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Abstra
t. � On a smooth proje
tive variety with k ample line bundles, we denote by Z the
omplete interse
tion subvariety de�ned by generi
 se
tions.We de�ne the twisted quantum D-module whi
h is a ve
tor bundle with a �at 
onne
tion, a�at pairing and a natural integrable stru
ture. An appropriate quotient of it is isomorphi
 tothe ambient part of the quantum D-module of Z.When the variety is tori
, these quantum D-modules are 
y
li
. The twisted quantum D-module 
an be presented via mirror symmetry by the GKZ system asso
iated to the total spa
eof the dual of the dire
t sum of these line bundles.A question is to know what is the system of equations that de�ne the ambiant part of thequantum D-module of Z. We 
onstru
t this system as a quotient ideal of the GKZ system.We also state and prove the non-equivariant twisted Gromov-Witten axioms in the appendix.Contents1. Introdu
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omparison of Hodge numbers for Calabi-Yauvarieties (see for example [Bat94℄), isomorphism of Givental's 
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Inspired by the works of Givental (see for examples [Giv96℄ and [Giv98℄), many authorslook at quantum 
ohomology with a di�erential module approa
h : see Kim [Kim99℄ forhomogeneous spa
es, see Coates-Corti-Lee-Tseng [CCLT06℄ and Guest-Sakai [GS08℄ forweighted proje
tive spa
es , see also the works of Iritani [Iri06℄, [Iri07℄, [Iri08℄ and [Iri09℄,the book of Cox-Katz [CK99℄ and the one of Guest [Gue10℄.From the small quantum produ
t on a smooth proje
tive variety, we 
an de�ne a trivialve
tor bundle over H0(X,C)× V ×C where V ⊂ (C∗)r and r := dimCH
2(X,C) whose �beris H∗(X,C). This bundle is endowed with a �at 
onne
tion and a non-degenerated pairing.This 
onne
tion is sometimes 
alled the Dubrovin-Givental 
onne
tion. When X is a tori
smooth Fano variety, Givental (see also Iritani [Iri09℄ for tori
 weak Fano orbifolds) givesan expli
it presentation of this D-module using GKZ systems. To prove this isomorphism,he uses the equality, up to a mirror map, between the so 
alled I and J fun
tions.In the very ni
e arti
le [Iri09℄, Iritani enri
hes this quantum D-module by adding a naturalintegral stru
ture i.e., he de�nes a Z-lo
al system whi
h is 
ompatible with the 
onne
tion.We 
all quantum D-module, denoted by QDM(X), the trivial bundle endowed with a �at
onne
tion, a �at non-degenerated pairing and a natural integral stru
ture. This Z-lo
alsystem is natural in the following sense. Assume that X has a mirror (for instan
e X is aweak Fano tori
 orbifolds) that is a Laurent polynomial su
h that its Brieskorn latti
e (whi
his a ve
tor bundle with a �at 
onne
tion) is isomorphi
 to the quantum D-module of X . Onthis Brieskorn latti
e, we have a natural integral stru
ture that 
omes from the Lefs
hetz'sthimbles. The integral stru
ture de�ned by Iritani is natural be
ause it 
orresponds tothe natural one on the mirror. Noti
e that the bundle, the 
onne
tion, the pairing and theintegral stru
ture is part of the de�nition of a TERP stru
ture de�ned by Hertling in [Her06℄or a variation of non-
ommutative Hodge stru
ture de�ned by Kontsevi
h, Katzarkov andPantev in [KKP08℄.In this paper, we investigate the same kind of obje
ts asso
iated to a smooth proje
tivevariety X together with a splitted ve
tor bundle E whi
h is globally generated.We use the twisted Gromov-Witten invariants and the twisted quantum produ
ts to de�nea trivial ve
tor bundle, denoted by F , on H0(X,C) × V × C where V is an open in (C∗)rwhere the twisted quantum produ
t is 
onvergent. Inspired by the 
lassi
al 
ase, we de�nea �at 
onne
tion ∇, a �at pairing S and an integral stru
ture FZ on it. We 
all twistedquantum D-module, the quadruple QDM(X, E) := (F,∇, S, FZ). It satis�es all the propertiesof the 
lassi
al QDM(X) ex
ept that the pairing S is degenerated. We quotient by thekernel of S and we get a better obje
t, 
alled redu
ed quantum D-module and denoted by

QDM(X, E) := (F ,∇, S, F Z). More pre
isely, we 
onsider the trivial ve
tor bundle F withthe �bers H2∗(X,C)/ kermctop where mctop : α → ctop(E)∪α for any 
ohomology 
lass α. Thedata (F,∇, S, FZ) pass to this quotient and we get QDM(X, E) that satis�es all the 
lassi
alproperties and now S is non-degenerated. So it really looks like a quantum D-module of avariety. Indeed, we have a geometri
 interpretation of QDM(X, E):Theorem 1.1 (See Theorem 2.42). � Let L1, . . . ,Lk be ample line bundles on X, andassume that dimCX ≥ k + 3. Let Z be the zero of a generi
 se
tion of E := ⊕k
i=1Li. Denoteby ι : Z →֒ X the 
losed embedding. Then the redu
ed quantum D-module QDM(X, E) is iso-morphi
 to the sub-quantum D-module QDMamb(Z) of QDM(Z) whose �ber is ι∗H2∗(X,C).Noti
e that our integral stru
ture FZ de�ned on QDM(X, E) is natural be
ause it indu
esthe natural one on QDMamb(Z).Then the next natural question is : 
an we �nd a presentation of QDM(X, E) and

QDM(X, E) when X is a tori
 smooth variety in terms of GKZ systems ?Denote by D the sheaf of di�erential operators on the basis spa
e of the F (this is notreally true, the operators that we 
onsider are zqa∂qa where qa are variable in H2(X,C) and2



z is the 
oordinate on C). Denote by Y the total spa
e of the dual ve
tor bundle E∨. Denoteby G the ideal sheaf asso
iated to the GKZ system of the tori
 variety Y . We have thefollowing result.Theorem 1.2 (see Theorem 5.10). � Let X be a smooth tori
 variety with k line bundles
L1, . . . ,Lk su
h that (ωX ⊗ L1 ⊗ . . .⊗ Lk)

∨ is nef. We put E := ⊕k
i=1Li.1. If the line bundles L1, . . . ,Lk are globally generated then we have the following isomor-phism :

D/G ∼−→ Mir∗(F ,∇)where Mir is the mirror map of Givental and F is the sheaf of se
tions of F .2. If the line bundles L1, . . . ,Lk are ample, we have the following 
ommutative diagram
D/G ∼

Mir∗(F ,∇)

D/Quot(ĉtop,G) ∼
Mir∗(F ,∇)where ĉtop is an operator atta
h to the 
ohomology 
lass ctop(E) (
f. Notation 4.1) and

Quot(ĉtop,G) is the left quotient ideal 〈P ∈ D, ĉtopP ∈ G〉.Noti
e that, unlike the 
ommutative 
ase, the set {P ∈ D, ĉtopP ∈ G} is not an ideal.The ideal sheaf Quot(ĉtop,G) answer to the following question whi
h is addressed in the[CK99, p.94-95 and p.101℄: What di�erential equations shall we add to G to get an isomor-phism with QDMamb(Z) ?The isomorphisms above are based on the equality (up to the mirror map) between thetwisted J-fun
tion and the twisted I-fun
tion of Givental (see [Giv96℄ and [Giv98℄) and a
areful analysis of the lo
al freeness and rank of GKZ modules. Freeness and rank requiresthe study of Batyrev rings of the tori
 variety Y �the total spa
e of E∨� whi
h will appearas the restri
tion of the D-modules at z = 0, and 
an be thought as a twisted Batyrev ringof the pair (X, E).Proving this theorem leads to develop quite a lot of materials and results whi
h deservesome pre
isions. Let us sket
h our strategy of proof.For the �rst point of the theorem above, we show that D/G is a lo
ally free sheaf of rank
dimCH

2∗(X,C) = rkF (see Theorem 4.10). This is done in 2 steps.� We �rst prove the 
oheren
e of D/G (see Theorem 4.5). This implies the lo
al freenessover z 6= 0 and we use Adolphson's result in [Ado94℄ to 
ompute the rank.� On z = 0, we have a tautologi
al isomorphism between D/G |z=0 and the Batyrev ringof Y . We prove that this ring is lo
ally free of rank rkF over a suitable algebrai
neighborhood U (see below).For se
ond point of the theorem above, we show in Theorem 4.14 :� On z = 0, we prove that the natural morphism between D/Quot(ĉtop,G) |z=0 and theresidual Batyrev ring (see De�nition 3.39) of Y is an isomorphism. We prove that thisresidual ring is lo
ally free of rank rkF = dimH2∗(X)− dimkermctop over U .� on z 6= 0 the 
oheren
e of D/G implies that D/Quot(ĉtop,G) is lo
ally free of rank lessthan rkF .Let us 
olle
t the pre
ise results that we prove on the Batyrev rings, whi
h are interestingon their own :Theorem 1.3. � Let X be a smooth tori
 variety with k globally generated line bundles
L1, . . . ,Lk su
h that the total spa
e of the ve
tor bundle E := ⊕k

i=1Li has a nef anti
anoni
al3



divisor. Denote by U the good neighborhood in the spe
trum of the Novikov ring de�ned inNotation 3.34.1. (See Theorem 3.26) Denote by B the Batyrev ring (see De�nition 3.12) of the totalspa
e of E∨.The morphism : Spec(B) |U−→ U is �nite, �at, of degree dimH2∗(X,C).2. (See Proposition 3.40) Moreover, if the line bundles L1, . . . ,Lk are ample then themorphism : Spec(Bres) |U−→ U is �nite, �at, of degree dimH2∗(X,C) where Bres isthe residual Batyrev ring (see De�nition 3.39).The plan of this arti
le is the following.In Se
tion 2, we de�ne �rst (Subse
tion 2.1) the twisted quantum D-module QDM(X, E)with all its properties and its natural integral stru
ture. Then we de�ne the redu
ed quantum
D-module QDM(X, E) in Subse
tion 2.2. Finally, we give the geometri
 interpretation inSubse
tion 2.3 where we prove the �rst Theorem 1.1.In Se
tion 3, we fo
us on Batyrev rings for tori
 varieties. Noti
e that this se
tion 
anbe read independently of the rest of the paper. The �rst Subse
tion 3.1 is devoted to somere
alls on tori
 geometry. In Subse
tion 3.1 we 
onstru
t the fan of the total spa
e of theve
tor bundle E . In Subse
tion 3.2, we de�ne the Batyrev rings. Subse
tion 3.3 is devotedto some re
alls on the primitive 
olle
tions. In Subse
tion 3.4, we prove that the quantumStanley-Reisner ideal has a Groebner basis indexed by primitive 
olle
tions (See Theorem3.22). In Subse
tions 3.5 and 3.6, we prove the Theorem 3.26 and Proposition 3.40 quotedabove in Theorem 1.3.In Se
tion 4, we fo
us on GKZ modules. We prove �rst that the GKZ module D/G is
oherent in Theorem 4.5. Then we prove that it is lo
ally free of rank rkF in Theorem 4.10.We �nish by a result on the residual GKZ module D/Quot(ĉtop,G) (see Theorem 4.14).These results use Theorem 3.26 and Proposition 3.40 of the previous se
tion.In Se
tion 5, we start by some re
all on Givental's mirror symmetry in Subse
tion 5.1 thenwe state and prove Theorem 1.2 in Subse
tion 5.2.We �nish this paper by two appendi
es. Appendix A 
ontains the proof of the twistedGromov-Witten invariants in genus 0 that are known from the experts. We add it by la
kof referen
es.Appendix B is a 
omplete proof of the �atness of the 
onne
tion ∇ using the twistedaxioms.A
knowledgment : We thank Thomas Rei
helt, Claude Sabbah and Christian Sevenhe
kfor useful dis
ussions. The seminar in Paris organized by Serguei Barannikov and ClaudeSabbah on the non-
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e[Mav00℄ (see Remark 2.40) The �rst author is supported by the ANR New symetries inGromov-Witten theories number ANR- 09-JCJC-0104-01.Notation 1.4. � We use 
alligraphi
 letters for the sheaves like M,Mres,G,B,L, E . Weuse bold letters for modules or ideals on non 
ommutative rings M,Mres,G,A, . . ..2. Twisted and redu
ed quantum D-modules with geometri
 interpretationLet X be a smooth proje
tive 
omplex variety of dimension n and k globally generatedline bundles L1, . . . ,Lk. Denote by E the sum E := L1 ⊕ · · · ⊕ Lk.We �rst de�ne the twisted quantum D-module, denoted by QDM(X, E), asso
iated to thesedata (De�nition 2.24). This is a trivial bundle of rank dimCH

2∗(X,C) with an integrable
onne
tion, a �at pairing and an integral stru
ture.4



It turns out that the pairing of the twisted quantum D-module is degenerated, whi
hmakes QDM(X, E) a not so natural obje
t, without 
lear geometri
 meaning. In a se
ondparagraph we introdu
e the redu
ed quantum D-module QDM(X, E) (De�nition 2.34) ; it is
onstru
ted as the quotient of QDM(X, E) by the kernel of the endomorphism mctop, whi
his the 
up multipli
ation by the Euler 
lass ctop(E) of E :
mctop : H2∗(X,C) −→ H2∗(X,C)

α 7−→ α ∪ ctop(E).The redu
ed quantum D-module is a trivial bundle of rank dimH2∗(X,C) − dimkermctopwith an integrable 
onne
tion, a �at non�degenerated pairing and an integral stru
ture.If dimX ≥ k + 3, we also 
onsider a generi
 se
tion of E and denote by Z the 
ompleteinterse
tion subvariety de�ned as the zero lo
us of this se
tion. By Bertini's theorem over
C, the subvariety Z is smooth and 
onne
ted. Assuming moreover that the Li are ampleline bundles, the Lefs
hetz theorem gives an isomorphism between H2(X,C) and H2(Z,C).We 
an 
ompare QDM(X, E), QDM(X, E) and the 
lassi
al, untwisted, quantum D-module of Z, QDM(Z). This will be made in the last subse
tion.Notation 2.1. � For 0 ≤ i ≤ 2n, denote by H i(X) := H i(X,C) the 
omplex 
ohomol-ogy group of 
lasses of degree i. Also denote by H∗(X) the 
omplex 
ohomology ring
⊕2n

i=0H
i(X) ; the even part of this ring will be written H2∗(X). Put s = dimCH

2∗(X) and
r = dimCH

2(X).We �x, on
e and for all, a homogeneous basis (T0, . . . , Ts−1) of H2∗(X) su
h that T0 = 1 isthe unit for the 
up produ
t and that the 
lasses T1, . . . , Tr form a basis of H2(X,Z) modulotorsion. Denote by (t0, . . . , ts−1) the asso
iated 
oordinates and put τ :=
∑s−1

a=0 taTa and τ2 :=∑r
a=1 taTa. Also denote by (T 0, . . . , T s−1) the Poin
aré dual in H2∗(X) of (T0, . . . , Ts−1).As a 
onvention, We will write H2(X,Z) for the degree 2 integer homology modulo torsion.Denote by (B1, . . . , Br) the dual basis of (T1, . . . , Tr) inH2(X,Z). The asso
iated 
oordinateswill be denoted by (d1, . . . , dr).We denote by TX the tangent bundle of X , ωX the 
anoni
al sheaf, and �x a 
anoni
aldivisor KX .As a 
onvention, we will make no notational distin
tion between ve
tor bundles and lo
allyfree sheaves, writing �for example� E and Li for both.2.1. Twisted quantum D-module. � In this subse
tion, we de�ne the twisted quantum

D-module QDM(X, E) = (F,∇, S, FZ).2.1.a. Twisted quantum produ
t. � First re
all the de�nition of the twisted Gromov-Witteninvariant (
f. [Giv96℄ and [CG07℄ or [CK99, Se
tion 11.2.1℄ and [Pan98℄).Let ℓ be in N and d be in H2(X,Z). Denote by X0,ℓ,d the moduli spa
e of stable maps ofdegree d from rational 
urves with ℓ marked points to X . The universal 
urve over X0,ℓ,d is
X0,ℓ+1,d :

X0,ℓ+1,d

π

eℓ+1

X

X0,ℓ,dwhere π is the map that forgets the (ℓ+1)-th point and stabilizes, and eℓ+1 is the evaluationat the (ℓ+ 1)-th marked point.Re
all that a 
onvex bundle N on X is a ve
tor bundle su
h that, for any stable map
f : C → X where C is a rational nodal 
urve, H1(C, f ∗N ) = 0.5



Proposition 2.2. � Let N be a globally generated ve
tor bundle (not ne
essarily splitted) ofrank b then N is 
onvex and the sheaf N0,ℓ,d := R0π∗ e
∗
ℓ+1N is lo
ally free of rank ∫

d
c1(N )+b.Proof. � Let us prove the 
onvexity of N . We follow [FP97, Lemma 10℄.Let f : C −→ X be a stable map and p be a non singular point on C. We will prove byindu
tion on the number of irredu
ible 
omponents of C that

H1(C, f ∗N ⊗OC(−p)) = 0.(2.3)First, assume that C ≃ P1. We 
an write f ∗(N ) ≃ ⊕b
i=1OP1(ai) with a1, . . . , ab in Z. Sin
e

N is globally generated, f ∗(N ) also is, whi
h implies ai ≥ 0 for any i in {1, . . . , b}. It followsthat H1(P1, f ∗N ⊗OC(−p)) = ⊕b
i=1H

1(P1,OP1(ai − 1)) = 0.Assume now that C = C ′∪C0 where C0 ≃ P1 and p in C0. Denote by p1, . . . , pq the pointsof C0 ∩ C ′. Noti
e that C ′ has exa
tly q 
onne
ted 
omponents interse
ting C0 on exa
tlyone point. Ea
h pi is a smooth point of one of these 
omponents. We have the followingexa
t sequen
e
0 f ∗N ⊗OC′(−∑q

i=1 pi) f ∗N ⊗OC(−p) f ∗N ⊗OC0(−p) 0From the asso
iated long exa
t sequen
e and by the indu
tive assumption on the 
onne
ted
omponents of C ′, we dedu
e the equality (2.3). The exa
t sequen
e :
0 f ∗N ⊗OC(−p) f ∗N f ∗N ⊗Op 0gives H1(C, f ∗N ) = 0.Now, the stalk at a point (C, x1, . . . , xℓ, f : C → X) in X0,ℓ,d of the K-theoreti
 push-forward N0,ℓ,d is H0(C, f ∗N ) − H1(C, f ∗N ). Sin
e N is 
onvex H1(C, f ∗N ) = 0 and

H0(C, f ∗N ) has dimension ∫
d
c1(N ) + b by Riemann-Ro
h. Thus, N0,ℓ,d is lo
ally free ofdimension ∫

d
c1(N ) + b on X0,ℓ,d.Let E0,ℓ,d be the sheaf R0π∗ e

∗
ℓ+1 E as in Proposition 2.2. For j in {1, . . . , ℓ}, we de�ne thesurje
tive morphism E0,ℓ,d → e∗j E by evaluating the se
tion to the j-th marked point. Wede�ne E0,ℓ,d(j) to be the kernel of this map that is we have the following exa
t sequen
e

0 E0,ℓ,d(j) E0,ℓ,d e∗j E 0(2.4)By Proposition 2.2, for any j ∈ {1, . . . , ℓ} the bundle E0,ℓ,d(j) has rank ∫d c1(E).For i ∈ {1, . . . , ℓ}, let Ni be the line bundle on X0,ℓ,d whose �ber at a point (C, x1, . . . , xℓ,
f : C → X) is the 
otangent spa
e T ∗Cxi

. Put ψi := c1(Ni) in H2(X0,ℓ,d).De�nition 2.5. � Let ℓ be in N, γ1, . . . , γℓ be 
lasses in H2∗(X), d be in H2(X,Z) and
(m1, . . . , mℓ) be in Nℓ. For j in {1, . . . , ℓ}, the (j-th) twisted Gromov-Witten invariant withdes
endants of these data is de�ned and denoted by

〈
τm1(γ1), . . . ,

˜τmj
(γj), . . . , τmℓ

(γℓ)
〉
0,ℓ,d

:=

∫

[X0,ℓ,d]vir
ctop(E0,ℓ,d(j))

ℓ∏

i=1

ψmi
i e∗i γiwhere ei : X0,ℓ,d → X (1 ≤ i ≤ ℓ) is the evaluation morphism to the ith marked point and

[X0,ℓ,d]
vir is the virtual 
lass on X0,ℓ,d.De�nition 2.6. � Let τ2 be a 
lass of H2(X) and γ1, γ2 be in H2∗(X). The twisted smallquantum produ
t (with respe
t to E) of γ1 and γ2 is de�ned by

γ1 •twτ2 γ2 :=
s−1∑

a=0

∑

d∈H2(X,Z)

e
∫
d τ2
〈
γ1, γ2, T̃a

〉
0,3,d

T awhenever this sum is 
onvergent. 6



Remark 2.7. � 1. Using the notation of 
orrelators (see (A.19)) one 
an de�ne, for any
τ in H2∗(X), a big twisted quantum produ
t :

γ1 •twτ γ2 :=

s−1∑

a=0

〈〈
γ1, γ2, T̃a

〉〉
0
T a.As usual, we have : •twτ2 := •twτ |τ=τ2 . We will not use of big twisted quantum produ
ts.2. One 
an also de�ne the small twisted quantum produ
t without 
hoosing a basis by :

γ1 •twτ2 γ2 :=
∑

d∈H2(X,Z)

e
∫
d
τ2e3∗

(
e∗1 γ1 ∪ e∗2 γ2 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
)(2.8)2.1.b. Parameters. � The quantum produ
t written in De�nition 2.6 depends on the pa-rameter τ2 in H2(X). The Pi
ard group Pic(X) a
ts on H2(X) in the following way : for Lin Pic(X), L.τ2 = τ2 + 2

√
−1πc1(L). The number e∫d τ2 being invariant by this a
tion, thequantum produ
t is naturally de�ned over H2(X)/Pic(X) = H2(X)/2

√
−1πH2(X,Z).Let us extend the lo
us of the parameter. Denote by NE(X)Z ⊂ H2(X,Z) the Mori 
oneof X , generated as a semi-group by numeri
al 
lasses of irredu
ible 
urves in X .Notation 2.9. � The semigroup algebras of NE(X)Z and H2(X,Z) will be respe
tivelydenoted by Λ and Π :

Λ = C[NE(X)Z] = C[Qd, d ∈ NE(X)Z], Π = C[H2(X,Z)] = C[Qd, d ∈ H2(X,Z)]where Qd are indeterminates satisfying relations : Qd.Qd′ = Qd+d′ .The s
heme Spec Λ is an irredu
ible, possibly singular, a�ne variety of dimension r. De-note by V the set of 
omplex points of Spec Λ. Points of V are 
hara
ters(1) of NE(X)Z.If q is su
h a 
hara
ter, denote by qd its evaluation on d in NE(X)Z. Sin
e X is proje
-tive, the Mori 
one is stri
tly 
onvex and there exists a unique 
hara
ter sending any d in
H2(X,Z) \ {0} to 0. We will denote this 
hara
ter by 0 and 
all it, as usual, the large radiuslimit of X .The s
heme SpecΠ is a torus of dimension r = rkH2(X,Z). The set of 
omplex points of
SpecΠ will be denoted by T ; a point of T is a 
hara
ter of H2(X,Z) and T is a smoothsubset of V. We will identify T and H2(X)/2

√
−1πH2(X,Z) via the natural surje
tivemorphism of 
omplex variety :

Ψ : H2(X,C) −→ T(2.10)
τ 7−→ qτ :=

[
d ∈ H2(X,Z) 7→ qdτ = e

∫
d
τ
]The kernel of Ψ is 2√−1πH2(X,Z). Thus, the large radius limit 0 in V ⊃ T is a limit in

H2(X)/2
√
−1πH2(X,Z).The small quantum produ
t 
an now be de�ned with parameter q in V :De�nition 2.11. � Let q be in V and γ1, γ2 be in H2∗(X). The twisted small quantumprodu
t is de�ned by

