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Abstract. — On a smooth projective variety with k& ample line bundles, we denote by Z the
complete intersection subvariety defined by generic sections.

We define the twisted quantum D-module which is a vector bundle with a flat connection, a
flat pairing and a natural integrable structure. An appropriate quotient of it is isomorphic to
the ambient part of the quantum D-module of Z.

When the variety is toric, these quantum D-modules are cyclic. The twisted quantum D-
module can be presented via mirror symmetry by the GKZ system associated to the total space
of the dual of the direct sum of these line bundles.

A question is to know what is the system of equations that define the ambiant part of the
quantum D-module of Z. We construct this system as a quotient ideal of the GKZ system.

We also state and prove the non-equivariant twisted Gromov-Witten axioms in the appendix.
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1. Introduction

Mirror symmetry leads to many different formulations in mathematics : equivalence of de-
rived categories (known as Homological Mirror Symmetry by Kontsevich [Kon95]), isomor-
phism of Frobenius manifolds (see [Bar00|), comparison of Hodge numbers for Calabi-Yau
varieties (see for example [Bat94]), isomorphism of Givental’s cones (see [Giv98|), isomor-
phism of pure polarized TERP structures (see [Her06]) or variation of non-commutative
Hodge structures (see [KKPO08|), ...
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Inspired by the works of Givental (see for examples [Giv96| and [Giv98|), many authors
look at quantum cohomology with a differential module approach : see Kim [Kim99| for
homogeneous spaces, see Coates-Corti-Lee-Tseng [CCLT06| and Guest-Sakai [GS08| for
weighted projective spaces , see also the works of Iritani [Iri06], [Iri07]|, [Iri08| and [Iri09],
the book of Cox-Katz [CK99| and the one of Guest [Guel0].

From the small quantum product on a smooth projective variety, we can define a trivial
vector bundle over H*(X,C) x V x C where V C (C*)" and r := dim¢ H*(X, C) whose fiber
is H*(X,C). This bundle is endowed with a flat connection and a non-degenerated pairing.
This connection is sometimes called the Dubrovin-Givental connection. When X is a toric
smooth Fano variety, Givental (see also Iritani [Iri09] for toric weak Fano orbifolds) gives
an explicit presentation of this D-module using GKZ systems. To prove this isomorphism,
he uses the equality, up to a mirror map, between the so called I and J functions.

In the very nice article [Iri09], Iritani enriches this quantum D-module by adding a natural
integral structure i.e., he defines a Z-local system which is compatible with the connection.
We call quantum D-module, denoted by QDM(X), the trivial bundle endowed with a flat
connection, a flat non-degenerated pairing and a natural integral structure. This Z-local
system is natural in the following sense. Assume that X has a mirror (for instance X is a
weak Fano toric orbifolds) that is a Laurent polynomial such that its Brieskorn lattice (which
is a vector bundle with a flat connection) is isomorphic to the quantum D-module of X. On
this Brieskorn lattice, we have a natural integral structure that comes from the Lefschetz’s
thimbles. The integral structure defined by Iritani is natural because it corresponds to
the natural one on the mirror. Notice that the bundle, the connection, the pairing and the
integral structure is part of the definition of a TERP structure defined by Hertling in [Her06]
or a variation of non-commutative Hodge structure defined by Kontsevich, Katzarkov and
Pantev in [KKPO08|.

In this paper, we investigate the same kind of objects associated to a smooth projective
variety X together with a splitted vector bundle £ which is globally generated.

We use the twisted Gromov-Witten invariants and the twisted quantum products to define
a trivial vector bundle, denoted by F, on H°(X,C) x V x C where V is an open in (C*)"
where the twisted quantum product is convergent. Inspired by the classical case, we define
a flat connection V, a flat pairing S and an integral structure Fy on it. We call twisted
quantum D-module, the quadruple QDM(X, &) := (F,V, S, Fy). It satisfies all the properties
of the classical QDM(X) except that the pairing S is degenerated. We quotient by the
kernel of S and we get a better object, called reduced quantum D-module and denoted by
QDM(X, &) := (F,V, S, Fz). More precisely, we consider the trivial vector bundle F with
the fibers H**(X, C)/ ker m,,,, where me,,, : @ — ¢iop(E)Ua for any cohomology class . The
data (F,V, S, F7) pass to this quotient and we get QDM(X, £) that satisfies all the classical
properties and now S is non-degenerated. So it really looks like a quantum D-module of a
variety. Indeed, we have a geometric interpretation of QDM(X, &):

Theorem 1.1 (See Theorem 2.42). — Let Ly, ..., Ly be ample line bundles on X, and
assume that dime X > k + 3. Let Z be the zero of a generic section of £ := ®F_,L;. Denote
by i : Z — X the closed embedding. Then the reduced quantum D-module QDM(X, E) is iso-
morphic to the sub-quantum D-module QDM,_, (Z) of QDM(Z) whose fiber is 1* H*(X, C).

Notice that our integral structure F7 defined on QDM(X, £) is natural because it induces
the natural one on QDM, . (7).

Then the next natural question is : can we find a presentation of QDM(X,€&) and
QDM(X, £) when X is a toric smooth variety in terms of GKZ systems ?

Denote by D the sheaf of differential operators on the basis space of the F' (this is not
really true, the operators that we consider are 2q,0,, where g, are variable in H?(X,C) and



z is the coordinate on C). Denote by Y the total space of the dual vector bundle £Y. Denote
by G the ideal sheaf associated to the GKZ system of the toric variety Y. We have the
following result.

Theorem 1.2 (see Theorem 5.10). — Let X be a smooth toric variety with k line bundles
Li,..., Ly such that (wx @ L1 ® ... Ly,)" is nef. We put £ := OF_L;.

1. If the line bundles L1, ..., Ly are globally generated then we have the following isomor-
phism :
D/G — Mir*(F, V)

where Mir is the mirror map of Givental and F is the sheaf of sections of F.
2. If the line bundles L+, ..., Ly are ample, we have the following commutative diagram

D/G — " Mir*(F, V)

| l

D/ Quot(Cop, G) —— Mir*(F, V)

where Ciop s an operator attach to the cohomology class cop(E) (cf. Notation 4.1) and
Quot(Crop, G) is the left quotient ideal (P € D, ¢opP € G).

Notice that, unlike the commutative case, the set {P € D, ¢,,P € G} is not an ideal.

The ideal sheaf Quot(¢i,p, G) answer to the following question which is addressed in the
[CK99, p.94-95 and p.101|: What differential equations shall we add to G to get an isomor-
phism with QDM, . (Z) ?

The isomorphisms above are based on the equality (up to the mirror map) between the
twisted J-function and the twisted I-function of Givental (see [Giv96] and [Giv98]) and a
careful analysis of the local freeness and rank of GKZ modules. Freeness and rank requires
the study of Batyrev rings of the toric variety Y —the total space of £Y— which will appear
as the restriction of the D-modules at z = 0, and can be thought as a twisted Batyrev ring
of the pair (X, &).

Proving this theorem leads to develop quite a lot of materials and results which deserve
some precisions. Let us sketch our strategy of proof.

For the first point of the theorem above, we show that D/G is a locally free sheaf of rank
dim¢e H**(X,C) = rk F' (see Theorem 4.10). This is done in 2 steps.

— We first prove the coherence of D/G (see Theorem 4.5). This implies the local freeness
over z # 0 and we use Adolphson’s result in [Ado94| to compute the rank.

— On z =0, we have a tautological isomorphism between D/G |.—y and the Batyrev ring
of Y. We prove that this ring is locally free of rank rk F' over a suitable algebraic
neighborhood U (see below).

For second point of the theorem above, we show in Theorem 4.14 :

— On z = 0, we prove that the natural morphism between D/ Quot(Ciop, G) |.—0 and the
residual Batyrev ring (see Definition 3.39) of Y is an isomorphism. We prove that this
residual ring is locally free of rank rk F' = dim H**(X) — dim ker m,,,, over U.

— on z # 0 the coherence of D/G implies that D/ Quot(¢cip, G) is locally free of rank less
than rk F.

Let us collect the precise results that we prove on the Batyrev rings, which are interesting
on their own :

Theorem 1.3. — Let X be a smooth toric variety with k globally generated line bundles
L1, ..., Ly such that the total space of the vector bundle £ := @leﬁi has a nef anticanonical



divisor. Denote by U the good neighborhood in the spectrum of the Novikov ring defined in
Notation 3.534.

1. (See Theorem 3.26) Denote by B the Batyrev ring (see Definition 3.12) of the total
space of Y. The morphism : Spec(B) |z— U is finite, flat, of degree dim H**(X,C).

2. (See Proposition 3.40) Moreover, if the line bundles Ly,...,Ly are ample then the
morphism : Spec(B™) |gz— U is finite, flat, of degree dim H2*(X,C) where B™ is
the residual Batyrev ring (see Definition 3.39).

The plan of this article is the following.

In Section 2, we define first (Subsection 2.1) the twisted quantum D-module QDM(X, £)
with all its properties and its natural integral structure. Then we define the reduced quantum
D-module QDM(X, £) in Subsection 2.2. Finally, we give the geometric interpretation in
Subsection 2.3 where we prove the first Theorem 1.1.

In Section 3, we focus on Batyrev rings for toric varieties. Notice that this section can
be read independently of the rest of the paper. The first Subsection 3.1 is devoted to some
recalls on toric geometry. In Subsection 3.1 we construct the fan of the total space of the
vector bundle £. In Subsection 3.2, we define the Batyrev rings. Subsection 3.3 is devoted
to some recalls on the primitive collections. In Subsection 3.4, we prove that the quantum
Stanley-Reisner ideal has a Groebner basis indexed by primitive collections (See Theorem
3.22). In Subsections 3.5 and 3.6, we prove the Theorem 3.26 and Proposition 3.40 quoted
above in Theorem 1.3.

In Section 4, we focus on GKZ modules. We prove first that the GKZ module D/G is
coherent in Theorem 4.5. Then we prove that it is locally free of rank rk ' in Theorem 4.10.
We finish by a result on the residual GKZ module D/ Quot(¢p, G) (see Theorem 4.14).
These results use Theorem 3.26 and Proposition 3.40 of the previous section.

In Section 5, we start by some recall on Givental’s mirror symmetry in Subsection 5.1 then
we state and prove Theorem 1.2 in Subsection 5.2.

We finish this paper by two appendices. Appendix A contains the proof of the twisted
Gromov-Witten invariants in genus 0 that are known from the experts. We add it by lack
of references.

Appendix B is a complete proof of the flatness of the connection V using the twisted
axioms.
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Notation 1.4. — We use calligraphic letters for the sheaves like M, M* G B, L, E. We
use bold letters for modules or ideals on non commutative rings M, M"* G, A, .. ..

2. Twisted and reduced quantum D-modules with geometric interpretation

Let X be a smooth projective complex variety of dimension n and k globally generated
line bundles L4, ..., L. Denote by £ the sum & .= L, & --- P L.

We first define the twisted quantum D-module, denoted by QDM(X, &), associated to these
data (Definition 2.24). This is a trivial bundle of rank dim¢ H**(X,C) with an integrable
connection, a flat pairing and an integral structure.



It turns out that the pairing of the twisted quantum D-module is degenerated, which
makes QDM(X, £) a not so natural object, without clear geometric meaning. In a second
paragraph we introduce the reduced quantum D-module QDM(X, E) (Definition 2.34) ; it is
constructed as the quotient of QDM(X, &) by the kernel of the endomorphism m.,,,, which
is the cup multiplication by the Euler class ¢, (E) of £ :

Mey,, + H*(X,C) — H*(X,C)
a— aUcop(E).

The reduced quantum D-module is a trivial bundle of rank dim H*(X,C) — dimker m,,,,
with an integrable connection, a flat non—degenerated pairing and an integral structure.

If dim X > k + 3, we also consider a generic section of £ and denote by Z the complete
intersection subvariety defined as the zero locus of this section. By Bertini’s theorem over
C, the subvariety Z is smooth and connected. Assuming moreover that the £; are ample
line bundles, the Lefschetz theorem gives an isomorphism between H?*(X,C) and H?(Z,C).

We can compare QDM(X,E), QDM(X,€E) and the classical, untwisted, quantum D-
module of Z, QDM(Z). This will be made in the last subsection.

Notation 2.1. — For 0 < i < 2n, denote by H(X) := H'(X,C) the complex cohomol-
ogy group of classes of degree i. Also denote by H*(X) the complex cohomology ring
@ H'(X) ; the even part of this ring will be written H**(X). Put s = dim¢ H*(X) and
r = dime H*(X).

We fix, once and for all, a homogeneous basis (Ty, ..., Ts_1) of H*(X) such that T, = 1 is
the unit for the cup product and that the classes T1, ..., T, form a basis of H?(X,Z) modulo
torsion. Denote by (o, ...,ts_1) the associated coordinates and put 7 := ZZ;B toT, and 1 =
S taT,. Also denote by (TY,..., 7% ') the Poincaré dual in H*(X) of (Ty, ..., Ts_1).

As a convention, We will write Hy(X, Z) for the degree 2 integer homology modulo torsion.
Denote by (B, ..., B,) the dual basis of (71, ...,T,) in Hy(X,Z). The associated coordinates
will be denoted by (dy,...,d,).

We denote by Ty the tangent bundle of X, wx the canonical sheaf, and fix a canonical
divisor K.

As a convention, we will make no notational distinction between vector bundles and locally
free sheaves, writing —for example— £ and £; for both.

2.1. Twisted quantum D-module. — In this subsection, we define the twisted quantum
D-module QDM(X, &) = (F,V, S, Fy).

2.1.a. Tuwisted quantum product. — First recall the definition of the twisted Gromov-Witten
invariant (cf. [Giv96| and [CGO7| or [CK99, Section 11.2.1] and [Pan98]).

Let ¢ be in N and d be in Hy(X,Z). Denote by Xg 4 the moduli space of stable maps of
degree d from rational curves with ¢ marked points to X. The universal curve over Xy g4 is
Xot1,d :

€41
Xopp1d— X

lw
XO,Z,d

where 7 is the map that forgets the (¢4 1)-th point and stabilizes, and e, ; is the evaluation
at the (¢ 4 1)-th marked point.

Recall that a convexr bundle N on X is a vector bundle such that, for any stable map
f:C — X where C is a rational nodal curve, H*(C, f*\) = 0.



Proposition 2.2. — Let N be a globally generated vector bundle (not necessarily splitted) of
rank b then N is convex and the sheaf No g4 := R°m, ), N is locally free of rank [, ci(N)+b.

Proof. — Let us prove the convexity of N. We follow [FP97, Lemma 10].
Let f: C' — X be a stable map and p be a non singular point on C. We will prove by
induction on the number of irreducible components of C' that

(2.3) HYC, f*N @ Oc(—p)) = 0.

First, assume that C' ~ P'. We can write f*(N) ~ ®!_,Opi (a;) with ay, ..., ap in Z. Since
N is globally generated, f*(N) also is, which implies a; > 0 for any 7 in {1,...,b}. It follows
that HX(P!, f*N ® Oc(—p)) = &*_ H (P, Opi(a; — 1)) = 0.

Assume now that C' = C"UC, where Cy ~ P! and p in Cj. Denote by py, ..., p, the points
of Co N C". Notice that C’ has exactly ¢ connected components intersecting Cy on exactly
one point. Each p; is a smooth point of one of these components. We have the following
exact sequence

0—— f*NQROc (=X L pi) —— [FN®Oc(—p) — [N ®Ogy(—p) —— 0

From the associated long exact sequence and by the inductive assumption on the connected
components of C’, we deduce the equality (2.3). The exact sequence :

0—— f*N ® Oc(—p) N N ®O, ——0

gives H'(C, f*N) = 0.

Now, the stalk at a point (C,zy,... 24, f : C — X) in X4 of the K-theoretic push-
forward Ny gq is HO(C, f*N) — HY(C, f*N'). Since N is convex H'(C, f*N) = 0 and
H°(C, f*N) has dimension [, c;(N) + b by Riemann-Roch. Thus, N4 is locally free of
dimension [, c;(N) + b on X 4,4. O

Let £ ¢q be the sheaf R°m, e}, € as in Proposition 2.2. For j in {1,...,¢}, we define the
surjective morphism &4 — €} & by evaluating the section to the j-th marked point. We
define &y 4(j) to be the kernel of this map that is we have the following exact sequence

(2.4) 0—— &o,e.a(d) Eo,e,d e; & 0

By Proposition 2.2, for any j € {1,..., ¢} the bundle £, 4(j) has rank [, ¢;(E).
Fori € {1,...,/¢}, let 9¢; be the hne bundle on Xy 4 whose fiber at a point (C,zy, ..., zy,
f: C — X) is the cotangent space T*C,,. Put ¢; := ¢1(O;) in H*(Xo4.4)-

Definition 2.5. — Let £ be in N, ~,...,7 be classes in H**(X), d be in Hy(X,Z) and
(m1,...,my) be in N°. For j in {1,..., ¢}, the (j-th) twisted Gromov-Witten invariant with
descendants of these data is defined and denoted by

—~—

()oY, = [ un(Enald) mez*
[XO,Z,d}VH

0,4,d

where ¢; : Xopq — X (1 < i <) is the evaluation morphism to the ith marked point and
[Xo.0.4"™ is the virtual class on Xg 4.

Definition 2.6. — Let 7 be a class of H*(X) and 7,72 be in H**(X). The twisted small
quantum product (with respect to 5) of 71 and 7, is defined by

oy = Z Z <71,72,T >073’dT“

a=0 deH>(X,Z)

whenever this sum is convergent.



Remark 2.7. — 1. Using the notation of correlators (see (A.19)) one can define, for any
7 in H**(X), a big twisted quantum product :

s—1
oy =) <<71, V2, Ta>>0 T

a=0

As usual, we have : oV := o™ [ __ . We will not use of big twisted quantum products.

2. One can also define the small twisted quantum product without choosing a basis by :

(2.8) Moy e = Z eli™es, (e 71U €572 U crop(E03.a(3)) N [Xo3.4]"™)
deH2(X,Z)
2.1.b. Parameters. — The quantum product written in Definition 2.6 depends on the pa-

rameter 75 in H?(X). The Picard group Pic(X) acts on H*(X) in the following way : for £
in Pic(X), L.7y = 7 + 2¢/—1mci(£). The number ela™ being invariant by this action, the
quantum product is naturally defined over H?(X)/Pic(X) = H*(X)/2v/—11rH?*(X,7Z).

Let us extend the locus of the parameter. Denote by NE(X)z C Hy(X,Z) the Mori cone
of X, generated as a semi-group by numerical classes of irreducible curves in X.

Notation 2.9. — The semigroup algebras of NE(X)z and Hy(X,Z) will be respectively
denoted by A and IT :

A =C[NE(X)z] = C[Q% d € NE(X)z], Il =C[Hy(X,Z)] =Cl[Q% d e HyX,7Z)]
where Q¢ are indeterminates satisfying relations : Q?.Q% = Q7.

The scheme Spec A is an irreducible, possibly singular, affine variety of dimension r. De-
note by V the set of complex points of Spec A. Points of V are characters!) of NE(X)z.
If ¢ is such a character, denote by ¢¢ its evaluation on d in NE(X)z. Since X is projec-
tive, the Mori cone is strictly convex and there exists a unique character sending any d in
Hy(X,7Z)\ {0} to 0. We will denote this character by 0 and call it, as usual, the large radius
limit of X.

