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We lay a comprehensive foundation for the study of redundant information storage in decoherence pro-

cesses. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical

objects. We consider two ensembles of states for a model universe consisting of one system and many

environments: the first consisting of arbitrary states, and the second consisting of “singly branching” states

consistent with a simple decoherence model. Typical states from the random ensemble do not store information

about the system redundantly, but information stored in branching states has a redundancy proportional to the

environment’s size. We compute the specific redundancy for a wide range of model universes, and fit the

results to a simple first-principles theory. Our results show that the presence of redundancy divides information

about the system into three parts: classical �redundant�; purely quantum; and the borderline, undifferentiated or

“nonredundant,” information.
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I. INTRODUCTION

The theory of decoherence �1–4� has resolved much of the

decades-old confusion about the transition from quantum to

classical physics �see articles in Ref. �5��. It provides a

mechanism—weak measurement by the environment—by

which a quantum system can be compelled to behave classi-

cally. The recent development of quantum information

theory has encouraged an information-theoretic view of de-

coherence, wherein information about a central system

“leaks out” into the environment, and thereby becomes clas-

sical �6�.
In this paper, we pursue a natural extension of the deco-

herence program, by asking “What happens to the informa-

tion that leaks out of the system?” That information should

be sought in the “rest of the universe”—i.e., the system’s

environment. The environment is a witness to the system’s

state, and can serve as a resource for measuring or control-

ling the system. Our particular focus, within this Environ-

ment as a Witness paradigm, is on how redundantly informa-

tion about the system is recorded in the environment. This is

relevant to quantum technology; a detailed picture of how

decoherence destroys quantum information may help in de-

signing schemes to correct its effects.

It also illuminates fundamental physics. Massive redun-

dancy can cause certain information to become objective, at

the expense of other information. The process by which this

“fittest” information is propagated through the environment,

at the expense of incompatible information, is Quantum Dar-

winism. Two forthcoming papers �7,8� will investigate the

dynamics of quantum Darwinism.

This paper is focused on the kinematics of information

storage and the environment-as-a-witness paradigm. It is or-

ganized as follows. In Sec. II, we introduce objectivity and

the “environment as a witness” paradigm, show that redun-

dant records indicate objectivity, and propose quantitative

and qualitative measures of redundancy. In Sec. III, we ana-

lyze randomly distributed states, show that they do not dis-

play redundant information storage, and argue that they do

not describe the Universe �see the next paragraph� in which

we live. In Sec. IV, we propose singly branching states as an

alternative description, and use numerics to demonstrate re-

dundant information storage. Section V presents an analyti-

cal model for the numerical results. Finally, we summarize

our most important results and discuss future work in Sec.

VI.

We use the word “universe” to denote both �a� everything

that exists in reality, and �b� a self-contained model of a

system and its environment. We distinguish the two by capi-

talizing usage �a�. Thus, while living in the Universe, we

simulate assorted universes.

II. THE ENVIRONMENT AS A WITNESS

Previous studies of decoherence have focused on the sys-

tem’s reduced density matrix ��S�, and on master equations

that describe its evolution. To study information flow into the

environment, we require a new paradigm.

We begin with a simple observation: information about a

system �S� is obtained by measuring its environment �E� �see

Refs. �1,9��. Although the standard theories of quantum mea-

surement �see, e.g., von Neumann �10�, etc.� presume a di-

rect measurement on the system, real experiments rely on

indirect measurements. As you read this, you measure the

albedo of the page—but actually, your eyes are capturing
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photons from the electromagnetic environment. Information

about the page is inferred from assumed correlations between

text and photons. A similar argument holds for every physics

experiment; the scientist gets information about S by captur-

ing and measuring a fragment of E.

This motivates us to focus on correlations between S and

individual fragments of E. In particular, we will seek to de-

termine whether a particular state—or a particular ensemble

of states—allows an observer who captures a small fragment

of E to deduce the system’s state. If so, then the system’s

state is objectively recorded.

A. Objectivity

A property—e.g., the state of a system—is objective when

many independent observers agree about it. The observers’

independence is crucial. When many secondary observers are

informed by a single primary observer, then only the primary

observer’s opinion is objective, not necessarily the property

which he observed. Independent observers, examining a

single quantum system, cannot have agreed on a particular

measurement basis beforehand. They will generally measure

different observables—and therefore will not agree after-

ward. An isolated quantum system’s state cannot be objec-

tive, because measurements of noncommuting observables

invalidate each other.

Classical theory, on the other hand, permits observers to

measure a system without disturbing it. Properties of classi-

cal systems �e.g., classical states� are thus objective. Each

observer can record the state in question without altering it,

and afterward all the observers will agree on what they dis-

covered. Of course, observers may obtain different

information—e.g., one observer may make a more effective

measurement than another—but not contradictory informa-

tion.

Objectivity provides an excellent criterion for exploring

the emergence of classicality through decoherence. A quan-

tum system becomes more classical as its measurable prop-

erties become more objective. The use of “measurable” is

significant. Nothing can make every property of a quantum

system objective, because some observables are incompat-

ible with others. Two observers can never simultaneously

obtain reliable information about incompatible observables

�such as position and momentum� of the same system. De-

coherence partially solves this problem by destroying all the

observables incompatible with a system’s pointer observ-

able. We are thus motivated to explore �a� how the pointer

observable becomes objective, and �b� how decoherence and

the emergence of objectivity are related.