γ1 •twq γ2 :=
s−1∑

a=0

∑

d∈H2(X,Z)

qd
〈
γ1, γ2, T̃a

〉
0,3,d

T a

(1) By a 
hara
ter of a semi-group R of H2(X,Z) we mean an appli
ation q : R −→ C su
h that q(0) = 1and q(d+ d′) = q(d).q(d′) for any d, d′ in R. If R is a group the image of q is in C∗. If q is su
h a 
hara
ter,we will write qd := q(d). A 
hara
ter q of a semi-group R gives a 
omplex point SpecC −→ SpecC[R] whi
hwill also be denoted by q ; this 
orresponden
e is a bije
tion. Noti
e that, if d is in R, Qd is a fun
tion on
SpecC C[R] and we have : Qd(q) = qd. 7



whenever this sum is 
onvergent.De�nition 2.11 and De�nition 2.6 are 
ompatible : For any τ2 in H2(X), Ψ(τ2) is in T and
γ1 •twτ2 γ2 = γ1 •twΨ(τ2)

γ2.Assumption 2.12. � We will assume that there exists an open subset V of V 
ontainingthe large radius limit 0 su
h that :
∀q ∈ V , ∀γ1, γ2 ∈ H2∗(X), γ1 •twq γ2 is 
onvergent.This assumption is easily shown to be true when the line bundle (ωX ⊗L1 ⊗ · · · ⊗ Lk)

∨ isample, that is when the 
omplete interse
tion variety Z de�ned by E is Fano. In other 
ases,su
h as Calabi-Yau subvarieties of tori
 varieties 
onsidered below, one may use [Iri07℄ to
he
k this assumption.Notation 2.13. � We denote by V the 
omplex nonsingular variety V := V ∩T.Thus, V is a smooth lo
us in V where the quantum produ
t is 
onvergent. We have :large radius limit = 0 ∈ V (
onvergent produ
t) ⊂ V = SpecC Λ
∪ ∪

0 /∈ V (
onvergent produ
t) ⊂ T = SpecC Π
∼−→ (C∗)rAs a 
onvention, we will denote neighborhood of 0 in V by an overlined 
apital letter, andits interse
tion with T by the same 
apital letter without overlining (V is a 
ompa
ti�
ationof T in the neighbourhood of the large radius limit).Let us re
all some properties of the twisted quantum produ
t :Proposition 2.14. � For any q in V the twisted quantum produ
t •twq is asso
iative, 
om-mutative, with unity T0 := 1.Proof. � This is a 
lassi
al proof, as soon as the twisted Gromov-Witten axioms are known.The twisted axioms are shown in Appendix A. Su
h proves are given by Pandharipande in[Pan98℄, Proposition 3, for a smooth hypersurfa
e of Pn and by Iritani in Remark 2.2. of[Iri11℄, in the general 
ase.2.1.
. The trivial bundle with an integrable 
onnexion. � Using basis T1, . . . , Tr and B1, . . . ,

Br de�ned in 2.1, we have : Π = C[H2(X,Z)]
∼−→ C[q±1 , . . . , q

±
r ] where qa := QBa (
f. footnote1). Thus if d =

∑r
a=1 daBa we get Qd =

∏r
a=1 q

da
a in Π. Viewing the qa's as 
oordinates of

T, we get : qd =∏r
a=1 q

da
a for any q ∈ T.For a in {1, . . . , r}, we put :
δa := qa∂qa δz := z∂z .Re
all that t0 is the 
oordinate on H0(X).Notation 2.15. � We denote by F the trivial holomorphi
 ve
tor bundle of �ber H2∗(X)over H0(X)× V × C :

F :=
[
H2∗(X)×

(
H0(X)× V × C

)
→
(
H0(X)× V × C

) ]together with the following meromorphi
 
onne
tion :
∇∂t0

:= ∂t0 +
1

z
1•twq , ∇δa := δa +

1

z
Ta•twq , ∇δz := δz −

1

z
E •twq +µwhere µ is the diagonal morphism de�ned by µ(Ta) := 1

2
(deg(Ta)− (dimCX − rk E))Ta and

E(t0, q, z) := t01 + c1(TX ⊗ E∨). This global se
tion E of F 
orresponds to the Euler �eld.Noti
e that the twisted produ
t •twq does not depend on t0 be
ause of the twisted fundamental
lass Axiom (
f. Proposition A.4). 8



In the untwisted 
ase, it is known that ∇ is a �at 
onne
tion and its �at se
tions 
an bedes
ribed expli
itly. Let us give the equivalent property in the twisted 
ase. We de�ne themulti-valuated 
ohomologi
al meromorphi
 fun
tion Ltw(t0, q, z) :

H2∗(X) −→ H2∗(X)

γ 7−→ Ltw(t0, q, z)γ = e−t0/z


q

−T/zγ −
s−1∑

a=0

∑

H2(X,Z)

d6=0

qd
〈
q−T/zγ

z + ψ
, T̃a

〉

0,2,d

T a


(2.16)where

ψ := ψ1 = c1(N1) is the 
lass of H2(X0,3,d) given before De�nition 2.5,
1

z + ψ
:=
∑

k∈N
(−1)kψkz−k−1,

q−T/z = q−T1/z. · · · .q−Tr/z := e−z−1
∑r

a=1 Ta log(qa) and
log(qa) is the multi-valuated fun
tion, or any determination of the logarithmon a simply 
onne
ted open subset of V .For an endomorphism u, we denote zu := exp(u log z). The following Proposition is the�twisted� version of Proposition 2.4 in [Iri09℄.Proposition 2.17. � 1. The 
onne
tion ∇ is �at.2. For a in {1, . . . , r} and γ ∈ H2∗(X) we have

∇∂t0
Ltw(t0, q, z)γ = 0, ∇δaL

tw(t0, q, z)γ = 0

∇δzL
tw(t0, q, z)γ = Ltw(t0, q, z)

(
µ− c1(TX ⊗ E∨)

z

)
γ3. The multi-valued 
ohomologi
al fun
tion Ltw(t0, q, z)z

−µzc1(TX⊗E∨) is a fundamental so-lution of ∇ above H0(X)× V × C.Noti
e that, as a fundamental solution, Ltw is 
onvergent above H0(X)× V × C.This kind of result is 
lassi
al in the untwisted 
ase ([CK99℄, [Iri09℄). By la
k referen
eson twisted Gromov-Witten invariants, we write down a proof in full details in Appendix B.2.1.d. The degenerated pairing.� Denote by (·, ·) the Poin
aré duality on H2∗(X). As〈
γ1, γ2, T̃a

〉
0,3,d

is not symmetri
 in the three arguments we do not have the Frobenius rela-tion, that is :
(γ1 •twq γ2, γ3) 6= (γ1, γ2 •twq γ3).Nevertheless we 
an de�ne a symmetri
 bilinear form :De�nition 2.18. � The twisted pairing on H2∗(X) is de�ned by :

∀γ1, γ2 ∈ H2∗(X), (γ1, γ2)
tw :=

∫

X

γ1 ∪ γ2 ∪ ctop(E).Proposition 2.19. � 1. The bilinear form (·, ·)tw is degenerated with kernel kermctopwhere mctop is de�ne as :
mctop : H

2∗(X) −→ H2∗(X)

α 7−→ ctop(E) ∪ α9



2. For γ1, γ2, γ3 in H∗(X), we have the Frobenius relation :
(γ1 •twq γ2, γ3)

tw = (γ1, γ2 •twq γ3)
tw.Proof. � The �rst 
laim is obvious.By De�nition 2.18 and Remark 2.8, it is enough to prove the following equality for any

d ∈ H2(X,Z) :
∫

X

e3∗
(
e∗1 γ1 ∪ e∗2 γ2 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
)
∪ γ3 ∪ ctop(E)

=

∫

X

e3∗
(
e∗1 γ2 ∪ e∗2 γ3 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
)
∪ γ1 ∪ ctop(E).The exa
t sequen
e :

0 E0,3,d(3) E0,3,d e∗3 E 0gives ctop(E0,3,d(3)).ctop(e∗3 E) = ctop(E0,3,d). By proje
tion formula we get :
∫

X

e3∗
(
e∗1 γ1 ∪ e∗2 γ2 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
)
∪ γ3 ∪ ctop(E)

=

∫

[X0,3,d]vir
e∗1 γ1 ∪ e∗2 γ2 ∪ e∗3 γ3 ∪ ctop(E0,3,d)As the last number is invariant by permuting the 
lass γi, we dedu
e the proposition.Let O := OH0(X)×V×C be the sheaf of holomorphi
 fun
tions on H0(X) × V × C, and Fbe the sheaf of holomorphi
 se
tions of F . Let Γ(O) be the ring of global se
tions of O, and

Γ(F) be the Γ(O)-modules of global se
tion of F ; Γ(O) is endowed with the involution :
κ : Γ(O) −→ Γ(O)

f(t0, q, z) 7−→ fκ := f(t0, q,−z)Denote by Γ(F)κ the Γ(O)-module equals, as a set, to Γ(F) and endowed with the followingmultipli
ation : ∀f ∈ Γ(O), s ∈ Γ(F), f.s := fκ.s. We de�ne a a sesquilinear pairing
S : Γ(F)κ ⊗ Γ(F) −→ Γ(O)by �xing its value on 
onstant se
tions of F :

∀γ1, γ2 ∈ H2∗(X), S(γ1, γ2) = (γ1, γ2)
tw.As a 
onsequen
e, we get :

∀s1, s2 ∈ Γ(F), ∀(t0, q, z) ∈ H0(X)× V × C,

S(s1, s2)(t0, q, z) = (s1(t0, q,−z), s2(t0, q, z))tw .Proposition 2.20. � 1. The pairing S is ∇-�at.2. For any s1, s2 in Γ(F),
S(Ltw.s1, L

tw.s2) = S(s1, s2).3. For any γ1, γ2 in H2∗(X) we have
S(Ltw(t0, q, z)z

−µzc1(TX⊗E∨)γ1, L
tw(t0, q, z)z

−µzc1(TX⊗E∨)γ2)

=S(e
√
−1πc1(TX⊗E∨)γ1, e

√
−1πµγ2).10



Proof. � 1. By the Frobenius property of Proposition 2.19.(2), for any a ∈ {1, . . . , r} andfor any s1, s2 ∈ Γ(F), we have :
δaS(s1, s2) = S(∇δas1, s2) + S(s1,∇δas2)

∂t0S(s1, s2) = S(∇∂t0
s1, s2) + S(s1,∇∂t0

s2).By the de�nition of µ and Proposition 2.19.(2), for any s1, s2 ∈ Γ(F) we have
δzS(s1, s2) = S(∇δzs1, s2) + S(s1,∇δzs2).Hen
e, S is ∇-�at.2. By �atness of S and Proposition 2.17.(2), we dedu
e that
∀γ1, γ2 ∈ H2∗(X), δaS(L

twγ1, L
twγ2) = 0.So the expression (Ltw(t0, q,−z)γ1, Ltw(t0, q, z)γ2)

tw does not depend on q. By theasymptoti
 of Ltw at the large radius limit, we get
(Ltw(t0, q,−z)γ1, Ltw(t0, q, z)γ2)

tw ∼q=0 (q
−T/zγ1, q

T/zγ2)
tw = (γ1, γ2)

tw.The relation S(Ltw.s1, L
tw.s2) = S(s1, s2) is also true for any s1, s2 ∈ Γ(F) by sesquilin-earity.3. By the previous formula and the �atness, we dedu
e that the left hand side does notdepends on z. So we 
an put z = 1. We dedu
e that the left hand side is equal to
S(e−

√
−1πµe

√
−1πc1(TX⊗E∨)γ1, γ2).As S(−µ(γ1), γ2) = S(γ1, µ(γ2)) for any γ1, γ2 in H2∗(X), we dedu
e the formula.2.1.e. Integral stru
ture.� In the same way than Iritani [Iri09, De�nition 2.9℄ (see also[Iri11, footnote 8 p.20℄), we de�ne an integral stru
ture on the ve
tor bundle F with 
on-ne
tion ∇, 
ompatible to the pairing S.Denote by γ the Euler 
onstant. For a ve
tor bundle N on X of rank b, we 
onsider theinvertible 
ohomology 
lass

Γ̂(N ) :=

b∏

i=1

Γ(1 + νi) = exp

(
−γc1(N ) +

∑

b≥2

(−1)b(b− 1)!ζ(b) Chb(N )

)where ν1, . . . , νb are the Chern roots of N and Chb(N ) is the 
lass of degree 2b of the Chern
hara
ter Ch(N ). Denote by K(X) the Grothendie
k group of ve
tor bundles on X . Re
allthat the morphism Ch : K(X) → H2∗(X,Z) be
ome an isomorphism after tensored by C(see for instan
e Theorem 3.25 p.283 in [Kar78℄).De�nition 2.21. � For any v in K(X), we put
Ztw(v) := (2π)−(n−k)/2Ltw(t0, q, z)z

−µzc1(TX⊗E∨)Γ̂(TX)Γ̂(E)−1(2
√
−1π)deg /2Ch(v).We 
all Ztw(K(X)) the Γ̂-integral stru
ture on QDM(X, E) and we denote it by FZ.Remark 2.22. � Noti
e that Ztw(v) is a multi-valued �at se
tion of the bundle (F,∇) andthat Ztw(K(X))⊗Z C is the set of �at se
tions of F . We 
an understand the formula of Ztwabove as �the twist� by Γ̂(TX)Γ̂(E)−1 of the natural integral stru
ture given by K(X).

K(X)
(2
√
−1π)deg /2 Ch

(F, d)
Γ̂(TX)Γ̂(E)−1

(F, d)
(2π)−n/2Ltw(t0,q,z)z−µzc1(TX⊗E∨)

(F,∇)Proposition 2.23. � For any v1, v2 in K(X), we have :
S(Ztw(v1),Ztw(v2)) =

∫

X

ctop(E) Td(TX) Td(E)−1Ch(v1 ⊗ v∨

2 )11



Proof. � Using Proposition 2.20.(3) and e√−1πµ = (−1)deg /2(
√
−1)k−n, we dedu
e that

S(Ztw(v1),Ztw(v2))

=(2
√
−1π)k−n

∫

X

ctop(E)e
√
−1πc1(TX⊗E∨)Γ̂(TX)Γ̂(E)−1(2

√
−1π)deg /2Ch(v1)

∪ (−1)deg /2Γ̂(TX)Γ̂(E)−1(2
√
−1π)deg /2Ch(v2)We have the following fa
ts : for any α, β in H2∗(X), for any v in K(X) and for any

δ ∈ H2(X),
β ∪ (2

√
−1π)deg /2α = (2

√
−1π)deg /2(β/(2

√
−1π)deg β/2 ∪ α)

∫

X

(2
√
−1π)deg /2α = (2

√
−1π)n

∫

X

α

(−1)deg /2Γ(1 + δ) = Γ(1− δ)(−1)deg /2

(−1)deg /2Ch(v) = Ch(v∨).Denote by ν1, . . . , νn the Chern root of TX and ǫ1, . . . , ǫk the Chern roots of E . From theabove properties, we dedu
e that
S(Ztw(v1),Ztw(v2)) =

∫

X

ctop(E)ec1(TX⊗E∨)/2

n∏

i=1

Γ

(
1 +

νi

2
√
−1π

)
Γ

(
1− νi

2
√
−1π

)

∪
k∏

j=1

Γ

(
1 +

ǫj

2
√
−1π

)−1

Γ

(
1− ǫj

2
√
−1π

)−1

Ch(v1 ⊗ v∨

2 )Using the formal identity Γ(z)Γ(1− z) = π
sin(πz)

, we dedu
e that
Γ(1− z)Γ(1 + z) =

ze−z/2

1− e−z
.This implies the formula.Re
all from De�nition 2.21 that we denote FZ the integral stru
ture Ztw(K(X)).De�nition 2.24. � The twisted quantum D-module denoted by QDM(X, E) is the quadru-ple (F,∇, S, FZ).2.2. Redu
ed quantum D-module. � In this subse
tion we de�ne the redu
ed quantum

D-module, denoted by QDM(X, E), whi
h is a quadruple (F ,∇, S, F Z

). The pairing S isnon-degenerated.Re
all that mctop is the endomorphism
mctop : H

2∗(X) −→ H2∗(X)

α 7−→ ctop(E) ∪ α.Put H2∗(X) := H2∗(X)/ kermctop and 
all it the redu
ed 
ohomology ring of (X, E). Sin
e
mctop is a graded morphism, the ve
tor spa
e H2∗(X) is naturally graded. For γ ∈ H2∗(X),we denote by γ its 
lass in H2∗(X).Denote by F the trivial bundle H2∗(X)×H0(X)× V × C → H0(X)× V × C. On F , wewill de�ne a 
onne
tion ∇ and a non-degenerated paring S. They will be indu
ed by thoseon F .For any γ1, γ2 ∈ H2∗(X), de�ne the redu
ed pairing (·, ·)red whi
h is a bilinear form on
H2∗(X) by

(γ1, γ2)
red := (γ1, γ2)

tw.(2.25) 12



By Proposition 2.19, kermctop is the kernel of the twisted pairing. It follows that the redu
edpairing is a well de�ned and non degenerated bilinear form.We de�ne the pairing S as we did for S but 
hanging (·, ·)tw by (·, ·)red (
f. before Propo-sition 2.20). From (2.25), for any s1, s2 ∈ Γ(H0(X)× V × C,F), we dedu
e that
S(s1, s2) = S(s1, s2)(2.26)Let (φ0, . . . , φs′−1) be a homogeneous basis of H2∗(X) and denote (φ0, . . . , φs′−1) its dualbasis with respe
t to (·, ·)red.De�nition 2.27. � Let γ1, . . . , γn be 
lasses in H2∗(X).1. Let d be in H2(X,Z). The redu
ed Gromov-Witten invariant is

〈γ1, . . . , γn〉red0,ℓ,d := 〈γ1, . . . , ˜ctop(E)γn〉0,ℓ,d2. The redu
ed quantum produ
t is
γ1 •redq γ2 :=

s−1∑

a=0

∑

d∈H2(X,Z)

qd 〈γ1, γ2, φa〉red0,3,d φ
aRemark 2.28. � By the twisted Sn-symmetri
 axiom (
f. Proposition A.2), the redu
edGromov-Witten invariants are well de�ned on the 
lass in H2∗(X). Noti
e that the redu
edGromov-Witten invariant are Sn symmetri
. The 
onvergen
e domain of •redq 
ontains V .We will restri
t ourselves to V .Proposition 2.29. � For any γ1, γ2 in H2∗(X), we have

γ1 •twq γ2 = γ1 •redq γ2Proof. � Using Formula (2.8) for the twisted quantum produ
t we get :
γ1 •twq γ2 =

∑

d∈H2(X,Z)

qde3∗αwhere we put α :=
(
e∗1 γ1 ∪ e∗2 γ2 ∪ ctop(E0,3,d(3)) ∩ [X0,3,d]

vir
). Denote by φ̂a ∈ H2∗(X) a liftof φa. By De�nition (2.25), we have

e3∗α =

s′−1∑

a=0

(e3∗α, φa)
red φa =

s′−1∑

a=0

(
e3∗α, φ̂a

)tw
φaUsing proje
tion formula, the proposition follows from

〈γ1, γ2, φa〉red0,3,d = 〈γ1, γ2, ˜
ctop(E)φ̂a〉0,3,d =

(
e3∗α, φ̂a

)twDe�ne the following 
onnexion on the bundle F :
∇∂t0

:= ∂t0 +
1

z
1•redq , ∀a ∈ {1, . . . , r}, ∇δa := δa +

1

z
T a•redq

∇δz := δz −
1

z
E •redq +µwhere µ is the diagonal morphism de�ned by µ(φa) :=

1
2
(deg(φa)− (dimCX − rk E))φa and

E := t01+ c1(TX ⊗ E∨).Corollary 2.30. � For any γ ∈ H2∗(X), we have :
∇γ = ∇γ13



Proof. � This follows from Proposition 2.29 and from µ(Ta) = µ(Ta).Lemma 2.31. � For any (t0, q, z) in H0(X)× V × C, we have :
Ltw(t0, q, z)(kermctop) = kermctop.Proof. � Let γ be in kermctop and α ∈ H2∗(X). Sin
e Ltw(t0, q, z) is an automorphism of

H2∗(X) and kermctop is the kernel of the twisted pairing (·, ·)tw we �nd, using Proposition2.20 :
(
α, Ltw(t0, q, z)γ

)tw
=
(
Ltw(t0, q,−z).(Ltw(t0, q,−z))−1.α, Ltw(t0, q, z)γ

)tw

=
(
Ltw(t0, q,−z)−1α, γ

)tw
= 0.Then Ltw(t0, q, z)γ belongs to kermctop.This lemma permit us to de�ne a redu
ed L fun
tion : for any (t0, q, z) ∈ V × C put

L(t0, q, z) : H2∗(X) −→ H2∗(X)(2.32)
γ 7−→ L(t0, q, z)γ = Ltw(t0, q, z)γIn the same spirit of �2.1.e, we also get an indu
ed integral stru
ture on QDM(X, E). Denoteby

K(X) := K(X) / {v | Ch(v) ∈ kermctop}.The Chern 
hara
ter Ch : K(X) → H2∗(X) indu
es a redu
ed Chern 
hara
ter Ch : K(X) →
H2∗(X) whi
h be
ome an isomorphism after tensored by C. For any v ∈ K(X), we put

Z(v) := (2π)−(n−k)/2L(t0, q, z)z
−µzc1(TX⊗E∨)Γ̂(TX)Γ̂(E)−1(2

√
−1π)deg /2Ch(v).In the same spirit of De�nition 2.21, the redu
ed Γ̂-integral stru
ture on QDM(X, E) is givenby Z(K(X)) and we denote it by F Z.Corollary 2.33. � The triple (F,∇, S) satis�es the following properties.1. The 
onne
tion ∇ is �at and S is non-degenerated and ∇-�at.2. A fundamental solution of ∇ is given by L(t0, q, z)z−µzc1(TX⊗E∨).3. For any s1, s2 ∈ Γ(F), we have

S(L(q, z)s1, L(q, z)s2) = S(s1, s2)4. For any v in K(X), we have Z(v) = Ztw(v).5. For any v1, v2 in K(X), we have
S(Z(v1),Z(v2)) =

∫

X

ctop(E) Td(TX) Td(E)−1Ch(v1 ⊗ v2
∨).Proof. � (1) Proposition 2.17 and Corollary 2.30 implies the �atness for ∇. The �atness of

S follows from Proposition 2.20 and Equality (2.26).(2) This statement follows easily from Corollary 2.30 and Proposition 2.17.(3) The equality follows from Proposition 2.20 and Equality (2.26).(4) This follows from the statement (2).(5) The equality follows from the previous equality, Equation (2.26) and Proposition 2.23.De�nition 2.34. � The redu
ed quantum D-module asso
iated to the pair (X, E) is thequadruple (F,∇, S, FZ) denoted by QDM(X, E).Remark 2.35. � 1. The set Z(K(X))⊗Z C is the set of �at se
tions of QDM(X, E),14



2. The redu
ed Γ̂-integral stru
ture on QDM(X, E) de�ned above is the one indu
ed by the
Γ̂-integral stru
ture on QDM(X, E) de�ned in De�nition 2.21 i.e., we have Z(K(X)) =

Ztw(K(X)).2.3. Geometri
 interpretation of the Redu
ed Quantum D-module for 
ompleteinterse
tion subvarieties. �Assumption 2.36. � In this se
tion, we assume that dimCX ≥ k + 3 and that the linebundles L1, . . . ,Lk are ample. This makes it possible to use Hyperplane and Hard Lefs
hetz'sTheorems.Notation 2.37. � Fix a generi
 se
tion of E , and denote by Z the proje
tive subvarietyde�ned by this se
tion. By Bertini's theorem, Z is a smooth 
omplete interse
tion subvarietyof X . Denote by ι : Z →֒ X the 
orresponding 
losed embedding.By Lefs
hetz's theorem we have
H2∗(Z) = Im ι∗ ⊕ ker ι∗(2.38)and ker ι∗ ⊂ HdimC Z(Z). We put H2∗
amb(Z) := Im ι∗, this is the part of the 
ohomology of Z
oming from the ambient spa
e X . We have the following 
ommutative diagram

