〉small

0

T a(B.9)Notie that we an write the twisted quantum produt with the orrelator notation that is
γ1 •twq γ2 =

s−1∑

a=0

〈〈
γ1, γ2, T̃a

〉〉small

0
T a56



We have that
1

z
Tb •twq Ltw(q, z)γ =

1

z

s−1∑

a=0

〈〈
Tb, γ, T̃a

〉〉small

0
T a

+
∑

ℓ≥0

s−1∑

a=0

(−1)ℓ+1z−ℓ−2

s−1∑

c=0

〈〈
γψℓ, T̃c

〉〉small

0

〈〈
Tb, T

c, T̃a

〉〉small

0
T aUsing Equality (A.21) of Proposition A.20 (i.e., twisted TRR), we get

1

z
Tb •twq Ltw(q, z)γ

=
1

z

s−1∑

a=0

〈〈
Tc, γ, T̃a

〉〉small

0
T a +

∑

ℓ≥0

s−1∑

a=0

(−1)ℓ+1z−ℓ−2
〈〈
γψℓ+1, Tb, T̃a

〉〉small

0
T a

=

s−1∑

a=0

〈〈
γ

z + ψ
, Tb, T̃a

〉〉small

0

T a(B.10)Adding (B.9) and (B.10), we dedue that for any γ ∈ H2∗(X) and any b ∈ {1, . . . , r}
∇δbL

tw(q, z)γ = 0.To prove the last equality of (2) we use Formula (2.16) for Ltw. Then put Gtw(q, z) :=

et0/zLtw(t0, q, z)q
T/z. De�ne the vetor �eld Ẽ :=

∑r
a=1 eaδa+ t0∂t0 where E = c1(TX ⊗E∨) =∑r

a=1 eaTa. Using the seond equality of (2), we have to prove that
(z∂z + Lie

Ẽ
+µ)Ltw(t0, q, z)γ =

(
µ− c1(TX ⊗ E∨)

z

)
γ.First we show that the operator (z∂z + Lie

Ẽ
+µ) ommutes with Gtw(q, z). Then to �nishthe proof we hek that for any a ∈ {0, . . . , s− 1} we have

δz(q
−T/zTa) = z−1q−T/z

r∑

b=1

log(qb)Tb ∪ Ta

Lie
Ẽ
(q−T/zTa) = −q−T/z c1(TX ⊗ E∨)

z
Ta

µ(q−T/zTa) = q−T/zµ(Ta)− z−1q−T/z

r∑

b=1

log(qb)Tb ∪ Ta

(δz + Lie
Ẽ
)e−t0/z = 0Let us prove

(δz + Lie
Ẽ
+µ)Gtw(q, z) = Gtw(q, z)(δz + Lie

Ẽ
+µ).(B.11)The developing in z the terms of Gtw(q, z), we denote

A(a, q, z, j, d) := z−j−1qd
〈
γψj, T̃a

〉
0,2,d

T aWe have
µ(A(a, q, z, j, d)) =

(
dimCX + rk E

2
− deg(Ta)

2

)
A(a, q, z, j, d)

δzA(a, q, z, j, d) = (−j − 1)A(a, q, z, j, d)

Lie
Ẽ
A(a, q, z, j, d) =

(∫

d

c1(TX ⊗ E∨)

)
A(a, q, z, j, d)57



As A(a, q, z, j, d) 6= 0 implies that
j +

deg(γ)

2
+

deg(Ta)

2
+

∫

d

c1(E) =
∫

d

c1(TX) + 2 + dimCX − 3We dedue that
(δz + Lie

Ẽ
+µ)A(a, q, z, j, d) =

(
deg(γ)

2
− dimCX − rk E

2

)
A(a, q, z, j, d)This implies the desired ommuting relation (B.11) hene the seond equality of (2).(3) For any lass c ∈ H2(X), we have that [µ, c] = c. Applying the formula Adexp(X) = eadXwe dedue that zµ c

z
z−µ = c. Put c := c1(TX ⊗ E∨), this implies

(
δz + µ− c1(TX ⊗ E∨)

z

)
z−µzc1(TX⊗E∨) = 0.Using (2) and the equality above, for any γ ∈ H2∗(X), we have

∇δz

(
Ltw(t0, q, z)z

−µzc1(TX⊗E∨)γ
)

= Ltw(t0, q, z)δz

(
z−µzc1(TX⊗E∨)

)
+
(
∇δzL

tw(t0, q, z)
)
z−µzc1(TX⊗E∨)γ = 0That is Ltw(t0, q, z)z

−µzc1(TX⊗E∨) is a fundamental solution of ∇.Referenes[Ado94℄ Alan Adolphson, Hypergeometri funtions and rings generated by monomials, Duke Math.J. 73 (1994), no. 2, 269�290. MR 1262208 (96:33020)[Bar00℄ Serguei Barannikov, Semi-in�nite Hodge strutures and mirror symmetry for projetivespaes, Math.AG/0010157 (2000), 17.[Bat93℄ Vitor V Batyrev, Quantum ohomology rings of tori manifolds, alg-geom/9310004 (1993).[Bat94℄ Vitor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaes intori varieties, J. Algebrai Geom. 3 (1994), no. 3, 493�535. MR 1269718 (95:14046)[Beh97℄ K. Behrend, Gromov-Witten invariants in algebrai geometry, Invent. Math. 127 (1997),no. 3, 601�617.[BF97℄ K. Behrend and B. Fantehi, The intrinsi normal one, Invent. Math. 128 (1997), no. 1,45�88.[BH93℄ Winfried Bruns and Jürgen Herzog, Cohen-Maaulay rings, Cambridge Studies in AdvanedMathematis, vol. 39, Cambridge University Press, Cambridge, 1993.[BM96℄ K. Behrend and Yu. Manin, Staks of stable maps and Gromov-Witten invariants, DukeMath. J. 85 (1996), no. 1, 1�60.[CCLT06℄ Tom Coates, Alessio Corti, Y.-P. Lee, and Hsian-Hua Tseng, Small quantum orbifoldohomology of weighted projetive spaes, math.AG/0608481 (2006), 50.[CG07℄ Tom Coates and Alexander Givental, Quantum Riemann-Roh, Lefshetz and Serre, Ann.of Math. (2) 165 (2007), no. 1, 15�53.[CK99℄ David A. Cox and Sheldon Katz, Mirror symmetry and algebrai geometry, MathematialSurveys and Monographs, vol. 68, Amerian Mathematial Soiety, Providene, RI, 1999.[CLS11℄ David Cox, John Little, and Hal Shenk, Tori varieties,http://www.s.amherst.edu/∼da/tori.html (2011).[CvR08℄ David A Cox and Christine von Renesse, Primitive olletions and tori varieties,0808.1836 (2008).[Eis95℄ David Eisenbud, Commutative algebra, Graduate Texts in Mathematis, vol. 150, Springer-Verlag, New York, 1995, With a view toward algebrai geometry.58
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