B. Technical details and assumptions

This “environment as a witness” paradigm �1,6,11,12� is

ideally suited to exploring objectivity. In order to make in-

dependent measurements of S, multiple observers must par-

tition the environment into fragments. In this paper, we as-

sume that measurements must be made on distinct Hilbert

spaces in order to be independent, so we divide the environ-

ment into fragments as

E = EA � EB � EC � ¯ . �1�

Several factors limit an observer’s ability to obtain infor-

mation about S by measuring a fragment of the environment

�EA�. We can make more or less optimistic assumptions about

some of these factors, but the degree of correlation between

S and EA is clearly a limiting factor. An observer whose

particular fragment is not correlated with S has no way to

obtain information about S. That fragment of E is irrelevant

and, for the purpose of gaining information about S, might as

well not exist. The absolute prerequisite for demonstrating a

property’s objectivity is that information about it be recorded

in many fragments—that is, redundantly.

We quantify redundancy by counting the number of frag-

ments which can provide sufficient information. The redun-

dancy of information about some property is a natural mea-

sure of that property’s objectivity �1�. Classical properties are

objective because information about them is recorded with

�effectively� infinite redundancy. For instance, if we flip a

coin, then its final orientation is recorded by trillions of scat-

tered photons. Thousands of cameras, each capturing a tiny

fraction of them, could each provide a record. Redundancy is

not dependent on actual observers. Instead, it is a statement

about what observers could do, if they existed.

A pertinent question is “Why not allow an observer to

measure the system itself?” First, only one observer could be

allowed to do so without sacrificing independence. Thus, at

most, this would increase redundancy by 1. Furthermore, an

observer with access to the central system could measure it

in some weird basis, thus destroying its state. Since it is not

then clear what the information obtained by the other observ-

ers would refer to, we regard the system itself as off limits to

observers.

C. The overall program

The work presented here is a natural extension of the

decoherence program. However, employing the environment

as a communication channel—not just a “sink” for informa-

tion lost to decoherence—is also in a sense “beyond deco-

herence.” It is the next stage in exploring how classicality

emerges from the quantum substrate.

In order to fully understand the role that redundancy and

objectivity play in �1� the emergence of classicality, and �2�
the destruction of quantum coherence, we would like to an-

swer the following questions:

�1� Given a state �SE for the system and its environment

�the “universe”�, how do we quantify the redundancy of in-

formation �about S� in E?

�2� For a particular “universe,” what states are typical

�that is, likely to exist�? Do they display redundancy? If so,

how much?

�3� What sorts of �a� initial states, and �b� dynamics lead

dynamically to redundancy?

�4� Do realistic models of decoherence produce the mas-

sive redundancy we expect in the classical regime?

�5� For complicated systems, with many independent

properties, how do we distinguish what property a bit of

information is about?
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�6� When information about an observable is redundantly

recorded, is information about incompatible observables in-

accessible?

The building blocks of this work—e.g., the reasoning pre-

sented in this section—have been laid in recent years by

Refs. �11–14�. The first attempt to address items �1� and �3�
appeared in Ref. �6�. This analysis was refined in Refs.

�11,12�, which also analyzed a particular simple model of

decoherence numerically, and addressed item �6�. In this pa-

per, we answer �1� and �2� in detail, and consider �3� briefly.

D. Computing redundancy

To compute the redundancy �R� of some information �I�,
we divide the environment into fragments �E=EA � EB

� ¯ �, and demand that each fragment supply I indepen-

dently. The redundancy of I is the number of such fragments

into which the environment can be divided. A generalized

GHZ state is a good example,

���SE = ��0�S�00000 ¯ 0�E + ��1�S�11111 ¯ 1�E. �2�

We can determine the system’s state by measuring any sub-

environment. Each qubit in E provides all the available in-

formation about S �see, however, note �38��. To extend this

analysis to arbitrary states, we need �a� a measure of infor-

mation, �b� a protocol for dividing the environment into frag-

ments, and �c� an idea of how much of I is “available.”

1. A measure of information

We use quantum mutual information �QMI� as a measure

of correlation. QMI is a generalization of the classical mutual

information �15�. Quantum mutual information is defined in

terms of the von Neumann entropy, H=−Tr�� ln ��, as

IA:B = HA + HB − HAB. �3�

This is simple to calculate, provides a reliable measure of

correlation between systems, and has been used previously

for this purpose �1,16,17�. Unlike classical mutual informa-

tion, the QMI between system A and system B is not

bounded by the entropy of either system. In the presence of

entanglement, the QMI can be as large as HA+HB, which

reflects the existence of quantum correlations beyond the

classical ones �18�.

2. Dividing E into fragments

A preexisting concept of locality, usually expressed as a

fixed tensor product structure or as a set of allowable struc-

tures, is fundamental to redundancy analysis. Allowing an

arbitrary division of E into fragments would make every

state where S is entangled with E �see note �39�� equivalent

�via redivision of E� to a GHZ-like state �Eq. �2��. Decoher-

ence would be equivalent to redundancy. �See Fig. 1.�
The need for a fixed tensor product structure is familiar;

both decoherence and entanglement are meaningless without

a fixed division between the system and its environment

�1,9�, see, e.g., Ref. �19� for a discussion of tensor product

structures’ origins in measurable observables �an explanation

that does not refer to measurements would be needed in the

present context�. In the environment-as-a-witness paradigm,

we divide E into indivisible subenvironments,

E = E1 � E2 � E3 � ¯ ENenv
. �4�

These subenvironments can be rearranged into larger

fragments. A generic fragment consisting of m subenviron-

ments will be written as E�m�. The fragment containing the

particular subenvironments �Ei1
,Ei2

,¼ ,Eim
� is denoted

E�i1,i2,¼,im�.

We assume that each observer captures a random frag-

ment of E. This ensures their strict independence. In essence,

we do not allow the observers to caucus over the partition of

E, dividing it up in an advantageous way.