H2∗(X)
mctop

p

ι∗

H2∗(X)
p

H2∗(X)

f

H2∗
amb(Z)

ι∗

(2.39)
where p is the natural proje
tion and f : γ 7→ ι∗γ. By the de
omposition (2.38), themorphism f is an isomorphism. In parti
ular we have an isomorphism H2(X) ≃ H2(Z) and
H0(X) ≃ H0(Z).Remark 2.40. � It should be possible to improve Assumption 2.36, at least for tori
 vari-eties. For example, if X is a tori
 proje
tive variety of dimension at least 3, k = 1 and L1 isa nef (not ne
essary ample) line bundle on X , then Theorem 5.1 of [Mav00℄ ensures that Zis a smooth 
onne
ted hypersurfa
e satisfying : H2∗(Z) = Im ι∗ ⊕ ker ι∗.Proposition 2.41. � Using Notation 2.37, and under Assumption 2.36, for any γ1, γ2 ∈
H2∗(X), τ2 ∈ H2(X),

ι∗(γ1 •twτ2 γ2) = ι∗(γ1) •Zι∗(τ2) ι∗(γ2),where •Z is the quantum produ
t on Z.Proof. � The proof is given in Proposition 4 of [Pan98℄, for a smooth hypersurfa
e of Pn.The general 
ase is treated by Iritani ([Iri11℄, Corollary 2.3.) using fun
toriality of virtual
lasses (
f. [KKP03℄).Re
all that we identify H0(Z) with H0(X). The 
lassi
al quantum D-module asso
iatedto Z, denoted by QDM(Z), is the triple (FZ ,∇Z , SZ) where1. FZ is the trivial bundle H2∗(Z)×H0(X)×VZ ×C → H0(X)×VZ ×C where VZ is thesubset of H2(Z)/Pic(Z) where the quantum produ
t on Z is 
onvergent(2),
(2)We use the same parameter q be
ause of the isomorphism ι∗ : H2(X) ≃ H2(Z)15



2. the 
onne
tion ∇Z is de�ned via the same formula than ∇ with the quantum produ
tof Z and E := c1(TZ) + t01 and
µZ(ψa) =

1

2
(deg(ψa)− dimC Z)ψa.where (ψa) is a basis of H2∗(Z).3. The non-degenerated pairing SZ is de�ned in the same way of S but with the Poin
aréduality of H2∗(Z).Moreover, on QDM(Z) Iritani de�ned the Γ̂-integral stru
ture (see De�nition 2.9 [Iri09℄) via

ZZ(K(Z)) where for any w in K(Z), he puts
ZZ(w) = (2π)−(n−k)/2LZ(t0, q, z)z

−µZ

zc1(TZ )Γ̂(TZ)(2
√
−1π)deg /2Ch(w).In Proposition 2.10 of [Iri09℄, he proves that ZZ(w) ⊗Z C is the set of �at se
tions of

QDM(Z).We 
onsider the trivial sub-bundle of FZ whose �bers are H2∗
amb(Z). This sub-bundle isstable by ∇Z and the pairing is still non-degenerated on it. We denote QDMamb(Z) thissub-quantum D-module. By Proposition 2.41, the base spa
e of this bundle FZ 
ould berestri
ted to H0(X) × V × C. We put Kamb(Z) := ι∗K(X). We have that Kamb(Z) ⊗Z Cis isomorphi
 to H2∗

amb(Z) via the Chern 
hara
ter. So ZZ(Kamb(Z)) ⊗Z C is the set of �atse
tions of QDMamb(Z) that is ZZ(Kamb(Z)) de�ne a Γ̂-integral stru
ture on QDMamb(Z).The integral stru
ture put on QDM(X, E) in �2.1.e is 
ompatible with the one de�ned byIritani, that is we have the following theorem.Theorem 2.42. � Using Notation 2.37, and under Assumption 2.36. The redu
ed quantum
D-module QDM(X, E) is isomorphi
 to the sub-quantum D-module QDMamb(Z) of QDM(Z).Proof. � First, we get an isomorphism of bundles. We still denote it f . From Proposition2.29 and Proposition 2.41, we have :

f(γ1 •redq γ2) = f(γ1 •twq γ2) = ι∗(γ1 •twq γ2) = (ι∗γ1) •Zq (ι∗γ2) = f(γ1) •Zq f(γ2).The adjun
tion formula gives : c1(TZ) = ι∗c1(TX ⊗ E∨). Sin
e the dimension of Z is thedimension of X minus the rank of E , we dedu
e that µZ(f(γ)) = f(µ(γ)). It follows thatthe isomorphism of bundle f satis�es :
∇Zf(γ) = f(∇γ) and S(γ1, γ2) = SZ(f(γ1), f(γ2)).(2.43)Let show that for any γ be in H2∗(X)

f
(
L(t0q, z)z

−µzc1(TX⊗E∨)γ
)
= LZ(t0, q, z)z

−µZ

zc1(TZ)f(γ)(2.44)By equation (2.43), both side are fundamental solutions of QDMamb(Z), so they di�er bythe 
onjugation of a 
onstant matrix. At the large radius limit, they are both equivalent to
f(et0/zz−µzc1(TX⊗E∨)γ) = et0/zz−µZ

zc1(TZ )f(γ).This implies that the 
onstant matrix is the identity that is we have Equality (2.44).Let show the 
ompatibility between the integral stru
tures that is f(Z(v)) = ZZ(ι∗v) for
v in K(X). We use Equality (2.44) with γ := Γ̂(TX)Γ̂(E)−1(−1)deg /2 Ch(v). As we have

f(γ) = ι∗
(
Γ̂(TX)Γ̂(E)−1

)
(−1)deg /2ι∗Ch(v).As we are in 
omplete interse
tion, the normal bundle NZ|X = ι∗E . So we have the followingexa
t sequen
e

0 TZ ι∗TX ι∗E 0(2.45) 16



This implies that the Chern roots if ι∗TX are the Chern roots of TZ and the Chern roots of
ι∗E . We dedu
e that Γ̂(ι∗TX) = Γ̂(ι∗E)Γ̂(TZ). As the 
lass Γ̂(v) is 
ompatible with pull-ba
k,we dedu
e that f(Z(v)) = ZZ(ι∗v).Denote by (·, ·)K(Z) the Mukai pairing that is (w1, w2)K(Z) := χ(w∨

2 ⊗ w1). The followingproposition show a relation between the Mukai pairing in K(Z) and the three pairings
S(·, ·), S(·, ·), SZ(·, ·) on respe
tive �at se
tions.Proposition 2.46. � For any v1, v2 in K(X), we have

(ι∗v1, ι
∗v2)K(Z) = SZ(ZZ(ι∗v1),ZZ(ι∗v2))

= S(Z(v1),Z(v2))

= S(Ztw(v1),Ztw(v2)).Proof. � The �rst equality follows from Proposition 2.10 of [Iri09℄. From Proposition 2.23and Corollary 2.33, it is enough to prove that
(ι∗v1, ι

∗v2)K(Z) =

∫

X

ctop(E) Td(TX) Td(E)−1Ch(v1 ⊗ v∨

2 ).(2.47)From the exa
t sequen
e (2.45), we dedu
e that Td(TZ) = ι∗(Td(E)−1Td(TX)). By Riemann-Ro
h and the proje
tion formula, we have
(ι∗v1, ι

∗v2)K(Z) = χ(ι∗v1 ⊗ ι∗v∨

2 )

=

∫

Z

Td(TZ)ι
∗Ch(v1 ⊗ v∨

2 )

=

∫

X

ι∗ι
∗ (Td(E)−1Td(TX) Ch(v1 ⊗ v∨

2 )
)The last equality is exa
tly (2.47).3. Batyrev rings for tori
 varieties with a splitted ve
tor bundleFrom now on, X is a tori
 smooth proje
tive variety endowed with k globally generatedline bundles L1, . . . ,Lk.In [Bat93℄, Batyrev 
onstru
ts a ring based on the 
ombinatorial data of a smooth tori
,proje
tive variety. In the Fano 
ase, it is the quantum 
ohomology ring of this variety. Asshown in [Iri11℄, it is also the restri
tion at z = 0 of the quantum D-module.In this se
tion, we de�ne the Batyrev ring asso
iated to the data (X,L1, . . . ,Lk). It is
onstru
ted as the 
lassi
al Batyrev ring of a quasi-proje
tive tori
 variety, namely the totalspa
e of E∨, denoted by Y . This 
onstru
tion 
ould be generalized to any quasi-proje
tive,smooth tori
 variety de�ned by a 
onvex fan.More pre
isely, we prove the three following results that will be used in the rest of thepaper.1. The total spa
e Y of E∨ is a quasi-proje
tive smooth tori
 variety de�ned by a 
onvexfan ∆. The Batyrev ring B of a Y is a quotient of the ring Λ[xρ] := Λ[xρ, ρ ∈ ∆(1)],where Λ is the Novikov ring previously de�ned, and ∆(1) is the set of rays of the fan ∆.The quotient is made by the sum of two ideals, respe
tively denoted by QSR (QuantumStanley-Reisner ideal) and Lin (Linear ideal). Our �rst result in Theorem 3.22 gives aGroebner basis of QSR in terms of primitive 
olle
tions of the fan (see Notation 3.19).2. Moreover, assuming that the anti
anoni
al divisor of Y is nef then there exists a Zariskineighborhood U of the large radius limit in Λ su
h that SpecB → U is �nite, �at ofdegree dimH2∗(X) (see Theorem 3.26).17



3. To set up our last result we �rst de�ne the residual Batyrev ring, denoted by Bres(see De�nition 3.39) : it is the quotient of Λ[xρ] by the quotient ideal (G : xtop)of G := QSR+Lin by a monomial xtop de�ned in terms of the Li. We show that
SpecBres → U is �nite, �at of degree dimH2∗(X) − dim kermctop (see Proposition3.40).Subse
tions 3.1, 3.2 and 3.3 are preliminary results :� some re
alls of tori
 geometry to 
onstru
t the fan of Y ,� the de�nition of the Batyrev ring,� the de�nition of primitive 
olle
tions and 
lasses.Subse
tion 3.4 is devoted to the proof of Theorem 3.22 on Groebner basis. In the last twosubse
tions, we prove Theorem 3.26 on Batyrev ring and then Proposition 3.40 on residualBatyrev ring.3.1. Notations for tori
 varieties. � This se
tion is mainly based on [Ful93℄ and[Mus℄.Denote by N a n-dimensional latti
e and by M its dual latti
e. Consider a fan Σ of

NR = N ⊗ R and denote by Σ(l) the set of l-dimensional 
ones of σ. The set of rays of Σ is
Σ(1) = {θ1, . . . , θm}, and for any θ ∈ Σ(1) we denote by wθ the generator of θ ∩N .The n-dimensional tori
 variety de�ned by Σ is denoted by X . For any 
one σ ∈ Σ wedenote by U(σ) the a�ne variety :

SpecC[σ∨] := SpecC[χu, u ∈M, ∀x ∈ σ, 〈u, x〉 ≥ 0]where χu are indeterminates. To any ray θ ∈ Σ(1), there is an asso
iated tori
 Weil divisorsdenoted by Dθ.We assume that :1. Σ is non singular i.e., for any ray σ ∈ Σ, the set {wθ, θ ∈ Σ(1), θ ⊂ σ} is part of a basisof the latti
e N . This is equivalent to X being smooth.2. X is proje
tive.Let L1, . . . ,Lk be k globally generated line bundle overX , and E := ⊕k
i=1Li. Let L1, . . . , Lkbe k tori
 divisors su
h that Li = O(Li). We write :

Li =
∑

θ∈Σ(1)

ℓiθDθ, ℓiθ ∈ Z, i = 1, . . . , kFan of the total spa
e of E∨. � Consider the n + k dimensional latti
e N ′ := N ⊕ Zk. Let
(ǫ1, . . . , ǫk) be the 
anoni
al base of Zk. Denote by :

φ : N ′ = N × Zk −→ Nthe natural proje
tion. De�ne a fan ∆ in N ′
R := N ′ ⊗ R in the following way :� The rays of ∆ are indexed by Σ(1) ∪ {L1, . . . , Lk} :

{For θ ∈ Σ(1), put vθ := (wθ, 0) +
∑k

i=1 ℓ
i
θ(0, ǫi),For i = 1, . . . , k, put vLi

:= (0, ǫi).Then,
∆(1) := {ρθ := R+vθ, θ ∈ Σ(1)} ∪ {ρLi

:= R+vLi
, i = 1, . . . , k}.� a strongly 
onvex polyhedral 
one σ is in ∆ if and only if φ(σ) ∈ Σ.By assumption, the line bundles Li are globally generated and the fun
tion ψLi

asso
iatedto ea
h tori
 divisor Li is 
on
ave. This gives :Fa
t 3.1. � As the line bundles L1, . . . ,Lk are globally generated, the support |∆| = ∪σ∈∆σof the fan ∆ in N ′
R is 
onvex (we will say that ∆ is 
onvex).18



It will be 
onvenient to make the distin
tion between rays ρθ 
oming from the base variety
X , and rays ρLi


oming from the splitted ve
tor bundle E .Notation 3.2. � We put :
∆

base

(1)= {ρθ, θ ∈ Σ(1)}, ∆
v.b.

(1)= {ρL1 , . . . , ρLk
}.so that ∆(1) = ∆

base

(1) ⊔∆v.b.

(1) .Let Y be the tori
 variety asso
iated to ∆. As X is smooth, Y is also smooth. We denoteby the same letter
φ : Y −→ Xthe s
heme morphism indu
ed by the proje
tion φ : N ′ −→ N .The next proposition gives a geometri
 interpretation of the tori
 variety Y :Proposition 3.3 ([CLS11℄, Proposition 7.3.1 and Exer
ise 7.3.3)The tori
 variety Y is the total spa
e of the dual ve
tor bundle E∨ ; the tori
 morphism

φ : Y → X is the natural proje
tion of this ve
tor bundle.One 
an easily 
he
k the following result about 
ohomology 
lasses :Proposition 3.4. � The proje
tion φ : Y −→ X indu
es an isomorphism :
φ∗ : H∗(X)

∼−→ H∗(Y ).Moreover, if i is in {1, . . . , k} and Di is the divisor of Y 
orresponding to the ray ρLi
(see
onstru
tion 3.1), we have :

[Li] = φ∗[−Di] in H2(X).Example 3.5. � Consider the fan of P1 given by (N = Z, w1 = 1, w2 = −1), L = O(2) and
L = 2D1. The fan ∆ is given by the rays vθ1 = (1, 2), vθ2 = (−1, 0) an vL = (0, 1) (
f. Figure1).

vρθ1

ρθ1

vρθ2ρθ2

vρL

ρL

•

Fan ∆ in N ′
R,

N ′ = N × Z.
φ

wθ1 θ1wθ2θ2 •
Fan Σ in NR,
N = Z.

!

!

Y , total spa
eof OP1(2)∨

φ

X = P1Figure 1. Fans Σ and ∆ asso
iated to X = P1, L = O(2D1)19



3.2. Batyrev ring of a quasi-proje
tive fan.� We de�ne and study the Batyrev ringof the fan ∆ de�ned in se
tion 3.1.Remark 3.6. � Noti
e that all the results of this part remain true for any fan Γ in a latti
e
L su
h that :1. Γ is non singular i.e., de�nes a smooth variety.2. The support of Γ is 
onvex of maximal dimension dimL.3. Γ de�nes a quasi-proje
tive variety.Denote by NE(Y )Z ⊂ H2(Y,Z) the (integral) Mori 
one of Y :NE(Y )Z =

{ ∑�nite sumnC [C], nC ∈ N, [C] numeri
 
lass of irredu
ible 
urve}.The (integral) nef 
one in H2(Y,Z) is the dual 
one to NE(Y )Z. It is generated by globallygenerated divisors.Following [CvR08℄, to ea
h tori
 Weil divisor L =
∑

θ∈∆(1) ℓθDθ is asso
iated a pie
ewiselinear fun
tions ψL from the support |∆| of ∆ to R whi
h is linear on any 
one of ∆, integralon N ′, and satis�es :
∀θ ∈ ∆(1), ψL(wθ) = −ℓθ.Denote by PL(∆) the set of pie
ewise linear fun
tions from |∆| to R whi
h are linear onany 
one of ∆ and integral on N ′. PL(∆) is isomorphi
 to the set of tori
 divisors of Y ,whi
h is also isomorphi
 to the set⊕ρ∈∆(1) ZDρ (re
all that Y is smooth). There is an exa
tsequen
e :(3.7) 0 −→M ′ −→ PL(∆) = Z∆(1) −→ H2(Y,Z) −→ 0.Let CPL(∆) ⊂ PL(∆) be the subset of 
on
ave fun
tions, then the image of CPL(∆) by themap PL(∆) −→ H2(Y,Q) is the Nef 
one of Y .Also re
all that the ample 
one of Y is the interior of the nef 
one. It is the image by

PL(∆) ⊗ R −→ H2(Y,R) of the set of stri
tly 
on
ave pie
ewise linear fun
tions of |∆|(
f. [Mus℄, Chap. 6). Sin
e Y is a quasi proje
tive variety, the ample 
one is non emptyand its dimension is equal to r = dimH2(Y,R).We de�ne the 
oe�
ient ring of Y by :
Λ := C[NE(Y )Z] = C[Qd, d ∈ NE(Y )Z].Remark 3.8. � In this arti
le, Y is a �ber bundle of base X . As a 
onsequen
e, the
ohomology groups, nef 
ones, Mori 
ones of X and Y are isomorphi
, and Λ = C[NE(Y )Z] =

C[NE(X)Z] (see Proposition 3.4).Let d be a 
lass of H2(Y,Q). We put
dρ := Dρ.d =

∫

d

Dρ.For any ray ρ of ∆. Dualizing the exa
t sequen
e 3.7 gives :(3.9) 0 −→ H2(Y,Q) −→ Q∆(1) −→ NQ −→ 0,Where the image of d ∈ H2(Y,Q) by the left arrow is (dρ)ρ∈∆(1) ∈ Q∆(1).For any real number a, we also put a+ = max(a, 0), a− = max(−a, 0) so that : a = a+−a−.Finally put d+ = (d+ρ )ρ∈∆(1) and d− = (d−ρ )ρ∈∆(1). Identifying d ∈ H2(Y,Z) and its image in
Z∆(1) (see the exa
t sequen
e 3.9), we have :

d = d+ − d−.20



Consider a set of indeterminate xρ, ρ ∈ ∆(1), 
orresponding to the set of rays of ∆, andthe single indeterminate z. We put :
Λ[xρ] := Λ[xρ, ρ ∈ ∆(1)].For any d ∈ H2(Y,Z) denote by Rd the polynomial :(3.10) Rd := xd

+ −Qdxd
−

=
∏

ρ∈∆(1)

xd
+
ρ

ρ −Qd
∏

ρ∈∆(1)

xd
−
ρ

ρ .The quantum Stanley-Reisner ideal of Λ[xρ] is the ideal QSR generated by the Rd :
QSR := 〈Rd, d ∈ NE(Y )Z〉(3.11)The linear ideal of Λ[xρ], is the ideal Lin generated by the following linear polynomials

Zu's :
Lin :=

〈
Zu :=

∑

ρ∈∆(1)

〈u, vρ〉xρ, u ∈M ′

〉De�nition 3.12. � The Batyrev ring of ∆ is the ring :
B := Λ[xρ]/G,where G := QSR+Lin is the sum of the quantum Stanley-Reisner and linear ideal.Remark 3.13. � Suppose that N ′ is equipped with a basis (e1, . . . , en′). In that situation,we will put

∀i = 1, . . . , n′, Zi := Ze∗i
,where (e∗1, . . . , e

∗
n′) is the dual basis of (e1, . . . , en′) in M ′. The linear ideal Lin is generatedby Z1, . . . , Zn′.3.3. Primitive 
olle
tions. � Following Batyrev ([Bat93℄) and Cox ([CvR08℄) we de-�ne :De�nition 3.14. � A subset {ρ1, . . . , ρl} of ∆(1) is 
alled a primitive 
olle
tion for ∆ if

{ρ1, . . . , ρl} is not 
ontained in a single 
one of ∆ but every proper subset is.Let C = {ρ1, . . . , ρl} be a primitive 
olle
tion, and v1, . . . , vl be the generating ve
tors of
ρ1 ∩ N ′, . . . , ρl ∩ N ′. Let σ be the minimal 
one of ∆ 
ontaining v =

∑l
i=1 vi. Denote by

ρ′1, . . . , ρ
′
s the rays of σ and v′1, . . . , v′s the primitive ve
tors of the ρ′i. Sin
e σ is the minimal
one of ∆ 
ontaining v, the ve
tor v is in the relative interior of σ and there exists s positivenumbers ai su
h that : v = a1v

′
1 + · · ·+ asv

′
s. Moreover, sin
e v is in N ′ and the v′j are partof a basis of N ′ (∆ is non singular), then the aj's are uniquely de�ned in N>0.Remark 3.15. � With the above notations : {v1, . . . , vl} ∩ {v′1, . . . , v′s} = ∅. (See propo-sition 1.9 of [CvR08℄).Let C = {ρ1, . . . , ρl} be a primitive 
olle
tion and v =

∑l
i=1 vi = a1v

′
1 + · · ·+ asv

′
s be asabove. Then

l∑

i=1

vi −
s∑

j=1

ajv
′
j = 0.The exa
t sequen
e 3.9 shows that H2(Y,Z) = ker(Z∆(1) −→ N ′), and there exists a wellde�ned element dC ∈ H2(Y,Z)) su
h that :

dCρ = Dρ.d
C =

∫

dC
Dρ =





1 if ρ ∈ C,
−aj if ρ = R+v′j , j ∈ {1, . . . , s},
0 otherwise.21



De�nition 3.16. � The 
lass of a primitive 
olle
tion C is the 
lass dC ∈ H2(Y,Z) de�nedas above.Lemma 3.17. � Let C be a primitive 
olle
tion, then dC ∈ NE(Y )Z.Proof. � See [CvR08℄, proposition 1.9.Also re
all the following result from [CvR08℄ (Proposition 1.10) :Proposition 3.18. � The Mori 
one NE(Y )Z is generated by 
lasses of primitive 
olle
-tions.A similar proposition for the Stanley-Reisner ideal will be proved in the next se
tion.Notation 3.19. � The set of primitive 
lasses of ∆ is :
P := {dC | C primitive 
olle
tion of ∆}.3.4. Monomial order and Groebner basis.3.4.a. Monomial order on the variables xρ.� We �x, on
e and for all, a monomial order ≺on the variables xρ and a stri
tly 
on
ave pie
ewise-linear fun
tion ϕ of |∆|, rational on N ′.Sin
e ∆ is quasi-proje
tive, su
h a fun
tion exists. Denote by O =

∑
ρ∈∆(1) −ϕ(vρ)Dρ theample linear Q-divisor de�ned by ϕ.Let xa :=∏ρ∈∆(1) x

aρ
ρ (a ∈ N∆(1)) be a monomial in Λ[xρ]. Put :

ω(xa) =
∑

ρ∈∆(1)

−aρϕ(vρ),and de�ne a monomial order ≺ϕ as follows :
xa ≺ϕ x

a′ ⇐⇒





ω(xa) < ω(xa
′
)or

ω(xa) = ω(xa
′
) and xa ≺ xa

′
.Let P ∈ Λ[xρ] be a polynomial. The leading term of P for ≺ϕ will be denoted by Lt(P ).If Lt(P ) = αxa with α ∈ Λ and a ∈ N∆(1), then α is the leading 
oe�
ient of P , denotedby Lc(P ) and xa is its leading monomial, denoted by Lm(P ). Sin
e Λ is not a �eld, thisdistin
tion between leading terms and leading monomials is ne
essary.Lemma 3.20. � Let d be in the Mori 
one NE(Y )Z, Rd = xd

+ − Qdxd
− , then Lt(Rd) =

Lm(Rd) = xd
+
.Proof. � We have : Rd = xd

+ −Qdxd
− , and :

ω(xd
+

)− ω(xd
−

) =
∑

ρ∈∆(1)

−d+ρ ϕ(vρ)−
∑

ρ∈∆(1)

−d−ρ ϕ(vρ) =
∑

ρ∈∆(1)

−dρϕ(vρ) = O.d > 0.3.4.b. Groebner basis of the quantum Stanley-Reisner ideal.�De�nition 3.21. � Let a be in H2(Y,Z) or in Z∆(1). We say that a is supported by a 
oneif the set {ρ ∈ ∆(1) | aρ 6= 0} is 
ontained in a 
one of ∆.We 
an now give a Groebner basis of QSR for the monomial order ≺ϕ. Re
all that the setof primitive 
lasses is denoted by P (Notation 3.19). We have :22



Theorem 3.22. � The set {Rd, d ∈ P} is a Groebner basis with respe
t to the order ≺ϕof the quantum Stanley-Reisner ideal QSR de�ned in 3.11. Moreover, the set Lt(QSR) :=
{Lt(P ), P ∈ QSR}, is :

Lt(QSR) = {αxa | α ∈ Λ, a is not supported by a 
one.}.Remark 3.23. � (1) Being a Groebner basis over the 
oe�
ient ring Λ �whi
h is nota �eld�, means that the initial terms of the polynomials Rd, d ∈ P, generate the ideal
〈Lt(QSR)〉 in Λ[xρ]. Noti
e that all the Rd, d ∈ P have a leading 
oe�
ient equals to 1, sothat the Groebner basis property remains true at any point of SpecΛ.