The scheme SpecIl is a torus of dimension r = rk Hy(X,Z). The set of complex points of
SpecII will be denoted by T ; a point of T is a character of Hy(X,Z) and T is a smooth
subset of V. We will identify T and H?(X)/2v/—17rH?*(X,Z) via the natural surjective
morphism of complex variety :

(2.10) v . H*(X,C)—T
T ¢ = |d € Hy(X,Z) — ¢% = ede]

The kernel of ¥ is 2¢/—17H?(X,Z). Thus, the large radius limit 0 in V O T is a limit in
H*(X)/2v/—17TH*(X,Z).

The small quantum product can now be defined with parameter ¢ in 'V :

Definition 2.11. — Let ¢ be in 'V and 7,7, be in H**(X). The twisted small quantum
product is defined by

19,7 72 —Z Z <’71,’72,~>03dTa

a=0 dcH>(X,Z) o

(1) By a character of a semi-group R of Hy(X,Z) we mean an application ¢ : R — C such that ¢(0) = 1
and ¢(d +d') = q(d).q(d’) for any d,d’ in R. If R is a group the image of ¢ is in C*. If ¢ is such a character,
we will write ¢¢ := q(d). A character ¢ of a semi-group R gives a complex point Spec C — Spec C[R] which
will also be denoted by ¢ ; this correspondence is a bijection. Notice that, if d is in R, Q¢ is a function on
Spece C[R] and we have : Q%(q) = ¢%.



whenever this sum is convergent.

Definition 2.11 and Definition 2.6 are compatible : For any 7, in H*(X), ¥(7,) is in T and
MO V2 = V1 Oy V2

Assumption 2.12. — We will assume that there exists an open subset V of V containing
the large radius limit 0 such that :

Vg € V. V1,7 € H*(X),m of}w 9 1S convergent.

This assumption is easily shown to be true when the line bundle (wx ® L1 ® -+ - ® L)V is
ample, that is when the complete intersection variety Z defined by £ is Fano. In other cases,
such as Calabi-Yau subvarieties of toric varieties considered below, one may use [Iri07] to
check this assumption.

Notation 2.13. — We denote by V the complex nonsingular variety V :=V N T.

Thus, V is a smooth locus in V where the quantum product is convergent. We have :

large radius limit =0 € V (convergent product) C V = Specg A
U U
0 ¢ V (convergent product) C T = Spece Il — (C*)"

As a convention, we will denote neighborhood of 0 in V by an overlined capital letter, and
its intersection with T by the same capital letter without overlining (V is a compactification
of T in the neighbourhood of the large radius limit).

Let us recall some properties of the twisted quantum product :

Proposition 2.14. — For any q in V the twisted quantum product 'ZW s associative, com-
mutative, with unity Ty = 1.

Proof. — This is a classical proof, as soon as the twisted Gromov-Witten axioms are known.
The twisted axioms are shown in Appendix A. Such proves are given by Pandharipande in
[Pan98|, Proposition 3, for a smooth hypersurface of P* and by Iritani in Remark 2.2. of
[Iri11], in the general case. O

2.1.c. The trivial bundle with an integrable connexion. — Using basis 11, ..., T, and By, ...,
B, defined in 2.1, we have : II = C[Hy(X,Z)] — Clqf, ..., ¢"] where q, := Q" (cf. footnote
1). Thus ifd = >, d,B, we get Q% = []'_, ¢% in II. Viewing the ¢,’s as coordinates of
T, we get : ¢ =[[_, ¢% for any ¢ € T.
For a in {1,...,7r}, we put :
0 = a0y, 0, = 20,.
Recall that tg is the coordinate on H°(X).

Notation 2.15. — We denote by F the trivial holomorphic vector bundle of fiber H**(X)
over HO(X) x V x C:
F:=[H*(X)x (H(X)xV xC) = (H'(X)xV xC) |

together with the following meromorphic connection :

1 1 1
Vo =0 + —100, Vs =0, + —T,8, Vs =0, — ~€ e +p
z z z

q q

where 1 is the diagonal morphism defined by u(T,) := 3 (deg(7,) — (dim¢ X —rk&)) T, and
E(to, q,2) := tol + 1 (Tx ® ). This global section € of F' corresponds to the Euler field.
Notice that the twisted product .gw does not depend on ¢y because of the twisted fundamental
class Axiom (c¢f. Proposition A.4).



In the untwisted case, it is known that V is a flat connection and its flat sections can be
described explicitly. Let us give the equivalent property in the twisted case. We define the
multi-valuated cohomological meromorphic function L™ (¢y,q, 2) :

H*(X) — H*(X)

CIJ
,_.

(2.16) vy o L™ (tg,q,2)y = e "/ | ¢y — q < "y f> T
Hy ( z) z+ ¢ 2d

#0

I
o

a

where

V=1 = ¢ (‘ﬁl) is the class of H*(X(34) given before Definition 2.5,

qg " =q cq T = e Eama Taloslaa) g
log(q,) is the multi-valuated function, or any determination of the logarithm
on a simply connected open subset of V.
For an endomorphism u, we denote z* := exp(ulogz). The following Proposition is the
“twisted” version of Proposition 2.4 in [Iri09].

Proposition 2.17. — 1. The connection V is flat.
2. Fora in{l,...,r} and v € H*(X) we have

Vato Ltw(t()v q, Z)fy = 07 V(SaLtW(tO? q, Z)fy =0
N . a(Tx ® EY
V&th (th q, Z)’Y = Lt (th q, Z) (lu - 1( XZ )> v

c1 (Tx®5v)

3. The multi-valued cohomological function L™ (to,q,z)z"" 2 s a fundamental so-

lution of V above H*(X) x V x C.

Notice that, as a fundamental solution, L™ is convergent above H°(X) x V x C.
This kind of result is classical in the untwisted case (JCK99|, [Iri09]). By lack references
on twisted Gromov-Witten invariants, we write down a proof in full details in Appendix B.

2.1.d. The degenerated pairing.— Denote by (-,-) the Poincaré duality on H?*(X). As
<’yl, Y2, fa> is not symmetric in the three arguments we do not have the Frobenius rela-
tion, that is I

(71 0" 72,73) 7# (71,72 9" 73)-
Nevertheless we can define a symmetric bilinear form :

Definition 2.18. — The twisted pairing on H*(X) is defined by :
¥y1,72 € H(X), (31,72)™ = / M U2 U ciop(€)-
b

Proposition 2.19. — 1. The bilinear form (-,-)"™ is degenerated with kernel kerme,,,
where m,,, is define as :

Mey,, + H(X) — H*(X)
a— cop(E)Ua



2. For v1,72,7s in H*(X), we have the Frobenius relation :

)tw

(71 90" Y2,73)™ = (71,72 &4 73)™.

Proof. — The first claim is obvious.
By Definition 2.18 and Remark 2.8, it is enough to prove the following equality for any
de Hy(X,Z) :

/ €3 (e’{ Y1 U €572 U crop(€0,3.a(3)) N [Xo,s,d]Vir) U3 U ciop(€E)
X

:/ es. (€72 U el 73 U Coop(€0,3,4(3)) N [Xoz.a]"™) Uyt U coop(E).
X

The exact sequence :

00— &0,3,4(3) Eo,3,4 e5 & 0

gives ciop(€0.3.d(3))-Crop(€5 E) = Crop(€0,3.4). By projection formula we get :
/ €34 (eik YU es 72 U cop(&0,3,4(3)) N [Xo,?,,d]Vir) U3 U cop(€)
X

= / eT Y1 U e; Y2 U eg Y3 U Ctop (5073,d)
[Xo,3,a]"'"

As the last number is invariant by permuting the class v;, we deduce the proposition. 0

Let O := Opo(x)xvxc be the sheaf of holomorphic functions on H°(X) x V x C, and F
be the sheaf of holomorphic sections of F'. Let I'(O) be the ring of global sections of O, and
['(F) be the I'(O)-modules of global section of F'; I'(O) is endowed with the involution :

k: I'(O) — o)
f(to,q,2) — fr:= f(to,q,—2)

Denote by T'(F)* the T'(O)-module equals, as a set, to I'(F) and endowed with the following
multiplication : Vf € I'(O), s € ['(F), f.s :== f".s. We define a a sesquilinear pairing

S:T(F)*T(F) —T(0)
by fixing its value on constant sections of F' :

V1,72 € H*(X), S(n,7%2) = (11,72)™.

As a consequence, we get :

Vs1,80 € T'(F),V(to,q,2) € H'(X) x V x C,
S(s1,89)(to, 4, 2) = (s1(to, 4, —2), 8a(t0, 4, 2))"™
Proposition 2.20. — 1. The pairing S is V-flat.
2. For any sy, sy in T'(F),
S(L™.s1, L™ .s9) = S(s1, 89).
3. For any 1,72 in H*(X) we have
S(L™ (to, 4,2)2 2Ty L1y, g, 2)2 21T )

:S(e\/—_lwcl(TX(X)Ev) V—=1ru

7176 72)
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Proof. — 1. By the Frobenius property of Proposition 2.19.(2), for any a € {1,...,r} and

for any s1,s9 € I'(F), we have :
0aS(s1,82) = S(Vs,s1,82) + S(s1, Vs, 82)
01,5 (81, 82) = S(Va, 51, 52) + 5(51, Vo, 52).

By the definition of p and Proposition 2.19.(2), for any s, sy € I'(F) we have
0.5(s1,82) = S(Vs.81,82) + S(s1, Vs.82).

Hence, S is V-flat.

2. By flatness of S and Proposition 2.17.(2), we deduce that

V1,72 € H*(X), 8,5(L™ 1, L™ 7s) = 0.

So the expression (L™ (to,q, —2)71, L™ (to, q, 2)72)™ does not depend on ¢q. By the
asymptotic of L™ at the large radius limit, we get

(L™ (to, g, —2)71, L™ (to, @ 2)72)™ ~g=0 (77", ¢"#92)™ = (31, 72)"™"
The relation S(L™.s1, L™ .s9) = S(s1, s2) is also true for any sy, so € I'(F) by sesquilin-
earity.
3. By the previous formula and the flatness, we deduce that the left hand side does not
depends on z. So we can put z = 1. We deduce that the left hand side is equal to

S<€7\/7_17r,u€\/7_17rcl('73(@5\/),.}/17 ,}/2)

As S(—u(m),72) = Sy, u(72)) for any 71,7, in H*(X), we deduce the formula.
U

2.1.e. Integral structure.— In the same way than Iritani [Iri09, Definition 2.9] (see also
[Irill, footnote 8 p.20|), we define an integral structure on the vector bundle F' with con-
nection V, compatible to the pairing S.

Denote by ~ the Euler constant. For a vector bundle A" on X of rank b, we consider the
invertible cohomology class

:HF(1+ui) = exp <—’701 +Z "(b—1)iC(b )Chb(N)>

i=1 b>2

=

where v, ..., 1, are the Chern roots of N and Ch,(N) is the class of degree 2b of the Chern
character Ch(N). Denote by K (X) the Grothendieck group of vector bundles on X. Recall
that the morphism Ch : K(X) — H?**(X,Z) become an isomorphism after tensored by C
(see for instance Theorem 3.25 p.283 in [Kar78]).

Definition 2.21. — For any v in K(X), we put
ZW(0) i= (2m) PRI (g g, 2)2 P2 TXEEDT(TOT(E) 1 (2v/—17) 28 /2 Ch(v).
We call Z™%(K (X)) the T-integral structure on QDM(X, ) and we denote it by Fy.

Remark 2.22. — Notice that Z™(v) is a multi-valued flat section of the bundle (F, V) and
that Z™ (K (X)) ®zC is the set of flat sections of . We can understand the formula of Zw

above as “the twist” by I'(Tx)T'(€)~" of the natural integral structure given by K (X).

(2¢/—Tr)dee /2 Ch T(Tx)T(&)! (2m) /2L (tg,q,2) 2~ F 21 (TX ®EY)

K(X) (F,d)

(F,d) (F,V)

Proposition 2.23. — For any vy, vy in K(X), we have :

S(Z™(v1), 2™ (v9)) = /Xctop(é') Td(Tx) Td(£) ™ Ch(v; ® vy)

11



roof. — Using Proposition 2.20. and eV~ = (— —1)*" ", we deduce that
Proof. — Using P ition 2.20.(3) and V=™ = (—1)d€/2({/=1)*", we deduce th
S(Z™ (v1), 2™ (v2))

—(2v/—1m)F " / Crop ()Y TTATXEENT(TAOD(£) 1 (2v/—1m) 2% /% Ch(vy)
U (=1)*5 2T (Tx)T(€) 7 (2V/=Tm)*/ Ch(vy)

We have the following facts : for any a,3 in H**(X), for any v in K(X) and for any
§ € H*(X),

BU (2V/—1m)%8 /20 = (2¢/—1m)%8/2(B/(2v/—1m)4e5/2 U )
/ (2v/—1m)dee /2 = (2\/—_17r)”/ a

(—1)98/2D(1 4 6) = (1 — §)(—1)/
(—=1)%8/2Ch(v) = Ch(v").

Denote by vy, ..., v, the Chern root of Ty and €q,..., ¢, the Chern roots of £. From the
above properties, we deduce that

S(Z™(v1), 2 (vg)) = /X ctop<5>e“<’fx®“f”/2ﬁf (1 + ﬁ) g (1 - ﬁ)

i 5) o si) o

Using the formal identity I'(2)['(1 — 2) = Tntry» we deduce that

267'2/2

1—e 2

This implies the formula. ]
Recall from Definition 2.21 that we denote F7 the integral structure Z™ (K (X)).

Definition 2.24. — The twisted quantum D-module denoted by QDM(X, £) is the quadru-
ple (Fa v) S) FZ)

F'l—2)I(1+z2) =

2.2. Reduced quantum D-module. — In this subsection we define the reduced quantum
D-module, denoted by QDM(X, ), which is a quadruple (f, v, S, FZ). The pairing S is
non-degenerated.

Recall that m.,,, is the endomorphism

Mey,, + H*(X) — H*(X)
a— cop(€) U

Put H**(X) := H**(X)/ker m,,,, and call it the reduced cohomology ring of (X,&). Since
Me,,, is a graded morphism, the vector space H?**(X) is naturally graded. For v € H**(X),

we denote by 7 its class in H**(X).

Denote by F the trivial bundle H?*(X) x H°(X) x V x C = H°(X) x V x C. On F, we
will define a connection V and a non-degenerated paring S. They will be induced by those
on F'.

For any 7,7, € H*(X), define the reduced pairing (-,-)*? which is a bilinear form on
H?>*(X) by
(2.25) (T2, 72)" = (1,72)™

12



By Proposition 2.19, ker m,,,, is the kernel of the twisted pairing. Tt follows that the reduced
pairing is a well defined and non degenerated bilinear form.

We define the pairing S as we did for S but changing (-, )™ by (-,-)*¢ (¢f. before Propo-
sition 2.20). From (2.25), for any s;,s, € [(H°(X) x V x C, F), we deduce that

(226) S(gl,gg) == 5(81,82)

Let (o, ..., ¢s_1) be a homogeneous basis of H2*(X) and denote (¢°,...,$* ") its dual
basis with respect to (-, ).

Definition 2.27. — Let 71,...,7, be classes in H*(X).
1. Let d be in Hyo(X,Z). The reduced Gromov-Witten invariant is

<717 ce 77n>6?2d = </717 SRR Ctop(£)7n>0,é,d
2. The reduced quantum product is

s—1
—  red — - — red a
T T =) > ¢ T T Ga)sa @
a=0 deH>(X,Z)
Remark 2.28. — By the twisted S,-symmetric axiom (cf. Proposition A.2), the reduced
Gromov-Witten invariants are well defined on the class in H?*(X). Notice that the reduced

Gromov-Witten invariant are S, symmetric. The convergence domain of oged contains V.
We will restrict ourselves to V.

Proposition 2.29. — For any 1,7 in H*(X), we have
Y1 o o =7, 07,
Proof. — Using Formula (2.8) for the twisted quantum product we get :

neY =), J&a
deH>(X,Z)

where we put a := (e 71 U €372 U crop(£0,3,4(3)) N [Xo3,4)"™). Denote by 6o € H¥(X) a lift
of ¢,. By Definition (2.25), we have

=Y @ o) 0" = 3 (b)) o

Using projection formula, the proposition follows from

—_—
-~

~ \ tw
V15 Va5 ¢a>6?§,17d = {V1,72; Ctop(E)Pa)o,3.0 = (63*04, %)

Define the following connexion on the bundle F :

— 1_— — 1—
Vato =0, + gl.ged’ Vae{l,...,r}, Vs =0, + ;Ta.zed

— 1—

V& = 5,2 —-¢ .;ed +i

z
where 7z is the diagonal morphism defined by 7i(¢,) := % (deg(¢,) — (dime X — 1k €)) ¢, and
¢ = tol + a(Tx ®EY).
Corollary 2.30. — For any v € H*(X), we have :
A

13



Proof. — This follows from Proposition 2.29 and from u(T,) = u(T,). O
Lemma 2.31. — For any (ty,q,2) in H°(X) x V x C, we have :
L™ (ty,q, z)(ker m,,, ) = kerm,,, .

Proof. — Let 7 be in kerm,,,, and o € H*(X). Since L"™(ty, ¢, z) is an automorphism of
H*(X) and kerm,,,, is the kernel of the twisted pairing (-,-)™ we find, using Proposition
2.20 :

(Oé, Ltw<t07 q, Z)”Y) " = (LtW (t07 q, _z>'<LtW<t07 q, _Z))_l'aa Ltw<t07 q, Z)fy)tw
— (Ltw(to, q,—2)ta, 7)tw = 0.
Then L™ (ty,q, z)y belongs to ker m,,, . O

This lemma permit us to define a reduced L function : for any (o, q,z) € V x C put

(2.32) L(to,q,z) : H*(X) — H**(X)
7 — L(to, q,2)7 = L™ (to, ¢, 2)
In the same spirit of §2.1.e, we also get an induced integral structure on QDM(X, ). Denote

by
K(X):=K(X) / {v]|Ch(v) € kerm,,,,}.
The Chern character Ch : K(X) — H?*(X) induces a reduced Chern character Ch : K(X) —

H?*(X) which become an isomorphism after tensored by C. For any v € K(X), we put
Z(0) == (2m) "Lty q, 2) 2 2 TXEEND(TOL(E) -1 (2v/—17) %8 2Ch(w).
In the same spirit of Definition 2.21, the reduced f—integml structure on QDM(X, £) is given

by Z(K(X)) and we denote it by Fy.

Corollary 2.33. — The triple (F,V,S) satisfies the following properties.

1. The connection V is flat and S is non-degenerated and V-flat.

2. A fundamental solution of V is given by L(ty,q, z)z 7z (Tx®EY)

3. For any 51,5, € I'(F), we have

S(L(q, 2)51, L(q, 2)32) = S(51,52)
4. For any v in K(X), we have Z(v) = Z™(v).
5. For any vy, vy in K(X), we have

S(Z(), Z()) = / rop(€) Td(Tx) TA(E) " Ch(vy ® v5").
b
Proof. — (1) Proposition 2.17 and Corollary 2.30 implies the flatness for V. The flatness of
S follows from Proposition 2.20 and Equality (2.26).