3. How much information is practically available

The maximum information that could be provided about S

is its entropy, HS. In general, no fragment can provide all

this information �40�. Following the reasoning in Ref. �11�,
we demand that each fragment provide some large fraction,

1−� �where ��1�, of the available information about S. The

precise magnitude of the information deficit � should not be

important. We denote the redundancy of “all but � of the

available information” by R�. That is, when we allow a defi-

cit of �=0.1, we are computing R0.1 or R10%.

FIG. 1. �Color� Three ways to divide up the universe. The de-

coherence paradigm divides the universe into a system �S� and an

environment �E� as in �a�. In the environment-as-a-witness para-

digm, we further subdivide E into subenvironments, as in �b�. No

subenvironment can be further subdivided, and it is easier to mea-

sure one Ei than to make a joint measurement on several. Fragments

are constructed, so as to provide enough information to infer the

state of S, by combining subenvironments as in �c�. Measurements

on distinct fragments always commute.
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To compute R�, we start by defining N� as the number of

disjoint fragments Ei such that IS:Ei
� �1−��IS:E. We might

just define R�=N�, except for two caveats.

�1� A large deficit ��� in the definition of “sufficient” in-

formation could lead to spurious redundancy. Suppose there

exist N=5 fragments that provide full information. If �
=0.5, then we might split each fragment in half to obtain

N�=10 fragments that each provide “sufficient” information.

To compensate for this, we replace N� with �1−��N�.

�2� Because of quantum correlations, IS:Ei
can be as high

as 2HS. We allow for this by assuming that the information

provided by one fragment represents strictly quantum corre-

lations, and throwing this fragment away. This means replac-

ing �1−��N� with �1−��N�−1.

By assuming the worst case, we have obtained a lower

bound for the true redundancy,

R� � �1 − ��N� − 1. �5�

For small �, this is fairly tight, as N� is clearly an upper

bound. Since our current tool set, subject to the caveats men-

tioned above, does not permit a more precise determination

of R�, we report the lower bound throughout. Thus, when we

report “R10%=9,” we really mean “R10% is at least 9, and not

much more.”

E. Identifying qualitative redundancy

The actual amount of redundancy is often less important

than the qualitative observation that information is stored

very redundantly �e.g., R�1�. Whether R=100 or R=1000,

the information in question is certainly objective—but if R

	1, then its objectivity is in doubt. We also wish to consider

more general questions: e.g., how much does R� depend on

�? or why does a state display virtually no redundancy?

For these purposes, we plot the amount of information

about S supplied by a fragment of size m �IS:E�m�
�, against m.

Since there are very many fragments of a given size, we

average IS:E�m�
over a representative sample of fragments to

obtain Ī�m�. The plot of Ī�m�, which shows the partial in-

formation yielded by a partial environment, is a partial in-

formation plot �PIP�. When the universe is in a pure state

�see �20�, and Appendix A�, the PIP must be antisymmetric

around its center �see Fig. 2�. Together with the observation

that Ī�m� must be strictly nondecreasing �capturing more of

the environment cannot decrease the amount of information

obtained�, this permits the three basic profiles shown in Fig.

2.

Redundancy �see Fig. 2�b�� is characterized by a rapid rise

of Ī at relatively small m, followed by a long “classical

plateau.” In this region, all the easily available information

has been obtained. Additional environments confirm what is

already known, but provide nothing new. Only by capturing

all the environments can an observer manipulate quantum

correlations. The power to do so is indicated by the sharp rise

in Ī at m	Nenv.

III. INFORMATION STORAGE IN RANDOM STATES

Redundant information storage is ubiquitous in the classi-

cal world. We might naïvely expect that randomly chosen

states of a model universe—e.g., a DS-dimensional system in

contact with a bath of Nenv DE-dimensional systems—would

display massive redundancy. To test this hypothesis, we com-

pute partial information plots for random states, and average

them over the uniform ensemble. This was first done in Ref.

�20�, for qubits. In this work, we extend the analysis to sys-

tems and environments with arbitrary sizes.

A. The uniform ensemble

For any �finite� D-dimensional Hilbert space, there exists

a unitarily invariant uniform distribution over states, usually

referred to as Haar measure. We examine the behavior of

typical random states by averaging PIPs over this uniform

ensemble. This average can be obtained analytically, using a

formula for the average entropy of a subspace that was con-

jectured by Page �21�, then proved by Sen �22� and others

�23,24�.

Page’s formula �21–24� for the mean entropy H̄�m ,n� of

an m-dimensional subsystem of an mn-dimensional system

�where m	n� is

H̄�m,n� = 

k=n+1

mn
1

k
−

m − 1

2n
�6�

=
�mn� − 
�n + 1� −
m − 1

2n
, �7�

where the latter expression is given in terms of the digamma


 function �32�. For a DS-dimensional system in contact

with Nenv environments of size DE, the average mutual infor-

mation between the system and m subenvironments is

IS:E�m�
= H̄�DS,DE

Nenv� + H̄�DE
m,DSDE

Nenv−m�

− H̄�DSDE
m,DE

Nenv−m� . �8�

FIG. 2. �Color� Three profiles for partial information plots

�I vs m�. �a� The behavior of independent environments. �b� Infor-

mation is stored redundantly. �c� Information is encoded in multiple

environments.
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B. Partial information plots (PIPs)

Our results �Figs. 3–5� demonstrate that typical states

from the uniform ensemble do not display redundancy. Fig-

ure 3�a� illustrates typical behavior. As an observer captures

successively more subenvironments �increasing m�, he gains

virtually no information about S. IS:E�m�
remains close to

zero. When approximately 50% of the subenvironments have

been captured, the observer begins to gain information. Ī

rises rapidly, through Hs and onward nearly to 2Hs.