(2) The ideal QSR should be seen as a tori
 ideal over a ring. Tori
 ideals over a �eld, arestudied in [Stu96℄ where a similar result to Theorem 3.22 is proved.First prove the following proposition :Proposition 3.24. � Let K be the fra
tion �eld of Λ. Let QSR′ be the ideal of K[xρ]generated by {Rd, d ∈ NE(Y )Z}, then :(i) QSR′ = 〈Rd, d ∈ P〉 = 〈Rd, d ∈ H2(Y,Z)〉 in K[xρ].(ii) The set {Rd, d ∈ P} is a Groebner basis of QSR′ in K[xρ].Proof. � Put A := {Rd, d ∈ P}, and apply the multivariate algorithm to A (see [Eis95℄,algorithm 15.7). Consider the set
E := {Rd, d ∈ H2(Y,Z) | any possible remainder of amultivariate division of Rd by A is not zero}.Let us prove that E is empty. Assume that it is not. Denote by d ∈ H2(Y,Z) a 
lass su
hthat Rd is in E, and is a minimal element of E for the order ≺ϕ. Sin
e Rd = xd

+ −Qdxd
− ,two 
ases 
an o

ur :

a) Lt(Rd) = xd
+ .In this 
ase d+ is not supported by a 
one. Be
ause if d+ is supported by a 
one, then

−d ∈ NE(Y )Z by Lemma 3.25.(2) and Lt(R−d) = x(−d)+ = xd
− by Lemma 3.20; this gives

Lt(Rd) = Qdxd
− whi
h is a 
ontradi
tion.Then there exists a primitive 
olle
tion C 
ontained in the support of d+. Denote by cthe 
lass of C and put a = d+ − c+ ∈ N∆(1). By Lemma 3.25.(3), we have :

Rd − xaRc = Qcxmin(d−,a+c−)Rd−c = −Qdxd
−

+Qcxa+c− .Sin
e Lm(Rd) = xd
+ , xd− ≺ϕ x

d+ and sin
e Lm(Rc) = xc
+ , xa+c− ≺ϕ x

a+c+ = xd
+ . It followsthat

Lm(Rd−c) �ϕ Lm(Qcxmin(d−,a+c−)Rd−c)

= Lm(Qdxd
− −Qcxa+c−) ∈ {xd− , xa+c−}

≺ϕ x
d+ = Lm(Rd).Sin
e Lm(Rd) is minimal in E, the polynomial Rd−c is not in E, and we have

Rd = xaRc +Qcxmin(d−,a+c−)Rd−c. We dedu
e that Rd is not in E whi
h is a 
ontradi
tion.
b) Lt(Rd) = xd

− .Consider the polynomialR−d = xd
−−Q−dxd

+ . Then we have Lm(R−d) = Lm(Rd) = x(−d)+and R−d is not in E by a). Sin
e Rd = −QdR−d, we dedu
e that Rd is not in E whi
h is a
ontradi
tion.Thus, E is empty that is, for any d ∈ H2(Y,Z) there exists a remainder of the division of
Rd by A whi
h is zero. We are now able to prove (i) and (ii) :23



(i) By Lemma 3.17 any 
lass of a primitive 
olle
tion is in the Mori 
one, and we have :
〈A〉 ⊂ QSR′ ⊂ 〈Rd, d ∈ H2(Y,Z)〉.Moreover, for any d ∈ H2(Y,Z) there exists a remainder of the division of Rd by A whi
h iszero, hen
e Rd is in the ideal 〈A〉 generated by A and 〈Rd, d ∈ H2(Y,Z)〉 = 〈A〉 = QSR′.

(ii) By (i) the set A = {Rd, d ∈ P} generates QSR′. Let us apply the Bu
hberger's algorithmto A. Let C1, C2 be two primitive 
olle
tions of respe
tive 
lasses c1, c2 ∈ NE(Y )Z. For
i ∈ {1, 2} we 
onsider the monomial :

xa1 =
LCM(Lm(Rc1),Lm(Rc2))

Lm(Rci)
= xmax(c+1 ,c+2 )−c+i .By lemma 3.25.(3) we have :

xa1Rc1 − xa2Rc2 = xmin(a1+c−1 ,a2+c−2 )Qc2Rc1−c2.Sin
e the remainder of the division of Rc1−c2 by A is zero, the set A is a Groebner basis of
QSR′.Proof of Theorem 3.22. � Either in K[xρ] or in Λ[xρ] we have :

〈Lt(Rd), d ∈ P〉 = 〈xd+ , d ∈ P〉
= 〈xa, a ∈ N∆(1) | a is not supported by a 
one〉.Let P ∈ QSR ⊂ Λ[xρ]. As an element of K[xρ], the element P is in QSR′. By Proposition3.24, Lt(QSR′) = 〈Lt(Rd), d ∈ P〉 ; then Lt(P ) = αxa, α ∈ K and a not supported by a
one. Sin
e P is in Λ[xρ], α is in Λ and we are done.Lemma 3.25. � 1. Let d be in H2(Y,Z), d 6= 0, then either d+ or d− is not supportedby a 
one.2. Let d be in H2(Y,Z), if d− is supported by a 
one, then d ∈ NE(Y )Z.3. Let c, d be in H2(Y,Z), a, b be in N∆(1). Suppose that c+ + a = d+ + b, then in

C[H2(Y,Z)][z][xρ], we have : xaRc − xbRd = xmin(a+c−,b+d−)QdRc−dProof. � 1. We have : ∑ρ∈∆(1) d
+
ρ vρ =

∑
ρ∈∆(1) d

−
ρ vρ. Let σ+ be the minimal 
one of

∆(1) supporting d+, and σ− be the minimal 
one of ∆ supporting d−.Put v :=
∑

ρ∈∆(1) d
+
ρ vρ =

∑
ρ∈∆(1) d

−
ρ vρ. Then v is in the interior of σ+ and σ−. Itfollows that σ+ = σ− and, sin
e ∆ is non singular, d+ = d− and d = 0.2. We have to show that, for any nef tori
 divisor T , we have T.d ≥ 0. Let T be su
h adivisor and ψ the pie
ewise linear 
on
ave fun
tion asso
iated to T :

T.d =
∑

ρ

−ψ(vρ)d+ρ −
∑

ρ

−ψ(vρ)d−ρ

=
∑

ρ

−ψ(vρ)d+ρ + ψ(
∑

ρ

d−ρ vρ) (d− supported by σ)
≥ −ψ(

∑

ρ

d+ρ vρ) + ψ(
∑

ρ

d−ρ vρ) = 0 (ψ 
on
ave, and (∑
ρ

d+ρ vρ =
∑

ρ

d−ρ vρ))3. Sin
e a+ c+ = b+ d+, c+ − c− = c and d+ − d− = d, we have :
min(a + c−, b+ d−) = min(a + c+ − c, b+ d−) = min(b+ d+ − c, b+ d−)

= min(b+ d− + d− c, b+ d−) = b+ d− +min(d− c, 0)

= b+ d− − (c− d)+.24



Similarly, min(a+ c−, b+ d−) = a+ c− − (c− d)−. Then we get :
xaRc − xbRd = xa+c+ −Qcxa+c− − xb+d+ +Qdxb+d−

= xmin(a+c−,b+d−)Qd×
(
xb+d−−min(a+c−,b+d−) −Qc−dxa+c−−min(a+c−,b+d−)

)

= xmin(a+c−,b+d−)Qd
(
x(c−d)+ −Qc−dx(c−d)−

)

= xmin(a+c−,b+d−)QdRc−d.3.5. Flatness, �niteness and degree of the Batyrev ring over the 
oe�
ient ring.� The aim of this se
tion is to prove the following result :Theorem 3.26. � Let L1, . . . ,Lk be globally generated line bundles on X su
h that (ωX ⊗
L1 ⊗ · · · ⊗ Lk)

∨ is nef. Let B be the Batyrev ring of (X,L1, . . . ,Lk) de�ned above. Thereexists a Zariski neighbourhood U ⊂ SpecΛ of the large radius limit su
h that the restri
teds
heme morphism :
Spec(B)|U −→ Uis �nite, �at, of degree dimH2∗(X).Remark 3.27. � 1. Noti
e that the de�nition of B depends on the 
hoi
e of the tori
divisors Li of ea
h Li. Di�erents 
hoi
es of tori
 divisors give isomorphi
 rings.2. The open subset U will be de�ned in paragraph 3.5.d. We 
all it the freeness neigh-bourhood of ∆. It only depends on X , not on the ve
tor bundle E and 
an be expli
itely
omputed by elimination algorithm.Re
all that Y is the total spa
e of E∨, de�ned by the fan ∆, that NE(Y )Z = NE(X)Z and

[KY ] ∈ H2(Y ) = [KX + L1 + . . .+ Lk] ∈ H2(X) via the isomorphism de�ned in Proposition3.4. We will rephrase Theorem 3.26 and a
tually prove :If ∆ is a smooth, quasi-proje
tive, 
onvex, fan de�ning a variety Y and if the anti
anoni
aldivisor −KY is nef, then there exists a neighbourhood U ⊂ SpecΛ of the large radiuslimit su
h that the restri
ted s
heme morphism : Spec(B)|U −→ U is �nite, �at, of degree
dimH2∗(Y ).First 
onsider the �ber of B over the large radius limit.3.5.a. Large radius limit.� Using Notations 3.34, Spec Λ = V. Let 0 be the "large radiuslimit" point. It is de�ned by the maximal ideal m = 〈Qd, d ∈ NE(Y )Z, d 6= 0〉 in Λ. The�ber of SpecB over this point is well known :Notation 3.28. � Put :

SR =
〈
xd

+

, d ∈ NE(Y )Z〉 =
〈
xa, a ∈ N∆(1) not supported by a 
one.〉(3.29)

Lin =

〈
∑

ρ∈∆(1)

〈u, vρ〉xρ, u ∈M ′

〉(3.30)The ideal SR is the Stanley-Reisner ideal of ∆ (see [BH93℄ for example).Proposition 3.31. � Let L1, . . . ,Lk be globally generated line bundles. The image of QSR(resp. Lin) in Λ/m is SR (resp. Lin) ; there is a well de�ned isomorphism :
B/mB = C[xρ]/ 〈SR+Lin〉 ∼−→ H2∗(Y,C) = H2∗(X,C)

xρ 7−→ [Dρ]where [Dρ] ∈ H2(Y ) is the 
lass of the tori
 divisor Dρ.25



Proof. � Sin
e ∆ is 
onvex and quasi-proje
tive, the proof of [Ful93℄ in the 
omplete 
ase
an be adapted to our 
ase ; then there is a well de�ned isomorphism :
Z[xρ]/(SR+Lin)

∼−→ H2∗(Y,Z)

xρ 7−→ [Dρ],whi
h proves the proposition.Noti
e that the �ber at m does not depend on the ve
tor bundle E .3.5.b. Flatness of Λ → Λ[xρ]/QSR.�Lemma 3.32. � The morphism Λ −→ Λ[xρ]/QSR is a �at morphism of relative dimension
n′ = dimY ; Λ and Λ[xρ]/QSR both are Cohen-Ma
aulay rings.Proof. � Flatness. For P in Λ[xρ], denote by P its image in Λ[xρ]/QSR. Let A be the setof monomials of Λ[xρ] not 
ontained in Lm(QSR). By Theorem 3.22, A = {xa ∈ N∆(1) |
a is supported by a 
one}. As in [Eis95℄ (theorem 15.17) we prove that Λ[xρ]/QSR is a free
Λ-module with basis A = {P, P ∈ A} :Let xa1 , . . . , xal be in A and α1, . . . , αl be in Λ. If∑i αixai = 0, then∑i αix

ai ∈ QSR and
Lm(

∑
i αix

ai) ∈ Lm(QSR). Sin
e all the a′is are supported by a 
one, we get αi = 0 for any
i = 1, . . . , l, and A is free over Λ.Suppose now that A does not generate Λ[xρ]/QSR as a Λ-module. Let xa be the smallestmonomial for ≺ϕ su
h that xa /∈ Λ.A. The m′-tuple a is not supported by a 
one, and thereexists a 
lass d of a primitive 
olle
tion, and b ∈ N∆(1) su
h that xa = xbRd + Qdxb+d− . Wededu
e that xa = Qdxb+d− . By assumption, and sin
e xb+d− ≺ϕ x

a, the 
lass xb+d− belongsto Λ.A, hen
e we 
on
lude that xa is in Λ.A whi
h is a 
ontradi
tion.Fiber over the large radius limit is Cohen-Ma
aulay of dimension n′.Let m be the ideal of the point 0 in V, as in Paragraph 3.5.a. The image of QSR in
Λ[xρ]/m is the Stanley-Reisner ring SR (see Notation 3.29). By [BH93℄, Theorem 5.1.4, andCorollary 5.4.6, C[xρ]/ SR is a Cohen-Ma
aulay ring of dimension n′.Fibers over Spec Λ are Cohen-Ma
aulay of dimension n′.Let n be any maximal ideal of Λ, and denote by QSR the image of QSR in (Λ/n)[xρ] =

C[xρ]. By Theorem 3.22, the set {Rd, d ∈ P} is a Groebner basis of QSR. The initial idealof QSR is 〈xa, a ∈ N∆(1), not supported by a 
one〉 ; this is the ideal SR studied above.By [Eis95℄, there exists a �at morphism of algebras C[t] −→ C whose �ber C ⊗ C[t]/(t)over 0 is C[xρ]/ SR and whose �ber Cp = C ⊗ C[t]/p over any other point p of SpecC[t] isisomorphi
 to C[xρ]/QSR.The set of p ∈ SpecC[t] su
h that the �ber of Spec(C) −→ SpecC[t] over p is Cohen-Ma
aulay is open ([Gro66℄, 
orollary 12.1.7). It is not empty sin
e it 
ontains 0 hen
e it
ontains a point p 6= 0 of C. It follows that C[xρ]/QSR is Cohen-Ma
aulay. Moreover, by�atness of C[t] −→ C, dimC[xρ]/QSR = dimC[xρ]/ SR = n′.As a 
on
lusion, Λ −→ Λ[xρ]/QSR is �at, of relative dimension n′, and its �bers all areCohen-Ma
aulay. Sin
e Spec Λ is a tori
 a�ne variety, it is also Cohen-Ma
aulay. It followsthat Λ[xρ]/QSR is Cohen-Ma
aulay ([BH93℄, Theorem 2.1.7).We now 
ome to the study of the Batyrev ring B = Λ[xρ]/(QSR+Lin). By de�nition,
Spec(B) is a subs
heme of Spec Λ[xρ] and there is a natural proje
tion :

Spec(B) −→ SpecΛ.26



3.5.
. Homogenization of Λ[xρ].Put m′ = Card∆(1), 
onsider a new variable h and denote by Pm′

V
the proje
tive s
hemeProj Λ[xρ, h], with the grading given by deg(h) = 1 and deg(xρ) = 1. Also denote by H thehyperplane at in�nity de�ned by h = 0, and by Am′

V
the a�ne subspa
e Spec Λ[xρ] = Pm′

V
\H .The homogenization of a polynomial P ∈ Λ[xρ] is P h :

P h := hdeg PP
(xρ
h

)
∈ Λ[xρ, h].The linear polynomials Zu (u ∈ M ′) being homogeneous, we have Zh

u = Zu. As for thehomogenization of Rd, noti
e that for any d ∈ H2(Y,Z), we have deg(xd
+
) − deg(xd

−
) =∑

ρDρ.d = −KY .d. We get :Remark 3.33. � If −KY is nef, then for any d in NE(Y )Z,
Rh

d = xd
+ −Qdh−KY .dxd

−

.Let Γ be the 
losed subs
heme of Pm′

V
de�ned by the homogeneous polynomials Rh

d for
d ∈ NE(Y )Z. Let χ be the 
losed subs
heme of Γ ⊂ Pm′

V
de�ned by the polynomials Rh

d for
d ∈ NE(Y )Z and Zu for u ∈M ′. We have :

χ ⊂ Γ and SpecB = χ ∩ Am′

V
.The 
losed subs
heme χ ∩H is de�ned in Proj Λ[xρ] by the homogeneous polynomials: R∞

dand Zu where :
∀d ∈ NE(Y )Z R∞

d = Rh
d |h=0 ∈ Λ[xρ]

∀u ∈M ′ Zu =
∑

ρ∈∆(1) 〈u, vρ〉 xρ.Let π be the natural morphism :
π : Pm′

V
−→ VThe image π(χ ∩H) is a 
losed subset of V.Notation 3.34. � The 
losed subset of V

U := V \ π(χ ∩H)is 
alled the freeness neighborhoods of the large radius limit. Its interse
tion U := U∩T withthe torus is also 
alled freeness neighbourhood. This terminology is justi�ed by Theorem3.26 and Proposition 3.40.Remark 3.35. � 1. Using primitive 
olle
tions and elimination algorithms, we 
an givean expli
it des
ription of the algebrai
 open subset U . Let (e1, . . . , en′) be a basis of
N ′ as in Remark 3.13. The 
losed subs
heme χ ∩ H is de�ned by the �nite set ofpolynomials : Zi =

∑
ρ∈∆(1) 〈e∗i , vρ〉xρ and, for d in the set P of primitive 
lasses,
R∞

d =

{
xd

+ if ∑ρ dρ > 0,

xd
+ −Qdxd

− if ∑ρ dρ = 0,The ideal in Λ of the 
losed subset π(χ ∩ H) 
an be obtained by elimination of thevariables xρ.2. The homogenization of an ideal I of Λ[h, xρ] is : Ih =
〈
P h, P ∈ I

〉
. Re
all that, if

I is generated by P1, . . . , Pl, we do not have in general : Ih =
〈
P h
1 , . . . , P

h
l

〉. In oursituation, if χ′ is the 
losed subs
heme of Pm′

V
de�ned by the homogenized ideal Gh, weonly get χ′ ⊂ χ.Lemma 3.36. � The large radius limit is in U .27



Proof. � Using notations above, let 0 ∈ V be the large radius limit, and χ
0
be the �ber of

χ −→ V over it. The interse
tion χ
0
∩H is de�ned by the homogeneous ideal : 〈h〉+SR+Linin Pm′

C . And we have :
C[xρ, h]/(〈h〉+ SR+Lin)

∼−→ C[xρ]/(SR+Lin),this last ring being isomorphi
 to H2∗(Y,C) by Proposition 3.31. It follows that the zerolo
us in Cm′ of the ideal SR+Lin ⊂ C[xρ] is de�ned by xρ = 0 for any ρ ∈ ∆(1). Then, theredu
ed ideal of 〈h〉+SR+Lin is the irrelevant ideal of the graded ring C[h, xρ] and χ0
∩His empty.Remark 3.37. � (Fano subvariety) If −KY is ample, that is, in our 
ase, if the 
ompleteinterse
tion subvariety de�ned by a generi
 se
tion of E is Fano, then the freeness neighbor-hood U is equal to the whole set V. A
tually, sin
e −KY .d > 0 for any d ∈ NE(Y )Z, theproje
tivized polynomials R∞

d are equals to 〈xd+ , d ∈ NE(Y )Z〉. Ea
h �ber of χ −→ V isisomorphi
 to χ
0
and χ ∩H = ∅.3.5.d. Proof of Theorem 3.26. � Consider the following diagram :

χUrel.dim. 0 ΓU rel. dim. n′

= dimX + rk E

Uwhere ΓU is the restri
tion of Γ = Proj Λ[h, xρ]/
〈
Rh

d

〉 to U . By Lemma 3.32. Am′

U
∩ΓU −→

U is a �at morphism of relative dimension n′ between Cohen-Ma
aulay s
hemes.Above U and χ are 
ontained in the a�ne part of Γ (away from the hyperplane H) andhas relative dimension zero sin
e the �bers do not meet the hyperplane H . Thus, χU → Uis a �nite and proper morphism.Let (e1, . . . , en′) be a basis of N ′. We use of notations of Remark 3.13. Let p be a point of
U and denote by Z i the image of Zi in the quotient of Λ[xρ] by the maximal ideal de�ning
p. In the Cohen-Ma
aulay �ber Am′

p ∩ Γp over p, the s
heme χp has 
odimension n′ andis de�ned by a sequen
e of length n′ (namely (Z1, . . . , Zn′)). By [BH93℄, theorem 2.1.2,
(Z1, . . . , Zn′) is a regular sequen
e.By the 
orollary to the theorem 22.5 of [Mat86℄, sin
e Am′

U
∩ ΓU → U is �at, and

(Z1, . . . , Zn′) are regular sequen
es over any point of U , then χU −→ U is �at.The degree of this �nite morphism 
an be 
omputed as the length of the �ber χ
0
over thelarge radius limit. By proposition 3.31 it is equal to dimH2∗(Y ).Remark 3.38. � If Y is Fano, one 
an also proof by indu
tion on the degree that B isa free Λ-module. A basis of B is given by a free subset of the set of monomials {xa, a ∈

N∆(1), a is supported by a 
one, aρ ∈ {0, 1}} whi
h generates B.3.6. Flatness, �niteness and degree of the residual Batyrev ring over U .� Aswe have H2(X) ≃ H2(Y ) and, via this isomorphism, we have : [Li] = [−Dρi ] for ρi ∈ ∆
v.b.

(1)(
f. Proposition 3.4).We put :
ci := [Li] = [−Dρi ] ∈ H2(X), ctop(E) :=

∏k
i=1 ci ∈ H2k(X)

xi := xρi whi
h is a variable in Λ[xρ], xtop := (−1)k
∏k

i=1 xi ∈ Λ[xρ]We also de�ne the quotient ideal :
(G : xtop) := {P ∈ Λ[xρ], xtop.P ∈ QSR+Lin = G}.28



Finally re
all that we denoted bymctop : H2∗(Y ) −→ H2∗(Y ) the morphism of multipli
ationby ctop(E).De�nition 3.39. � The residual Batyrev ring of (Σ, L1, . . . , Lk) with respe
t to E is the
Λ-algebra :

BRes = Λ[xρ]/(G : xtop).Proposition 3.40. � Let L1, . . . ,Lk be ample line bundle on X su
h that (ωX ⊗L1⊗· · ·⊗
Lk)

∨ is nef. Denote by U ⊂ V the freeness neighborhood de�ned in 3.34. Then the restri
tedmorphism Spec(BRes)|U −→ U is �nite, �at of degree dimCH
2∗(X)− dim kermctop.Proof. � Denote by xtop the image of xtop in B = Λ[xρ]/(QSR+Lin), and by mctop : B −→

B the morphism of multipli
ation by xtop in B. This multipli
ation indu
es an isomorphism :
BRes = Λ[xρ]/(G : xtop)

∼−→ xtopB = Im(mctop).(well de�ned and inje
tive by de�nition of the quotient ideal (G : xtop)). Moreover, there isan exa
t sequen
e :(3.41) 0 −→ xtopB −→ B −→ B/xtopB −→ 0By de�nition B/xtopB is isomorphi
 to Λ[xρ]/(QSR+Lin+〈xtop〉).Let d be a 
lass of NE(Y )Z. For any ρ = ρLi
∈ ∆

v.b.