(2) This statement follows easily from Corollary 2.30 and Proposition 2.17.

(3) The equality follows from Proposition 2.20 and Equality (2.26).
(4) This follows from the statement (2).
(5)

The equality follows from the previous equality, Equation (2.26) and Proposition 2.23.
O

Definition 2.34. — The reduced quantum D-module associated to the pair (X, ) is the
quadruple (F,V, S, Fz) denoted by QDM(X, £).

Remark 2.35. — 1. The set Z(K (X)) ®z C is the set of flat sections of QDM(X, ),

14



2. The reduced f—integral structure on QDM(X, &) defined above is the one induced by the
[-integral structure on QDM(X, &) defined in Definition 2.21 i.e., we have Z(K (X)) =
ZW(K(X)).

2.3. Geometric interpretation of the Reduced Quantum D-module for complete
intersection subvarieties. —

Assumption 2.36. — In this section, we assume that dim¢ X > k£ + 3 and that the line
bundles L4, ..., L, are ample. This makes it possible to use Hyperplane and Hard Lefschetz’s
Theorems.

Notation 2.37 — Fix a generic section of £, and denote by Z the projective subvariety
defined by this section. By Bertini’s theorem, Z is a smooth complete intersection subvariety
of X. Denote by ¢ : Z — X the corresponding closed embedding.

By Lefschetz’s theorem we have

(2.38) H*(Z) =Im:* @ ker,
and ker ¢, C HYmcZ(Z). We put H%, (Z) := Im*, this is the part of the cohomology of Z
coming from the ambient space X. We have the following commutative diagram
(2.39) H?*(X) eeor H?(X)
x /
HQ* (X)
L* \ Lx
I f
N2
H5(2)

where p is the natural projection and f : 7 — (*y. By the decomposition (2.38), the
morphism f is an isomorphism. In particular we have an isomorphism H?*(X) ~ H?*(Z) and
H(X) ~ H°Z).

Remark 2.40. — It should be possible to improve Assumption 2.36, at least for toric vari-
eties. For example, if X is a toric projective variety of dimension at least 3, k =1 and L, is
a nef (not necessary ample) line bundle on X, then Theorem 5.1 of [Mav00| ensures that Z
is a smooth connected hypersurface satisfying : H**(Z) = Im* @ ker .

Proposition 2.41. — Using Notation 2.37, and under Assumption 2.36, for any 1,7, €
H*(X), 1, € H*(X),
U(m 'tTVQV Y2) =" () ‘LZ*(TQ) V" (72),

Z is the quantum product on Z.

where o

Proof. — The proof is given in Proposition 4 of [Pan98]|, for a smooth hypersurface of P".
The general case is treated by Iritani ([Iril1], Corollary 2.3.) using functoriality of virtual
classes (cf. [ KKPO03|). O

Recall that we identify H°(Z) with H°(X). The classical quantum D-module associated
to Z, denoted by QDM(Z), is the triple (FZ,VZ,S%) where
1. FZ is the trivial bundle H**(Z) x H°(X) x Vz x C — H°(X) x Vz x C where V7 is the
subset of H?(Z)/ Pic(Z) where the quantum product on Z is convergent(?

(2)We use the same parameter ¢ because of the isomorphism ¢* : H*(X) ~ H?(Z)
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2. the connection V7 is defined via the same formula than V with the quantum product
of Z and € := ¢ (Tz) + to1 and

1 (1hg) =

where (v,) is a basis of H**(Z).
3. The non-degenerated pairing S? is defined in the same way of S but with the Poincaré
duality of H*(Z).

Moreover, on QDM(Z) Iritani defined the T-integral structure (see Definition 2.9 [Iri09]) via
ZZ(K(Z)) where for any w in K(Z), he puts

Z%(w) = (2m) " RRLZ 1y, , 2)2 7 2 TOT(T, ><2F 17)%8/2Ch(w).

(deg (1) — dimg¢ Z) 1),.

N | —

In Proposition 2.10 of [Iri09], he proves that Z%(w) ® is the set of flat sections of
QDM(Z).
We consider the trivial sub-bundle of FZ whose fibers are H2*, (Z). This sub-bundle is

stable by VZ and the pairing is still non-degenerated on it. We denote QDM,,, (Z) this
sub-quantum D-module. By Proposition 2.41, the base space of this bundle F# could be
restricted to H°(X) x V x C. We put K,u,(Z) := t*K(X). We have that K,.;,(Z) ®z C
is isomorphic to H2*, (Z) via the Chern character. So ZZ(Kamb(Z)) ®z C is the set of flat

amb
sections of QDM, ,(Z) that is ZZ(Ku,(Z)) define a T-integral structure on QDM, .. (Z).
The integral structure put on QDM(X, £) in §2.1.e is compatible with the one defined by
Iritani, that is we have the following theorem.

Theorem 2.42. — Using Notation 2.37, and under Assumption 2.36. The reduced quantum
D-module QDM(X, E) is isomorphic to the sub-quantum D-module QDM, ., (Z) of QDM(Z).

Proof. — First, we get an isomorphism of bundles. We still denote it f. From Proposition
2.29 and Proposition 2.41, we have :

L0 ,) = f(rr o 72) = (1 00" 72) = (1) o7 (L2) = F(71) o7 f(Fa)-

The adjunction formula gives : ¢1(7Tz) = t*¢1(Tx ® £¥). Since the dimension of Z is the
dimension of X minus the rank of £, we deduce that p?(f(%)) = f(u(¥)). It follows that
the isomorphism of bundle f satisfies :

(2.43) VZfF) = (V) and S(7,,72) = SZ(f(71), [ (F2))-
Let show that for any 7 be in H?*(X)
(2.44) f (Z(toq, z)z_ﬁzcl(Tx(@gv)W) = L%(to, q, z)z_“zzcl(TZ)f(W)

By equation (2.43), both side are fundamental solutions of QDM, ,(Z), so they differ by
the conjugation of a constant matrix. At the large radius limit, they are both equivalent to

F(eto/2 A UREEN T = ctol= =" on(T2) ()

This implies that the constant matrix is the identity that is we have Equality (2.44).
Let show the compatibility between the integral structures that is f(Z(v)) = Z#(*v) for

7 in K(X). We use Equality (2.44) with 5 := I'(Tx)T(£)~1(—=1)d/2 Ch(v). As we have
) = (BTT(E)™) (~1)%/2 Ch(v).

As we are in complete intersection, the normal bundle N x = t*£. So we have the following
exact sequence

(2.45) 0—— Tz ——1"Tx —— '€ ——0
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This implies that the Chern roots if ¢*7x are the Chern roots of 7z and the Chern roots of
1*E. We deduce that I'(:*Tx) = I'(:*E)T(Tz). As the class I'(v) is compatible with pull-back,
we deduce that f(Z(v)) = ZZ(1*v). O

Denote by (-,-)x(z) the Mukai pairing that is (wy, w2)k(z) := x(wy ® wy). The following
proposition show a relation between the Mukai pairing in K(Z) and the three pairings
S(-,),8(+,+), S%(-,-) on respective flat sections.

Proposition 2.46. — For any vy,vy in K(X), we have
(tv1, ")k (z) = SZ(ZZ(*vy), 27 (1Fvy))
= S(Z(v1), Z(v2))
= S(Z™(v1), Z™(1v9)).

Proof. — The first equality follows from Proposition 2.10 of [Iri09]. From Proposition 2.23
and Corollary 2.33, it is enough to prove that

(2.47) (t"v1, " ve) K (2) = /Xctop(é') Td(Tx) Td(£) ! Ch(v; @ vy).

From the exact sequence (2.45), we deduce that Td(7z) = +*(Td(€)~! Td(Tx)). By Riemann-
Roch and the projection formula, we have

(v, 02) 2y = X (LT @ Lvy)

_ / Td(T5)e* Ch(v, @ v)
Z

_ / Lot (TA(E) ™ Td(Tx) Ch(vy © v}))

The last equality is exactly (2.47). O

3. Batyrev rings for toric varieties with a splitted vector bundle

From now on, X is a toric smooth projective variety endowed with k globally generated
line bundles L4, ..., L.

In [Bat93|, Batyrev constructs a ring based on the combinatorial data of a smooth toric,
projective variety. In the Fano case, it is the quantum cohomology ring of this variety. As
shown in [Irill], it is also the restriction at z = 0 of the quantum D-module.

In this section, we define the Batyrev ring associated to the data (X, Lq,...,Ly). Tt is
constructed as the classical Batyrev ring of a quasi-projective toric variety, namely the total
space of £, denoted by Y. This construction could be generalized to any quasi-projective,
smooth toric variety defined by a convex fan.

More precisely, we prove the three following results that will be used in the rest of the
paper.

1. The total space Y of £ is a quasi-projective smooth toric variety defined by a convex
fan A. The Batyrev ring B of a Y is a quotient of the ring Alz,] := Alz,, p € A(1)],
where A is the Novikov ring previously defined, and A(1) is the set of rays of the fan A.
The quotient is made by the sum of two ideals, respectively denoted by QSR (Quantum
Stanley-Reisner ideal) and Lin (Linear ideal). Our first result in Theorem 3.22 gives a
Groebner basis of QSR in terms of primitive collections of the fan (see Notation 3.19).

2. Moreover, assuming that the anticanonical divisor of Y is nef then there exists a Zariski
neighborhood U of the large radius limit in A such that Spec B — U is finite, flat of
degree dim H*(X) (see Theorem 3.26).
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3. To set up our last result we first define the residual Batyrev ring, denoted by B"™*
(see Definition 3.39) : it is the quotient of A[z,| by the quotient ideal (G : wip)
of G := QSR+ Lin by a monomial z,, defined in terms of the £,. We show that
Spec B — U is finite, flat of degree dim H**(X) — dimkerm,,,, (see Proposition
3.40).

Subsections 3.1, 3.2 and 3.3 are preliminary results :

— some recalls of toric geometry to construct the fan of YV,

— the definition of the Batyrev ring,

— the definition of primitive collections and classes.

Subsection 3.4 is devoted to the proof of Theorem 3.22 on Groebner basis. In the last two

subsections, we prove Theorem 3.26 on Batyrev ring and then Proposition 3.40 on residual
Batyrev ring.

3.1. Notations for toric varieties. — This section is mainly based on [Ful93| and
[Mus].

Denote by N a n-dimensional lattice and by M its dual lattice. Consider a fan ¥ of
Ng = N ® R and denote by (1) the set of I-dimensional cones of 0. The set of rays of ¥ is
(1) ={6,...,0}, and for any 6 € (1) we denote by wy the generator of 6 N N.

The n-dimensional toric variety defined by ¥ is denoted by X. For any cone o € ¥ we
denote by U(c) the affine variety :

Spec C[o"] := Spec C[x“,u € M,Vx € o, (u,z) > 0]

where y* are indeterminates. To any ray 6 € (1), there is an associated toric Weil divisors
denoted by Dy.
We assume that :

1. ¥ is non singular i.e., for any ray o € X, the set {wy, 0 € ¥(1),0 C o} is part of a basis
of the lattice N. This is equivalent to X being smooth.
2. X is projective.

Let £y, ..., Ly be k globally generated line bundle over X, and £ := ®%_ | £;. Let Ly, ..., L,
be k toric divisors such that £; = O(L;). We write :
Li= Y Dy, (el i=1,.. k
0ex(1)

Fan of the total space of £Y. — Consider the n + k dimensional lattice N’ := N @ Z*. Let
(€1,...,¢€x) be the canonical base of Z*. Denote by :

¢ N =NxZF— N
the natural projection. Define a fan A in N} := N’ ® R in the following way :

— The rays of A are indexed by (1) U{Lq,..., Lg} :

For 6 € ¥(1), put vy = (wg, 0) + S5, £5(0, ),

Fori=1,...,k, putvg, = (0,¢).

Then,
A1) :={pg :=Rtvy, 0 € Z(1)} U{pr, :=RFwp,, i=1,... k}.

— a strongly convex polyhedral cone o is in A if and only if ¢(o) € X.

By assumption, the line bundles £; are globally generated and the function v, associated
to each toric divisor L; is concave. This gives :

Fact 3.1. — Astheline bundles Ly, ..., L, are globally generated, the support |A| = Uyeac
of the fan A in Ny is convex (we will say that A is convex).
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It will be convenient to make the distinction between rays pg coming from the base variety
X, and rays py, coming from the splitted vector bundle €.

Notation 3.2. — We put :

base

v.b.
A= {pg,0 € (1)}, AW=A{pr,s---,pL,}-
so that A(1) = Ab(?s)e |_|Av(ib)‘.

Let Y be the toric variety associated to A. As X is smooth, Y is also smooth. We denote
by the same letter
p:Y — X

the scheme morphism induced by the projection ¢ : N’ — N.
The next proposition gives a geometric interpretation of the toric variety Y :

Proposition 3.3 (|CLS11]|, Proposition 7.3.1 and Exercise 7.3.3)
The toric variety Y is the total space of the dual vector bundle £ ; the toric morphism
¢ Y — X is the natural projection of this vector bundle.

One can easily check the following result about cohomology classes :

Proposition 3.4. — The projection ¢ : Y —> X induces an isomorphism :
¢*  H*(X) — H*(Y).

Moreover, if i is in {1,...,k} and D; is the divisor of Y corresponding to the ray pr, (see
construction 3.1), we have :

[Li] = ¢*[-D;] in H*(X).

Ezample 3.5. — Consider the fan of P! given by (N = Z,w; = 1,wy = —1), L = O(2) and
L =2D;. The fan A is given by the rays vy, = (1,2),v9, = (—1,0) an vy, = (0,1) (¢f. Figure
1).

PL 6,
Ype,
Fan A in Ng, ~ Vor § Y, total space
N/ - N X Z p02 Up92 o Of O[Pll (2)\/
o o
Fan X in V,
]\?n: Zm © 02 Wo, Wo, 0
: < . > sy X = P!

FIGURE 1. Fans ¥ and A associated to X = P!, L = O(2D,)
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3.2. Batyrev ring of a quasi-projective fan.— We define and study the Batyrev ring
of the fan A defined in section 3.1.

Remark 3.6. — Notice that all the results of this part remain true for any fan I' in a lattice
L such that :

1. I is non singular i.e., defines a smooth variety.
2. The support of I' is convex of maximal dimension dim L.
3. I' defines a quasi-projective variety.

Denote by NE(Y')z C Ha(Y,Z) the (integral) Mori cone of Y :

NE(Y)z = { Z nc[C),ne € N, [C] numeric class of irreducible Curve}.
finite sum
The (integral) nef cone in H?(Y,Z) is the dual cone to NE(Y)z. It is generated by globally
generated divisors.
Following [CvRO8], to each toric Weil divisor L = 3 5. 11y loDy is associated a piecewise
linear functions vy, from the support |A| of A to R which is linear on any cone of A, integral
on N’, and satisfies :

Vo € A(l), @Z)L(wg) = —fg.

Denote by PL(A) the set of piecewise linear functions from |A| to R which are linear on
any cone of A and integral on N’. PL(A) is isomorphic to the set of toric divisors of Y,
which is also isomorphic to the set €D () ZD, (recall that Y is smooth). There is an exact
sequence :

(3.7) 0 — M — PL(A) =72V — H*(Y,Z) — 0.

Let CPL(A) C PL(A) be the subset of concave functions, then the image of CPL(A) by the
map PL(A) — H?*(Y,Q) is the Nef cone of Y.

Also recall that the ample cone of Y is the interior of the nef cone. It is the image by
PL(A) @ R — H?(Y,R) of the set of strictly concave piecewise linear functions of |A|
(cf. [Mus], Chap. 6). Since Y is a quasi projective variety, the ample cone is non empty
and its dimension is equal to r = dim H*(Y,R).

We define the coefficient ring of Y by :

A := C[NE(Y)z] = C[Q%,d € NE(Y)z].

Remark 3.8. — In this article, Y is a fiber bundle of base X. As a consequence, the
cohomology groups, nef cones, Mori cones of X and Y are isomorphic, and A = C[NE(Y)z] =
CINE(X)z] (see Proposition 3.4).

Let d be a class of Hy(Y,Q). We put

d,=D,.d= /Dp.
d
For any ray p of A. Dualizing the exact sequence 3.7 gives :
(3.9) 0 — Hy(Y,Q) — Q*W — Ny — 0,

Where the image of d € Ho(Y,Q) by the left arrow is (d,),ea) € Q2.

For any real number a, we also put a™ = max(a,0),a” = max(—a,0) so that: a =a™—a".
Finally put d* = (d}),eaq) and d~ = (d; ) ,eaq)- Identifying d € Hy(Y,Z) and its image in
7AW (see the exact sequence 3.9), we have :

d=d"—d .
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Consider a set of indeterminate x,, p € A(1), corresponding to the set of rays of A, and
the single indeterminate z. We put :

Alz,] == Az, p € A(1)].
For any d € Hy(Y,Z) denote by Ry the polynomial :
(3.10) Ry =% — QU = xsz - H SL’Cpl;.
pEA(1) pEA(1)
The quantum Stanley-Reisner ideal of Afz,] is the ideal QSR generated by the R, :
(3.11) QSR := (Ry, d € NE(Y)z)

The linear ideal of Alz,], is the ideal Lin generated by the following linear polynomials

2,8 :
Lin := <Zu = Z (u,vp)xp, u € M'>

pEA(1)
Definition 3.12. — The Batyrev ring of A is the ring :
B = Alz,]/G,
where G := QSR + Lin is the sum of the quantum Stanley-Reisner and linear ideal.

Remark 3.13. — Suppose that N’ is equipped with a basis (eq, ..., e, ). In that situation,
we will put
Vi=1,...,0, Zi = Z,

where (e},...,e*,) is the dual basis of (ey,...,e,) in M’. The linear ideal Lin is generated

by Zl7---7Zn/-

3.3. Primitive collections. — Following Batyrev ([Bat93|) and Cox ([CvRO08|) we de-
fine :

Definition 3.14. — A subset {pi1,...,p} of A(1) is called a primitive collection for A if
{p1,...,m} is not contained in a single cone of A but every proper subset is.

Let C = {p1,...,p} be a primitive collection, and vy, ...,v; be the generating vectors of
pr NN ..., ;N N'. Let o be the minimal cone of A containing v = 22:1 v;. Denote by
Py, p. the rays of o and vy, ..., v, the primitive vectors of the p}. Since ¢ is the minimal
cone of A containing v, the vector v is in the relative interior of o and there exists s positive
numbers a; such that : v = a1v| + - - - + asv.. Moreover, since v is in N and the v} are part
of a basis of N’ (A is non singular), then the a;’s are uniquely defined in N .

Remark 3.15. — With the above notations : {vq,...,v} N{v],...,v.} = . (See propo-
sition 1.9 of [CvRO08|).

Let C' = {p1,...,p} be a primitive collection and v = S>\_ v = a,v} + - - - + asv/, be as

above. Then
! s
I —
E v; — E a;v; = 0.
i=1 j=1

The exact sequence 3.9 shows that Hy(Y,Z) = ker(Z21) — N’), and there exists a well
defined element de € Hy(Y,Z)) such that :

1 ifpeC,
dg:Dp.dC:/ D,=¢ —a; ifp=R"j, je{l,... s},
dc 0  otherwise.
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Definition 3.16. — The class of a primitive collection C is the class d° € Hy(Y,Z) defined
as above.