Information about S is encoded in the environment �as in

Fig. 2�c��, much as a classical bit can be encoded in the

parity of an ancillary bitstring. In the classical example, how-

ever, every bit of the ancilla must be captured to deduce the

encoded bit.

This encoding, or “antiredundancy,” is related to quantum

error correction �25–28�. In an encoding state, any majority

subset of the Ei has nearly complete information. The re-

corded information is unaffected by the loss of any minority

subset. States with this behavior can be used as a quantum

code to protect against bit loss. Our results show that generic

states—i.e., states selected randomly from the whole SE Hil-

bert space—form a nearly optimal error-correction code for

bit-loss errors. Shannon noted similar behavior for classical

code words �29�.
Figures 3�b� and 4 extend this result to larger systems.

The results are consistent; information is still encoded, and

only the total amount of encoded information changes.

FIG. 3. �Color� Partial information plots �PIPs� for the uniform

ensemble. We plot the average information �Ī� obtainable from a

fragment �E�m��, against the fragment’s size �m�. I�m� is averaged

over all states in the uniform ensemble. �a� A qubit system coupled

to environments consisting of Nenv=2,¼ ,16 qubits. �b� Systems

with sizes DS=2,¼ ,16 coupled to a 16-qubit environment. Discus-

sion: No significant information is obtained until almost half the

subenvironments have been captured. Once m�Nenv /2, virtually all

possible information �both quantum and classical� is available. Be-

cause more than one-half the environment is required to obtain

useful information, there is no redundant information storage in

typical uniformly distributed states. Instead, the information is en-

coded throughout the environment.

FIG. 4. �Color� Equivalent enviroments: When the state of the

universe is chosen randomly, the environment’s Hilbert space di-

mension determines its information-recording properties. �a� PIPs

for a 16-dimensional system coupled to several equivalent environ-

ments with Dtotal=224. The subenvironments are �2, 4, 8, 16�-
dimensional, and Nenv is scaled appropriately. The plots are essen-

tially identical—only the scaling of the m-axis changes. �b� The

same data, but with the captured fraction of the environment plotted

on the independent axis.
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C. Conclusions

Our first main result is that typical states selected ran-

domly from the uniform ensemble display no redundant in-

formation storage. Instead, they display encoding or antire-

dundancy. This is not to say that all states are

“antiredundant,” merely that redundant information storage

is rare. As m declines from Nenv /2 , Ī�m� declines exponen-

tially. For large Nenv, states where information is not encoded

this way are vanishingly rare. If even a small fixed fraction �
of states displayed the opposite “redundant” behavior, then

Ī�m� would have to be O��� at small m. The fact that Ī�m� is

exponentially close to zero implies that the fraction of non-

“encoding” states must decline exponentially with Nenv.

The obvious conclusion is that the Universe does not

evolve into random states. Our observations of ubiquitous

redundancy in the real Universe are inconsistent with the

random-state model. This is interesting, but not terribly sur-

prising. There is no good reason to expect that the Universe’s

state would be random—we are not, for instance, in thermo-

dynamic equilibrium. The interactions of systems with their

environments must select states that are characterized by

greater redundancy. In the next section, we suggest and ana-

lyze such an ensemble.

IV. DECOHERENCE AND BRANCHING STATES

Decoherence—the loss of information to the

environment—is a prerequisite for redundancy. The simplest

models of decoherence �30� are essentially identical to those

for quantum measurements. A set of pointer states for the

system, ��n��, are singled out, and the environment “mea-

sures” which �n� the system is in, by evolving from some

initial state ��E0�� into a conditional state, �En�. If �S is writ-

ten out in the pointer basis, its diagonal elements ��nn� re-

main unchanged. Coherences between different pointer states

�e.g., �nm� are reduced by a decoherence factor:

nm � �En�Em� . �9�

We presume that �a� the subenvironments are initially un-

entangled, �b� each subenvironment “measures” the same ba-

sis of the system, and �c� the state of the universe is pure. In

this simple model, the universe is initially in a product state,

�
0� = �S0� � �E0
�1�� � �E0

�2�� � ¯ �E0
�Nenv�� . �10�

The subenvironments do not interact with each other, and the

system does not evolve on its own. Letting the system’s ini-

tial state be �S0�=
nsn�n�, the universe evolves over time

into

�
t� = 

n

sn�n�S � �En
�1�� � �En

�2�� � ¯�En
�Nenv�� , �11�

where �E
n

�j�� is the conditional state into which the jth suben-

vironment evolves if the system is in state �n�. Different con-

ditional states of a given subenvironment will not generally

be orthogonal to one another, except in highly simplified

�e.g., Controlled-NOT� models.

A. The branching-state ensemble

We refer to the states defined by Eq. �11� as singly

branching states, or simply as branching states. In Everett’s

many-worlds interpretation �31�, a branching state’s wave

function has DS branches. Each branch is perfectly correlated

with a particular pointer state of the system. The subenviron-

ments are not entangled with each other, only correlated

�classically� via the system. In contrast, a typical random

state from the uniform ensemble has Duniverse branches, with

a new branching at every subsystem.

FIG. 5. �Color� Scaled versions �SPIPs� of the plots in Fig. 3.