(1), sin
e [−Dρ] = [Li] is ample,
dρ = Dρ.d < 0 and we have :

Rd = xd
+ −Qdxtopx

d−−ǫ,where ǫ = (ǫρ)ρ∈∆(1), ǫρ = 1 if ρ ∈ ∆
v.b.

(1), ǫρ = 0 otherwise.As a 
onsequen
e, in Λ[xρ]/(QSR+Lin+〈xtop〉), Rd = xd
+ and we 
an write :

Λ[xρ]/(QSR+Lin+〈xtop〉) ∼−→ Λ[xρ]/(〈xd
+

, d ∈ NE(Y )Z〉+ 〈Zu, u ∈M ′〉+ 〈xtop〉)
∼−→ Λ⊗

(
C[z][xρ]/(〈xd

+

, d ∈ NE(Y )Z〉+ 〈Zu, u ∈M ′〉+ 〈xtop〉)
)Using Proposition 3.31, we get :

C[z][xρ]/(〈xd
+

, d ∈ NE(Y )Z〉+ 〈Zu, u ∈ M ′〉+ 〈xtop〉) ∼−→ H2∗(X,C)/
〈∏k

i=1c1(Li)
〉
.We get

Λ[xρ]/(QSR+Lin+〈xtop〉) ∼−→ Λ⊗
(
H2∗(X,C)/ 〈ctop(E)〉

)
.Thus, B/xtopB is a �at Λ-module. Its rank 
an be 
omputed, and is equal to :

dimCH
2∗(Y ) / ctop(E)H2∗(Y ) = dimH2∗(Y )− dimC Immctop = dimC kermctop.Restri
ting the exa
t sequen
e (3.41) to U , and using the isomorphism BRes ∼−→ xtopB weget : (BRes)|U is a �at module of rank (dimH2∗(Y )− dim kermctop) over U .4. GKZ systems, quotient ideals and residual D-modulesGKZ systems were de�ned and studied by Gelfand-Kapranov-Zelevinski�� in the end of theeighties (
f. [GGZ87℄, [GZK88℄, [GZK89℄ and [GKZ90℄). Nevertheless, our approa
h is
loser to the one of [Giv95℄, [Giv98℄, [CK99, �5.5.3 and �11.2℄ or [Iri09℄.Here we de�ne the GKZ ideal and the quotient GKZ ideal asso
iated to (X, E). Thisgives us two di�erential modules, whi
h will be 
ompared (in Se
tion 5) to the twisted andredu
ed Quantum D-modules of Se
tion 2.Consider, as above, the tori
 variety X endowed with the k tori
 divisors L1, . . . , Lk su
hthat Li = O(Li). 29



Notation 4.1. � Let d be a 
lass of H2(X,Z). We put
∀θ ∈ Σ(1), dθ := Dθ.d =

∫
d
Dθ =

∫
d
[Dθ]

∀i ∈ {1, . . . , k} dLi
:= Li.d =

∫
d
Li =

∫
d
c1(Li)Also re
all that, for any real number a, we put a+ = max(a, 0), a− = max(−a, 0) so that :

a = a+ − a−.Consider the non-
ommutative ring :
D := C[q±1

1 , . . . , q±1
r , z]〈zδq1 , . . . , zδqr , zδz〉.For simpli
ity, we will write D = C[q±, z]〈zδq, zδz〉.Notation 4.2. � (Quantization) Re
all that T1, . . . , Tr is a �xed basis of H2(X). To any
lass τ =

∑r
a=1 taTa ∈ H2(X) we asso
iate the operator

τ̂ :=
r∑

a=1

tazδqa ∈ DIn the same way, if L is a line bundle or a divisor we write L̂ := ĉ1(L). Finally put :
ĉtop :=

k∏

i=1

L̂i ∈ D.De�nition 4.3. � (GKZ-ideal, and quotient ideal with respe
t to ĉtop)1. The GKZ-ideal G asso
iated to (Σ,L1, . . . ,Lk) is the left ideal generated by the oper-ators �d, d ∈ H2(X,Z), and Ê :
�d :=

k∏

i=1

d−Li∏

ν=1

(
L̂i + νz

) ∏

θ∈Σ(1)

d+θ −1∏

ν=0

(
D̂θ − zν

)
−

qd
k∏

i=1

d+Li∏

ν=1

(
L̂i + νz

) ∏

θ∈Σ(1)

d−θ −1∏

ν=0

(
D̂θ − zν

)
(d ∈ H2(X,Z))

Ê := zδz + ̂c1(TX ⊗ E∨)where we use Notation 4.1 and qd =∏r
a=1 q

∫
d Ta

a =
∏r

a=1 q
da
a (d =∑r

a=1 daBa).2. The quotient ideal Quot(ĉtop,G) of G with respe
t to ĉtop, is the left ideal of D generatedby :
{P ∈ D | ĉtopP ∈ G}.Noti
e that, unlike the 
ommutative 
ase, the set {P ∈ D | ĉtopP ∈ G} is not an ideal,but only a C[z]-module(3). However, it 
ontains the ideal G and should be seen as a biggersystem of equations.De�nition 4.4. � (GKZ-module, and residual module with respe
t to ĉtop)1. The GKZ module asso
iated to (Σ,L1, . . . ,Lk) is the left quotient D-module

M := D/G.

(3) For a simple example, 
onsider the Weyl algebra C[q] 〈δq〉, the left ideal I = 〈δq〉 and ĉ = δq. Then 1satis�es ĉ.1 ∈ I, hen
e Quot(ĉ, I) = C[q] 〈δq〉 and q ∈ Quot(ĉ, I). However, ĉ.q = δqq = qδq + q is not in I (itwould imply that q is in I, whi
h is impossible for degree reasons).30



2. The residual GKZ-module Mres is the left quotient D-module
Mres := D/Quot(ĉtop,G)In the following, we denote by D the sheaf of OT×C-algebras asso
iated to the ring D over

T×C. Denote by M (resp. MRes) the sheaf of OT×C-modules asso
iated to M (resp. MRes).These D-modules may not be 
oherent over the whole set T × C. However, 
onsideringthe freeness neighborhood U de�ned in Notation 3.34, we have :Theorem 4.5. � Let L1, . . . ,Lk be globally generated line bundles su
h that (ωX ⊗ L1 ⊗
· · · ⊗ Lk)

∨ is a nef line bundle. The restri
ted sheaves M|U×C and Mres|U×C are 
oherent
OU×C-modules.Proof. � If M is 
oherent then Mres is also 
oherent : the surje
tive morphism M → Mresimplies that Mres is �nitely generated.Re
all from De�nition 4.4 that M = D/G. This module M is isomorphi
, as a C[q±, z]-module, to

M′ := D′/G′(4.6)where D′ := C[q±, z]〈zδq〉 and G′ = 〈�d, d ∈ H2(X,Z)〉 : the Euler operator Ê of the ideal
G enables us to remove zδz in the quotient.Hen
e, we are led to show that the sheaf M′ asso
iated to M′ and restri
ted to U × Cis C[q±, z]-
oherent. For a 
lassi
al di�erential modules, one 
ould �nd a good �ltrationand show that the 
hara
teristi
 variety is supported by the zero se
tion of the 
otangentbundle (
f. [RS10, �3℄ and [Sab05, Proposition 1.2.8℄). Sin
e M′ is a D′-module (andnot a C[q±, z]〈∂q, ∂z〉-module), we will rewrite the 
lassi
al proof (
f. for instan
e [HTT08,Proposition 2.2.5℄) in our 
ase.Let us de�ne the following in
reasing �ltration of D′ :

FkD
′ :=

{
P ∈ D′ | P (q, z, zδq) =

∑

α∈Nr

|α|≤k

Pα(q, z)(zδq)
α

}where (zδq)
α := (zδq1)

α1 · · · (zδqr)αr . One 
an easily 
he
k that this �ltration satis�es thefollowing properties(a) FkD′ = 0 for k < 0,(b) ∪k∈NFkD′ = D′,(
) for any k, ℓ in N, we have (FkD′) · (FℓD′) = Fk+ℓD′,(d) for any k in N, FkD′ is a free C[q±, z]-module,(e) for any P in FkD′ and for any Q in FℓD′, [P,Q] is in Fk+ℓ−1D′.Let grD′ be the graduated ring of D′ de�ned by the �ltration F . Property (e) proves that
grD′ is 
ommutative. For a in {1, . . . , r}, denote by ya the 
lass of zδqa in grD′, then grD′is isomorphi
 to C[q±, z][y1, . . . , yr]. Let P (q, z, zδq) := ∑α∈Nr Pα(q, z)(zδq)

α in D′, then its
lass in grD′, denoted by σ(P ), is
σ(P ) =

∑

α∈Nr

|α|=degP

Pα(q, z)y
αwhere yα := yα1

1 · · · yαr
r .We dedu
e an in
reasing �ltration on M′ de�ned by

FkM
′ := FkD

′/G′
kwhere G′

k := FkD′ ∩G′. We have :1. FkM′ = 0 for k < 0, 31



2. ∪k∈NFkM′ = M′,3. for any k in N, FkM′ is a 
oherent C[q±, z]-module as it is a �nitely generated moduleover the Noetherian ring C[q±, z],4. for any k, ℓ in N, we have (FkD′) · (FℓM′) = Fk+ℓM′.For 
lassi
al di�erential module, the last two properties mean that the �ltration (FkM)k∈Nis good. Sin
e we have
grM′ = grD′/ grG′,(4.7)we dedu
e that the annihilator AnngrD′ grM′ is grG′.In order to use Lemma 4.8, we shea�fy everything. We will denote by 
alligraphi
 lettersfor the sheaves asso
iated to the C[q±, z]-modules and restri
ted to U × C. Consider theideal sheaf I := 〈y1, . . . , yr〉 in grD′.By Lemma 4.8, there exists(4) m0 in N su
h that Im0 is a subsheaf of grG′. Let P bea se
tion of FkM′ for k ≤ m0. By property (4), for α in Nr su
h that |α| = m0, we have

(zδq)
αP is in Fk+m0M

′. But we have σ((zδq)α) = yα ∈ Im0 ⊂ grG′. This implies that the
lass of (zδq)αP in grM′ is zero. We dedu
e that (zδq)αP in Fk+m0−1M′. The property (4)implies that for any k in N we have
Fm0+kM

′ = (Fm0D
′) · FkM

′

=



∑

α∈Nr

|α|=m0

OU×C(zδq)
α


 .FkM

′ +



∑

α∈Nr

|α|<m0

OU×C(zδq)
α


 .FkM

′

⊂ Fk+m0−1M
′.We dedu
e that the in
reasing �ltration FkM′ is stationary after m0. Property (2) impliesthat Fm0M

′ = M′ and Property (3) implies the theorem.The following Lemma is used in Theorem 4.5. We use the notations de�ned along theproof of this theorem : grD′ = C[q±1 , . . . , q
±
r , z][y1, . . . , yr] and σ is the symbol. Re
all thatthe 
hara
teristi
 variety of M is the algebrai
 variety C in Spec grD′ de�ned by the ideal :√

AnngrD′ grM′. There is a natural morphism : Spec grD′ −→ T×C, where T = SpecC[q±],and we get a 
artesian diagram :
C|U×C →֒ C ⊂ Spec grD′

↓ ↓
U × C →֒ T× CLemma 4.8. � Assume that (ωX ⊗L1 ⊗ · · ·⊗Lk)

∨ is a nef line bundle. Let U be the opensubset of T de�ned in Notation 3.34. The 
hara
teristi
 variety C|U×C is the zero se
tion of
grD′|U×C → U × C de�ned by the ideal 〈y1, . . . , yr〉.Proof. � In order to 
onne
t the de�nitions of U and grD′, we 
onsider the ring
C[q±, z][xρ, ρ ∈ ∆(1)]. There is a natural surje
tive morphism of C[q±, z]-algebra :

α : C[q±, z][xρ, ρ ∈ ∆(1)] −→ grD′ = C[q±, z][y1, . . . , yr]

xρ 7−→
{∑r

a=1D
a
ρya if ρ ∈ ∆

base

(1)

−(
∑r

a=1D
a
ρya) if ρ ∈ ∆

v.b.

(1)Where the Da
ρ are numbers de�ned by : [Dρ] =

∑r
a=1D

a
ρTa in H2(Y,Z). Note that sin
e, in

2d, the sign in front of Dρ in is not the same for rays 
oming from the bases or from the line
(4)For example take m0 := m1 + · · ·+mr where ymi

i ∈ grG′.32



bundles Li, the de�nition of α(xρ) admit two 
ases. A
tually, c1(Li) = −[Dρi ] for ρi ∈ ∆
v.b.

(1)whi
h 
reate this additional sign. We refer the reader to [CK99℄ and to the Erratum toProposition 5.5.4 for de�nitions of 2d with 
onventional signs).The kernel of this morphism is the linear ideal Lin generated by the Zu, u ∈ M ′ : Zu =∑
ρ∈∆(1)〈u, vρ〉xρ where vρ is the generating ve
tor of ρ ∩N ′. We get an isomorphism :

α : C[q±, z][xρ, ρ ∈ ∆(1)]/Lin −→ C[q±, z][y1, . . . , yr].The 
hara
teristi
 variety is 
ontained in the 
losed subset K ′
1 of Spec grD′ de�ned by theideal

J1 = 〈σ(�d), d ∈ H2(X,Z)〉 ⊂ C[q±, z][y1, . . . , yr].Let d be in H2(X,Z). We 
he
k that σ(�d) = α(R∞
d ) where R∞

d is the polynomial :
R∞

d :=

{
xd

+ if ∑ρ∈∆(1) dρ < 0

xd
+ − qdxd

− if ∑ρ∈∆(1) dρ = 0.Whi
h lead us to 
onsider the ideal :
J2 = 〈R∞

d , d ∈ H2(X,Z) ; Zu, u ∈M ′〉 ⊂ C[q±, z][xρ, ρ ∈ ∆(1)],Considering C[q±, z][xρ, ρ ∈ ∆(1)] and C[q±, z][y1, . . . , yr] as graded C[q±, z]-algebras (with
deg(xρ) = 1 and deg(ya) = 1), The morphism α de�ned above is a graded morphism. Ideals
J1 and J2 both are homogeneous ideals, and α(J2) = J1.LetK1 (resp. K2) be the 
losed subs
heme of the proje
tive s
heme ProjC[q±, z][y1, . . . , yr](resp. ProjC[q±, z][xρ, ρ ∈ ∆(1)]) de�ned by J1 (resp. J2). Also put :

π1 : ProjC[q
±, z][y1, . . . , yr] −→ SpecC[q±, z] = T× C

π2 : ProjC[q
±, z][xρ, ρ ∈ ∆(1)] −→ SpecC[q±, z] = T× Cthe natural proje
tions.By De�nition of U (Notation 3.34), and using Remark 3.35, we �nd : (T×C) \ π2(K2) =

U × C. Sin
e the isomorphism α satis�es α(J2) = J1, we have(4.9) (T× C) \ π1(K1) = U × C.Consider now the a�ne spa
e SpecC[q±, z][y1, . . . , yr] (before proje
tivization) and the
losed subvariety K ′
1 de�ned by J1. By de�nition, the 
hara
teristi
 variety C is the redu
eds
heme of K ′

1.The ideal J1 is 
ontained in 〈y1, . . . , yr〉 (this 
an be 
he
ked by 
onsidering the polynomials
R∞

d and the relation α(R∞
d ) = σ(�d)). It follows that the zero se
tion of the morphism :

π′
1 : SpecC[q

±, z][y1, . . . , yr] −→ SpecC[q±, z] = T× Cis 
ontained in the support K ′
1.On the other hand, the relation (4.9) implies that π−1

1 (U) ∩ K1 = ∅ whi
h means thatthe support of π′−1
1 (U × C) ∩ K ′

1 is 
ontained in the zero se
tion of π′
1. Indeed, the ideal

〈y1, . . . , yr〉 is the irrelevant ideal of the graded ring C[q±, z][y1, . . . , yr].This shows that the support of π′−1
1 (U × C) ∩K ′

1, i.e., the 
hara
teristi
 variety C of Grestri
ted to U × C, is equal to the zero se
tion of π′
1|U .Theorem 4.10. � Let L1, . . . ,Lk be globally generated line bundles su
h that (ωX ⊗ L1 ⊗

· · · ⊗ Lk)
∨ is nef. Let U be the open subset of T de�ned in Notation 3.34. The D-module

M|U×C is lo
ally free of rank dimH2∗(X). 33



Proof. � The following proof is similar to the proof of Theorem 2.14 of [RS10℄. Modi�
a-tions as to be made in order to take 
are of the twisted fan and the q's variables.Theorem 4.5 implies that M|U×C is a 
oherent OU×C-modules. By standard arguments(see for instan
e Theorem 1.4.10 of [HTT08℄), for z 6= 0 this implies that M|U×C∗ is lo
allyfree. It is enough to prove that M/zM is lo
ally free of rank dimH2∗(X) and that thelo
ally free sheaf M |U×C∗ is of the same rank.Step 1. Show that M/zM is lo
ally free of rank H2∗(X).Let B be the Batyrev ring Λ[xρ]/ 〈QSR+Lin〉. Lo
alizing the ring Λ by inverting Qd, d ∈NE(X)Z, we obtain the ring C[q±] = C[q±1 , . . . , q
±
r ]. Using Notation 3.2, there is an isomor-phism of C[q±]-algebra :

B ⊗ C[q±] = C[q±, xρ]/〈QSR+Lin〉 −→ M/zM = D′/(〈z〉+G′)

(4.11)
xρ 7−→

{∑r
a=1D

a
ρzδqa if ρ ∈ ∆

base

(1)= {ρθ, θ ∈ Σ(1)}
∑r

a=1 L
a
i zδqa if ρ = ρLi

∈ ∆
v.b.

(1)= {ρL1 , . . . , ρLk
}(where[Li] =

∑
a L

a
i Ta). By Theorem 3.26, the Batyrev ring B is lo
ally free of rank

dimH2∗(X) over the neighbourhood U . Hen
e M/zM is lo
ally free of rank dimH2∗(X)over the open subset U = U ∩T.Step 2. We use the notation of the beginning of the proof of Theorem 4.5. On z 6= 0, weshow that the lo
ally free sheaf M |U×C∗ is of rank H2∗(X). To prove this, we will use 2substeps.2.1 Show that the module M := D/G ≃ M′ := D′/G′ (see (4.6)) is isomorphi
 to a 
lassi
alGKZ-system of Adolphson (see [Ado94℄). Noti
e that most of this step is done for any
z ∈ C (in
luded z = 0).2.2 We 
ompute that the rank is dimH2∗(X) at one point using 
orollary 5.11 of [Ado94℄.Step 2.1 We �rst write the GKZ system M′ := D′/G′ in a more 
lassi
al way in view ofAdolphson's result ([Ado94℄).Let {λρ, ρ ∈ ∆(1)} be a set of indeterminates. Consider the following non 
ommutativerings :� A1 := C[λ±, z]〈z∂λ〉 = C[λρ, λ−1

ρ , ρ ∈ ∆(1), z]〈z∂λρ , ρ ∈ ∆(1)〉. where the relations are :
z∂λρ .λρ = λρ.z∂λρ + z and all the other variables are 
ommuting ;� A2 := C[q±, z]〈zδλ〉 = C[qa, q−1

a , a ∈ {1, . . . , r}, z]〈zδλρ , ρ ∈ ∆(1)〉. where the rela-tions are : zδλρ .qa = qa.zδλρ + Da
ρzqa where the Da

ρ are numbers de�ned by : [Dρ] =∑r
a=1D

a
ρTa in H2(Y,Z) .In view of [CK99℄ and its Erratum to proposition 5.5.4, we put in A1 : ℓ :=

∏
ρ∈∆

v.b.

(1)
λρ.There exists two morphisms of non
ommutative C[z]-algebras, f and g de�ned by :

f : A2 −֒→ A1

zδλρ 7−→ ℓ−1(λρ.z∂λρ)ℓ =

{
λρ.z∂λρ if ρ ∈ ∆

base

(1)

λρ.z∂λρ + z if ρ ∈ ∆
v.b.

(1)

qa 7−→ (−1)c1(E).Baλd =
∏

ρ∈∆
base

(1)

λ
Da

ρ
ρ .

∏

ρ∈∆
v.b.

(1)

(−λρ)D
a
ρ ,and 34



g : A2 −→ D′

zδλρ 7−→
{
D̂ρ :=

∑r
a=1D

a
ρzδqa , if ρ ∈ ∆

base

(1)

−L̂i := −∑r
a=1 L

a
ρzδqa , if ρi ∈ ∆

v.b.

(1)and g(qa) = qa. The minus sign 
omes be
ause the fan ∆ is the one of the dual bundle (seeProposition 3.3). The morphism f is inje
tive. The morphism g is surje
tive and its kernelis the left ideal generated by the following set :
{
Zu =

∑

ρ∈∆(1)

〈vρ, u〉zδλρ , u ∈M ′
}

⊂ A2.The GKZ ideal 
an be de�ned in A1 and A2 :In A1, set 2
′′
d := (z∂λ)

d+ − (z∂λ)
d− for any d ∈ H2(X,Z) and Z ′

u :=
∑

ρ〈u, vρ〉λρz∂λρ −
〈u, β〉z for any u ∈M ′, where β is the 
onstant ve
tor (0N ,−1, . . . ,−1) ∈ N×Zk. The GKZideal is

G1 = 〈2′′
d,Z ′

u, d ∈ H2(X,Z), u ∈M ′〉 ⊂ A1.In A2 set :
2

′
d :=

∏

ρ∈∆
base

(1)

d+ρ −1∏

ν=0

(zδλρ − νz)
∏

ρ∈∆
v.b.

(1)

d+ρ∏

ν=1

(−zδλρ + νz)(4.12)
− qd

∏

ρ∈∆
base

(1)

d−ρ −1∏

ν=0

(zδλρ − νz)
∏

ρ∈∆
v.b.

(1)

d−ρ∏

ν=1

(−zδλρ + νz),and Zu :=
∑

ρ〈u, vρ〉zδλρ . The GKZ ideal in A2 is G2 := 〈2′
d,Zu, d ∈ H2(X,Z), u ∈M ′〉 .As g(zδλρi

) = −L̂i for any ρi ∈ ∆
v.b.

(1), we have :
f(2′

d) =
∏

ρ∈∆
base

(1)

λd
+
ρ

ρ

∏

ρ∈∆
v.b.