Lemma 8.17. — Let C be a primitive collection, then d° € NE(Y)z.

Proof. — See [CvRO08|, proposition 1.9. O
Also recall the following result from [CvRO8| (Proposition 1.10) :

Proposition 3.18. — The Mori cone NE(Y )z is generated by classes of primitive collec-
tions.

A similar proposition for the Stanley-Reisner ideal will be proved in the next section.

Notation 3.19. — The set of primitive classes of A is :
P :={d° | C primitive collection of A}.

3.4. Monomial order and Groebner basis.
3.4.a. Monomial order on the variables x,.— We fix, once and for all, a monomial order <
on the variables x, and a strictly concave piecewise-linear function ¢ of |A|, rational on N’.
Since A is quasi-projective, such a function exists. Denote by O = ZPGA(I) —p(v,)D, the
ample linear Q-divisor defined by ¢.

Let 2% := ][ ca 2y (a € NAW) be a monomial in Alz,]. Put :

W) = Y —ayp(v,),
PEA(L)

and define a monomial order <, as follows :

w(z?) < w(z®)

2% <, 1% <= { or

w(z%) = w(z®) and 2% < 2%
Let P € Afz,] be a polynomial. The leading term of P for <, will be denoted by Lt(P).
If Lt(P) = az® with a € A and a € N4 then « is the leading coefficient of P, denoted

by Le(P) and z® is its leading monomial, denoted by Lm(P). Since A is not a field, this
distinction between leading terms and leading monomials is necessary.

Lemma 3.20. — Let d be in the Mori cone NE(Y)z, Ry = 2% — Q%% , then Lt(Ry) =
Lm(Ry) = .

Proof. — We have : Ry = z¢" — Q%29 , and :
wat) —w@ )= Y —diew,) — > —de(v,) = > —dp(v,) =0.d>0.

pEA(L) pEA(D) pEA(L)

3.4.b. Groebner basis of the quantum Stanley-Reisner ideal.—

Definition 3.21. — Let a be in Hy(Y,Z) or in ZA("). We say that a is supported by a cone
if the set {p € A(1) | a, # 0} is contained in a cone of A.

We can now give a Groebner basis of QSR for the monomial order <. Recall that the set
of primitive classes is denoted by P (Notation 3.19). We have :
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Theorem 3.22. — The set {Rq,d € P} is a Groebner basis with respect to the order <,
of the quantum Stanley-Reisner ideal QSR defined in 3.11. Moreover, the set Lt(QSR) :=
{Lt(P), P € QSR}, is :

Lt(QSR) = {ax® | « € A, a is not supported by a cone.}.

Remark 3.23. — (1) Being a Groebner basis over the coefficient ring A —which is not
a field—, means that the initial terms of the polynomials R;, d € P, generate the ideal
(Lt(QSR)) in Afz,]. Notice that all the Ry, d € P have a leading coefficient equals to 1, so
that the Groebner basis property remains true at any point of Spec A.

(2) The ideal QSR should be seen as a toric ideal over a ring. Toric ideals over a field, are
studied in [Stu96| where a similar result to Theorem 3.22 is proved.

First prove the following proposition :

Proposition 3.24. — Let K be the fraction field of A. Let QSR be the ideal of K|z,
generated by {Ry,d € NE(Y )z}, then :

(i) QSR' = (R4, d € P) = (Ry,d € Hy(Y,Z)) in K|z,].

(ii) The set {Rq4, d € P} is a Groebner basis of QSR in K|[z,).

Proof. — Put A := {Ry,d € P}, and apply the multivariate algorithm to A (see [Eis95],
algorithm 15.7). Consider the set

E :={R4,d € Hy(Y,Z) | any possible remainder of a

multivariate division of R4 by A is not zero}.

Let us prove that E is empty. Assume that it is not. Denote by d € Hy(Y,Z) a class such
that R, is in E, and is a minimal element of E for the order <. Since Ry = 24" — Q%"
two cases can occur :

a) Lt(Ry) = z%".

In this case d' is not supported by a cone. Because if d* is supported by a cone, then
—d € NE(Y)z by Lemma 3.25.(2) and Lt(R_4) = 209" = 2" by Lemma 3.20; this gives
Lt(Ry) = Q% which is a contradiction.

Then there exists a primitive collection C' contained in the support of d*. Denote by c
the class of C' and put a = d* — ¢ € NAW, By Lemma 3.25.(3), we have :

Ry — .CL’aRC — chmin(d*,aJrc*)Rdic — _ded’ + chaJrc* )

Since Lm(Ry) = z¢"
that

+ - + +
o xete <, a0t = g7 It follows

, 2 <, %" and since Lm(R,) = =
Lm(Rd,c) j¢ Lm(chmin(d’,aJrc’)Rdic)
— Lm(ded_ o cha—i—c_) c {xd_’xa—i—c_}
<, 2% = Lm(Ry).
Since Lm(Ry) is minimal in E, the polynomial R, . is not in F, and we have
Rd — .CL’aRC + chmin(d_,aJrc_)Rdic

. We deduce that R, is not in £ which is a contradiction.

b) Lt(Ry) = 24 .

Consider the polynomial R_y = 2" —Q~%z*". Then we have Lm(R_y4) = Lm(R,) = 29"
and R_4 is not in E by a). Since Ry = —Q'R_4, we deduce that Ry is not in E which is a
contradiction.

Thus, E is empty that is, for any d € Hy(Y,Z) there exists a remainder of the division of
R, by A which is zero. We are now able to prove (7) and (ii) :
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(1) By Lemma 3.17 any class of a primitive collection is in the Mori cone, and we have :
(Ay C QSR’ C (Ry,d € Hy(Y,Z)).

Moreover, for any d € Hy(Y,Z) there exists a remainder of the division of Ry by A which is

zero, hence Ry is in the ideal (A) generated by A and (Ry,d € Ho(Y,Z)) = (A) = QSR'.

(i1) By (i) the set A = {Ry,d € P} generates QSR’. Let us apply the Buchberger’s algorithm

to A. Let C1,C5 be two primitive collections of respective classes ¢1,co € NE(Y)z. For

i € {1,2} we consider the monomial :

LCOM(Lm(R,,), Lm(R.,))
Lm(R.,) B

ar max(cir,c;)fc:r )

By lemma 3.25.(3) we have :
! Rq — 02 ch _ :L,min(al—l—cl_,a2+c2_)chR01_c2.

Since the remainder of the division of R., ., by A is zero, the set A is a Groebner basis of
QSR'. O

Proof of Theorem 3.22. — Either in K[z,| or in Afz,] we have :
(Lt(Ry),d € P) = (277, d€P)
= (2% a € N*W | ¢ is not supported by a cone).

Let P € QSR C Afz,]. As an element of K|z,], the element P is in QSR’. By Proposition
3.24, Lt(QSR/) = (Lt(Ry),d € P) ; then Lt(P) = az*,a € K and a not supported by a

cone. Since P is in Afz,], @ is in A and we are done. O
Lemma 3.25. — 1. Let d be in Hy(Y,Z), d # 0, then either d* or d~ is not supported
by a cone.

2. Let d be in Hy(Y,7Z), if d~ is supported by a cone, then d € NE(Y ).
3. Let ¢,d be in Hy(Y,Z), a,b be in N*) . Suppose that ¢t + a = d¥ + b, then in
ClHy(Y, 2)][2][x,], we have : 2R, — 1Ry = gminlate™b+d)0dp

Proof. — 1. We have : > .\ djv, = > ) d,vp- Let oF be the minimal cone of
A(1) supporting d*, and o~ be the minimal cone of A supporting d".
Put v =37 c\q)ydyvp = 2 ,eaq) d,vp- Then v is in the interior of o and o7 It

follows that ot = o~ and since A is non singular, d* = d~ and d = 0.
2. We have to show that, for any nef toric divisor 7', we have T'.d > 0. Let T be such a
divisor and 1 the piecewise linear concave function associated to 71" :

T.d= Z (vp)d; = —ib(v,)d,

p

Z (v,) alJr + Z d,v,) (d” supported by o)

Zd+vp )+ ( Zd v,) = 0 (¢ concave, and ( Zd+vp Zd;vp))
p

3. Since a+c+:b+d+,c*—c*:candcﬁ—d*:d, we have :
min(a + ¢ ,b+d ) =min(a+c" —¢,b+d" ) =min(b+d* —c,b+d")
=min(b+d +d—c,b+d)=b+d +min(d —¢,0)
=b+d —(c—d)".

24



Similarly, min(a + ¢ ,b+d") =a+ ¢ — (¢ —d)”. Then we get :
R, — 20 Ry = :L,a+c+ —Q° 2ot l,b+d+ + Qd Ltd—
_ prin(aen b)) od
Caa —min(a+e” b+d™) _ e—d anrc_fmin(aJrc_,ber_))
— gmin(ateT k) (l,(c—d)Jr _ Qc—dl,(c—d)_)
_ gmin(atebid ) gdp

O

3.5. Flatness, finiteness and degree of the Batyrev ring over the coefficient ring.
— The aim of this section is to prove the following result :

Theorem 3.26. — Let Ly, ..., L be globally generated line bundles on X such that (wx ®
L1®---® L) is nef. Let B be the Batyrev ring of (X, Ly,..., L) defined above. There
exists a Zariski neighbourhood U C Spec A of the large radius limit such that the restricted
scheme morphism :

Spec(B)|g — U
is finite, flat, of degree dim H**(X).

Remark 3.27. — 1. Notice that the definition of B depends on the choice of the toric
divisors L; of each £;. Differents choices of toric divisors give isomorphic rings.
2. The open subset U will be defined in paragraph 3.5.d. We call it the freeness neigh-
bourhood of A. It only depends on X, not on the vector bundle £ and can be explicitely
computed by elimination algorithm.

Recall that Y is the total space of £, defined by the fan A, that NE(Y)z = NE(X)z and
[Ky] € H*(Y) = [Kx + Ly + ...+ L] € H*(X) via the isomorphism defined in Proposition
3.4. We will rephrase Theorem 3.26 and actually prove :

If A is a smooth, quasi-projective, convex, fan defining a variety Y and if the anticanonical
divisor —Ky is nef, then there exists a neighbourhood U C SpecA of the large radius
limit such that the restricted scheme morphism : Spec(B)|z — U is finite, flat, of degree
dim H*(Y).

First consider the fiber of B over the large radius limit.

3.5.a. Large radius limit.— Using Notations 3.34, Spec A = V. Let 0 be the "large radius
limit" point. It is defined by the maximal ideal m = (Q? d € NE(Y)z,d # 0) in A. The
fiber of Spec B over this point is well known :

Notation 3.28. — Put :

(3.29) SR = <xd+, de NE(Y)Z> = (2%,a € N2W not supported by a cone. )
(3.30) Lin = < > (u,v)mp,u € M’>
pEA(L)

The ideal SR is the Stanley-Reisner ideal of A (see [BH93] for example).

Proposition 3.31. — Let Ly, ..., Ly be globally generated line bundles. The image of QSR
(resp. Lin) in A/m is SR (resp. Lin) ; there is a well defined isomorphism :

B/mB = Clz,)/(SR+Lin) —» H>(Y,C) = H*(X,C)
Tp — (D,

where [D,] € H*(Y) is the class of the toric divisor D,,.
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Proof. — Since A is convex and quasi-projective, the proof of [Ful93| in the complete case
can be adapted to our case ; then there is a well defined isomorphism :

Z[x,)/(SR+ Lin) — H**(Y,Z)
z, — [D,],

which proves the proposition. O

Notice that the fiber at m does not depend on the vector bundle £.
3.5.b. Flatness of A — Alz,]/ QSR.—

Lemma 3.32. — The morphism A — Alx,]/ QSR is a flat morphism of relative dimension
n' =dimY ; A and Alz,]/ QSR both are Cohen-Macaulay rings.

Proof. — Flatness. For P in A[z,], denote by P its image in A[z,]/ QSR. Let A be the set
of monomials of A[z,] not contained in Lm(QSR). By Theorem 3.22, A = {2% € NAW |
a is supported by a cone}. As in [Eis95| (theorem 15.17) we prove that Afz,]/ QSR is a free
A-module with basis A = {P, P € A} :

Let 2% ,...,2% bein Aand ay,...,oq bein A. If Y, ;2% = 0, then ), oyz* € QSR and
Lm(), a;z®) € Lm(QSR). Since all the a}s are supported by a cone, we get o; = 0 for any
i=1,...,1, and A is free over A.

Suppose now that A does not generate A[z,]/ QSR as a A-module. Let 2 be the smallest
monomial for <, such that 7@ ¢ A.A. The m/-tuple a is not supported by a cone, and there
exists a class d of a primitive collection, and b € N*M such that 2% = 2R, + Q%2 . We
deduce that 2@ = Q9zb*4~. By assumption, and since 2°7¢" < 2%, the class 20+4~ belongs
to A.A, hence we conclude that 2@ is in A.A which is a contradiction.

Fiber over the large radius limit is Cohen-Macaulay of dimension n'.

Let m be the ideal of the point 0 in V, as in Paragraph 3.5.a. The image of QSR in
Alz,]/m is the Stanley-Reisner ring SR (see Notation 3.29). By [BH93|, Theorem 5.1.4, and
Corollary 5.4.6, C[z,]/ SR is a Cohen-Macaulay ring of dimension n'.

Fibers over Spec A are Cohen-Macaulay of dimension n’.

Let n be any maximal ideal of A, and denote by QSR the image of QSR in (A/n)[z,] =
Clz,]. By Theorem 3.22, the set {Ry,d € P} is a Groebner basis of QSR. The initial ideal
of QSR is (2%, a € NA() | not supported by a cone) ; this is the ideal SR studied above.

By [Eis95|, there exists a flat morphism of algebras C[t] — C whose fiber C' @ CJt]/(¥)
over 0 is C[z,]/ SR and whose fiber C,, = C' ® CJt]/p over any other point p of SpecC[t] is
isomorphic to C[z,]/QSR.

The set of p € Spec C[t] such that the fiber of Spec(C') — Spec CJt] over p is Cohen-
Macaulay is open ([Gro66|, corollary 12.1.7). It is not empty since it contains 0 hence it
contains a point p # 0 of C. It follows that C[z,]/QSR is Cohen-Macaulay. Moreover, by
flatness of C[t] — C, dim C[z,]/QSR = dim C[z,]/ SR = n'.

As a conclusion, A — Afz,]/ QSR is flat, of relative dimension n’, and its fibers all are
Cohen-Macaulay. Since Spec A is a toric affine variety, it is also Cohen-Macaulay. It follows
that Alz,]/ QSR is Cohen-Macaulay (|[BH93|, Theorem 2.1.7). O

We now come to the study of the Batyrev ring B = Afz,]/(QSR + Lin). By definition,
Spec(B) is a subscheme of Spec A[z,] and there is a natural projection :

Spec(B) — Spec A.
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3.5.c. Homogenization of Alz,)].

Put m/ = CardA(1), consider a new variable h and denote by P the projective scheme
Proj A[z,, h], with the grading given by deg(h) =1 and deg(z,) = 1. Also denote by H the
hyperplane at infinity defined by h = 0, and by A% the affine subspace Spec A[z,] = P7\ H.

The homogenization of a polynomial P € Alz,] is P" :

Ph .= plesPp (%) € Alz,, h].

The linear polynomials Z, (u € M') being homogeneous, we have Z" = Z,. As for the
homogenization of Ry, notice that for any d € Hy(Y,Z), we have deg(z?") — deg(z? ) =
>, Dpd=—Ky.d. We get :

Remark 3.33. — If —Ky is nef, then for any d in NE(Y)z,
RZ, — der . th—Ky.dxd’.

Let T' be the closed subscheme of P defined by the homogeneous polynomials R? for
d € NE(Y)z. Let X be the closed subscheme of I' C P2 defined by the polynomials R” for
d € NE(Y)z and Z, for u € M’'. We have :

X €T and Spec B = x NA".

The closed subscheme X N H is defined in Proj A[z,] by the homogeneous polynomials: R
and Z, where :
Vd e NE(Y)z Ry = Rl|—o € Alz,)]
Yu e M’ Zu = penq) (W Vp) Tp.
Let m be the natural morphism :
T ]P@l —V
The image 7(x N H) is a closed subset of V.

Notation 3.3j. — The closed subset of V
U:=V\7©(xNH)

is called the freeness neighborhoods of the large radius limit. Its intersection U := UNT with
the torus is also called freeness neighbourhood. This terminology is justified by Theorem
3.26 and Proposition 3.40.

Remark 3.35. — 1. Using primitive collections and elimination algorithms, we can give
an explicit description of the algebraic open subset U. Let (ej,...,e,) be a basis of
N’ as in Remark 3.13. The closed subscheme Y N H is defined by the finite set of
polynomials : Z; = >_ ) (€], vp) T, and, for d in the set P of primitive classes,

R 24 if 32,d, >0,
d = + -
x4 — Qdrd if >, =0,
The ideal in A of the closed subset 7w(x N H) can be obtained by elimination of the
variables x,.
2. The homogenization of an ideal I of Alh,z,] is : I" = (P" P € I). Recall that, if
I is generated by Py,..., P, we do not have in general : I" = (P{, ..., P!). In our

situation, if ' is the closed subscheme of P7" defined by the homogenized ideal G", we
only get X' C X.

Lemma 3.36. — The large radius limit is in U.
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Proof. — Using notations above, let 0 € V be the large radius limit, and X, be the fiber of
X — V over it. The intersection X,NH is defined by the homogeneous ideal : (h)+SR + Lin
in P2 And we have :

Clz,, h]/((h) + SR+ Lin) — Cl[z,]|/(SR+ Lin),

this last ring being isomorphic to H**(Y,C) by Proposition 3.31. It follows that the zero
locus in C™ of the ideal SR + Lin C C[z,] is defined by x, = 0 for any p € A(1). Then, the
reduced ideal of (h) + SR + Lin is the irrelevant ideal of the graded ring C[h, z,] and x,NH
is empty. O

Remark 3.37. — (Fano subvariety) If —Ky is ample, that is, in our case, if the complete
intersection subvariety defined by a generic section of £ is Fano, then the freeness neighbor-
hood U is equal to the whole set V. Actually, since —Ky.d > 0 for any d € NE(Y)z, the
projectivized polynomials RJ° are equals to <xd+,d € NE(Y)z). Each fiber of x — V is
isomorphic to X, and x N H = &.

3.5.d. Proof of Theorem 3.26. — Consider the following diagram :
Xo—— 17

rel. dim. n’
rel. =dim X +rk&
dim. 0

where I';; is the restriction of I' = Proj A[h, z,]/ (R%) to U. By Lemma 3.32. A% NI’z —
U is a flat morphism of relative dimension n’ between Cohen-Macaulay schemes.

Above U and X are contained in the affine part of I' (away from the hyperplane H) and
has relative dimension zero since the fibers do not meet the hyperplane H. Thus, X7 — U
is a finite and proper morphism.