SPIPs are useful for comparing environments with different num-

bers of subenvironments, and for computing R�, the redundancy of

a given fraction 1−� of the total information. To estimate redun-

dancy, simply draw a horizontal line at fI= �1−�� /2, and note the

value of fcap where it intersects the PIP. This provides a good esti-

mate of 1 /R�. It is not a perfect estimate for several reasons; most

importantly, the PIP and SPIP plot the average I obtained from a

given-sized fragment of the environment. This is not the same as

the average fragment size �m̄� required to obtain I, since we aver-

age the same data over different variables. In these plots, of course,

no redundancy is evident—we are looking ahead to the next

section.
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In dynamical models of decoherence, the universe at a

given time will be described by a particular branching state

that depends on the environment’s initial state, and on its

dynamics. In this, we sidestep the difficulties of specifying

these parameters, by considering the ensemble of all branch-

ing states. We select the conditional �E
n

�j�� at random from

each subenvironment’s uniform ensemble. Each pointer state

of the system is correlated with a randomly chosen product

state of all the environments.

The amount of available information is set by the sys-

tem’s initial state �i.e., the sn coefficients�. The eigenvalues

of �S after complete decoherence, which determine its maxi-

mum entropy, are �n= �sn�2. Since we cannot examine all pos-

sible states, we focus on maximally “measurable” general-

ized Hadamard states:

sn =
1

DS

" n . �12�

To verify that our results are generally valid, we also treat

�briefly� another class of initial states.

By examining the branching-state ensemble, we are not

conjecturing that the Universe is found exclusively in

branching states. Branching states form an interesting and

physically well-motivated ensemble to explore. We shall see

that, unlike the uniform ensemble, the branching-state en-

semble displays redundancy consistent with observations of

the physical Universe. Our Universe might well tend to

evolve into similar states, but we are not ready to establish

such a conjecture. Characterizing the states in which the

physical Universe �or a fragment thereof� is found is a sub-

stantially more ambitious project.

B. Numerical analysis of branching states

We begin our exploration of branching states by examin-

ing typical PIPs, for various systems and environments. We

average these PIPs over the branching-state ensemble, so

there are only three adjustable parameters, DS ,DE, and Nenv.

Our results confirm that information is stored redundantly.

Next, we examine a quantitative measure of redundancy

�R��, and its dependence on DS ,DE, and Nenv. Finally, we

derive some analytical approximations, compare them with

numerical data, and discuss the implications of our results.

1. Partial information plots

Information is redundant when small fragments yield

nearly complete information—that is, when the PIP looks

like Fig. 2�b�. PIPs for branching states �Fig. 6� show exactly

this profile. Ī�m� rises rapidly from Ī�0�=0, then approaches

HS asymptotically to produce a “classical plateau” centered

at m=Nenv /2.

As Nenv grows, the interesting regimes at m	0 and m

	Nenv do not change; the classical plateau simply extends to

connect them. The initial bits of information that an observer

gains about a system are extremely useful, but eventually a

point of diminishing returns is reached, where further infor-

mation is redundant. The degree of redundancy should there-

fore scale with Nenv.

2. Non-Hadamard states for S

Non-Hadamard states provide a different spectrum of in-

formation for E to capture. We consider states defined by

sn �
1

2n
, �13�

The post-decoherence spectrum of �S is nondegenerate. In

fact, it is exactly that of a thermal spin—i.e., a particle with

a Hamiltonian H=Jz, in equilibrium with a bath at finite

temperature. We refer to these states as “thermal” branching

states �and retain quotation marks to emphasize that our jus-

tification of this nomenclature is unphysical�.
Our general approach is to assume that the system’s maxi-

mum entropy determines its informational properties. The

entropy of a decohered “thermal” state does not increase

logarithmically with DS, but asymptotes to HS=2 bits. This

is exactly the entropy of a DS=4 Hadamard state, so in the

limit DS→�, “thermal” states should behave much the same

as a DS=4 Hadamard state.

This conjecture is confirmed in Fig. 7, which compares

PIPs for “thermal” states with DS=16 to PIPs for Hadamard

states with DS=4. The plots’ similarity indicates that HS is

the major factor in how information about S is recorded.

Further numerical results use Hadamard states for specifici-

ty’s sake.

3. How PIPs scale with the composition of E

As the number of subenvironments in E grows, comparing

PIPs for different environments becomes difficult. Reparam-

etrizing the axes, and plotting the fraction of I available

from a fraction of E, allows direct comparison of different

universes. Scaled PIPs �SPIPs� for environments with Nenv

��4¯128� �Fig. 8�a�� show that the information about S

becomes more redundant as Nenv grows.

Different environments, whose total Hilbert space dimen-

sions are the same, act equivalently �see also Sec. III B�. We

have examined a 16-dimensional system coupled to nine dif-

ferent, but equivalent, environments �Fig. 8�b��. Although the

number and size of the subenvironments are varied, the re-

dundancy of the available information depends only on E’s

total information capacity: c� ln�dim�H��. Each E in Fig.

8�b� has c�120 bits, so their SPIPs are essentially identical.

4. Redundancy: Numerical values

Branching states are natural generalizations of GHZ

states, so we expect redundant information storage. Figure 9

confirms this over a wide range of parameters. The amount

of redundancy is proportional to the size of the environment,

which agrees with the classical intuition that very large en-

vironments should store many copies of information about

the system. Larger subenvironments increase redundancy by

storing more information in each subenvironment. Con-

versely, larger systems have more properties to measure,

which in turn require more space for information storage.

The total amount of redundancy is reduced for large DS.
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The other important feature of the plots in Fig. 9 is the

relatively weak dependence of R� on the information deficit

���. As we vary � from 2% to 25% �a full order of magni-

tude�, R� changes by less than a factor of 2. The distinction

between classical �massively redundant� and quantum �non-

redundant� information is largely independent of �.