(1)

(−λρ)d
+
ρ · 2′′

d f(Zu) = Z ′
u

g(2′
d) = 2dwhi
h gives f(G2) = G1 and g(G2) = G′. Passing to the quotient, the morphism g gives anisomorphism :

A2/G2
∼−→ D′/G′ = MMoreover, viewing C[λ±, z] as a C[q±, z]-algebra via the inje
tive morphism

ϕ : C[q±] −֒→ C[λ±](4.13)
qa 7−→ (−1)c1(E).Baλdwe get an isomorphism :

A2 ⊗C[q±,z] C[λ
±, z]

∼−→ A1whi
h sends zδρ to λρ.z∂q . This gives an isomorphism :
A2/G2 ⊗C[q±,z] C[λ

±, z]
∼−→ A1/G1.In the following, we will write �the module is lo
ally free over an open� meaning �the sheafasso
iated to the module is lo
ally free�. As ϕ is inje
tive, we have A2/G2 ≃ D′/G′ islo
ally free at a point n of SpecC[q±, z] if and only A1/G1 is lo
ally free at any point n′ of

SpecC[λ±, z] 
ontained in the �ber of the surje
tive morphism SpecC[λ±, z] → SpecC[q±, z].35



Now we lo
alize this C[q±, z]-module above z 6= 0. By Theorem 4.5, the module
D′/G′ ⊗C[q±,z] C[q±, z±] is lo
ally free over U ×C∗. By the above isomorphisms, the module
A1/G1⊗C[λ±,z]C[λ±, z±] is also lo
ally free over ((ϕ#)−1(U))×C∗ where ϕ# : (C∗)∆(1) → (C∗)ris the s
heme morphism asso
iated to ϕ (see (4.13)). On the other hand, we have the iso-morphism :

A1 ⊗C[λ±,z] C[λ
±, z±]

∼−→ C[λ±, z±] 〈∂λ〉
λρ 7−→ zλρ

(z∂λρ) 7−→ ∂λρ

z 7−→ zwhi
h sends 2′′
d = (z∂λ)

d+−(z∂λ)
d− to 2′′′

d := ∂d
+

λ −∂d−λ and Z ′
u to z.(∑ρ〈u, vρ〉λρ∂λρ−〈u, β〉).Put Z ′′

u :=
∑

ρ〈u, vρ〉λρ∂λρ − 〈u, β〉, the module A1/G1 ⊗C[λ±,z] C[λ±, z±] is isomorphi
, as a
C[λ±]⊗C C[z±]-module to

C[λ±]〈∂λ〉/ 〈2′′′
d ,Z ′′

u〉 ⊗C C[z±].We dedu
e that C[λ±]〈∂λ〉/ 〈2′′′
d ,Z ′′

u〉 is lo
ally free over (ϕ#)−1(U).Step 2.2 Let us 
ompute the rank of the lo
ally free module C[λ±]〈∂λ〉/ 〈2′′′
d ,Z ′′

u〉 over
(ϕ#)−1(U) using Corollary 5.11 of [Ado94℄. In view of the lo
al freeness, we just need to
ompute the rank at one point.Adolphson asso
iates a Laurent polynomial to the module C[λ±]〈∂λ〉/ 〈2′′′

d ,Z ′′
u〉, denotedby fλ. We do not need to give the pre
ise expression of fλ for the following. Corollary 5.11of [Ado94℄ tells us that over the following set

{(λρ) ∈ (C∗)∆(1) | fλ is non degenerated}the rank is (n+k)!Vol(Γ∆) where Γ∆ is the 
onvex hull in N ′
R of the points {0, vρ, ρ ∈ ∆(1)}.This set is a nonempty Zariski open subset of (C∗)∆(1). By density, this Zariski open interse
tsthe Zariski open subset (ϕ#)−1(U) so that the rank is equal to (n + k)!Vol(Γ∆).Denote by ΓΣ the 
onvex hull in NR of the points {0, vρ, ρ ∈ Σ(1)}. Show that (n +

k)!Vol(Γ∆) = n!Vol(ΓΣ) = dimH2∗(X). When all the Li are nef, the fan ∆ is 
onvex, and
0 is a vertex of this 
onvex hull. As the divisor −KX −∑k

i=1 Li is nef, then the ve
tors
(v1, . . . , vk) ∈ N × Zk de�ned by the tori
 divisors Li all are either verti
es or 
ontained infa
es of Γ∆ whi
h do not 
ontain 0. Hen
e, Γ∆ is a disjoint union of the simplexes Γ∆(τ) :=
(v1, . . . , vk, vρθ , θ ∈ τ) where τ is any simplex de�ned by generating ve
tors of the rays in Σ(we use the notations of Se
tion 3.1). The volume of a simplex Γ∆(τ) 
an be 
omputed by adeterminant on these ve
tors whi
h simpli�es into the volume of ΓΣ(τ) := (vρθ , θ ∈ τ). Sin
ethe union of these simplexes is ΓΣ, we have (n + k)!Vol(Γ∆) = n!Vol(ΓΣ) whi
h is exa
tly
dimH2∗(X).Theorem 4.14. � Let L1, . . . ,Lk be ample line bundles su
h that (ωX ⊗L1 ⊗ · · · ⊗Lk)

∨ isnef. Let U be the open subset of T de�ned in Notation 3.34.1. On z = 0, the OU -module (Mres/zMres)|U is lo
ally free of rank dimCH2∗(X) =
dimCH

2∗(X)− dimC ker(mctop).2. On z 6= 0, the OU×C∗-module Mres |U×C∗ is lo
ally free of rank less than dimCH2∗(X).Remark 4.15. � Using Mirror symmetry, we will also prove that Mres |U×C is lo
ally freeof rank dimCH2∗(X). We refer to Remark 5.11 for a pre
ise explanation.Proof of Theorem 4.14. � On z 6= 0, Mres|U×C∗ is lo
ally free. By Nakayama's lemma, it isenough to prove the �rst statement.Consider the residual Batyrev ring BRes = Λ[xρ]/(G : xtop) de�ned in Subse
tion 3.6. Thisis a Λ-algebras. Denote by Bres the asso
iated sheaf of rings on V = SpecΛ. When restri
ted36



to the neighbourhood U of the large radius limit, Bres is lo
ally free of rank dimCH2∗(X) byProposition 3.40. Then, Lemma 4.16 below shows that the sheaf Mres/zMres is a sheaf of
ommutative rings de�ned over U whi
h is isomorphi
 to the Bres|U .In the following, we use notations of the proof of Theorem 4.10. The set P of primitive
lasses is de�ned in Notation 3.19. Let S := 〈2′
d, d ∈ P〉 be the �square� ideal in A2 :=

C[q±, z]〈zδλ〉. Put ĉ λ
top :=

∏
ρ∈∆

v.b.

(1)
zδλρ ∈ A2. Do not 
onfuse it with ĉtop :=

∏k
i=1 L̂i ∈ D′written in terms of zδq's operators. Re
all that

QSR := 〈Rd := xd
+ − qdxd

−

, d ∈ NE(Y )Z〉We put :
Quot(ĉ λ

top, S) :=
〈
P ∈ A2, ĉ

λ
topP ∈ S

〉

(QSR : xtop) :=
{
P ∈ C[q±][xρ], P.xtop ∈ QSR

}We introdu
ed xtop :=
∏

ρ∈∆
v.b.

(1)
xρ in the beginning of Subse
tion 3.6. Noti
e that (QSR : xtop)is the usual quotient ideal of 
ommutative algebra. The set {P ∈ C[q±][xρ], xtopP ∈ QSR}is an ideal. However, in the non 
ommutative ring A2, the set {P ∈ A2, ĉ

λ
topP ∈ S

} is not anideal anymore (
f. footnote 3).Lemma 4.16. � 1. There exists an isomorphism of 
ommutative C[q±]-algebras :
h : A2/(Quot(ĉ λ

top,G2) + 〈z〉) −→ C[q±][xρ]/(QSR : xtop)

z 7−→ 0

zδλρ 7−→
{
xρ if ρ ∈ ∆

base

(1)

−xρ if ρ ∈ ∆
v.b.

(1)2. We pass to the quotient by linear ideals i.e.,� on the left side, we quotient by 〈Zu :=
∑

ρ∈∆(1)〈u, vρ〉zδρ, for u ∈M ′, 〉� on the right side, we quotient by 〈Zu :=
∑

ρ∈∆(1)〈u, vρ〉xρ, for u ∈M ′.to obtain an isomorphism :
Mres/zMres −→ Bres.between the residual GKZ-module restri
ted to z = 0 and the residual Batyrev ring.Proof. � The se
ond statement follows easily from the �rst one.The morphism h is well de�ned sin
e h(2d) = Rd, h(ĉ λ

top) = xtop and that setting z = 0makes the algebra A2 be
omes 
ommutative. It is surje
tive by 
onstru
tion. We 
onstru
tits inverse morphism. Consider the isomorphism of 
ommutative C[q±]-algebras, where P issent on P̂ :
C[q±][xρ] −→ A2/ 〈z〉(4.17)

xρ 7−→ x̂ρ = zδλρWhere the overline notation means its image in the quotient A2/ 〈z〉. Re
all that for d ∈
H2(Y,Z), we denote Rd := xd

+ − qdxd
− . We have R̂d = 2

′
d, and any element of QSR mapsto G2 (see after (4.12) for the de�nition of G2).Let P be in (QSR : xtop), we show that P̂ belongs to Quot(ĉ λ

top,G2). Then the morphismde�ned in (4.17) will indu
e the inverse of h.There exists a set of polynomials {Ad, d ∈ P} su
h that:
xtopP =

∑

d∈P
Ad(q, x)Rd(q, x)(4.18) 37



For su
h an expression above 
onsider the biggest (using the order ≺ϕ see �3.4.a), leadingmonomial that appears in Ad(q, x)Rd(q, x) for d ∈ P. Among all the expression of (4.18),denote by m(P ) the smallest of these leading monomials that is :
m(P ) := min

(Ad)d∈P
P=

∑
AdRd

max {Lm(AdRd), d ∈ P}where Lm(S) is the leading monomial of a polynomial S. Noti
e thatm(P ) 
ould be di�erentthan Lm(P ).As the fun
tion ϕ used to de�ne the order ≺ϕ is asso
iated to an ample divisor we 
anassume �up to a 
hange of ample divisor� that ϕ(xρ) < 0 for any ρ ∈ ∆(1). In parti
ular, theset of monomial smaller than a �xed monomial m is �nite, and possess a smaller element,namely the monomial 1. We will prove by indu
tion on the monomial m :
H(m) = “∀P ∈ (xtop : QSR), m(P ) ≺ϕ m =⇒ P̂ ∈ Quot(ĉ λ

top, S)”If m = 1, then xtopP is a 
onstant polynomials, whi
h is only possible if P = 0. Then wehave P̂ ∈ Quot(ĉ λ
top, S).Put m := m(P ) and 
onsider a minimal expression for (4.18) i.e., polynomials Ad for

d ∈ P su
h that :
xtopP =

∑

d∈P
AdRd with max {Lm(AdRd), d ∈ P} = m.Let P∗ be the subset of P su
h that Lm(AdRd) = m. This set is not empty by assumption.If d is in P∗, Ad 
an be written :

Ad = αdnd +Bd,where αd ∈ C[q±], nd = Lm(Ad), Lm(AdRd) = Lm(Ad).Lm(Rd) = nd.x
d+ = m and

Lm(BdRd) ≺ϕ m.If d ∈ P \ P∗ we simply set Bd := Ad, so that :
xtopP =

∑

d∈P∗

αdndRd +
∑

d∈P
BdRdwith Lm(BdRd) ≺ϕ m for any d ∈ P.Consider two 
ases :Case 1 : xtop divides m. Then, for any d ∈ P∗, xtop divides ndx

d+ . Sin
e for any ρ ∈ ∆
v.b.

(1),the variable xρ does not appear in xd+ (be
ause the Li's are ample and P ⊂ NE(Y )), then
xtop divides nd for any d ∈ P∗. Set nd = xtopn

′
d. We �nd :

xtopP = xtop

(
∑

d∈P∗

αdn
′
dRd

)
+
∑

d∈P
BdRd.and the polynomial S = P −∑d∈P∗ n′

dRd is in (QSR : xtop) and satisfy m(S) ≺ϕ m(P ). Byindu
tion, the operator Ŝ ∈ A2/〈z〉 is in Quot(ĉ λ
top, S). Moreover, the operator

P̂ = Ŝ +
∑

d∈P∗

αdn̂
′
dR̂d = Ŝ +

∑

d∈P∗

αdn̂
′
d2

′
dis also in Quot(ĉ λ

top, S).Case 2 : xtop does not divide m. Sin
e (∑d∈P∗ αdndRd

)
+
∑

d∈P BdRd = xtopP , the
oe�
ient of m in the sum (
∑

d∈P∗ αdndRd) must be zero. This 
oe�
ient is exa
tly∑d αd.Fix a 
lass c in P∗; then αc = −∑d∈P∗\{c} αd, and we have :
∑

d∈P∗

αdndRd = αcncRc +
∑

d∈P∗\{c}
αdndRd =

∑

d∈P∗\{c}
αd(ndRd − ncRc)38



But we have ndRd − ncRc = nd(x
d+ − qdxd

−
) − nc(x

c+ − qdxc
−
) and ndx

d+ = ncx
c+ = m,whi
h gives

ndRd − ncRc = −ndq
dxd

−

+ ncq
dxc

−

.(4.19)Moreover, xtop divides any xd
− for any d ∈ P (be
ause the Li's are ample and P ⊂

NE(Y )). Denote by ǫ = (ǫρ)ρ∈∆(1) the multi-index that equals to 0 for ρ ∈ ∆
base

(1) and 1 for
ρ ∈ ∆

v.b.

(1). We have xd− = xtopx
d−−ǫ. This gives, in (4.19) :

ndRd − ncRc = xtop

(
ncq

dxc
−−ǫ − ndq

dxd
−−ǫ
)
.For d ∈ P∗ \ {c} set Cd := ncq

dxc
−−ǫ − ndq

dxd
−−ǫ. We get :

xtopP = xtop


 ∑

d∈P∗\{c}
αdCd


+

∑

d∈P
BdRd.The polynomial S := P−

(∑
d∈P∗\{c} αdCd

) is in (QSR : xtop) and satis�esm(S) ≺ϕ m(P ).By indu
tion, the operator Ŝ is in Quot(ĉ λ
top, S). Moreover, for any d ∈ P∗ \{c}, the equality

xtopCd = ndRd − ncRc gives in A2/〈z〉 :
ĉ λ
topĈd = n̂d2

′
d − n̂c2

′
c.We dedu
e that Ĉd is in Quot(ĉ λ

top, S). Finally, we have
P̂ =


 ∑

d∈P∗\{c}
αdĈd


+ Ŝ ∈ Quot(ĉtop\S).

5. Isomorphisms between quantum D-modules and GKZ systems via mirrorsymmetry5.1. Re
alls on Mirror symmetry. � We start by some re
alls on mirror symmetry inthe framework of Givental. Here, we suppose that X is a smooth tori
 proje
tive varietyendowed with k globally generated line bundles L1, . . . ,Lk su
h that (ωX ⊗L1 ⊗ · · · ⊗ Lk)
∨is nef. We put E = ⊕k

i=1Li.We introdu
e a 
ohomologi
al multi-valued fun
tion whi
h will play a 
entral role in mirrorsymmetry. Re
all that t0 is the 
oordinate on H0(X). In the de�nition below, we use thenotation E0,1,d(1) for the ve
tor bundle on X0,1,d de�ned in Subse
tion 2.1.a.De�nition 5.1. � We de�ne lo
al se
tion J tw of F = H2∗(X) × (H0(X) × V × C) →
(H0(X)× V × C) by :

J tw(t0, q, z) := et0/zqT/z


1 + z−1

∑

d∈H2(X,Z)

d6=0

qde1∗

(
ctop(E0,1,d(1))

z − ψ
∩ [X0,1,d]

vir

)

where t0 is in H0(X), q is in V , z is in C, ψ is de�ned before De�nition 2.5 and qT/z =

q
T1/z
1 . . . . .q

Tr/z
r := ez

−1
∑r

a=1 Ta log(qa) as in the de�nition of the fun
tion Ltw (Formula 2.16).The relation between this fun
tion J tw and Ltw is given by the following proposition.39



Proposition 5.2. � We have
ctop(E)J tw(t0, q, z) = et0/zqT/zctop(E)

(
1 +O(z−2)

)

= et0/zqT/z


ctop(E) + z−1

s−1∑

a=0

∑

d∈H2(X,Z)

d6=0

qd

〈
˜Tactop(E)
z − ψ

〉

0,1,d

T a




=
s−1∑

a=0

S
(
Ltw(t0, q, z)Ta, 1

)
T a

= ctop(E)(Ltw(t0, q, z))
−1
1Proof. � The �rst equality follows from the de�nition of J tw(t0, q, z).By de�nition of twisted Gromov-Witten invariant and proje
tion formula, we have :

〈
˜Tactop(E)
z − ψ

〉

0,1,d

=

∫

[X0,1,d]vir
e∗1(Ta ∪ ctop(E)) ∪

ctop(E0,1,d(1))
z − ψ

=

∫

X

Ta ∪ ctop(E) ∪ e1∗
(
ctop(E0,1,d(1))

z − ψ
∩ [X0,1,d]

vir

)We dedu
e the se
ond equality from
s−1∑

a=0

〈
˜Tactop(E)
z − ψ

〉

0,1,d

T a = ctop(E)e1∗
(
ctop(E0,1,d(1))

z − ψ
∩ [X0,1,d]

vir

)
.Let us show the third equality. Using Proposition A.2 (twisted Sn invarian
e) and Propo-sition A.4 (twisted string equation) we dedu
e that for d 6= 0 in H2(X,Z),

〈
Ta

z − ψ
, c̃top(E)

〉

0,2,d

= z−1

〈
˜Tactop(E)
z − ψ

〉

0,1,d

(5.3)Using Formula (2.16) for Ltw(q, z), we have
s−1∑

a=0

S
(
Ltw(t0, q, z)Ta, 1

)
T a

= et0/z
s−1∑

a=0

(
qT/zTa, 1

)tw
T a

+ et0/z
s−1∑

a=0

s−1∑

b=0

∑

d∈H2(X,Z)

d6=0

qd
〈
qT/zTa
z − ψ

, T̃b

〉

0,2,d

(
T b, 1

)tw
T a

= et0/z


q

T/zctop(E) +
s−1∑

a=0

∑

d∈H2(X,Z)

d6=0

qd
〈
qT/zTa
z − ψ

, c̃top(E)
〉

0,2,d

T a


As the expression above does not depend on the 
hoi
e of a basis. Let us 
hoose the basis

(q−T/zTa)a∈{0,...,s−1} whose dual basis is (qT/zT a)a∈{0,...,s−1}. Then we get40



s−1∑

a=0

(et0/zLtw(q,−z)Ta, 1)twT a

= et0/zqT/z


ctop(E) +

s−1∑

a=0

∑

d∈H2(X,Z)

d6=0

qd
(
〈 Ta
z − ψ

, c̃top(E)
〉

0,2,d

T a


Then you apply (5.3) and we get the desired equality.Show the last equality. From Proposition 2.20, we dedu
e that

S(Ltw(t0, q, z)Ta, L
tw(t0, q, z)1) = S(Ta, 1).Re
all that (·, ·) is the Poin
aré Duality on X . We dedu
e that

s−1∑

a=0

S
(
Ltw(t0, q, z)Ta, 1

)
T a =

s−1∑

a=0

(
Ta, ctop(E)

(
Ltw(t0, q, z)

)−1
1

)
T a

= ctop(E)(Ltw(t0, q, z))
−1
1.We dedu
e a relation with L.Corollary 5.4. � We have, in the redu
ed 
ohomology ring H2∗(X)/ kermctop :

J tw(t0, q, z) = (L(t0, q, z))
−1
1.Proof. � The last equality of Proposition 5.2 implies that J tw(t0, q, z) = (Ltw(t0, q, z))−11whi
h is (L(t0, q, z))−1

1 by de�nition of L (
f. Formula (2.32)).Re
all that to a ray θ ∈ Σ(1), we asso
iate a tori
 divisor denoted by Dθ. For any 
lasses
d ∈ H2(X,Z), put

dθ :=

∫

d

Dθ and dLi
:=

∫

d

Li =

∫

d

c1(Li).We de�ne a 
ohomologi
al multi-valued fun
tion by
I(q, z) := qT/z

∑

d∈H2(X,Z)

qdAd(z)(5.5)where
Ad(z) :=

k∏

i=1

∏dLi
m=−∞([Li] +mz)∏0
m=−∞([Li] +mz)

∏

θ∈Σ(1)

∏0
m=−∞([Dθ] +mz)

∏dθ
m=−∞([Dθ] +mz)

qT/z := ez
−1

∑r
a=1 Ta log(qa).The mirror theorem of Givental (
f. [Giv98, Theorem 0.1℄ and [CG07, Corrolary 5℄. Seealso [CK99, Theorem 11.2.16℄ ) tells us the following.Theorem 5.6. � [CG07, Corrolary 5℄ Let X be a smooth tori
 proje
tive variety with kglobally generated line bundles L1, . . . ,Lk su
h that (ωX⊗L1⊗· · ·⊗Lk)

∨ is nef. There existsa neighborhood W of the large radius limit q = 0 in V, de�ning an open set W := W ∩T in
T (
f. Notation 2.13) and there exists a single-valued map

Mir : W ⊂ T → H0(X)⊕ V ⊂ H0(X)⊕T41



su
h that
Mir(q) = (0, q) +O(q) and J tw(Mir(q), z) =

I(q, z)

F (q)where F (q) is an invertible fun
tion whi
h is the �rst term in the development of the fun
tion
I in the power of z−1 that is

I(q, z) := F (q)1+O(z−1).Proof. � Most of the statements are proved in Corrolary 5 of [CG07℄. The single-valued ofthe map Mir is proved in the se
tion 4.1 of [Iri09℄. The two things that are not proved arethe statements about the existen
e of the neighborhood W and the asymptoti
 of Mir. To
ompute the mirror map, we develop the fun
tion I in the power of z−1, we have
I(q, z) = F (q)1+ z−1

r∑

a=0

Ga(q)Ta +O(z−2).where F (0) = 1. Then we have :
Mir(q) := Ψ ◦ π

(
F (q)−1

r∑

a=0

Ga(q)Ta

)where π the quotient map H0(X) ⊕ H2(X) → H0(X) ⊕ H2(X)/H2(X,Z) and Ψ is anisomorphism between H2(X)/H2(X,Z) and T (Formula (2.10)) We will prove that
F (q)−1

r∑

a=0

Ga(q)Ta =

r∑

a=1

Ta log(qa) +O(q)(5.7)This will imply both statements on the map Mir.To prove equality (5.7), we need to develop the fun
tion I with respe
t to z−1. Denote byNE(X)Z the (integral) Mori 
one of X . From [CK99, Proof of Proposition 5.5.4 p.100℄ wededu
e that the terms in the de�nition of the I fun
tion (see (5.5)) vanish when d /∈ NE(X)Z,that is we have :
I(q, z) = qT/z

∑

d∈NE(X)Z

qdAd(z).(5.8)As for any i ∈ {1, . . . , k} the divisor Li is nef(5), we dedu
e that dLi
≥ 0 for d ∈ NE(X)Zthat is

Ad(z) =

k∏

i=1

dLi∏

m=1

([Li] +mz)
∏

θ∈Σ(1)

∏0
m=−∞([Dθ] +mz)

∏dθ
m=−∞([Dθ] +mz)We develop the 
ohomologi
al fun
tion I(q, z) with respe
t to z−1 to the order 1. For any

θ ∈ Σ(1), put ε(dθ) = 1 if dθ < 0 and 0 otherwise. We �nd that I(q, z) is equal to
∑

d∈NE(X)Z

qdzd(KX+
∑

i Li)
−∑

θ∈Σ(1) ε(dθ)(−1)
∑

θ∈Σ(1) d
−
θ

(
k∏

i=1

dLi
!

)
∏

θ∈Σ(1)

(−[Dθ])
ε(dθ)

(d−θ − ε(dθ))!

d+θ !

1+ z−1




r∑

a=1

Ta log(qa) +

k∑

i=1

[Li]

dLi∑

m=1

1

m
−
∑

θ∈Σ(1)

[Dθ]

|dθ|−ε(dθ)∑

m=1

1

m


+O(z−2)




(5) Re
all that for a tori
 variety whose support of its fan is 
onvex, a line bundle L is globally generated ifand only if L is nef (
f. [Mus, Proposition 7 p.22 
hapter VI℄).42



We de
ompose the Mori 
one in four disjoint subsets :
A := {d ∈ NE(X)Z | d(KX+

∑
i Li) = 0 and dθ ≥ 0, ∀θ ∈ Σ(1)}

B := {d ∈ NE(X)Z | d(KX+
∑

i Li) = 0 and ∃!θ0 ∈ Σ(1), ε(dθ0) = 1}
C := {d ∈ NE(X)Z | d(KX+

∑
i Li) = −1 and ε(dθ) = 0, ∀θ ∈ Σ(1)}

D := NE(X)Z \ {A
∐

B
∐

C}.As −KX − L1 − · · · − Lk is nef, for any d ∈ NE(X)Z we have d(KX+L1+···+Lk) ≤ 0. So the�rst term in the Taylor expansion is the 
onstant term whi
h appears only for d ∈ A. Thisterm takes value in H0(X) i.e., it is F (q)1 with F the following s
alar fun
tion :
F (q) :=

∑

d∈A
qd
∏k

i=1 dLi
!∏

θ∈Σ(1) dθ!
.Noti
e that this fun
tion is invertible in a neighborhood of q = 0 be
ause d = 0 belongs to

A so that F (q) 6= 0 in a suitable neighborhood of q = 0.Compute the term in front of z−1 :1. from A, we get the following element in H2(X)

z−1


∑

d∈A
qd
∏k

i=1 dLi
!∏

θ(dθ)!