Let (eq,...,en) be a basis of N'. We use of notations of Remark 3.13. Let p be a point of
U and denote by Z; the image of Z; in the quotient of A[z,] by the maximal ideal defining
p. In the Cohen-Macaulay fiber A;”' N T, over p, the scheme ), has codimension n’ and

is defined by a sequence of length n' (namely (Zy,...,Z,)). By [BH93|, theorem 2.1.2,

(Z1,...,Zy) is a regular sequence.

By the corollary to the theorem 22.5 of [Mat86], since A” N Ty — U is flat, and
(Z1, ..., Zy) are regular sequences over any point of U, then xz — U is flat.

The degree of this finite morphism can be computed as the length of the fiber X/, over the
large radius limit. By proposition 3.31 it is equal to dim H**(Y). O

Remark 3.38. — If Y is Fano, one can also proof by induction on the degree that B is
a free A-module. A basis of B is given by a free subset of the set of monomials {z% a €
N2® g is supported by a cone, a, € {0,1}} which generates B.

3.6. Flatness, finiteness and degree of the residual Batyrev ring over U.— As
we have H?*(X) ~ H*(Y) and, via this isomorphism, we have : [L;] = [-D,,] for p; € A
(cf. Proposition 3.4).
We put :
¢ = I[L]=[-D,] € H*(X), cop(€) =TIy € H¥(X)
x; :=x, which is a variable in A[z,], Ziop = (=1)*[], 2 € Alz)

We also define the quotient ideal :
(G : Tyop) = {P € Az,)], 240p.P € QSR+ Lin = G}.
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Finally recall that we denoted by m.,,, : H**(Y) — H**(Y") the morphism of multiplication
by Ctop (5)

Definition 3.39. — The residual Batyrev ring of (X, Ly,. .., Lg) with respect to & is the
A-algebra :
B = A2, )/(G : o).

Proposition 3.40. — Let Ly, ..., Ly be ample line bundle on X such that (WxRL®--®
L)Y is nef. Denote by U C V the freeness neighborhood defined in 3.34. Then the restricted
morphism Spec(BR=)|z — U s finite, flat of degree dime H**(X) — dimker m,,,, .

Proof. — Denote by Ty, the image of o, in B = Afz,]/(QSR + Lin), and by m,,,, : B —
B the morphism of multiplication by ., in B. This multiplication induces an isomorphism :
BR = A[2,) /(G : @op) — TropB = Im(my,,,).

(well defined and injective by definition of the quotient ideal (G : xtp)). Moreover, there is
an exact sequence :

(3.41) 0 — TiyopB — B — B/TtopB — 0
By definition B/Ty, B is isomorphic to Afz,]/(QSR + Lin +(zp)).
Let d be a class of NE(Y)z. For any p = pp, € AW, since [—-D,] = [L;] is ample,
d, = D,.d <0 and we have :
Rd - :L‘d+ - le‘topxd_iea
where € = (€,),ca), €, = 1if p € Av(ib)‘, €, = 0 otherwise.
As a consequence, in Afz,]/(QSR + Lin +(2p)), B¢ = ¢ and we can write :

A[z,]/(QSR 4 Lin +(20p)) — Alz,)/ (%", d € NE(Y)z) 4+ (Zu,u € M"Y + (Ziop))
AR (C[z] [z,]/((z%",d € NE(Y)z) + (Zy,u € M) + <xtop>>)

Using Proposition 3.31, we get :
Clelfa,)/ (&, d € NE(Y)z) + (Zu,u € M') + (iop)) — H*(X,C)/ (TTi e1(L1)) -
We get
A[xp]/<QSR+ Lin+<xt0p>) ;> A ® (H2*(X7 (C)/ <Ctop<5)>)-
Thus, B/TpB is a flat A-module. Its rank can be computed, and is equal to :

dime H*(Y) / eiop(E)H*(Y) = dim H*(Y) — dim¢ Im Me,,, = dimg ker m,,,.

Restricting the exact sequence (3.41) to U, and using the isomorphism BR* 5 7., B we
get : (BR*)|; is a flat module of rank (dim H**(Y") — dim ker m,.,,) over U. O

4. GKZ systems, quotient ideals and residual D-modules

GKZ systems were defined and studied by Gelfand-Kapranov-Zelevinskif in the end of the
eighties (cf. [GGZ87|, [GZKS88|, [GZK89| and [GKZ90]|). Nevertheless, our approach is
closer to the one of [Giv95], [Giv98], [CK99, §5.5.3 and §11.2] or [Iri09].

Here we define the GKZ ideal and the quotient GKZ ideal associated to (X,&). This
gives us two differential modules, which will be compared (in Section 5) to the twisted and
reduced Quantum D-modules of Section 2.

Consider, as above, the toric variety X endowed with the £ toric divisors L1, ..., L; such
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Notation 4.1. — Let d be a class of Hy(X,Z). We put

Vo € 2(1), dg := Dy.d = f Dy = fd[Dg]
VZG{]_,,]{?} dLi :de: dLi:fdcl('C
Also recall that, for any real number a, we put a™ = max(a,0),a” = max(—a,0) so that :

a=at—a .
Consider the non-commutative ring :
D:=Clgt, ..., ¢ 2)(264,, - - -, 204, 20.).
For simplicity, we will write D = C[¢™, 2](2,, 29.).

Notation 4.2. — (Quantization) Recall that Ty,..., T, is a fixed basis of H*(X). To any
class 7= > _ t, T, € H*(X) we associate the operator

Definition 4.3. — (GKZ-ideal, and quotient ideal with respect to i)
1. The GKZ-ideal G associated to (X, L1, ..., L) is the left ideal generated by the oper-
ators [y, d € Hy(X,Z), and € :

Oy : —HH( +1/z>01;[1) ,1_[0 <D9—2V>
AT () 1T () wencen

/Q\f =20, + Cl(TX X SV)

where we use Notation 4.1 and ¢ =[[/_, ¢ JaTo _ HZ 1@ (d=>""_,d,B,).
2. The quotient ideal Quot (¢, G) of G with respect to ¢y, is the left 1dea1 of D generated
by :

{P eD|¢,P € G}.

Notice that, unlike the commutative case, the set {P € D | ¢,,P € G} is not an ideal,
but only a C[z]-module®. However, it contains the ideal G and should be seen as a bigger
system of equations.

Definition 4.4. — (GKZ-module, and residual module with respect to ¢,)
1. The GKZ module associated to (X, Ly, ..., L) is the left quotient D-module

M :=D/G.

®) For a simple example, consider the Weyl algebra C[g] (J,), the left ideal I = (5,) and ¢ = J,. Then 1
satisfies ¢.1 € I, hence Quot(¢é,I) = Clq] (§4) and ¢ € Quot(¢,I). However, é.g = dqq¢ = qdq + ¢ is not in T (it
would imply that ¢ is in I, which is impossible for degree reasons).
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2. The residual GKZ-module M** is the left quotient ID-module
M := D/ Quot(¢iep, G)

In the following, we denote by D the sheaf of Orc-algebras associated to the ring D over
T x C. Denote by M (resp. M) the sheaf of Opyc-modules associated to M (resp. MRe),

These D-modules may not be coherent over the whole set T x C. However, considering
the freeness neighborhood U defined in Notation 3.34, we have :

Theorem 4.5. — Let Lq,..., Ly be globally generated line bundles such that (wx ® L1 ®
-+ ® L)Y is a nef line bundle. The restricted sheaves M|yxc and M*S|yxc are coherent
Ou xc-modules.

Proof. — If M is coherent then M** is also coherent : the surjective morphism M — M
implies that M** is finitely generated.

Recall from Definition 4.4 that M = D/G. This module M is isomorphic, as a C[q¢F, z]-
module, to

(4.6) M =D/G

where D' := Clg*, 2](26,) and G’ = (0,4, d € Hy(X,Z)) : the Euler operator € of the ideal
G enables us to remove z9, in the quotient.

Hence, we are led to show that the sheaf M’ associated to M’ and restricted to U x C
is Clg*, z]-coherent. For a classical differential modules, one could find a good filtration
and show that the characteristic variety is supported by the zero section of the cotangent
bundle (c¢f. [RS10, §3] and [Sab05, Proposition 1.2.8]). Since M’ is a D'-module (and
not a C[¢*, 2](9,, d,)-module), we will rewrite the classical proof (cf. for instance [HT'TO8,
Proposition 2.2.5]) in our case.

Let us define the following increasing filtration of D' :

FkD’::{PED’|Pq,zz5 ZP (¢,2 }

aeN"
] <k

where (20,)* := (204,)*" -+ - (204,)*. One can easily check that this filtration satisfies the
following properties

(a) FpD' =0 for k <0,

(b) UpenFyD' = IV,

(c) for any k, ¢ in N, we have (F,D') - (F,D)) = Fy /D,

(d) for any k in N, FD) is a free C[¢F, z]-module,

(e) for any P in F;ID’ and for any @ in F, I/, [P, Q] is in Fj,, (D'

Let gr’ be the graduated ring of D' defined by the filtration F. Property (e) proves that
grl)’ is commutative. For a in {1,...,r}, denote by y, the class of 24,, in grD’, then grD’
is isomorphic to ClgF, 2][y1, . .., ys). Let P(q,2,26;) := Y cne Palq, 2)(204)* in IV, then its
class in grD’, denoted by o(P), is

o(P) = Z Polq, 2)y®

|a|=deg P

where y® =y - -y,
We deduce an increasing filtration on M’ defined by

FkM, = ij]D,/(GT;€
where G} := F;D'NG’. We have :
1. M =0 for k <0,
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2. UpenFipM' = M/,
3. for any k in N, F;M' is a coherent C[qF, z]-module as it is a finitely generated module
over the Noetherian ring C[q¢*, 2],
4. for any k., ¢ in N, we have (F;D') - (F,M') = Fi M.
For classical differential module, the last two properties mean that the filtration (FM)gey
is good. Since we have

(4.7) grM' = grD'/ gr G,

we deduce that the annihilator Anng,py gr M’ is gr G'.

In order to use Lemma 4.8, we sheafify everything. We will denote by calligraphic letters
for the sheaves associated to the C[g*, z]-modules and restricted to U x C. Consider the
ideal sheaf Z := (yy,...,y,) in gr.

By Lemma 4.8, there exists® mg in N such that Z™ is a subsheaf of gr G’. Let P be
a section of FyM' for k < mg. By property (4), for a in N” such that |a| = mg, we have
(204)*P is in Fyip,M'. But we have o((29,)%) = y* € Z™ C grG'. This implies that the
class of (26,)*P in gr M’ is zero. We deduce that (20,)*P in Fjipm,—1M'. The property (4)
implies that for any £ in N we have

Fg M = (Fp V) - F,M!

= | > Ovxc(26)” | FM + [ Y Ouvsc(26,)* | FM

aeNT aENT
|a|=mo |ar] <m

!

C Fipmg 1M,

We deduce that the increasing filtration F,M' is stationary after mg. Property (2) implies
that F,,,M’ = M’ and Property (3) implies the theorem. O

The following Lemma is used in Theorem 4.5. We use the notations defined along the
proof of this theorem : gr)' = C[g, ..., ¢, 2][y1,...,9,] and o is the symbol. Recall that
the characteristic variety of M is the algebraic variety C' in Spec grD’ defined by the ideal :

/Anng, py gr M. There is a natural morphism : Spec gr ' — T x C, where T = Spec C[¢*],
and we get a cartesian diagram :

Clyxe = C  C SpecgrD/

{ {
UxC — TxC

Lemma 4.8. — Assume that (wx @ L1 ®---® L)Y is a nef line bundle. Let U be the open
subset of T defined in Notation 3.34. The characteristic variety Clyxc is the zero section of
grl|yxc — U x C defined by the ideal (y1,...,y.).

Proof. — In order to connect the definitions of U and grD’, we consider the ring
Clg*, 2][z,, p € A(1)]. There is a natural surjective morphism of Cl¢*, 2]-algebra :

a : Clgt, 2][z,, p € AQ1)] — gr D' = Clg™, 2] [y, - - -, ¥r)

base

R b

—(>az1 Doya) if p € AQ)
Where the D% are numbers defined by : [D,] = Y7, D4T, in H*(Y,Z). Note that since, in
Og, the sign in front of D, in is not the same for rays coming from the bases or from the line

W For example take mg := my + - - - + m, where yt e grG.
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bundles £;, the definition of a(x,) admit two cases. Actually, ¢,(£;) = —[D,,] for p; € AW
which create this additional sign. We refer the reader to [CK99| and to the Erratum to
Proposition 5.5.4 for definitions of O, with conventional signs).

The kernel of this morphism is the linear ideal Lin generated by the Z,, v € M’ : Z, =
> pen(y (U V)T, where v, is the generating vector of p M N’. We get an isomorphism :

a: Clg*, 2]z, p € A()]/ Lin — Clg*, 2][yr, -, ).

The characteristic variety is contained in the closed subset K] of Spec grD’ defined by the
ideal

Ji = (0(0a),d € Hy(X,Z)) € Clg*, 2lly, -, i)
Let d be in Hy(X,Z). We check that o(0,;) = a(RJ°) where R is the polynomial :
xdi i X ea dp <0
x?" — qdzd if > ,enqydp =0.
Which lead us to consider the ideal :
Jo=(RyY,d € Hy(X,Z) ; Zy,u € M') C Clg*, 2][z,, p € A(1)],

R =

Considering C[g*, 2][z,, p € A(1)] and Cl¢*, 2][y1, - . ., y,] as graded C[g*, z]-algebras (with
deg(x,) =1 and deg(y,) = 1), The morphism « defined above is a graded morphism. Ideals
J1 and J, both are homogeneous ideals, and a(J3) = Jj.

Let K (resp. Ks) be the closed subscheme of the projective scheme Proj C[q¢F, 2][y1, - - . , s
(resp. Proj Clg™, 2][z,, p € A(1)]) defined by J; (resp. J»). Also put :

m - ProjClg™, 2]y, - ., 4] — Spec Clg*, 2] = T x C
m : Proj C[qi, 2]z, p € A(1)] — Spec C[qiv z2l=TxC

the natural projections.
By Definition of U (Notation 3.34), and using Remark 3.35, we find : (T x C) \ mo(K3) =
U x C. Since the isomorphism @ satisfies @(.J;) = J;, we have

(4.9) (T x C)\ m (k) = U x C.

Consider now the affine space Spec C[¢F, 2][y1, ..., y,] (before projectivization) and the
closed subvariety K/ defined by J;. By definition, the characteristic variety C' is the reduced
scheme of K.

The ideal J; is contained in (y;, . .., y,) (this can be checked by considering the polynomials
R3® and the relation a(RY°) = o(0y)). It follows that the zero section of the morphism :

e SpecC[qi,z][yl, Y] — Spec(C[qi,z] =T xC

is contained in the support K.

On the other hand, the relation (4.9) implies that 7;'(U) N K; = @ which means that
the support of 7', (U x C) N K} is contained in the zero section of /. Indeed, the ideal
(Y1, ...,yr) is the irrelevant ideal of the graded ring C[¢=, 2][y1, ..., y.].

This shows that the support of 7'; (U x C) N K1, i.e., the characteristic variety C' of G
restricted to U x C, is equal to the zero section of 7} |y . O

Theorem 4.10. — Let Ly,..., L be globally generated line bundles such that (wx ® L1 ®
<@ L)Y is nef. Let U be the open subset of T defined in Notation 3.34. The D-module
Ml|uxc is locally free of rank dim H*(X).
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Proof. — The following proof is similar to the proof of Theorem 2.14 of [RS10]|. Modifica-
tions as to be made in order to take care of the twisted fan and the ¢’s variables.

Theorem 4.5 implies that M|yxc is a coherent Opyc-modules. By standard arguments
(see for instance Theorem 1.4.10 of [HTTO08]), for z # 0 this implies that M|y ¢~ is locally
free. It is enough to prove that M/zM is locally free of rank dim H**(X) and that the
locally free sheaf M |yyc+ is of the same rank.

Step 1. Show that M /zM is locally free of rank H**(X).

Let B be the Batyrev ring Alz,]/ (QSR + Lin). Localizing the ring A by inverting Q%, d €
NE(X)z, we obtain the ring C[¢*] = C[¢i, ..., ¢F]. Using Notation 3.2, there is an isomor-
phism of C[¢*]-algebra :

(4.11)
B ® Cl¢*] = Clg*, ,)/(QSR + Lin) — M/2M =D'/((2) + G)

r a . base
A {zal Dezd,,  ifpe A= {ps,0 € T(1)}
14 r a . v.b.
Za:1 L 25% if p= PL; € A= {pLu SR >ka}

(where[L;] = >, L¢T,). By Theorem 3.26, the Batyrev ring B is locally free of rank
dim H?*(X) over the neighbourhood U. Hence M/zM is locally free of rank dim H**(X)
over the open subset U = U N T.

Step 2. We use the notation of the beginning of the proof of Theorem 4.5. On z # 0, we
show that the locally free sheaf M |yxc+ is of rank H?*(X). To prove this, we will use 2
substeps.

2.1 Show that the module Ml := D/G ~ M’ :=D'/G’ (see (4.6)) is isomorphic to a classical
GKZ-system of Adolphson (see [Ado94]|). Notice that most of this step is done for any
z € C (included z = 0).

2.2 We compute that the rank is dim H?*(X) at one point using corollary 5.11 of [Ado94].

Step 2.1 We first write the GKZ system M’ := D'/G’ in a more classical way in view of
Adolphson’s result ([Ado94]).

Let {\,, p € A(1)} be a set of indeterminates. Consider the following non commutative

rings :

— Ay = C[\F, 2(20\) = C[A\,, A1, p € A1), 2](205,, p € A(1)). where the relations are :
205, -Ap = Ap.205, + 2z and all the other variables are commuting ;

— Ay = ClgF,2|(20)) = Clga, gz a € {1,...,7},2)(20x,,p € A(1)). where the rela-
tions are : z0y,.qs = Ga-20x, + D?zq, where the D7 are numbers defined by : D,] =
> DT, in HX(Y,Z) .

In view of [CK99| and its Erratum to proposition 5.5.4, we put in A; @ £ =[] . A,

PEA1)
There exists two morphisms of noncommutative C|z]-algebras, f and g defined by :

f : AQ'—>A1

base

Ap- 20, if pe Aq)
Ap20y, + 2 1fp€A1)

L | R ) RS

base

PEA(L) péﬂ(l)

Z5>\p — fﬁl()\p.za)\p)f = {

and
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g A2—>ID)/

=~ r a . base
26y, s § D0 = 2 Dy i p e A0)
—Li == Liz0,,, if pi € Aq)

and ¢(¢.) = ¢,- The minus sign comes because the fan A is the one of the dual bundle (see
Proposition 3.3). The morphism f is injective. The morphism g is surjective and its kernel
is the left ideal generated by the following set :

{Zu = Z (Vp, u)20y,,u € M’} C As.

pEA(1)

The GKZ ideal can be defined in A; and A, :
In Ay, set O/ == (205)% — (20))% for any d € Hy(X,Z) and Z/ := >, vp) A, 20, —

(u, B)z for any u € M’, where (3 is the constant vector (On, —1,...,—1) € N x Z*. The GKZ
ideal is
G, = (0, Z/,d € Hy(X,Z),u e M') C A;.
In A, set :
di—1 df
(4.12) 0, = H H (205, —vz) H H(—zé,\p +vz)
peAb(is)e v pEAV(Alb)A !
dy—1 dy
— ¢ H H (265, — v2) H H(—zﬁ)\p +vz),
peAtﬁs)e v=0 peAV(‘lb)' v=1

and Z, := > (u,v,)20y,. The GKZ ideal in A is Gy := (0, Z,,d € Hy(X,Z),u € M').
As g(zé,\pi) = —/[:i for any p; € Av(ib)‘, we have :

+ +
F@y =11 » I 2% o f(2.) = Z,
pedly  pend)
9(0;) = Og

which gives f(Gy) = G; and g(Gs) = G'. Passing to the quotient, the morphism g gives an
isomorphism :

Ay /Gy — D'/G' =M
Moreover, viewing C[\F, 2] as a C[q™, z]-algebra via the injective morphism
(4.13) ¢ : ClgF] — C[M]
Ga > (=1)7 B

we get an isomorphism :

AQ ®(C[qi,z} C[)\i, Z] L) Al
which sends 20, to A,.z0,. This gives an isomorphism :

A2/G2 ®(C[qi,z] (C[)\:t, Z] ;> Al/Gl.