V. THEORETICAL ANALYSIS OF BRANCHING STATES

The numerical analysis in the preceding section offers

compelling evidence that

�1� Information is stored redundantly in branching states,

�2� The amount of redundancy scales with Nenv, and

�3� R� is relatively insensitive to �.

In this section, we construct theoretical models for PIPs

and redundancy, which confirm these hypotheses.

A. Structural properties of branching states

We begin by using the structure inherent to branching

states to compute a quantity of fundamental interest,

IS:E�m�
= HS + HE�m�

− HSE�m�
, �14�

the mutual information between the system and a fragment

E�m� of the environment.

We require the entropies of �S ,�E�m�
, and �SE�m�

. Tracing

over the rest of the universe is simplified by the structure that

Eq. �11� implies. Each relevant density matrix �regardless of

its actual dimension� has only DS nonzero eigenvalues. That

is, the reduced states for S ,E�m�, and SE�m� are all “virtual

qudits” with D=DS.

Each �, when reduced to its DS-dimensional support, is

spectrally equivalent to a partially decohered variant of the

system’s initial state:

FIG. 6. �Color� PIPs for ensembles of singly branching states. The system is initialized in a Hadamard state, and decohered by Nenv

subenvironments. We plot the average information �Ī� available from a collection of m subenvironments. �a� A qubit is decohered by qubits.

�b� A qubit is decohered by five-dimensional subenvironments. �c� A five-dimensional system is decohered by qubits. �d� A five-dimensional

system is decohered by five-dimensional subenvironments. Discussion: As Nenv is increased from 4 to 12, a “classical plateau” appears. This

indicates redundant information storage. In the regime m�Nenv, the PIP converges to an asymptotic form. When S is larger than E �see �c��,
the environment is barely sufficient to decohere the system, and there is no redundancy �see also Fig. 9�.

R. BLUME-KOHOUT AND W. H. ZUREK PHYSICAL REVIEW A 73, 062310 �2006�

062310-8



�S0��S0� = 

nm

snsm
� �n��m� . �15�

In other words, we can obtain �S ,�E�m�
, or �SE�m�

by taking

�S0��S0� and suppressing the off-diagonal elements according

to a specific rule.

To determine this rule, we define �for each subenviron-

ment� a multiplicative decoherence factor, :

ij
�k� = �E j

�k��Ei
�k�� , �16�

and an associated additive decoherence factor, d:

dij
�k� � − ln ij

�k�. �17�

Now, 
ij

�k�
quantifies how much Ek contributes to decohering

�i� from �j�. The -factors from different Ek combine multi-

plicatively; the d-factors provide a convenient additive rep-

resentation. Each relevant density matrix �X �for X

� �S ,E�m� ,SE�m��� is given by

�i��X�j� = �sis j
��e−dij

�X�
. �18�

The d-factor for each subsystem is a sum over d-factors for

the component Ek,

d
ij

�E�m�� = 

k�E�m�

dij
�k�, �19�

dij
�S�

= 

k�E

dij
�k�, �20�

d
ij

�SE�m�� = 

k�E�m�

dij
�k�. �21�

Thus, each � appears to have been decohered by a different

subset of E:

�i� �S has been decohered by every subenvironment,

�ii� �SE�m�
has been decohered by all the subenvironments

not in E�m�,

�iii� �E�m�
has been decohered by all the subenvironments

in E�m�.

Note: If the last point seems counter-intuitive, recall that

for any bipartite decomposition of �
�AB, the reduced �A and

�B are spectrally equivalent. Thus �E�m�
is equal to �SE�m�

,

where E�m� contains all the environments not in E�m�.

The entropy of these three states can be computed nu-

merically. For qubit systems, it can also be done analytically

FIG. 7. �Color� PIPs for non-Hadamard states: DE=2, 3, 4, 5 in plots �a�, �b�, �c�, �d�, respectively. The system is 16-dimensional, and

initialized in a “thermal” state, where sn�1/2n. The entropy of the decohered state is 	2 bits �as opposed to 4 bits for a DS=16 Hadamard

state�. We compare the PIPs for “thermal” states with DS=16 to PIPs for Hadamard states with DS=4 �which also develop 2 bits of entropy�,
and vary the subenvironments’ size. These PIPs confirm that our observations apply to non-Hadamard states, and that HS characterizes how

information about the system is stored.
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�see Ref. �20� for extensive details�. For our model, we will

derive an approximation for H���.

B. Theoretical PIPs: Averaging I„m…

As a particular � is decohered by more and more suben-

vironments, its off-diagonal elements decline rapidly toward

zero. We will treat the off-diagonal elements of a partially

decohered state, �=
ijsis j
*ij�i��j�, as a perturbation around

the fully decohered state �0, which has eigenvalues �i= �si�
2

and entropy H0.

1. Average entropy of partially decohered states

Let �=�0+�, where � is a small off-diagonal perturba-

tion to �0, and expand its entropy as H����H��0�+O���. An

intuitively appealing starting point is the MacLaurin expan-

sion of H�x�=−x ln�x�, which yields

H��0 + �� � H��0� − Tr���1 − ln��0��� −
1

2

�2

�0

+
1

6

�3

�0
2

¯ .

�22�

The first order term in Eq. �22� vanishes, because � is

purely off-diagonal and 1−ln��� is purely diagonal. The lead-

ing term is thus �2 /2�0—but the matrix quotient �k+1 /�0
k is

ill-defined when � and �0 do not commute.

A more involved expansion of H��� around �=1 �see Ap-

pendix C� yields a series for H��0+��. It is equivalent to Eq.

�22� for scalars, but for matrices it involves �1� expanding

�0
−k in a power series, and �2� taking a totally symmetric

product between �k+1 and the resulting power series.