(

r∑

a=1

Ta log qa

)
+

k∑

i=1

[Li]

dLi∑

m=1

m−1 −
∑

θ∈Σ(1)

[Dθ]

dθ∑

m=1

1

m




2. from B, we get

z−1[Dθ0]

(
∑

d∈B
qd(−1)−dθ0−1

(
k∏

i=1

dLi
!

)
(−dθ0 − 1)!

∏

θ 6=θ0

1

(dθ)!

)
∈ H2(X)3. from C, we get

z−1
1

(
∑

d∈C
qd
∏k

i=1 dLi
!∏

θ dθ!

)
∈ H0(X)Now we develop with respe
t to q when q is near 0. As d = 0 belongs only to subset A, wededu
e Equality (5.7).Remark 5.9. � If we are in the most famous 
ase of the quinti
 in X := P4 that is L =

O(5). We have NE(X)Z = N, L⊗ωX is trivial, and the tori
 divisor Dθ satis�es [Dθ] = H ∈
H2(X), where H = c1(O(1)). For any d ∈ NE(()ZX) ⊂ H2(X,Z), we have dθ = d ≥ 0 and
dL = 5d. The subset A is N and B, C are empty so that

F (q) =
∑

d≥0

qd
(5d)!

(d!)5and the term in front of z−1 is
∑

d∈N
qd
(5d)!

(d!)5

(
H log q + 5H

5d∑

m=1

1

m
− 5H

d∑

m=1

1

m

)

=H

[
F (q) log q + 5

(
∑

d≥1

qd
(5d)!

(d!)5

5d∑

m=d+1

1

m

)]
.43



5.2. Isomorphism's theorems. � We 
an now state our main theorem. Re
all fromSe
tion 2 that we de�ned QDM(X, E) := (F,∇, S, FZ) and QDM(X, E) := (F ,∇, S, F Z)where F and F are bundle over V ×C. We denote by F (resp. F) the sheaf of se
tions of F(resp. F ).Re
all that W is a neighborhood of the large radius limit q = 0 in T ⊂ V. In Theorem5.6, we de�ned a map
Mir× id : W × C → H0(X)× V × C

(q, z) 7→ (Mir(q), z)Re
all from Theorem 4.10, the sheaf M |U×C is a ve
tor bundle of rank dimCH2∗(X) withan integrable 
onne
tion. Noti
e that for the sheaf Mres we only have the result of Theorem4.14 that we do not have a priori the lo
al freeness over U×C. The lo
al freeness forMres willfollow from Theorem 5.10 below (see Remark 5.11). Re
all that M is de�ned (see De�nition4.4) as a quotient by an ideal denoted G. Using Notation 4.1, we put ĉtop :=
∏k

i=1 ĉ1(Li)that is
ĉtop :=

k∏

i=1

r∑

a=1

Li
azδawhere for i ∈ {1, . . . , k} and c1(Li) :=

∑r
a=1 L

i
aTa.Theorem 5.10. � Let X be a smooth tori
 variety with k line bundles L1, . . . ,Lk su
h that

(ωX ⊗ L1 ⊗ . . .⊗ Lk)
∨ is nef. We put E := ⊕k

i=1Li. For a small real number ε in R>0, put
Wε := {(q1, . . . , qr) ∈ W | 0 < |qa| < ε}.There exists ε in R>0 su
h that1. If the line bundles L1, . . . ,Lk are globally generated, then we have the following isomor-phism of sheaf of OWε×C-modules :

M|Wε×C
∼−→ (Mir× id)∗(F ,∇)where Mir is the mirror map of Givental.2. If the line bundles L1, . . . ,Lk are ample, then we have the following 
ommutative dia-gram

M|Wε×C
∼

(Mir× id)∗(F ,∇)

Mres|Wε×C
∼

(Mir× id)∗(F ,∇)Remark 5.11. � Re
all that M |U×C is lo
ally free by Theorem 4.10. However, as far asis known at this point, Mres |U×C is only lo
ally free of expe
ted rank over U × {0} andlo
ally free (of a smaller or equal rank) over U × C∗ (Theorem 4.14). Theorem 5.10, givesus lo
al freeness of Mres |U×C (see the end of the proof).Theorem 2.42 says that under some 
onditions we have QDM(X, E) ≃ QDMamb(Z). Sowe dedu
e the following 
orollary.Corollary 5.12. � Let X be a smooth tori
 variety with k ample line bundles L1, . . . ,Lksu
h that (ωX⊗L1⊗· · ·⊗Lk)
∨ is nef. Let Z be the zeros of a generi
 se
tion of E := ⊕k

i=1Li.Assume that dimC Z ≥ 3. We have Mres|Wε×C is isomorphi
 to (Mir× id)∗(FZ
amb,∇Z

amb).Remark 5.13. � This 
orollary answer to the question addressed in the [CK99, p.94-95and p.101℄: �What di�erential equations shall we add to G to get an isomorphism with
QDMamb(Z) ?� 44



To prove the Theorem 5.10, we will need some preliminary results.We denote by Mir∗ ∇ the pullba
k 
onne
tion on the bundle (Mir× id)∗F → W ×C. Foran endomorphism u, we denote zu := exp(u log z).Proposition 5.14. � With the hypothesis of Theorem 5.10.1. The morphism
ϕ : M|Wε×C −→ (Mir× id)∗(F ,∇)

P (q, z, zδq, zδz) 7−→ Ltw(Mir(q), z)z−µzc1(TX⊗E∨)P (q, z, zδq, zδz)z
−c1(TX⊗E∨)zµJ tw(Mir(q), z)is well de�ned.2. The morphism above indu
ed a well de�ned morphism ϕ′ that make the following dia-gram 
ommutative.

M|Wε×C
ϕ

(Mir× id)∗(F ,∇)

π

Mres|Wε×C
∃ϕ′

(Mir× id)∗(F ,∇)Moreover the 
omposition morphism π ◦ ϕ sends
P (q, z, zδq, zδz) 7−→ P (q, z, zMir∗∇δq , zMir∗∇δz)1.Remark 5.15. � We should say a word on the de�nition of ϕ that seem quite 
ompli
ated.The reason is that we want the natural expression for ϕ′ whi
h is the one above. All theproblem 
omes from J tw(t0, q, z) is not Ltw(t0, q, z)

−1
1, but they are equal after 
upping by

ctop(E) (see Proposition 5.2). Of 
ourse if we 
up by ctop(E) the expression above of ϕ, itsimpli�es a lot, but it will not be an isomorphism anymore.Proof of Proposition 5.14. � From Theorem 5.6 we have that J tw(Mir(q), z) = I(q, z)/F (q).Lemma 5.16 shows that the morphism ϕ is well de�ned.Lemma 5.21 implies that for any R ∈ Quot(ĉtop,G) we have
Rz−c1(TX⊗E∨)zµI(q, z) = 0.This implies that ϕ′ is well de�ned. By Corollary 5.4, we have

J tw(Mir(q), z) = (L(Mir(q), z))−1
1.We dedu
e that

π ◦ ϕ(P (q, z, zδq, δz)) = P (q, z, zMir∗∇δq ,Mir∗∇δz)L(Mir(q), z)J tw(Mir(q), z)

= P (q, z, zMir∗∇δq ,Mir∗∇δz)1.Lemma 5.16. � Put qd :=∏r
a=1 q

∫
d
Ta

a =
∏r

a=1 q
da
a . For any d ∈ H2(X,Z), we have

�d

(
z−c1(TX⊗E∨)zµI(q, z)

)
= 0

Ê

(
z−c1(TX⊗E∨)zµI(q, z)

)
= 0.45



where
�d :=

k∏

i=1

d−Li∏

ν=1

(
L̂i + νz

) ∏

θ∈Σ(1)

d+θ −1∏

ν=0

(
D̂θ − zν

)

− qd
k∏

i=1

d+Li∏

ν=1

(
L̂i + νz

) ∏

θ∈Σ(1)

d−θ −1∏

ν=0

(
D̂θ − zν

)

Ê := zδz + ̂c1(TX ⊗ E∨) (
f. Notation 4.1)Proof. � In this proof, we denote dTX⊗E∨ :=
∫
d
c1(TX ⊗ E∨). For any α ∈ H2(X), we have

[µ, α] = α. This implies that
zµ
α

z
= αzµ.(5.17)From this we dedu
e that zµAd(z) = z−dTX⊗E∨Ad(1). Using the de�nition (5.5) of the 
oho-mologi
al fun
tion I, we dedu
e that

z−c1(TX⊗E∨)zµI(q, z) =
∑

d∈H2(X,Z)

qT+dz−c1(TX⊗E∨)−dTX⊗E∨Ad(1).(5.18)For any 
lass α ∈ H2(X), a dire
t 
omputation shows that
α̂qT+d = qT+dz(α + dα)(5.19)

zδz(z
−c1(TX⊗E∨)−dc1(TX⊗E∨)) = z(−c1(TX ⊗ E∨)− dTX⊗E∨)z−c1(TX⊗E∨)−dTX⊗E∨(5.20)We dedu
e that

zδz(q
T+dz−c1(TX⊗E∨)−dTX⊗E∨ ) = − ̂c1(TX ⊗ E∨)(qT+dz−c1(TX⊗E∨)−dTX⊗E∨ ).This implies the se
ond equality of the Lemme.Using Formula (5.19), the equality �d(z

−c1(TX⊗E∨)zµI(q, z)) = 0 for any d ∈ H2(X,Z)redu
ed to the equality below. For any d, d′ ∈ H2(X,Z), a dire
t 
omputation show that wehave
Ad−d′(1)

k∏

i=1

d+Li∏

ν=1

([Li] + (d− d′)Li
+ ν)

∏

θ∈Σ(1)

d+θ −1∏

ν=0

([Dθ] + (d− d′)θ − ν)

= Ad(1)
k∏

i=1

d−Li∏

ν=1

([Li] + dLi
+ ν)

∏

θ∈Σ(1)

d−θ −1∏

ν=0

([Dθ] + dθ − ν).Re
all that G is the ideal that de�ned G (
f. De�nition 4.4)Lemma 5.21. � If R(q, z, zδq, zδz) is in the quotient ideal Quot(ĉtop,G) then the 
oho-mologi
al valued fun
tion R(q, z, zδq, zδz)z−c1(TX⊗E∨)zµI(q, z) belongs to kermctop where mc :
α 7→ ctop(E) ∪ α.Proof. � In this proof, we denote dTX⊗E∨ :=

∫
d
c1(TX ⊗ E∨). From Formulas (5.19) and(5.20), we dedu
e that

R(q, z, zδq, zδz)q
T+dz−c1(TX⊗E∨)−dTX⊗E∨(5.22)

= R (q, z, z(T + d), z(−c1(TX ⊗ E∨)− dTX⊗E∨)) qT+dz−c1(TX⊗E∨)−dTX⊗E∨ .46



We de
ompose
R(q, z, zδq, zδz) =

∑

d′∈H2(X,Z)�nite qd
′

Rd′(z, zδq, zδz).From Equalities (5.18) and (5.22), we dedu
e that
R(q, z, zδq, zδz)z

−c1(TX⊗E∨)zµI(q, z) =
∑

d∈H2(X,Z)

qd+T z−c1(TX⊗E∨)−dTX⊗E∨Bd(z)where
Bd(z) :=

∑

d′∈H2(X,Z)�nite Rd′ (z, z(T + d), z(−c1(TX ⊗ E∨)− dTX⊗E∨))Ad−d′(1).To prove the lemme, it is enough to show that ctop(E)Bd(z) = 0 for all d ∈ H2(X,Z). Fromthe de�nition of the ideal Quot(ĉtop,G) and Lemma 5.16, we have
ĉtopR(q, z, zδq, zδz)z

−c1(TX⊗E∨)zµI(q, z) = 0

∑

d∈H2(X,Z)

qd+T z−c1(TX⊗E∨)−dTX⊗E∨

(
k∏

i=1

z ([Li] + dLi
)

)
Bd(z) = 0.As ctop(E)Bd : C → H∗(X) is a polynomial fun
tion in z, it is enough to prove that itvanishes on C∗. Assume z ∈ C∗. As q ∈ (C∗)r, we dedu
e that qT and z−c1(TX⊗E∨) areinvertible in H∗(X). Denote by Id := {i ∈ {1, . . . , k} | dLi

= 0} and Icd its 
omplementaryset. For i ∈ Icd, the 
lass [Li] + dLi
is invertible in H∗(X). So we dedu
e that
(
∏

i∈Id

[Li]

)
Bd(z) = 0.This implies that ctop(E)Bd(z) = 0 as ctop(E) =∏k

i=1[Li].Proof of Theorem 5.10. � We �rst prove that ϕ is an isomorphism. Theorem 4.10 impliesthat rkM = rkF . So it is enough to prove that the morphisms ϕ are surje
tive near thelarge radius limit point. From (5.8) and (5.19), we dedu
e that for any α ∈ H2(X), we have
α̂I(q, z) = qT/z(α +O(q)).As H2∗(X) is generated by H2(X), we dedu
e that for any a ∈ {0, s − 1}, there exits anoperator Pa(q, z, zδq) (noti
e that we do not need δz in the operator Pa) su
h that

Pa(q, z, zδq)I(q, z)F (q)
−1 = qT/z(Ta +O(q))where F (q) is de�ned in Theorem 5.6. From the de�nition of the fun
tion Ltw(t0, q, z)(
f. Equality (2.16)), we dedu
e that

Ltw(t0, q, z)γ = e−t0/zq−T/z(γ +O(q)).By the mirror Theorem 5.6 we have that
Mir(q) = q +O(q).Putting the last three arguments together, for any a ∈ {0, . . . , s− 1} we have

ϕ(Pa(q, z, zδq)) = Ltw(Mir(q), z)qT/z(Ta +O(q)) = Ta + o(1).This proves the surje
tivity of ϕ near the large radius limit. As it is an open 
ondition, it istrue in a neighborhood of q = 0.Let prove that ϕ′ is an isomorphism. First, the surje
tivity of ϕ implies the surje
tivity of
π ◦ϕ. We dedu
e that ϕ′ is also surje
tive. On z 6= 0, Theorem 4.14 implies that the rank of
Mres is less than rkF . Hen
e the surje
tivity implies that its rank is rkF . This also implies47



that Mres is lo
ally free on U × C of rank dimH2∗(X)C = rkF . We dedu
e that ϕ′ is anisomorphism. ATwisted Axioms for Gromov-Witten invariantsIn this Appendix, we will state and prove the twisted axioms for twisted Gromov-Witten in-variants. For the �untwisted� axioms, we refer to two papers of Behrend and Manin ([BM96℄and [Beh97℄). Some of the twisted axioms are stated (but not proved) by Pandharipandein [Pan98℄. One should also mention the indire
t proof given by Tseng [Tse10℄ where theCorollary 4.2.3 implies the twisted axioms even though there are not stated there. Thisappendix is due to la
k of referen
es on twisted Gromov-Witten invariants. Its aim is to �lla gap 
on
erning results well known by experts.Re
all from Notation 2.1 and T0, . . . , Ts−1 be a basis of H2∗(X). We denote by T a thePoin
aré dual of Ta for a ∈ {0, . . . , s− 1}. Let d be in H2(X,Z). Denote X0,ℓ,d the modulispa
e of stable map of degree d from rational 
urve with ℓ marked points to X . For i in
{1, . . . , ℓ}, denote by ei : X0,ℓ,d → X the evaluation map at the ith marked point. Theuniversal 
urve is

X0,ℓ+1,d

π

eℓ+1

X

X0,ℓ,dwhere π is the map that forgets the (ℓ+1)-th point and stabilizes and eℓ+1 is the evaluationat the (ℓ + 1)-th marked point. For the de�nition of twisted Gromov-Witten invariant, werefer to De�nition 2.5. Let E0,ℓ,d be the sheaf de�ned in Proposition 2.2. For j in {1, . . . , ℓ},we have the following exa
t sequen
e (see (2.4))where the surje
tive morphism E0,ℓ,d → e∗j Eevaluates the se
tion to be the j-th marked point.
0 E0,ℓ,d(j) E0,ℓ,d e∗j E 0(A.1)We do not have a true Sℓ-invarian
e for the twisted Gromov-Witten invariants but wehave the following proposition.Proposition A.2 (Twisted Sℓ-invarian
e). � For any γ1, . . . , γℓ in H2∗(X), m1, . . . , mℓin N, for any σ ∈ Sℓ and j in {1, . . . , ℓ}, we have

〈
˜τm1(c1(E) ∪ γ1), . . . , τmℓ

(γℓ)
〉
0,ℓ,d

=
〈
τmσ(1)

(γσ(1)), . . . , ˜τmσ(j)
(c1(E) ∪ γσ(j)), . . . , τmσ(ℓ)

(γσ(ℓ))
〉
0,ℓ,dProof. � From the exa
t sequen
e (A.1), for any j in {0, . . . , ℓ} we have

e∗j (c1(E)) ∪ ctop(E0,ℓ,d(j)) = ctop(E0,ℓ,d)This implies the proposition.Let us re
all some notations from Gathmann [Gat03℄. For i in {1, . . . , ℓ}, 
onsider theinje
tion morphism σi : X0,ℓ,d → X0,ℓ+1,d whi
h repla
e the i-th marked point by a 
on-tra
ted rational 
omponent with marked point xi and xℓ+1 (see Figure 2). The substa
k
Di := σi(X0,ℓ,d) is isomorphi
 to X0,ℓ,d and π(Di) = X0,ℓ,d. So Di 
arries a natural virtualfundamental 
lass denoted by [Di]

vir and it is of virtual 
odimension 1. Usually, we 
all itboundary divisors. We have the following proposition whi
h is proved in [Gat03℄.48



PSfrag repla
ements
xixi

f
f

C
C

xℓ+1

σi

f(xi)f(xi) Figure 2. L'appli
ation σi.Proposition A.3 (See Corollary 1.3.2 [Gat03℄). � Let ℓ be in N. Let d be in H2(X,Z).Let γ1, . . . , γℓ be in H2∗(X). Let m1, . . . , mℓ be in N. Let α be in H2∗(X0,ℓ+1,d). We have thefollowing equality in H∗(X0,ℓ,d)

π∗

(
ℓ∏

j=1

ψ
mj

j e∗j γj · α · [X0,ℓ+1,d]
vir

)
=

ℓ∏

j=1

ψ
mj

j e∗j γjπ∗(α · [X0,ℓ+1,d]
vir)

+
∑

i|mi>0


ψmi−1

i e∗i γi

ℓ∏

j=1

j 6=i

ψ
mj

j e∗j γj


 π∗(α · [Di]

vir)Proposition A.4 (Twisted Fundamental 
lass equation / string equation )Let ℓ be in N, d be in H2(X,Z), γ1, . . . , γℓ be in H2∗(X) and m1, . . . , mℓ be in N. Denoteby 1 the unit of the 
ohomology ring. For n > 2 or d 6= 0 and for k ∈ {1, . . . , n}, we have
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), 1
〉
0,ℓ+1,d

=
∑

i|mi>0

〈
τm1(γ1), . . . , τmi−1(γi), . . . , ˜τmk

(γk), . . . , τmℓ
(γℓ)

〉
0,ℓ,dRemark A.5. � From Propositions A.2 and A.4, we dedu
e

〈
τm1(γ1), . . . , τmℓ

(γℓ), c̃1(E)
〉
0,ℓ+1,d

=
∑

i:mi>0

〈
τm1(γ1), . . . ,

˜τmi−1(γi ∪ c1(E)), . . . , τmℓ
(γℓ)

〉
0,ℓ,d

=
∑

i:mi>0

〈
˜τm1(γ1 ∪ c1(E)), . . . , τmi−1(γi), . . . , τmℓ

(γℓ)
〉
0,ℓ,d49



Proof of Proposition A.4. � We have
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), 1
〉
0,ℓ+1,d

= deg

(
π∗

(
ℓ∏

i=1

ψmi
i e∗i γi · ctop(E0,ℓ+1,d(k)) · [X0,ℓ+1,d]

vir

))We use Proposition A.3 with α = ctop(E0,ℓ+1,d(k)). We get
π∗

(
ℓ∏

j=1

ψ
mj

j e∗j γj · ctop(E0,ℓ+1,d(k)) · [X0,ℓ+1,d]
vir

)(A.6)
=

ℓ∏

j=1

ψ
mj

j e∗j γjπ∗(ctop(E0,ℓ+1,d(k)) · [X0,ℓ+1,d]
vir)

+
∑

i|mi>0


ψmi−1

i e∗i γi

ℓ∏

j=1

j 6=i

ψ
mj

j e∗j γj


 π∗(ctop(E0,ℓ+1,d(k)) · [Di]

vir)As k 6= ℓ+ 1, we have ctop(E0,ℓ+1,d(k)) = π∗ctop(E0,ℓ,d(k)).By Axiom IV (See De�nition 7.1) of [BM96℄ proved in [Beh97℄. We have π∗[X0,ℓ,d]
vir =

[X0,ℓ+1,d]
vir. As π is of relative dimension 1, the morphism π∗π

∗ is the zero. This impliesthat the �rst term in the right hand side of (A.6) vanishes. By de�nition of the virtual
lass [Di]
vir (see paragraph before Proposition A.3), we have π∗[Di]

vir = [X0,l,d]
vir. Hen
eproje
tion formula implies the proposition.Proposition A.7 (Twisted Divisor axiom). � Let ℓ be in N≥0, d be in H2(X,Z),

γ1, . . . , γℓ be in H∗(X,C) and m1, . . . , mℓ be in N≥0. Let γ be in H2(X,C).
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), γ
〉
0,ℓ+1,d

=

(∫

d

γ

)
〈τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ)〉0,ℓ,d

+
∑

i:mi>0

〈
τm1(γ1), . . . ,

˜τmi−1(γ ∪ γi), . . . , τmℓ
(γℓ)

〉
0,ℓ,dProof. � We use Proposition A.3 with α = e∗ℓ+1 γ. We get that

〈
τm1(γ1), . . . ,

˜τmj
(γk), . . . , τmℓ

(γℓ), γ
〉
0,ℓ+1,d

= deg π∗

(
e∗ℓ+1 γ

ℓ∏

i=1

ψmi
i e∗i γi · ctop(E0,ℓ+1,d(k)) · [X0,ℓ+1,d]

vir

)

= deg

(
ℓ∏

i=1

ψmi
i e∗i γi · [X0,ℓ,d]

vir · π∗
(
e∗ℓ+1 γ

)
)(A.8)

+
∑

i|mi>0

deg


ψ

mi−1
i e∗i γi

∏

j=1

j 6=i

ℓ

ψ
mj

j e∗j γj · π∗
(
e∗ℓ+1 γ · [Di]

vir
)

(A.9)
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As π is of relative dimension 1, we have π∗ e∗ℓ+1 γ is in A0(X0,ℓ,d), we dedu
e that π∗ e∗ℓ+1 γ =
deg(π∗ e

∗
ℓ+1 γ · [pt])[X0,ℓ,d]. Let [C, f, x] be a point in X0,ℓ,d. By proje
tion formula for π and

eℓ+1, we have
deg(π∗ e

∗
ℓ+1 γ · [C, f, x]) = deg(π∗

(
e∗ℓ+1γ · π∗[C, f, x]

)
)

= deg(e∗ℓ+1γ · π∗[C, f, x])

= deg(γ · eℓ+1∗π
∗[C, f, x])As π is the universal 
urve, π∗[C, f, x] is the 
lass of the 
urve (C, x, f) and eℓ+1 restri
ted tothis 
urve is f . So eℓ+1∗π

∗[C, f, x] = f∗(C, x, f) whi
h d by de�nition. Se we get deg(π∗e∗ℓ+1γ ·
[pt]) = deg(γ · d) =