In the following, we will write “the module is locally free over an open” meaning “the sheaf
associated to the module is locally free”. As ¢ is injective, we have Ay/Gy ~ D'/G' is
locally free at a point n of Spec C[¢*, 2] if and only A;/G; is locally free at any point n’ of
Spec C[\F, z] contained in the fiber of the surjective morphism Spec C[A*, 2] — Spec C[¢™, 2].
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Now we localize this C[¢F,z]-module above z # 0. By Theorem 4.5, the module
D' /G ®cjgt -] Clg™, 2¥] is locally free over U x C*. By the above isomorphisms, the module
A1/G1®cpt ) C[AE, 2%] is also locally free over ((¢#) 1 (U)) xC* where o# : (C*)21) — (C*)"
is the scheme morphism associated to ¢ (see (4.13)). On the other hand, we have the iso-
morphism :

Ay @cpt 5 CIAF, 27] = CAF, 2] (8))
Ap —> 2\,
(Z@Ap) — 8)\p
Z—Z

which sends 0% = (204" —(204)¢ to O := 0% -0 and Z/ to . (22, (s o) A0, — (u, B)).
Put 27 := 3" (u,v,)\,0x, — (u, B), the module A, /G, ®cpy+ .) C[A*F, 2*] is isomorphic, as a
C[M\ ] ®c C[z*]-module to
CIA*0n)/ (07, 21)) ®c Cl2*).

We deduce that C[AE](0y\)/ (0%, Z") is locally free over (o#)~1(U).
Step 2.2 Let us compute the rank of the locally free module C[AE|(dy)/ (DY, Z") over
(o*)~1(U) using Corollary 5.11 of [Ado94|. In view of the local freeness, we just need to
compute the rank at one point.

Adolphson associates a Laurent polynomial to the module C]A*](d,)/ (0% Z), denoted

by fi. We do not need to give the precise expression of f) for the following. Corollary 5.11
of [Ado94] tells us that over the following set

{(\,) € (C)AM | £y is non degenerated }

the rank is (n+k)!Vol(I'a) where I' is the convex hull in Np of the points {0, v,, p € A(1)}.
This set is a nonempty Zariski open subset of (C*)2(M). By density, this Zariski open intersects
the Zariski open subset (p#)~1(U) so that the rank is equal to (n + k)!Vol(T'»).

Denote by I's; the convex hull in Ny of the points {0,v,,p € 3(1)}. Show that (n +
k)!Vol(Ta) = n!Vol(Ty) = dim H*(X). When all the L; are nef, the fan A is convex, and

0 is a vertex of this convex hull. As the divisor —Kx — Zle L; is nef, then the vectors

(v1,...,vx) € N x ZF defined by the toric divisors L; all are either vertices or contained in
faces of I'a which do not contain 0. Hence, I'x is a disjoint union of the simplexes I'a(7) :=
(v1,...,Vk,0p,, 0 € T) where 7 is any simplex defined by generating vectors of the rays in X

(we use the notations of Section 3.1). The volume of a simplex I'a(7) can be computed by a
determinant on these vectors which simplifies into the volume of I'y,(7) := (v,,,8 € 7). Since
the union of these simplexes is I's;, we have (n + k)!Vol(I'a) = n!Vol(I'y) which is exactly
dim H?(X). 0

Theorem 4.14. — Let Lq,..., L) be ample line bundles such that (wx @ L1 @ -+ @ L) is
nef. Let U be the open subset of T defined in Notation 3.34.
1. On z = 0, the Oy-module (M™ [zM*)|y is locally free of rank dimc H**(X) =
dime H**(X) — dimg ker(m,,, ).
2. On z # 0, the Opyxc--module M* |y«c+ is locally free of rank less than dimc H>*(X).

Remark 4.15. — Using Mirror symmetry, we will also prove that M |y is locally free
of rank dim¢ H?*(X). We refer to Remark 5.11 for a precise explanation.

Proof of Theorem 4.14. — On z # 0, M"|yxc+ is locally free. By Nakayama’s lemma, it is
enough to prove the first statement.

Consider the residual Batyrev ring B = A[z,]/(G : 40p) defined in Subsection 3.6. This
is a A-algebras. Denote by B™* the associated sheaf of rings on V. = Spec A. When restricted
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to the neighbourhood U of the large radius limit, B is locally free of rank dime H2*(X) by
Proposition 3.40. Then, Lemma 4.16 below shows that the sheaf M™/2M"™* is a sheaf of
commutative rings defined over U which is isomorphic to the B"|y. O

In the following, we use notations of the proof of Theorem 4.10. The set P of primitive
classes is defined in Notation 3.19. Let S := (O), d € P) be the “square” ideal in A, :=

Clg™, 2](z0x). Put &), =[] .» 205, € Ay. Do not confuse it with Gy, := I, L el
eNl)
written in terms of 2J,’s operators. Recall that

QSR := (Ry := 2% — ¢%z?, d € NE(Y)y)
We put :
Quot (e, S) := (P € As,¢,,,P €S)
(QSR : wyop) == {P € ClgT][z,], P.xrop € QSR}
We introduced o, := [[ .. %, in the beginning of Subsection 3.6. Notice that (QSR : z.p)

PEA1)
is the usual quotient ideal of commutative algebra. The set {P € Clg ][xp] Top P € QSR}

is an ideal. However, in the non commutative ring A,, the set {P € Ay, ctopP € S} is not an
ideal anymore (cf. footnote 3).

Lemma 4.16. — 1. There exists an isomorphism of commutative CqF]-algebras :
I Ag/(Quot(€y,, Ga) + (2)) — Cla™][x,]/(QSR : @iop)
20
base
25y, z, zf,oEA(l
-z, ifp€ A( 1

2. We pass to the quotient by linear ideals i.e.,
— on the left side, we quotient by (Z, : ZpeA( )<u,vp>z<5p, forue M)

— on the right side, we quotient by (Zy := Y ) (U, vp)Tp, for u € M’
to obtain an isomorphism :
Mres/zMreS H Bres.

between the residual GKZ-module restricted to z = 0 and the residual Batyrev ring.

Proof. — The second statement follows easily from the first one.

The morphism h is well defined since h(0q) = Ry, h(Cg,) = iop and that setting z = 0
makes the algebra A, becomes commutative. It is surjective by construction. We construct
its inverse morphism. Consider the isomorphism of commutative C[q*|-algebras, where P is

sent on P :
(4.17) Clg*][z,] — Ao/ ()
T, —> T, = E
Where the overline notation means 1ts image in the quotient A,/ (z). Recall that for d €
Hy(Y,Z), we denote Ry := %" — ¢z We have Ry = Dd, and any element of QSR maps

to G, (see after (4.12) for the deﬁnltlon of Go).

Let P be in (QSR : ztcp), we show that P belongs to Quot(¢,, Go). Then the morphism
defined in (4.17) will induce the inverse of h.
There exists a set of polynomials {A4, d € P} such that:

(418) $topP = ZAd((Lx)Rd(qax)
deP
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For such an expression above consider the biggest (using the order <, see §3.4.a), leading
monomial that appears in A4(q, z)R4(q,x) for d € P. Among all the expression of (4.18),
denote by m(P) the smallest of these leading monomials that is :

m(P) = min max{Lm(A4R,),d € P}

(Ad)dep
P=Y"A4R,

where Lm(.9) is the leading monomial of a polynomial S. Notice that m(P) could be different
than Lm(P).

As the function ¢ used to define the order <, is associated to an ample divisor we can
assume —up to a change of ample divisor— that ¢(z,) < 0 for any p € A(1). In particular, the
set of monomial smaller than a fixed monomial m is finite, and possess a smaller element,
namely the monomial 1. We will prove by induction on the monomial m :

H(m) = “VP € (2op : QSR), m(P) <, m = Pe Quot(¢y,,S)”

If m = 1, then x,, P is a constant polynomials, which is only possible if P = 0. Then we
have P € Quot (¢, S).

Put m := m(P) and consider a minimal expression for (4.18) i.e., polynomials A, for
d € P such that :

Tiop P = Z ARy with max {Lm(A4Ry),d € P} = m.
deP
Let P* be the subset of P such that Lm(A;R4) = m. This set is not empty by assumption.
If d is in P*, A4 can be written :
Ag = agng + By,

where oy € ClgF], ng = Lm(Ay), Lm(A4Ry) = Lm(Ay). Lm(Ry) = ngz® = m and
Lm(BqRg) <, m

If d € P\ P* we simply set By := Ay, so that :

l‘tOpP = Z agngRg + Z B,Ry
dep* deP
with Lm(B4Rq) <, m for any d € P.
Consider two cases :
Case 1 : xy,, divides m. Then, for any d € P*, x4op divides nd:c . Since for any p € A(1
the variable x, does not appear in x¢ (because the £;’s are ample and P C NE(Y')), then
Ttop divides ng for any d € P*. Set ng = xyopnl. We find :

Trop P = Tiop (Z adnng> + Z B,R,.

deP* deP
and the polynomial S = P — )" .. n; Ry is in (QSR : 24,) and satisfy m(S) <, m(P). By
induction, the operator S € Ay/(z) is in Quot(¢,},, S). Moreover, the operator
A:§+ ZOzdﬁQRd:S—i‘ ZOzdﬁZlD_;
deP* deP*

is also in Quot(cy,,S).

Case 2 : @y, does not divide m. Since (Zde’P* adnde) + > uep BiRa = @op P, the
coefficient of m in the sum (3, 5. agngRq) must be zero. This coefficient is exactly >, og.

Fix a class ¢ in P*; then a. = — Zde’P*\{c} ag, and we have :
Z adnde = OZCTLCRC + Z ozdnde = Z ozd(nde - ncRc)
deP* deP*\{c} deP*\{c}
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But we have ngR; — n.R,. = nd(a:d+ — qx?) — nc(a:c+ — ¢%2°") and ngzd" = nat = m,
which gives
(4.19) ngRq — neRe = —ngq?z? + neqtz® .

Moreover, Zi,, divides any z¢ for any d € P (because the L;’s are ample and P C
NE(Y)). Denote by € = (€,)pcaq) the multi-index that equals to 0 for p € AW and 1 for

pE A(1). We have 29~ = Tiopr? €. This gives, in (4.19) :
’]’I,de — ncRc = Ttop (nchxc_*e - ndqud_it:’) )
For d € P* \ {c} set Cy 1= n.q’a® ~ — ngqz? ~¢. We get :
xtopp = Ttop Z OédCd + Z Bde.
deP*\{c} deP

The polynomial S := P— s @qCy ) isin (QSR : xyop) and satisfies m(S) <, m(P).
deP*\{c} p ®

By induction, the operator Sisin Quot(¢,,, S). Moreover, for any d € P*\ {c}, the equality
TtopCa = NgRg — ncR. gives in Ay /(2) :

A A~ =7 ~ =7
CiopCa = Ng0y — 1O

We deduce that Cj is in Quot(¢y,,S). Finally, we have

P = Z adéd +Se Quot(Ceop\S).
deP*\{c}
O
5. Isomorphisms between quantum D-modules and GKZ systems via mirror
symmetry
5.1. Recalls on Mirror symmetry. — We start by some recalls on mirror symmetry in

the framework of Givental. Here, we suppose that X is a smooth toric projective variety
endowed with k globally generated line bundles L4, ..., Ly such that (wxy ® L1 ® -+ - ® L)Y
is nef. We put &€ = @leﬁi.

We introduce a cohomological multi-valued function which will play a central role in mirror
symmetry. Recall that ¢, is the coordinate on H°(X). In the definition below, we use the
notation &y 4(1) for the vector bundle on X, 4 defined in Subsection 2.1.a.

Definition 5.1. — We define local section J™ of FF = H*(X) x (H*(X) x V x C) —
(H°(X) x V x C) by :

th(to,q, 2) — 6to/qu/z 1+ 51 Z qd61* (Ctop<50,1,d(1)) N [X071’d]vir)
deHo(X,Z) S w
d#0
where t; is in H°(X), ¢ is in V, z is in C, 1 is defined before Definition 2.5 and ¢/* =
iz @7 = e7 ' Xi=1 Telog(@) a5 in the definition of the function L™ (Formula 2.16).
The relation between this function J™ and L™ is given by the following proposition.

q
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Proposition 5.2. — We have

ctop(S)JtW(to, q,2) = eto/qu/thop(é') (1 + 0(2_2))

T/:/S
— /2T | ¢y on( -1 Z Z Ct p ) Ta
— 0,1,d

a=0 deHy(X,Z)
d#£0

s—1

=> 8 (L™(to,q,2)T,, 1) T*
a=0

_Ctop(£>(LtW<t07Q7 )) 11

Proof. — The first equality follows from the definition of J™ (¢, ¢, 2).
By definition of twisted Gromov-Witten invariant and projection formula, we have :

<7Tact0p<5) > = / GT(Ta U Ctop (5)) U Gopl©o1,d\1)) (50’1’d<1>>
0.1.d [Xo,1,4]Vi"

z— z—9
_ /XT“ U ceop(€) Uer, (%1@2(1)) N [Xovlyd]vir>

We deduce the second equality from

s—1 -
Z <Tactop<5)> T — Ctop(g)el* (Ctop(go,l,d<1)) N [XO,l,d]Vir) .
a=0 27 7/1 0,1,d

Let us show the third equality. Using Proposition A.2 (twisted S, invariance) and Propo-
sition A.4 (twisted string equation) we deduce that for d # 0 in Ho(X, Z),

o Ticiop €)
- Ao o € _ 1/ Za~top\*~/
(5.3) <2—¢’C ( )>0,2,d ’ < 2=y >0,17d

Using Formula (2.16) for L™ (q, z), we have

—

vl

S (Ltw(to, q,2)T,, 1) ¢

)
Il
o

S—

1
_ eto/z (qT/ZTa, 1)tw T
0

s—1 s—1 T/z
S ) BID Y ek SRRCRINE
a=0 b=0 deHy(X,Z) 0,2,d

d#0

s—1 T/zT —~—
— elo/z Ctop —|— Z Z < , Ctop (£)> Ta
- w 0,2,d

a=0 deHy(X,Z)
d#0

As the expression above does not depend on the choice of a basis. Let us choose the basis
s—1}- Then we get

----------
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s—1

S (L (g~ )T 1T

a=0

s—1

. —=
= etO/ZQT/Z Ctop(g) + Z qd (<—’ Ctop(5)> v
z—1 0,2,d

a=0 deHy(X,2)
d;éo

Then you apply (5.3) and we get the desired equality.
Show the last equality. From Proposition 2.20, we deduce that

S<Ltw<t07 q, Z)Tcn Ltw(to, q, Z)].) = S(Tm ]_)
Recall that (-,-) is the Poincaré Duality on X. We deduce that

s—1

s—1
> S (L™(to,q.2)Ta, 1) T* = (Ta,ctop(g) (L™ (to,q,2)) " 1) T°
a=0

We deduce a relation with L.
Corollary 5.4. — We have, in the reduced cohomology ring H**(X)/kerm,,, :
W(tm q, 2) = (Z(t()a q, 2))_1T'

Proof. — The last equality of Proposition 5.2 implies that J™ (¢, q,z) = (L™ (to,q,2))~'1
which is (L(to, q, 2))~'1 by definition of L (c¢f. Formula (2.32)). O

Recall that to a ray 6 € (1), we associate a toric divisor denoted by Dy. For any classes

d € Hy(X,Z), put
d@ = /Dg and dLi = /Lz :/Cl(ﬁ
d d d

We define a cohomological multi-valued function by
(5.5) I(q,2)==q"" Y q'Ad2)
deH»(X,Z)

where

) (12 Hm_m o] +mz2)
H ([L z]+ H ([Do] + m2)

m*—oo 962(1 m—foo

qT/z — ez_l Za:l T log(qa).

The mirror theorem of Givental (¢f. [Giv98, Theorem 0.1] and [CGO07, Corrolary 5|. See
also [CK99, Theorem 11.2.16] ) tells us the following.

Theorem 5.6. — |[CGO07, Corrolary 5| Let X be a smooth toric projective variety with k
globally generated line bundles L1, ..., Ly such that (wx @ L1® -+ L)Y is nef. There exists
a neighborhood W of the large radius limit ¢ = 0 in 'V, defining an open set W := W N'T in
T (cf. Notation 2.13) and there exists a single-valued map

Mir: WcT—H(X)oVCcH(X)oT
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such that
1(q,2)
F(q)

where F'(q) is an invertible function which is the first term in the development of the function
I in the power of z~! that is

Mir(q) = (0,¢) + O(q) and J™(Mir(q), z) =

I(q,2) == F(q)1+0(z71).

Proof. — Most of the statements are proved in Corrolary 5 of [CGO7|. The single-valued of
the map Mir is proved in the section 4.1 of [Iri09]. The two things that are not proved are
the statements about the existence of the neighborhood W and the asymptotic of Mir. To
compute the mirror map, we develop the function I in the power of 27!, we have

I(q,z) = F(q)1 + 2~ ZG )T, + O(z72).

where F'(0) = 1. Then we have :

Mir(q) :=Wor (F(q)1 i Ga(q)Ta>

where 7 the quotient map H°(X) @ H*(X) — H%X) ® H*(X)/H?*(X,Z) and ¥ is an
isomorphism between H?(X)/H?*(X,Z) and T (Formula (2.10)) We will prove that

(5.7) F(g)™ Z Go(@)To =Y Tulog(qa) + O(q)

a=1
This will imply both statements on the map Mir.