To leading order in �,

H��� � H��0� −
��2

2
�h��0� − 1� , �23�

where ��2 is the average of �ij�
2 over all i� j, and h��0� is a

nontrivial function of �0’s eigenvalues ��i�,

h��0� = 

ij=0

dS−1 �i� j�ln �i − ln � j�

�i− � j

. �24�

2. Effective Hilbert space dimension

In general, h��0� cannot be simplified further. However, it

is well approximated by the effective Hilbert space dimen-

sion of �0. To see this, we consider the special case where �0

has D identical eigenvalues, �i=1/D. When reduced to its

support, �0=1 /D. For degenerative eigenvalues, each term in

h��0� reduces to the eigenvalue itself. Upon performing the

sum, we get:

h��0� = D = eH��0�. �25�

Note that D appeared only based on the eigenvalue spectrum

of �0. In the example above, H0=H��0�=ln�D�. Since the

total range of Ī�m� is proportional to H0, a logical generali-

zation is

h��0� � eH0, �26�

H��� � H��0� −
��2

2
�eH0 − 1� . �27�

Numerical experimentation, and an analytic calculation in

DS=2, confirm that Eq. �26� is a good approximation every-

where, in addition to being exact for �1� maximally mixed

states, and �2� pure states.

3. Average decoherence factors

The ij depend on the details of �SE. However, when they

are small enough to count as a perturbation on �, the envi-

ronment’s Hilbert space is very large. The �ij�
2 can then be

treated as independent random variables, so �2� is equal to

FIG. 8. �Color� Scaled partial information plots �SPIPS� com-

pare information storage in different environments. �a� A qutrit sys-

tem coupled to Nenv=4,¼ ,128 qutrit environments. �b� A qutrit

system coupled to nine different environments with the same infor-

mation capacity. Discussion: As Nenv increases, redundancy �indi-

cated by sharp curvature� grows �plot �a��. If Nenv and DE are scaled

so that total Hilbert space dimension �DE
Nenv� remains constant, then

the SPIP remains unchanged �plot �b��. Plot �b� also illustrates the

difference between the regime of linear information gain �here,

fcap�0.04� and the exponential convergence to the “classical pla-

teau” thereafter.
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an average over the entire branching state ensemble:

�2� = ������������ = Tr���������������� =
Tr�11�

DE
2

= DE
−1.

�28�

This is the mean value of �2� for a single subenvironment.

For a collection of m subenvironments, m such  factors are

multiplied together, so the mean value of �2� becomes DE
−m.

4. The result

Putting this all together, the average entropy of a

DS-dimensional system decohered by m DE-dimensional en-

vironments is

H̄ � H0 −
eH0 − 1

2
DE

−m, �29�

and the average mutual information between the system and

m subenvironments is

Ī�m� � H0 −
eH0 − 1

2
�DE

−m − DE
−�Nenv−m��

= H0 + �eH0 − 1�sinh��m −
Nenv

2
�ln�DE�� . �30�

Equation �30� is a good approximation only near the clas-

sical plateau, where Ī�H0. Around m=0 and m=Nenv, Ī

rises linearly, not exponentially. Each subenvironment can

provide only log2 DE bits of information, so until the infor-

mation starts to become redundant, we are in a different re-

gime �see Fig. 8�b��.
Once the information capacity of the captured environ-

ments �m ln DE� becomes greater than the amount of infor-

mation in the system �H0�, Eq. �30� becomes valid. It de-

scribes the slow approach to “perfect” information about the

system, as m increases. Figure 10 compares exact �numeri-

cal� results for Ī�m� to the approximation in Eq. �30�.

FIG. 9. �Color� Redundancy for an assortment of branching-state ensembles. �a� R10% for a D-dimensional system decohered by

D-dimensional subenvironments. �b� R10% for a five-dimensional system decohered by DE-dimensional subenvironments. �c� R10% for a

DS-dimensional system decohered by four-dimensional subenvironments. �d� R� for assorted � and DS=DE=5. Discussion: Each plot shows

the ensemble average of R�, versus Nenv. R� increases linearly with the number of environments. R� increases with DE, but decreases with

DS. Larger environments store more information, which leads to greater redundancy—but larger systems have more information to be stored.

Information is stored with slightly greater efficiency for large DS and DE �plot �a��. Note that if S is larger than E �e.g., DS=16 in plot �c��,
there may be no redundancy. Finally, � affects redundancy �plot �d��—but varying � by a full order of magnitude �from 2% to 25%� changes

R� by less than 50%.
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C. Theoretical redundancy: Averaging m„I…

Branching states develop when each subenvironment in-

teracts independently with S. The data in Section IV B 4

�especially Fig. 9� confirm that redundancy in branching

states is proportional to Nenv. A certain number of subenvi-

ronments �m�� is enough to provide sufficient information.

To capture this scaling, we define specific redundancy as

r� = lim
Nenv→�

� R�

Nenv

� =
1 − �

m�

. �31�

In this section, we use specific redundancy to examine pre-

cisely how DS , DE, and � affect information storage in

branching states. We derive an approximate formula for r�,

and compare its predictions to numerical data.

FIG. 10. �Color� Numerical PIPs vs theory: We compare the approximation derived in Sec. V B with numerics. Error bars on numerics

represent typical fluctuations over the branching-state ensemble. �a� DS=DE=2, Nenv=8. �b� DS=DE=2, Nenv=32. �c� DS=DE=4, Nenv=8.

�d� DS=DE=4, Nenv=32. �e� DS=DE=16, Nenv=8. �f� DS=DE=16, Nenv=32. Discussion: The approximation is virtually perfect near the

classical plateau. For small m, the rate of information gain is more nearly linear, and the approximation fails. Although it works well at m=0

for DS=4 �plots �b�, �e��, it fails spectacularly near m=0 for large DS �plots �c�, �f��.
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In the preceding section, we computed the average infor-

mation yielded by m environments. Now, we compute the

average m required to achieve a given I.