∫
d
γ. So the term in (A.8) is exa
tly the �rst term in the right handside of the equality of the proposition. As π∗[Di]

vir = [X0,ℓ,d]
vir and eℓ+1 is exa
tly ei on Di,proje
tion formula implies that (A.9) is exa
tly the se
ond term of the right hand side of theequality of the proposition.Proposition A.10 (Twisted Dilaton equation). � Let ℓ be a non negative integer and

d be in H2(X,Z). Let γ1, . . . , γℓ be in H2∗(X), m1, . . . , mℓ be in N≥0. If j ∈ {1, . . . , ℓ} wehave
〈τm1(γ1), . . . ,

˜τmj
(γj), . . . , τmℓ

(γℓ), τ1(1)〉0,ℓ+1,d

= (−2 + n)〈τm1(γ1), . . . , τ̃mj
(γj), . . . , τmℓ

(γℓ)〉0,ℓ,dProof. � We use Proposition A.3 with α = ψℓ+1. We use the notation of the proof of A.7.We dedu
e that for a point [C, f, x] in X0,ℓ,d

π∗(ψℓ+1 · π∗[C, f, x]) = (−2 + ℓ)[C, f, x]Changing e∗ℓ+1 γ by ψℓ+1 in (A.8), we get
(−2 + ℓ)〈τm1(γ1), . . . , τ̃mj

(γj), . . . , τmℓ
(γℓ)〉0,ℓ,d.As the bundle Nℓ+1 (
f. before De�nition 2.5) is trivial on Di, we dedu
e that 
hanging e∗ℓ+1 γby ψℓ+1 = 0 in (A.9) gives zero.We follow Remark 1.2.8 of [Gat03℄. Fix an integer ℓ and a homology 
lass d in H2(X,Z).Let I1, I2 be two subsets of {1, . . . , ℓ} su
h that I1 ⊔ I2 = {1, . . . , n}. Let d1, d2 in H2(X,Z)su
h that d1 + d2 = d. Denote by ∆ : X → X × X the diagonal morphism. We de�ne

D(I1, d1 | I2, d2) by the following 
artesian diagram
D(I1, d1 | I2, d2) ∆′

enode

X0,I1∪{⋆},d1 ×X0,I2∪{∗},d2

e=(e′⋆,e
′′
∗ )

X
∆

X ×X

(A.11)
where e′⋆ : X0,I1,d1 → X (resp. e′′∗ : X0,I2,d2 → X) is the evaluation morphism at the markedpoint ⋆ (resp. ∗). Geometri
ally, a point in the sta
k D(I1, d1 | I2, d2) is the data of two stablemaps (C1, x1, f1) in X0,I1∪{⋆},d1 and (C2, x2, f2) in X0,I2∪{∗},d2 su
h that f1(x1,⋆) = f2(x2,∗).Identifying the marked points x1,⋆ and x2,∗, we get a nodal 
urve C = C1 ∪C2 with a stablemap f = (f1, f2) : C → X of degree d = d1 + d2. We dedu
e that the D(I1, d1 | I2, d2) →֒
X0,ℓ,d and that the map enode : D(I1, d1 | I2, d2) → X is the evaluation at the node whi
h is
C1 ∩ C2. We de�ne the virtual 
lass on D(I1, d1 | I2, d2) by the following

[D(I1, d1 | I2, d2)]vir := ∆!
(
[X0,I1∪{⋆},d1 ]

vir ⊗ [X0,I2∪{∗},d2 ]
vir
)51



A dire
t 
omputation shows that the virtual 
odimension of [D(I1, d1 | I2, d2)]vir in X0,ℓ,d is
1 that's why we 
all them boundary divisors(6).To prove twisted Topologi
al Re
ursion Relations and twisted WDVV, we need to provethe twisted splitting axiom.Proposition A.12 (Twisted splitting axiom). � Let ℓ be in N>0 and d be in H2(X,Z).Let γ1, . . . , γℓ be in H2∗(X) and m1, . . . , mℓ be in N≥0. Fix a partition I1

⊔
I2 = {1, . . . , ℓ}and two homology 
lasses d1, d2 ∈ H2(X,C) su
h that d1 + d2 = d. Fix j ∈ I1. Denote by ιthe in
lusion D(I1, d1 | I2, d2) →֒ X0,ℓ,d. We have

∫

[D(I1,d1|I2,d2)]vir
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

ψmi
i e∗i γi

=
s−1∑

a=0

〈
Ta, τ̃mj

(γj),
∏

i 6=j∈I1

τmi
(γi)

〉

0,#I1+1,d1

〈
T̃ a,

∏

i∈I2

τmi
(γi)

〉

0,#I2+1,d2Proof. � We use the notation of the diagram (A.11). Let p1 : X0,I1∪{⋆},d1 × X0,I2∪{∗},d2 →
X0,I1∪{⋆},d1 the proje
tion on the �rst fa
tor and p2 the proje
tion on the se
ond fa
tor. Firstwe prove the following equality

ι∗ctop(E0,ℓ,d(j)) = ctop
(
∆′∗p∗1E0,I1∪{⋆},d1(j)⊕∆′∗p∗2E0,I2∪{∗},d2(∗)

)(A.13)We de�ne the surje
tive morphism ι∗E0,ℓ,d → e∗node E ⊕ e∗j E by evaluating the se
tion of
ι∗E0,ℓ,d at the j-th marked point and at the node(7). We de�ne E0,ℓ,d(j, node) to be the kernelof this morphism. We dedu
e the following exa
t sequen
e of bundles over D(I1, d1 | I2, d2).

0 E0,ℓ,d(j, node) ι∗E0,ℓ,d e∗node E ⊕ e∗j E 0(A.14)Pulling-ba
k the exa
t sequen
e (A.1) via the 
omposition p1 ◦ ∆′ (resp. p2 ◦ ∆′) on
X0,I1∪{⋆},d1 (resp. on X0,I2∪{⋆},d2), we dedu
e a morphism from ∆′∗p∗1E0,I1∪{⋆},d1 (resp. from
∆′∗p∗2E0,I2∪{∗},d2) to e∗node E . We dedu
e the following exa
t sequen
e

0 ι∗E0,ℓ,d a
∆′∗p∗1E0,I1∪{⋆},d1 ⊕∆′∗p∗2E0,I2∪{∗},d2 b

e∗node E 0(A.15)where at the stable map (C, x, f) in D(I1, d1 | I2, d2), as C = C1 ∪C2 the morphism a sendsa se
tion s ∈ H0(C, f ∗E) to (s|C1 , s|C2). The morphism b send (s1, s2) to s1(⋆)− s2(∗). Thesequen
e above is exa
t be
ause if s1(⋆) = s2(∗) then they glue in a se
tion in H0(C, f ∗E).From (A.14) and (A.15), we dedu
e the following exa
t sequen
e
0 E0,ℓ,d(j, node) ∆′∗p∗1E0,I1∪{⋆},d1(j)⊕∆′∗p∗2E0,I2∪{∗},d2(∗) e∗node E 0

(A.16)Denote by ct(E) the total Chern 
lass of E . From (A.14) and (A.16), we dedu
e that
ct
(
∆′∗p∗1E0,I1∪{⋆},d1(j)⊕∆′∗p∗2E0,I2∪{∗},d2(∗)

)
= ct(E0,ℓ,d(j, node))ct(e∗node E)
= ct(ι

∗E0,ℓ,d)ct(e∗j E)−1

= ct(ι
∗E0,ℓ,d(j))This implies the Equality (A.13).Let us prove the Equality of the Proposition A.12. Denote by X1 := X0,I1∪{⋆},d1 , X2 :=

X0,I2∪{∗},d2 , E1 := E0,I1∪{⋆},d1(j) and E2 := E0,I2∪{∗},d2(∗). We have
(6) The Di de�ned before Proposition A.3 are spe
ial 
ases of D(I1, d1 | I2, d2)
(7)Noti
e that the evaluation at the node is not de�ned on X0,ℓ,d but only on D(I1, d1 | I2, d2).52



∫

[D(I1,d1|I2,d2)]vir
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

ψmi
i e∗i γi

= deg

(
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

ψmi
i e∗i γi∆

!
(
[X1]

vir ⊗ [X2]
vir
)
)On X1 (resp. X2), we denote by ψ′

i (resp. ψ′′
i ) the ψ's 
lasses and e′i (resp. e′′i ) the evaluationmap. We put αi := ψmi

i e∗i γi, α′
i := ψ′mi

i e′∗i γi and α′′
i := ψ′′mi

i e′′∗i γi. Using the Diagram(A.11) and Equality (A.13) , we push forward to X ×X and we get
∫

[D(I1,d1|I2,d2)]vir
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

αi

= deg

(
∆∗∆

∗ e∗

(
ctop(E1)⊗ ctop(E2) · [X1]

vir ⊗ [X2]
vir
∏

i∈I1

α′
i ⊗ [X2]

∏

i∈I2

[X1]⊗ α′′
i

))Now, we use that ∆∗∆
∗ is just the interse
tion with the 
lass of the diagonal, whi
h is∑

a Ta ⊗ T a. Using proje
tion formula, we dedu
e the Equality of the proposition.Remark A.17. � We have also the following equality
∫

[D(I1,d1|I2,d2)]vir
ctop(ι

∗E0,ℓ,d(j))
ℓ∏

i=1

ψmi
i e∗i γi(A.18)

=
s−1∑

a=0

〈
T̃a, ˜τmj

(γj),
∏

i 6=j∈I1

τmi
(γi)

〉

0,#I1+1,d1

〈
T a,

∏

i∈I2

τmi
(γi)

〉

0,#I2+1,d2Where the double tilde mean that we are twisting in the Gromov-Witten invariant withtwo 
lasses namely ctop(E0,I1∪{⋆},d1(j)) and ctop(E0,I1∪{⋆},d1(⋆)). The proof is almost the same.Instead of the exa
t sequen
e (A.16), we use
0 E0,ℓ,d(j, node) ∆′∗p∗1E0,I1∪{⋆},d1(j, ⋆)⊕∆′∗p∗2E0,I2∪{∗},d2 e∗node E 0So we get the equality

ι∗ctop(E0,ℓ,d(j)) = ctop
(
∆′∗p∗1E0,I1∪{⋆},d1(j, ⋆)⊕∆′∗p∗2E0,I2∪{∗},d2

)With the same arguments, we get Equality (A.18).Denote by τ :=
∑s−1

a=0 taTa. Denote by
〈〈τm1(γ1), . . . , τmℓ

(γℓ)〉〉0 :=
∑

ℓ≥0

∑

d∈H2(X,Z)

1

ℓ!
〈τm1(γ1), . . . , τmℓ

(γℓ), τ, . . . , τ〉 0, ℓ+ n, d(A.19)Proposition A.20 (Twisted TRR i.e., Topologi
al Re
ursion Relation)Let γ1, γ2, γ3 be in H2∗(X). Let m1, m2, m3 be in N≥0. We have the following equalities :
〈〈
τm1+1(γ1), τm2(γ2),

˜τm3(γ3)
〉〉

0
=

s−1∑

a=0

〈〈
τm2(γ2),

˜τm3(γ3), T
a
〉〉

0

〈〈
τm1(γ1), T̃a

〉〉
0

(A.21)
〈〈

˜τm1+1(γ1), τm2(γ2), τm3(γ3)
〉〉

0
=

s−1∑

a=0

〈〈
τm2(γ2), τm3(γ3), T̃

a
〉〉

0

〈〈
˜τm1(γ1), Ta

〉〉
0

(A.22) 53



Proof. � The proof is 
ompletely parallel to the 
lassi
al 
ase (
f. for instan
e Proposition1.3.9 of [Gat03℄). We have
ψ1 · [X0,ℓ,d]

vir =
∑

d1+d2=d
I1⊔I2={1,...,ℓ}

2,3∈I1,1∈I2

[D(I1, d1 | I2, d2)]virInterse
ting this equality with ψ's 
lasses and e∗i γ and using twisted splitting axiom ofProposition A.12, we dedu
e the twisted TRR equality.Remark A.23. � Using Remark A.17, we get two other twisted TRR relations
〈〈
τm1+1(γ1), τm2(γ2),

˜τm3(γ3)
〉〉

0
=

s−1∑

a=0

〈〈
τm2(γ2),

˜τm3(γ3), T̃
a
〉〉

0
〈〈τm1(γ1), Ta〉〉0

〈〈
˜τm1+1(γ1), τm2(γ2), τm3(γ3)

〉〉
0
=

s−1∑

a=0

〈〈τm2(γ2), τm3(γ3), T
a〉〉0

〈〈
˜τm1(γ1), T̃a

〉〉
0Proposition A.24 (Twisted WDVV equations). � Let γ1, γ2, γ3, γ4 be in H2∗(X). Let

m1, m2, m3, m4 be in N≥0. We have the following equality :
s−1∑

a=0

〈〈
τm1(γ1), τm2(γ2), T̃a

〉〉
0

〈〈
τm3(γ3),

˜τm4(γ4), T
a
〉〉

0
(A.25)

=

s−1∑

a=0

〈〈
τm1(γ1), τm3(γ3), T̃a

〉〉
0

〈〈
τm2(γ2),

˜τm4(γ4), T
a
〉〉

0Proof. � The proof is 
ompletely parallel to the 
lassi
al 
ase (
f. for instan
e Proposition1.3.8 of [Gat03℄). We just use the twisted splitting axiom instead of the 
lassi
al one. FromAxiom V of De�nition 7.1 in [BF97℄ proved in [Beh97℄, we have
∑

d1+d2=d
I1⊔I2={1,...,ℓ}

1,2∈I1,2,3∈I2

[D(I1, d1 | I2, d2)]
vir

=
∑

d1+d2=d
I1⊔I2={1,...,ℓ}

1,3∈I1,2,4∈I2

[D(I1, d1 | I2, d2)]
vir

.Interse
ting this equality with ψ's 
lasses and e∗i γ and using twisted splitting axiom ofProposition A.12, we dedu
e the twisted WDVV equality.Remark A.26. � Using the other twisted splitting axiom of Remark A.17, we get an othertwisted WDVV axiom
s−1∑

a=0

〈〈τm1(γ1), τm2(γ2), Ta〉〉0
〈〈
τm3(γ3),

˜τm4(γ4), T̃
a
〉〉

0

=
s−1∑

a=0

〈〈τm1(γ1), τm3(γ3), Ta〉〉0
〈〈
τm2(γ2),

˜τm4(γ4), T̃
a
〉〉

0BProof of Proposition 2.17Proposition B.1. � 1. The 
onne
tion ∇ is �at.54



2. For a ∈ {1, . . . , r} and γ ∈ H2∗(X) we have
∇∂t0

Ltw(t0, q, z)γ = 0, ∇δaL
tw(t0, q, z)γ = 0

∇δzL
tw(t0, q, z)γ = Ltw(t0, q, z)

(
µ− c1(TX ⊗ E∨)

z

)
γ3. The multi-valued 
ohomologi
al fun
tion Ltw(t0, q, z)z

−µzc1(TX⊗E∨) is a fundamental so-lution of ∇.Proof. � (1) Let us prove the �atness of ∇. We have to prove that for any a, b ∈ {1, . . . , r}and for any c ∈ {0, . . . , s− 1}, we have
[∇δa ,∇δb]Tc = 0(B.2)
[∇δa ,∇δz ]Tc = 0(B.3)The �rst equation 
omes from the following.

∇δa∇δbTc =
1

z
δa(Tb •twq Tc) +

1

z2
(Ta •twq (Tb •twq Tc))

∇δb∇δaTc =
1

z
δb(Ta •twq Tc) +

1

z2
(Tb •twq (Ta •twq Tc))As a, b ∈ {1, . . . , r}, the �rst terms are equal by the divisor axiom (see Proposition A.7).The se
ond terms are equal by asso
iativity and 
ommutativity of the quantum produ
t (seeProposition 2.14). Let us show the equation (B.3). By de�nition of the 
onne
tion, we have

[∇δa ,∇δz ]Tc = −1

z
[δa,E•twq ]Tc + [

1

z
Ta•twq , δz]Tc −

1

z2
[Ta•twq ,E•twq ]Tc +

1

z
[Ta•twq , µ]TcThe third term vanishes by asso
iativity and 
ommutativity of the quantum produ
t. FromEqualities below (B.4), (B.5), (B.6), we dedu
e (B.3), hen
e the �atness.For any a ∈ {1, . . . , r} and for any c ∈ {0, . . . , s− 1}, we have

[
1

z
Ta•twq , δz

]
Tc =

1

z
Ta •twq Tc(B.4)

[
Ta•twq , µ

]
Tc =(B.5)

(
deg(Tc)

2
− dimCX

)
Ta •twq Tc +

s−1∑

e=0

deg(Te)

2

∑

d∈H2(X,Z)

qd
〈
Ta, Tc, T̃e

〉
0,3,d

T e

[
δa,E•twq

]
Tc =(B.6)

(
1 +

deg(Tc)

2
− dimCX

)
Ta •twq Tc +

s−1∑

e=0

deg(Te)

2

∑

d∈H2(X,Z)

qd
〈
Ta, Tc, T̃e

〉
0,3,d

T eThe equality (B.4) follows from
[
1

z
Ta•twq , δz]Tc = −δz

(
1

z
Ta•twq

)
Tc =

1

z
Ta •twq Tc.55



Equality (B.5) follows from the di�eren
e of the two equalities below.
Ta •twq µ(Tc) =

(
deg(Tc)

2
− dimCX − rk E

2

)
Ta •twq Tc

µ(Ta •twq Tc) =
s−1∑

e=0

∑

d∈H2(X,Z)

qd
〈
Ta, Tc, T̃e

〉
0,3,d

µ(T e)

=

s−1∑

e=0

(
dimCX + rk E

2
− deg Te

2

) ∑

d∈H2(X,Z)

qd
〈
Ta, Tc, T̃e

〉
0,3,d

T e(Re
all that deg T e = 2dimX − deg Te).Let us prove the last equality (B.6). By Divisor Axiom A.7 and Fundamental 
lass AxiomA.4, we have that
[δa,E•twq ]Tc = δa(E •twq Tc)

=
s−1∑

e=0

∑

d∈H2(X,Z)

qd
〈
Ta,E, Tc, T̃e

〉
0,3,d

T e

=

s−1∑

e=0

∑

d∈H2(X,Z)

qd
∫

d

c1(TX ⊗ E∨)
〈
Ta, Tc, T̃e

〉
0,3,d

T e(B.7)Noti
e that if the Gromov-Witten invariant 〈Ta,E, Tc, T̃e〉
0,3,d

does not vanish then we have :
1 +

deg(Tc)

2
+

deg(Te)

2
+

∫

d

c1(E) =
∫

d

c1(TX) + 1− dimCX.so we dedu
e that c1(TX ⊗ E∨) = 1 − dimCX + deg(Tc)
2

+ deg(Te)
2

. Putting this in (B.7), wededu
e the equality (B.6).(2) As 1 is the unit for •twq , we have the �rst equality.Let us prove the se
ond equality of (2). It is enough to prove it for Ltw(q, z) := Ltw(0, q, z).Let γ1, . . . , γℓ ∈ H2∗(X). Denote by
〈〈τm1(γ1), . . . , τmℓ

(γℓ)〉〉small
0the 
orrelator de�ned in (A.19) where τ is repla
e by ∑r
a=1 Ta log qa.Using the twisted divisor axiom (Proposition A.7) and after some 
omputations (see[CK99℄, proposition 10.2.3 for example) we have :

Ltw(q, z)γ = γ −
s−1∑

a=0

〈〈
γ

z + ψ
, T̃a

〉〉small

0

T a(B.8)where (ψ + z)−1 =
∑

ℓ≥0(−1)ℓz−ℓ−1ψℓ. For b ∈ {1, . . . , r}, we have
δbL

tw(q, z)γ = −
s−1∑

a=0

〈〈
γ

z + ψ
, Tb, T̃a

〉〉small

0

T a(B.9)Noti
e that we 
an write the twisted quantum produ
t with the 
orrelator notation that is
γ1 •twq γ2 =

s−1∑

a=0

〈〈
γ1, γ2, T̃a

〉〉small

0
T a56



We have that
1

z
Tb •twq Ltw(q, z)γ =

1

z

s−1∑

a=0

〈〈
Tb, γ, T̃a

〉〉small

0
T a

+
∑

ℓ≥0

s−1∑

a=0

(−1)ℓ+1z−ℓ−2

s−1∑

c=0

〈〈
γψℓ, T̃c

〉〉small

0

〈〈
Tb, T

c, T̃a

〉〉small

0
T aUsing Equality (A.21) of Proposition A.20 (i.e., twisted TRR), we get

1

z
Tb •twq Ltw(q, z)γ

=
1

z

s−1∑

a=0

〈〈
Tc, γ, T̃a

〉〉small

0
T a +

∑

ℓ≥0

s−1∑

a=0

(−1)ℓ+1z−ℓ−2
〈〈
γψℓ+1, Tb, T̃a

〉〉small

0
T a

=

s−1∑

a=0

〈〈
γ

z + ψ
, Tb, T̃a

〉〉small

0

T a(B.10)Adding (B.9) and (B.10), we dedu
e that for any γ ∈ H2∗(X) and any b ∈ {1, . . . , r}
∇δbL

tw(q, z)γ = 0.To prove the last equality of (2) we use Formula (2.16) for Ltw. Then put Gtw(q, z) :=

et0/zLtw(t0, q, z)q
T/z. De�ne the ve
tor �eld Ẽ :=

∑r
a=1 eaδa+ t0∂t0 where E = c1(TX ⊗E∨) =∑r

a=1 eaTa. Using the se
ond equality of (2), we have to prove that
(z∂z + Lie

Ẽ
+µ)Ltw(t0, q, z)γ =

(
µ− c1(TX ⊗ E∨)

z

)
γ.First we show that the operator (z∂z + Lie

Ẽ
+µ) 
ommutes with Gtw(q, z). Then to �nishthe proof we 
he
k that for any a ∈ {0, . . . , s− 1} we have

δz(q
−T/zTa) = z−1q−T/z

r∑

b=1

log(qb)Tb ∪ Ta

Lie
Ẽ
(q−T/zTa) = −q−T/z c1(TX ⊗ E∨)

z
Ta

µ(q−T/zTa) = q−T/zµ(Ta)− z−1q−T/z

r∑

b=1

log(qb)Tb ∪ Ta

(δz + Lie
Ẽ
)e−t0/z = 0Let us prove

(δz + Lie
Ẽ
+µ)Gtw(q, z) = Gtw(q, z)(δz + Lie

Ẽ
+µ).(B.11)The developing in z the terms of Gtw(q, z), we denote

A(a, q, z, j, d) := z−j−1qd
〈
γψj, T̃a

〉
0,2,d

T aWe have
µ(A(a, q, z, j, d)) =

(
dimCX + rk E

2
− deg(Ta)

2

)
A(a, q, z, j, d)

δzA(a, q, z, j, d) = (−j − 1)A(a, q, z, j, d)

Lie
Ẽ
A(a, q, z, j, d) =

(∫

d

c1(TX ⊗ E∨)

)
A(a, q, z, j, d)57



As A(a, q, z, j, d) 6= 0 implies that
j +

deg(γ)

2
+

deg(Ta)

2
+

∫

d

c1(E) =
∫

d

c1(TX) + 2 + dimCX − 3We dedu
e that
(δz + Lie

Ẽ
+µ)A(a, q, z, j, d) =

(
deg(γ)

2
− dimCX − rk E

2

)
A(a, q, z, j, d)This implies the desired 
ommuting relation (B.11) hen
e the se
ond equality of (2).(3) For any 
lass c ∈ H2(X), we have that [µ, c] = c. Applying the formula Adexp(X) = eadXwe dedu
e that zµ c

z
z−µ = c. Put c := c1(TX ⊗ E∨), this implies

(
δz + µ− c1(TX ⊗ E∨)

z

)
z−µzc1(TX⊗E∨) = 0.Using (2) and the equality above, for any γ ∈ H2∗(X), we have

∇δz

(
Ltw(t0, q, z)z

−µzc1(TX⊗E∨)γ
)

= Ltw(t0, q, z)δz

(
z−µzc1(TX⊗E∨)

)
+
(
∇δzL

tw(t0, q, z)
)
z−µzc1(TX⊗E∨)γ = 0That is Ltw(t0, q, z)z

−µzc1(TX⊗E∨) is a fundamental solution of ∇.Referen
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