To prove equality (5.7), we need to develop the function I with respect to 2~1. Denote by
NE(X)z the (integral) Mori cone of X. From [CK99, Proof of Proposition 5.5.4 p.100]| we
deduce that the terms in the definition of the I function (see (5.5)) vanish when d ¢ NE(X)z,
that is we have :

(5.8) Ia9)=d 3 ¢HAu2).

dENE(X)z
As for any i € {1,...,k} the divisor L; is nef®, we deduce that d;, > 0 for d € NE(X)z
that is

ko 1 ([Dg] +m2)
Hrﬂl + ggl) H;i::—oo([DG] + mz)

We develop the cohomological function (g, z) with respect to 27! to the order 1. For any
0 € (1), put e(dg) = 1 if dy < 0 and 0 otherwise. We find that I(q, z) is equal to

d_d - “(ds) (_1)S c(dy) (dg — €(dp))!
g2 X HE L) T 240e3(1) ( oes(1) @ dL _[Dé)]) 20 N
3 (Mo 11 £

deNE(X)z 9ex(1)
r |de|—<(dp) 1
> Tulog(aa) + Z Z—— 2D Y — 406
a=1 i= 0ex(1) m=1

(5) Recall that for a toric variety whose support of its fan is convex, a line bundle L is globally generated if
and only if L is nef (¢f. [Mus, Proposition 7 p.22 chapter VI]).
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We decompose the Mori cone in four disjoint subsets :

AI{dENE( )Z‘de-FZL :Oandd9>0 V@EZ( )}
B::{deNE( Jo | digc v3, 1oy = 0 and 316, € (1), e(dg,) = 1}
- {deNE( o | digexrs. 1) = —1 and £(dy) = 0, ¥0 € (1)}

D:=NE(X)z\{A][B]]C}

As —Kx — Ly — --- — Ly is nef, for any d € NE(X)z we have dx,4r,+...+1,) < 0. So the
first term in the Taylor expansion is the constant term which appears only for d € A. This
term takes value in H°(X) i.e., it is F'(¢)1 with F the following scalar function :

Hz 1 dL
HGEE(l

Notice that this function is invertible in a neighborhood of ¢ = 0 because d = 0 belongs to
A so that F(q) # 0 in a suitable neighborhood of ¢ = 0.
Compute the term in front of 2!

F(q) ==

1. from A, we get the following element in H?(X)

dHZ ) dL k dr, dg 1
X ZTlogqa FOLID mT = D Dal )
deA o i=1 m=1 9ex(1) m=1

2. from B, we get

k
[y (Z (1) (H dLi!) (~do, ~ ! T ﬁ) e H(X)

deB 07£00
3. from C', we get
L1 d H 1 d,! 0
1 == | e H'(X
(ot} e
deC
Now we develop with respect to ¢ when ¢ is near 0. As d = 0 belongs only to subset A, we

deduce Equality (5.7). O

Remark 5.9. — If we are in the most famous case of the quintic in X := P* that is £ =
O(5). We have NE(X)z = N, L®wy is trivial, and the toric divisor Dy satisfies [Dy| = H €
H?(X), where H = ¢;(O(1)). For any d € NE(()zX) C Ho(X,Z), we have dy = d > 0 and
d;, = 5d. The subset A is N and B, C are empty so that

=2 4" )
d>0
and the term in front of z7! is

Z d

deN

d
(Hlog +5HZ——5HZ;>

5d o
F(q )logq+5< —)]
! m
d>1 m=d+1
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5.2. Isomorphism’s theorems. — We can now state our main theorem. Recall from
Section 2 that we defined QDM(X,€) := (F,V,S, I;) and QDM(X,€) = (F,V,S, Fy)
where F' and F are bundle over V x C. We denote by F (resp. F) the sheaf of sections of F
(resp. ).

Recall that W is a neighborhood of the large radius limit ¢ = 0 in T C V. In Theorem
5.6, we defined a map

Mir xid : W x C = H(X) x V x C
(¢, z) = (Mir(q), 2)
Recall from Theorem 4.10, the sheaf M |y is a vector bundle of rank dim¢ H?*(X) with
an integrable connection. Notice that for the sheaf M™* we only have the result of Theorem

4.14 that we do not have a priori the local freeness over U x C. The local freeness for M* will
follow from Theorem 5.10 below (see Remark 5.11). Recall that M is defined (see Definition

4.4) as a quotient by an ideal denoted G. Using Notation 4.1, we put G, = Hle cl/(ﬁ\l)

that is
k r
Crop "= H Z L 26,

i=1 a=1
where for i € {1,...,k} and ¢;(L;) == > _| LiT,.

Theorem 5.10. — Let X be a smooth toric variety with k line bundles L+, . .., Ly such that
(Wwx ®LL®...® L) is nef. We put & := ®F_L;. For a small real number ¢ in R, put
We={(q1,-..,q) €W |0<|q| <e}.

There exists € in Ryq such that

1. If the line bundles L1, ..., L} are globally generated, then we have the following isomor-
phism of sheaf of Ow.xc-modules :

M|w.xc — (Mir x id)*(F, V)
where Mir is the mirror map of Givental.
2. If the line bundles L+, ..., Ly are ample, then we have the following commutative dia-
gram

M|Wg><(C Q (Mir X ld)*(.F, V)

J l

M|y e —— (Mir x id)*(F, V)

Remark 5.11. — Recall that M |y«c is locally free by Theorem 4.10. However, as far as
is known at this point, M™ |y.c is only locally free of expected rank over U x {0} and
locally free (of a smaller or equal rank) over U x C* (Theorem 4.14). Theorem 5.10, gives
us local freeness of M"™* |« (see the end of the proof).

Theorem 2.42 says that under some conditions we have QDM(X, ) ~ QDM
we deduce the following corollary.

(Z). So

amb

Corollary 5.12. — Let X be a smooth toric variety with k ample line bundles Lq,..., L}
such that (Wx @ Ly @---RLy,)" is nef. Let Z be the zeros of a generic section of £ := ®F_ | L;.
Assume that dime Z > 3. We have M™|y._«c is isomorphic to (Mir x id)*(FZ ., VZ ).

amb

Remark 5.13. — This corollary answer to the question addressed in the [CK99, p.94-95
and p.101]: “What differential equations shall we add to G to get an isomorphism with
QDM,,.(Z2) 77

amb
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To prove the Theorem 5.10, we will need some preliminary results.
We denote by Mir* V the pullback connection on the bundle (Mir x id)*F — W x C. For
an endomorphism u, we denote 2" := exp(ulog z).

Proposition 5.14. — With the hypothesis of Theorem 5.10.
1. The morphism
¢ M|w.xc — (Mir x id)*(F, V)
P(q, z, 204, 20,) —> L™ (Mir(q), z)z‘“zcl(TX@gv)P(q, 2, 204, 253)2_61(Tx®gv)z“JtW(Mir(q), 2)

s well defined.
2. The morphism above induced a well defined morphism ¢’ that make the following dia-
gram commutative.

Woxc —— (Mir x id)*(F, V)

J |

M res W.xC 7310 > (MII' X 1d>*<?7 v)

M

Moreover the composition morphism o ¢ sends

P(q,z,204,20,) — P(q,z, 2 Mir* Vs , z Mir* V;_)1.

Remark 5.15. — We should say a word on the definition of ¢ that seem quite complicated.
The reason is that we want the natural expression for ¢’ which is the one above. All the
problem comes from J™(to, q, 2) is not L™(tg,q, z)~'1, but they are equal after cupping by
top(E) (see Proposition 5.2). Of course if we cup by cop(€) the expression above of ¢, it
simplifies a lot, but it will not be an isomorphism anymore.

Proof of Proposition 5.14. — From Theorem 5.6 we have that J™(Mir(q), z) = I(q, 2)/F(q)-
Lemma 5.16 shows that the morphism ¢ is well defined.
Lemma 5.21 implies that for any R € Quot(ciep, G) we have

Rz=an(Tx@€¥) 21 ] (¢, z) = 0.
This implies that ¢’ is well defined. By Corollary 5.4, we have
T (Mir(q), 2) = (T(Mix(q), 2))'T.
We deduce that

70 @(P(q,z,20,,8.)) = P(q, 2, 2 Mir* Vs, Mir* V;.)L(Mir(q), z) J™ (Mir(g), 2)
= P(q, z,zMir* Vs , Mir* V,_)1.

Lemma 5.16. — Put ¢* :=[]._, qc{dTa =TI._, q%. For any d € Hy(X,Z), we have
(e )

¢ <2701(TX®5V)Zﬂ[<q’ z)) —0.
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where

k9, df—1
Dd_HH( +1/z> H H(Dg—ZI/)
i=1 v=1 fex(1) v=0
dy -1
_quH( +,,Z> I H (Dg—zu>
i=1v=1 0ex(1) v= 0

-~

¢ =20, + cl(TX ® EY) (cf. Notation 4.1)

Proof. — In this proof, we denote dr, gev := [;c1(Tx ® £Y). For any o € H*(X), we have
(i1, @] = . This implies that

(5.17) #E =,
z

From this we deduce that 2#Ay(z) = 2z~ “7x®¢¥ A4(1). Using the definition (5.5) of the coho-
mological function I, we deduce that

(5.18) chl(’TX®£V)z,uI(q’ Z) _ Z qT+dZ—01(TX®EV)—d7—X®gv Ad(l).
deH2(X,Z)

For any class o € H*(X), a direct computation shows that

(5.19) ag" = ¢ (a + dy)
(5.20) 20, (2 TxOEN ey ryeev)) = o(—¢y (Tx @ EY) — dpgev )z X ) "drxeey
We deduce that

252(qT+dz_cl(TX®gv)_dTX®gv) = —q(@gv)(qT+dz_cl(TX®gv)_dTX®gv )-

This implies the second equality of the Lemme.

Using Formula (5.19), the equality Og(z=*7x®E) 211 (¢, 2)) = 0 for any d € Hy(X,Z)
reduced to the equality below. For any d,d" € Hy(X,Z), a direct computation show that we
have

kAL df—1
Ad_d/(l)HH d d,L +I/ H H Dg d d/)g—l/)

0ex(1) v=0
k9, dy —1
= A [T +de+v) TT ] (D] +do —v).
=1 v=1 fex(1) v=0

Recall that G is the ideal that defined G (cf. Definition 4.4)

Lemma 5.21. — If R(q, z,204,20,) is in the quotient ideal Quot(ciop, G) then the coho-
mological valued function R(q, z, 204, 26,) 2~V TxEED 21 [ (¢, 2) belongs to ker m.,,, where m, :
a > cop(E) Ua.

Proof. — In this proof, we denote dr gev := [,c1(Tx ® £Y). From Formulas (5.19) and
(5.20), we deduce that

(5.22) R(q, 2, 20,, 20, )q" iy o1 (Tx O ) ~droev
= R(q, 2 (T +d), 2(—c1(Tx ® E¥) — drygev)) g" Tz AT " drcaey,
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We decompose
R(q, z,20,,26,) = Z qd/Rd/(z,zéq,zéz).

d'eHy(X,Z)
finite

From Equalities (5.18) and (5.22), we deduce that
R(g, 2,20, 26.)2 0 WO 00T (g 2) = 7 g Tam TN inony (o)
deHz(X,Z)

where
Ba(z) = Y Ra (22T +d),2(—r(Tx ® EY) — dryeev)) Aa—a (1)

d'€Ho(X,Z)
finite

To prove the lemme, it is enough to show that c.,(E€)By(z) = 0 for all d € Hy(X,Z). From
the definition of the ideal Quot(¢i.p, G) and Lemma 5.16, we have

CropR(q, 2, 204, 252)2_61(7X®5V)z“](q, 2)=0

k
D gt e e (Hz (L] + dL)) By(z) = 0.

deH»(X,Z) i=1

As ¢op(€)Bg : C — H*(X) is a polynomial function in z, it is enough to prove that it
vanishes on C*. Assume z € C*. As ¢ € (C*)", we deduce that ¢” and z=(7x€€") are
invertible in H*(X). Denote by I, := {i € {1,...,k} | dr, = 0} and I§ its complementary
set. For i € I§, the class [L;] 4+ d, is invertible in H*(X). So we deduce that

(H[Lz]> By(z) = 0.

i€ly
This implies that cop(€)Ba(z) = 0 as ciop(E) = [T, [Li)- O
Proof of Theorem 5.10. — We first prove that ¢ is an isomorphism. Theorem 4.10 implies

that tk M = rk F'. So it is enough to prove that the morphisms ¢ are surjective near the
large radius limit point. From (5.8) and (5.19), we deduce that for any o € H?*(X), we have

al(q,z) = q"*(a + 0(q)).

As H*(X) is generated by H?*(X), we deduce that for any a € {0,s — 1}, there exits an
operator P,(q, z, z0,) (notice that we do not need ¢, in the operator F,) such that

Pu(q, 2, 204)1(q, 2)F(q) ™" = ¢"*(T. + O(q))

where F(q) is defined in Theorem 5.6. From the definition of the function L™(to,q, 2)
(cf. Equality (2.16)), we deduce that

L™(to,q,2)y = ¢ /*¢""* (v + O(q)).
By the mirror Theorem 5.6 we have that
Mir(q) = ¢ + O(q).
Putting the last three arguments together, for any a € {0,...,s — 1} we have
©(P.(q, 2, 26,)) = L™ (Mir(q), 2)¢"*(T, + O(q)) = T, + o(1).

This proves the surjectivity of ¢ near the large radius limit. As it is an open condition, it is
true in a neighborhood of ¢ = 0.

Let prove that ¢ is an isomorphism. First, the surjectivity of ¢ implies the surjectivity of
mop. We deduce that ¢’ is also surjective. On z # 0, Theorem 4.14 implies that the rank of
M is less than rk F. Hence the surjectivity implies that its rank is rk F. This also implies
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that M is locally free on U x C of rank dim H2*(X). = rk . We deduce that ¢’ is an
isomorphism. O

A

Twisted Axioms for Gromov-Witten invariants

In this Appendix, we will state and prove the twisted axioms for twisted Gromov-Witten in-
variants. For the “untwisted” axioms, we refer to two papers of Behrend and Manin ([BM96]
and [Beh97|). Some of the twisted axioms are stated (but not proved) by Pandharipande
in [Pan98|. One should also mention the indirect proof given by Tseng [TselO| where the
Corollary 4.2.3 implies the twisted axioms even though there are not stated there. This
appendix is due to lack of references on twisted Gromov-Witten invariants. Its aim is to fill
a gap concerning results well known by experts.

Recall from Notation 2.1 and Ty,...,Ts_; be a basis of H**(X). We denote by T* the
Poincaré dual of T}, for a € {0,...,s —1}. Let d be in Hy(X,Z). Denote X4 the moduli
space of stable map of degree d from rational curve with ¢ marked points to X. For i in
{1,..., ¢}, denote by €; : Xgsq — X the evaluation map at the ith marked point. The

universal curve is

€1
Xopp1d— X

lﬂ
Xo,0,d

where 7 is the map that forgets the (¢ + 1)-th point and stabilizes and e, is the evaluation
at the (¢ + 1)-th marked point. For the definition of twisted Gromov-Witten invariant, we
refer to Definition 2.5. Let & ¢4 be the sheaf defined in Proposition 2.2. For j in {1,..., ¢},
we have the following exact sequence (see (2.4))where the surjective morphism & 4 — €} €
evaluates the section to be the j-th marked point.

(A1) 00— &o,0a(d) Eoa e; & 0

We do not have a true S,-invariance for the twisted Gromov-Witten invariants but we
have the following proposition.

Proposition A.2 (Twisted S-invariance). — For any vy, ..., v in H>*(X), my,...,my
in N, for any o € Sy and j in {1,...,¢}, we have

<Tm1(01(5) Um),-- .,Tmz(’)/g)>

0,6,d

—_—

- <Tmo(1) (70’(1))7 A 7Tma(]~) (Cl(£> U 70(]))7 A 7Tmo.(g) (70’([))>0Zd

Proof. — From the exact sequence (A.1), for any j in {0,...,¢} we have

e;(c1(E)) U crop(Eo,e.a(d)) = crop(Eoea)
This implies the proposition. U

Let us recall some notations from Gathmann [Gat03|. For i in {1,...,¢}, consider the
injection morphism o; : Xo,q4 — Xo¢+1,4 Which replace the i-th marked point by a con-
tracted rational component with marked point x; and x,,; (see Figure 2). The substack
D; := 0,(Xo,,4) is isomorphic to Xy ¢4 and 7(D;) = Xgeq. So D; carries a natural virtual
fundamental class denoted by [D;]'"" and it is of virtual codimension 1. Usually, we call it
boundary divisors. We have the following proposition which is proved in [Gat03|.
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Le+1

Z;

FiGURE 2. L’application o;.

Proposition A.3 (See Corollary 1.3.2 [Gat03|). — Let ¢ be in N. Let d be in Hy(X,7Z).
Let i, ...,y be in H*(X). Let my,...,mq be in N. Let a be in H**(Xo11.4). We have the
following equality in H*(Xo.4)

¢
Ty <H¢;ﬂj e; [on+1d ir) Hw Je %W* '[Xo,z+1,d]Vir)
j=1

Y4

+ > et v [T € | mela (D)
t|m; >0 ];1
JF

Proposition A.J (Twisted Fundamental class equation / string equation )
Let £ be in N, d be in Hy(X,Z), v1,...,7v be in H*(X) and my, ..., my be in N. Denote
by 1 the unit of the cohomology ring. Forn > 2 or d # 0 and for k € {1,...,n}, we have

—_—

<Tm1 (71)7 <o Tmy, (7]4:)7 < Tmy (7@)7 1>0,Z+1,d

= Z <Tml(%),...,Tmi,l(%),...,ka(%),---ﬁmz(’w)>

ilm; >0

0,4,d

Remark A.5. — From Propositions A.2 and A.4, we deduce

(T ). T 0, 1(8)),

= Z <Tm1</71)7'--aTmz'*l(fyiUCl(g))v"'7Tmz(75>> 0.d
i:m; >0 04

= 3 (U@ 1) T (00))
i:m; >0 v
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Proof of Proposition A.4. — We have

—_—

<7—m1 (’Yl)a <oy Ty, (’Yk)a ceey Tmz(’y@)a 1>0,€+1,d

¢
= deg (W* (H P el i - Crop(Eo,41,a(k)) - [XO,ZJrl,d]Vir))

i=1

We use Proposition A.3 with a = ¢p(Eper1.4(k)). We get

l
(A.6) T (H U7 €55 Cop(Eoer1.a(k)) - [Xo,éﬂ,d]Vir)

?
H DY €y (Coop(Eoppralk)) - [Xosrral™)

+ D w?fle*%HW* 7 (Crop (Eops1a(k)) - (D)

i|m; >0

J#z

As k # 0+ 1, we have ¢iop(Epp11,a(k)) = T Ctop(Eo.0.a(k))- .
By Axiom IV (See Definition 7.1) of [BM96| proved in [Beh97|. We have 7*[X( 04" =
[XO,HLd]Vir. As 7 is of relative dimension 1, the morphism 7, 7* is the zero. This implies
that the first term in the right hand side of (A.6) vanishes. By definition of the virtual
class [D;]"'" (see paragraph before Proposition A.3), we have m,[D;]"" = [X(,;4]"". Hence
projection formula implies the proposition. O

Proposition A.7 (Twisted Divisor axiom). — Let ¢ be in Nsg, d be in Hy(X,Z),
Y1, be in H*(X,C) and my,...,my be in N>qg. Let v be in H*(X,C).

<Tm1("71)> .- ->ka(7k)> e aTme(W)a'Y>

0,6+1,d
_ ( / 7) (s (1), s T s+ o+ e (1) ot
d
+ Z <7—m1 (71)7 s aTmi—l(/y U 72)7 cee aTme(7€)>07£,d

2:m; >0

Proof. — We use Proposition A.3 with a = ej_ ;. We get that

—_——

<Tm1 (71)7 CIE ij (’Yk)a vy Ty (Vﬁ)) 7>0 ri1d

¢
= degm, (eZH v Hi/flml e; i * Crop(Eoey1,a(k)) - [XO,ZJrl,d]Vir)

i=1

14
(A.8) = deg <H it e i [Xogal™ - e (G4 7))
i=1

(A.9) + ) deg [yt ey [T w5 €5y - m (e v - (D)
ilm; >0 j=1¢
J#
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As 7 is of relative dimension 1, we have 7, e}, ;7 is in A%(Xq), we deduce that 7, e}, v =
deg(m, €517 - [pt])[Xo,ed]- Let [C, f,z] be a point in X 4. By projection formula for 7 and
€pr1, we have

deg(m.ep, 17 - [C, f,z]) = deg(m, (€Z+17 -0, f, Q]))
= deg(ep v - 7(C, f,z])
= deg(v - ep1,7[C, f, z])

As  is the universal curve, 7*[C, f, z] is the class of the curve (C, z, f) and e, restricted to
this curve is f. So epy1,7°[C, f, 2] = f.(C, z, f) which d by definition. Se we get deg(m.e;, ;7
[pt]) = deg(y - d) = [,7. So the term in (A.8) is exactly the first term in the right hand
side of the equality of the proposition. As m,[D;]"" = [Xg 4" and e, is exactly e; on D;,
projection formula implies that (A.9) is exactly the second term of the right hand side of the
equality of the proposition. O

Proposition A.10 (Twisted Dilaton equation). — Let ¢ be a non negative integer and
d be in Ho(X,Z). Let v1,...,7 be in H*(X), my,...,my be in Nxg. If j € {1,...,0} we
have

—_—

<Tm1 (/71)7 < Ty (Vj)a R Tmz(Vﬁ)a 7_1(1)>0,€+1,d
= (=24 0) (T (V)53 Tony (V)5 -+ T (Ve)) 0,00

Proof. — We use Proposition A.3 with a = 1y,1. We use the notation of the proof of A.7.
We deduce that for a point [C, f, z] in X4

T (Ve -7 [C fz]) = (=2 + 0)[C, [, 2]
Changing ej,; v by 141 in (A.8), we get

—~—

(_2 + €)<Tm1 (/71)7 <o Tmy (/7]')’ SR Tmz(7€)>07f,d'

As the bundle 9., (cf. before Definition 2.5) is trivial on D;, we deduce that changing e;_; v
by ¥ 1 = 0 in (A.9) gives zero. O

We follow Remark 1.2.8 of [Gat03]. Fix an integer ¢ and a homology class d in Hy(X,Z).
Let I, Iy be two subsets of {1,...,¢} such that Iy U Iy = {1,...,n}. Let dy,ds in Hy(X,Z)
such that d; + dy = d. Denote by A : X — X x X the diagonal morphism. We define
D(I,d; | Is,ds) by the following cartesian diagram

(A.11) D(I1,dy | In, ds) 25 Xonuptdr X Xo.rupe do
J/enode J/e: (e/* 761/)
X = X x X

where ¢, : X4 — X (resp. € : Xo1,4, — X) is the evaluation morphism at the marked
point % (resp. *). Geometrically, a point in the stack D(I1,d; | I3, ds) is the data of two stable
maps (C1, 2y, f1) in Xornupya and (Co, 2y, f2) in Xo 1,0(x.4, such that fi(21.) = fo(@2.).
Identifying the marked points z; . and x5 ., we get a nodal curve C = C; U C; with a stable
map f = (f1, f2) : C — X of degree d = d; + dy. We deduce that the D(Iy,d; | I5,dy) <
Xo,,q and that the map enoge : D(I1,dy | I2,dz) — X is the evaluation at the node which is
Cy N Cy. We define the virtual class on D([y,d; | I, ds) by the following

[D(I,dy | Iy, do)]"™ == A ([XO,Ilu{*},dl]Vir ® [Xo,fgu{*},dg]Vir)
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A direct computation shows that the virtual codimension of [D([1,d; | Iz, d2)]"™ in Xg 4 is

1 that’s why we call them boundary divisors®.

To prove twisted Topological Recursion Relations and twisted WDVV, we need to prove
the twisted splitting axiom.

Proposition A.12 (Twisted splitting axiom). — Let ¢ be in N and d be in Hy(X,7Z).
Let y1,...,7 be in H*(X) and my,...,my be in Nso. Fiz a partition I | | I = {1,...,(}
and two homology classes dy,dy € Ho(X,C) such that dy + dy = d. Fizx j € I;. Denote by ¢
the inclusion D(Iy,dy | I, d2) — Xogq. We have

14
/ Ctop L 50 2, d H ’QZ)
[D(I1,d1|12,d2)]vi i=1

s—1
:z<n,% DT %> <Ta,nfmi<%>>
a=0 i£jel; 0,#11+1,d1 1€l 0,#12+1,d2

Proof. — We use the notation of the diagram (A.11). Let py : X r,up.a0 X Xo,mugstde —
Xo,r,u{+},4; the projection on the first factor and p, the projection on the second factor. First
we prove the following equality

(A.13) U ceop(0,6.4(7)) = ctop (A"PE01,0(x1a1 (1) © A"P3E0 s a0 (*))
We define the surjective morphism (*Eypa — €}, & @ €] & by evaluating the section of

t*Eo.0.q4 at the j-th marked point and at the node (M. We define Eo.0.4(j,node) to be the kernel
of this morphism. We deduce the following exact sequence of bundles over D([,d; | I2,ds).

(A.14) 0 —— Eora(j,node) —— 1*Ey pa — €0ae € P e; E——0

Pulling-back the exact sequence (A.1) via the composition p; o A’ (resp. p, o A’) on
Xo,nupydr (resp. on Xo u«).d,), we deduce a morphism from A"pi& 1,ugg,q4, (resp. from
A" P30 1,014},d) 10 €hoqe €. We deduce the following exact sequence

(A15) 0——1t gogdHA plgojlu{*} dy @ A’ p25012u{ «}do He 5%0

node

where at the stable map (C,z, f) in D([y,d; | I, ds), as C = C; U Cy the morphism a sends
a section s € HY(C, f*€) to (s|cy, S|lc,)- The morphism b send (sq, s3) to s1(x) — so(*). The
sequence above is exact because if s;(x) = so(*) then they glue in a section in H°(C, f*£).
From (A.14) and (A.15), we deduce the following exact sequence

(A.16)

Oﬁgozd(],HOde) — A’ p1£0hu{*} dl( )@A p2€012U{ }dg( )He E—0

node

Denote by ¢;(€) the total Chern class of £. From (A.14) and (A.16), we deduce that

e (A" Pi&o nugsar (1) B A" P30 1ugeyde (%)) = c(Eoe.a(j, n0de))cy(€]0ge €)
= ci(¢"Eopa)ce(e] &)t
= Ct(b*go,z,d(j))

This implies the Equality (A.13).
Let us prove the Equality of the Proposition A.12. Denote by X; := Xo 1,u(4,d1, X2 =
Xo,10{+},d2> & = 50,11U{*},d1 (7) and & = 50,12U{*},d2(*)- We have

() The D; defined before Proposition A.3 are special cases of D(I1,dy | I2,d2)
(MNotice that the evaluation at the node is not defined on Xo,¢,a but only on D(I1,d; | Iz, ds).
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m; *
/ Ctop 12 50 2, d H w ’
[D(I1,d1|1I2,d2)]v"

= deg (Ctop (" Eo.0.a(d Hzpm’ er A ([X1]™" ® [Xg]m)>

On X (resp. Xs), we denote by @/} (resp YY) the 1’s classes and €] (resp. €]) the evaluation

mi m; 1% hmy; /l*

map. We put «; 1= 9" ef vy, of = ;" e[ v; and of = ;" e/*7;. Using the Diagram
(A.11) and Equality (A. 13) we push forward to X x X and we get

Crop (4" E0,0,a(J Q;
/[D(Ilydll2,d2)]"‘r top H
= deg (A*A* Cx (Ctop(51> ® Ctop<52) . [ Vlr V1r H Q{ ® X2 H Xl] ® O[;/))

i€l i€la

Now, we use that A,A* is just the intersection with the class of the diagonal, which is
Yo Lo ®T* Using projection formula, we deduce the Equality of the proposition. O

Remark A.17 — We have also the following equality

(A18) / Cto L gogd Q/Jml *
[D(I1,d1|12,d2)]vir ' H

s—1
= Z <Ta7 Tm] H Tml Yi > <Ta7 H Tml<f}/@>>
a=0 i#jeh 0,#0+1,d1 i€l 0,#I>+1,d>

Where the double tilde mean that we are twisting in the Gromov-Witten invariant with
two classes namely cop (o 1,ugs,a, (7)) and Coop(Eo,1,0+},4, (%)). The proof is almost the same.
Instead of the exact sequence (A.16), we use

0—— gOl,d(j) nOde) — Al*p’fgo,llu{*},dl (j’ ) D A pQgO IoU{x},do — e 5 —0

node

So we get the equality

Verop(€0,6a(5)) = Crop (A" P10, nuEs a1 (5, %) © A" P3E0, Ugs}.02)
With the same arguments, we get Equality (A.18).

Denote by 7 := ZZ: t,T,. Denote by

(Alg) «Tml (71) Tml 75 Z Z Tml 71 7TmK (7@)7 Tv ctty T> 07 g _'_ n7 d

>0 deHa(X,Z)

Proposition A.20 (Twisted TRR i.e., Topological Recursion Relation)
Let 1, 72,73 be in H*(X). Let my,my, mg be in Nsg. We have the following equalities :

(A21) ((F1 (303 (02): s (36) ). = D2 (s (12): 7 (300, 7)) (a0, ),

(422) ({0 5na00) s (08) . = 3 (7). 700 TY). (7m0 7o)

a=

53



Proof. — The proof is completely parallel to the classical case (cf. for instance Proposition
1.3.9 of |[Gat03]). We have

Y- [Xoed ™ = > [Dhdy | I, dy)]"™
d1+do=d
Luly={1,...,e}
2,3el1,1€l>
Intersecting this equality with v’s classes and e~ and using twisted splitting axiom of
Proposition A.12, we deduce the twisted TRR equality. O

Remark A.23. — Using Remark A.17, we get two other twisted TRR relations

P P

((Fm 1 (00, s (02, 7 (). = 5 (s (02)s s (0, 7)) {7 (1), T

s—1

(1) T (2): T (3))) = D Crina (02 T (5). TN (7 (), T ),

a=0

Proposition A.2J (Twisted WDVV equations). — Let vy, 9,73, 74 be in H**(X). Let
my, Mg, m3, my be in N>o. We have the following equality :

—

(A.25) (o ), 700, 7)) (g (5), 70, T

S—

vl

)
Il
o
—

I
(]

(), s 08). T D) {(na(92), 7 (), T

a=0

Proof. — The proof is completely parallel to the classical case (¢f. for instance Proposition
1.3.8 of [Gat03]). We just use the twisted splitting axiom instead of the classical one. From
Axiom V of Definition 7.1 in [BF97]| proved in [Beh97], we have

ST DU d L) =Y [D(Idy | ydy)]

d1+dg=d dy+do=d
I Uly={1,...,e} I Uuly={1,...,e}
1,2€11,2,3€1> 1,3€11,2,4€l2

Intersecting this equality with 1’s classes and e}~ and using twisted splitting axiom of
Proposition A.12, we deduce the twisted WDVV equality. O

Remark A.26. — Using the other twisted splitting axiom of Remark A.17, we get an other
twisted WDVV axiom

v
—_

—_—

(AR RN (CACARANCARD)

a=0 0
s—1 PR
= 2 (o ). oy (35), T (v (12), 7o (). 7)),
a=0
B
Proof of Proposition 2.17
Proposition B.1. — 1. The connection V is flat.
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2. Forae{l,...,r} and v € H*(X) we have
vatOLtW(t()a q, Z)’V = 07 v5aLtW(t07 q, Z)’V =0

Tx ®E&Y
V(SthW(th q, Z)fy = Ltw(t()u q, Z) (:u - M) Y

z

3. The multi-valued cohomological function L™ (to, q, z)z‘“zcl(TX@gv) s a fundamental so-
lution of V.

Proof. — (1) Let us prove the flatness of V. We have to prove that for any a,b € {1,...,r}
and for any ¢ € {0,...,s — 1}, we have

(B.2) Vs, Vs |T, =0
(B.3) Vs, Vs ]T. =0

The first equation comes from the following.

1 W 1 W W
V(Sa V5ch = ;5a<Tb OZ Tc) -+ ;(Ta OZ (Tb OZ Tc))
1 1

Vs, Vs, Te = ;5b(Ta o T.) + ;(Tb o) (Toe)" T.))

As a,b € {1,...,r}, the first terms are equal by the divisor axiom (see Proposition A.7).
The second terms are equal by associativity and commutativity of the quantum product (see
Proposition 2.14). Let us show the equation (B.3). By definition of the connection, we have

1 1 1 1
Vs, V. Te = —;[5(1, Co " |T, + [;Ta'gw’ 0:)Te — —[Tuoy", €M T. + ;[Twﬁ,w, w7

22

The third term vanishes by associativity and commutativity of the quantum product. From
Equalities below (B.4), (B.5), (B.6), we deduce (B.3), hence the flatness.
For any a € {1,...,r} and for any ¢ € {0,...,s — 1}, we have

(B.4) [IT A ] T. = lTa OZW T.
z
(B.5)  [Tuel,u] T. =

deg(T,) oo S deg(T,) a L) T
( 9 dlm(c X) Ta .q Tc + ; Z q <Ta7chT6>073,dT

2
deH2(X,Z)

(B.6) [5a, Qfogw] T. =

(1+degT(T) dch) Wy Zdeg > <Ta,Tc,Te>0’37dTe

deH>(X,Z)
The equality (B.4) follows from
1 tw 1 tw 1 tw
[;Taoq 0T, = —0, (;Taoq ) T. = ;Ta o T
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Equality (B.5) follows from the difference of the two equalities below.

T, o) w(T.) = (degQ(Tc) = dlm@XQ - rkg) T, o™ T,

s—1
w(T, .(t]w T, = Z Z ¢ <Ta, T., Te>0 . w(T®)

e=0 deH»(X,Z)
s—1 .
d X +1k& degT. ~
- Z ( lm(c + - - eg ) qd <Ta7 T(27 Te> Te
2 2 0,3,d
deH2(X,Z)

(Recall that deg 7 = 2dim X — degT,).
Let us prove the last equality (B.6). By Divisor Axiom A.7 and Fundamental class Axiom
A.4, we have that

5o, €T, = 5, (C o™ T,
q

e=0

[
(]
(]

o (T & T.T.) T
0,3,d

0,3,d

(B.7) = qd/cl(TX®5V) <Ta,Tc,Te> T*
z)

o
o
(=9
m
T
[ V)
)

Notice that if the Gromov-Witten invariant <Ta, ¢, T, Te> does not vanish then we have :
0,3,d

deg(T,) | deg(T.

1+ + ‘) +/01(5) :/cl(TX)+1—dim(cX.

so we deduce that ¢;(Tx ® £¥) = 1 — dim¢ X + deg(Tc) + degéTe). Putting this in (B.7), we
deduce the equality (B.6).
(2) As 1 is the unit for e}, we have the first equality.

Let us prove the second equality of (2). Tt is enough to prove it for L™(q, z) := L™(0, ¢, 2).
Let v1,...,v € H**(X). Denote by

«Tml (’71), Y (fw)»zmall

the correlator defined in (A.19) where 7 is replace by Y. _ T, log ¢,.
Using the twisted divisor axiom (Proposition A.7) and after some computations (see
[CK99], proposition 10.2.3 for example) we have :

(B.8) L™(q,2)y =~ — Z<<Z+¢ >>SmaHTa

where (¢ +2)7" =37, ((=1)27 W% For b e {1,...,7}, we have

s—1 small
tw _ L et a
(Bg) 5bL (qa 2)7 - ; << -+ 1/1 ) Tb7 Ta>> T

0

Notice that we can write the twisted quantum product with the correlator notation that is

s—1 ~ small
ne =3 {{nmk), T

a=0
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We have that

1 t & 1 st ~ small
T, e L(q,2)7 = - <<T T>> T°
be (¢,2 . az:% by Y .
s—1 s—1 ~ small ~ small
Z DSt T (1T ) T
>0 a c=0 0 0
Using Equality (A.21) of Proposmon A.20 (i.e., twisted TRR), we get
1
;Tb ogw L™(q,2)y
1 s—1 ~ small s—1 ~ small
==Y (T L)) T (D2 (T, L)) T
= 0 >0 a=0 0
s—1

small
/'}/ ~
7T, Te
<z+w ’ >>0

B.10), we deduce that for any v € H**(X) and any b € {1,...,r}
Vs, L™ (g, 2)y = 0.

To prove the last equality of (2) we use Formula (2.16) for L*™. Then put G*(q, z) :=
e/ L (tg, q, 2)q"/*. Define the vector field € := 3" €., +to0;, where € = ¢;(Tx ®EY) =
> eqT,. Using the second equality of (2), we have to prove that

: a(Tx ®&Y
(20, + Lieg +p) L™ (to, q, 2)y = (,u — %) 7y

First we show that the operator (20. + Lieg +4) commutes with G*(q, z). Then to finish
the proof we check that for any a € {0,...,s — 1} we have

5z(q’T/ZTa) = z’lq’T/Z Z log(qp)Tp U T,
b=1
—T/z 1 (TX ® 5v)

Lieg(q~7/°T,) = —¢ T+ 22X =2,
z

ula L) = ¢ () — 2Ty log(a) Ty U T,
b=1
(0, + Lieg)e /7 =0
Let us prove
(B.11) (0: + Lieg +11)G™ (g, 2) = G™(q, 2)(6: + Lieg +1).

The developing in z the terms of G*(q, z), we denote

Ala,q,2,7,d) ==z~ 1d< WT> T

0,2,d
We have

, dimc X +rk&  deg(T, ,
/’L(A<a7Q7 27.77d)) = ( = 9 - g2( )) A<a7Q7 Z,j,d)

5ZA(aaQ7Zaja d) = (_j - 1)A(aaQ7Zaja d)

Licg Ala¢.20) = ( [e(Tic ) Alag. 205
d
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As A(a, q, z,7,d) # 0 implies that

d deg (T,
J+ eg("y) + eg( a) +/Cl(5):/Cl(TX)+2+d1m(cX—3
d d

2 2
We deduce that
d dime X —rk
(5,2 + Lle@ +M)A(a’7 q, Zuju d) = ( eg(7> - e ke

2 2

) Ala,q, 7 ,d)

This implies the desired commuting relation (B.11) hence the second equality of (2).
(3) For any class ¢ € H?(X), we have that [y, ¢] = ¢. Applying the formula Ade,(y) = X
we deduce that z/<27" = c. Put ¢ := ¢;(Tx ® £Y), this implies

<5Z +p— alx® &) gv)) 2 r e (Tx@EY) — .

z

Using (2) and the equality above, for any v € H**(X), we have
Vi, (L (10, g, 2)z #2520
= L™(ty,q,2)3. (222X} 4 (V5 L™ (tg,q, 2)) =250y =

That is L™ (to, g, 2)z #21(Tx®€") is a fundamental solution of V. O
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