When Nenv is large, HSE�m�
�HS�H0, so IS:E�m�

�HE�m�
.

We take Eq. �27�,

IS:E�m�
� HS −

1

2 ��2�eHS − 1� , �32�

as a starting point. For the fragment to provide “sufficient”

information, I−HS must be less than �HS, which requires



i�j

�ij�
2

DS�DS − 1�
�eHS − 1� 	 2�HS. �33�

Assuming �0 is maximally mixed �i.e., eH0 =DS�, and replac-

ing the ij with independent random variables n, we obtain

the following condition on a “sufficiently large” fragment:

� 

n=1

DS�DS−1�/2

�n�2� 	 �DSHS. �34�

The interaction of
1

2
DS�DS−1� independent -factors makes

it difficult to solve Eq. �34� rigorously. We begin instead by

considering a qubit system, which has only one off-diagonal

.

1. Specific redundancy for qubit systems

For a single qubit, there is only one decoherence factor:

d01, which we will refer to simply as d. Equation �34� sim-

plifies to

d � d� � −
1

2 ln�2�HS� . �35�

The increase in d with m can be approximated as a biased

random walk, where each step has a mean length �d̄� and a

variance ��d�. After m environments are added to the frag-

ment, d obeys a normal distribution �pm�d��, whose mean

and variance are md̄ and m�d, respectively. We postpone

the calculation of d̄ and �d for the moment.

Let psuff�m� be the probability that a fragment consisting

of m subenvironments provides sufficient information �i.e.,

satisfies Eq. �35��. Then

psuff�m� = �
d�

�

pm�d�dd , �36�

and the probability that m environments are required is

preq�m� = psuff�m� − psuff�m − 1� �37�

=�
m−1

m
�

�n
psuff�n�dn , �38�

and the expected fragment size �m̄� is

m̄ = 

m=0

�

mpreq�m�

= 

m=0

�

m�
m−1

m
�

�n
psuff�n�dn

� �
0

� �m +
1

2
� �

�m
psuff�m�dm

=
1

2
+ �

0

�

m
�

�m
psuff�m�dm

=
1

2
+ �

0

�

�1 − psuff�m��dm

=
1

2
+ �

0

�

dm�
−�

d�

pm�d�dd . �39�

We interchange the order of integration, substitute the appro-

priate normal distribution for pm�d�, and end up with

m̄ =
d�

d̄
+

�d2

2d
2

+
1

2
. �40�

2. Specific redundancy for general DS

Whereas Eq. �35� �for qubits� has one ��2 term, Eq. �34�
involves a sum of

1

2
DS�DS+1� such terms. Deriving and ana-

lyzing a probability distribution for this sum is very difficult,

so we take a simpler route. We replace the sum over terms

with a single term,
1

2
DS�DS+1�2, where 2 represents all

the off-diagonal terms. The new condition for sufficient in-

formation is

DS�DS − 1�

2
2 	 �DSHS

2 	
2�HS

DS − 1

d � d� � −
1

2
ln� 2�HS

DS − 1
� . �41�

DS has been incorporated into a redefinition of d�. Equation

�40� is still valid for qubits, but it generalizes to

m̄ =
ln�DS − 1� − ln�2�HS�

2d̄
+

�d2

2d
2

+
1

2
. �42�

We combine this expression with Eq. �31� to obtain a general

estimate for specific redundancy,

r� =
2d

2

�1 − ��

�2 + d
2

+ d̄�ln�DS − 1� − ln�2�HS��
. �43�
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3. Dependence of mean decoherence factor „d… on DE

The computation of d̄ and �d in terms of DE is somewhat

tedious. Details can be found in Appendix D, where we cal-

culate

d̄ =
1

2 �
�DE� + EM� , �44�

�d2 =
�2

24
−


1�DE�

4
, �45�

in terms of the digamma �
�n�� and trigamma �
1�n�� func-

tions �32�, and the Euler-Mascheroni constant EM

=0.577¯ . These functions may not be familiar to all read-

ers, so we present the first few values in Table I.

For larger DE, we can safely approximate Eqs. �44� and

�45� as

d̄ � 1

2 �ln�DE� + EM� , �46�

�d �
�

24
. �47�

4. How good is the estimate?

In Fig. 11, we compare numerical results to the approxi-

mation of Eq. �43�. The analytical estimate is very good for

qubit systems, but loses some fidelity for larger DS. A more

sophisticated treatment of the multiple ij terms—each rep-

resenting an independent observable which the environment

must record—would eliminate this error.

To get an intuitive feel for the dependence of r� on its

parameters, we consider the regime of large systems, large

environments, and small deficit—i.e., H0�1, d̄

	 1

2
ln�DE� ,�d	�2 /24, and ��1. In this regime, we can

ruthlessly simplify Eq. �43� to obtain a simple prediction,

TABLE I. The table shows the first few values of d̄ and �d, for

environments of size DE� �2,3 ,4 ,5 ,6 ,8�. See Appendix D for de-

tails on the calculation.

DE 2 3 4 5 6 8

d̄
1

2

3

4

11

12

25

24

137

120

363

280

�d
1

2

5

4

7

12

205

24

5269

120

266681

840

FIG. 11. �Color� Specific redundancy �r��R� /Nenv�: numerical data �symbols� compared with theory �Eq. �43�, solid lines�. �a� r� vs �,

for a 16-dimensional system coupled to 2, 3, 4, 8-dimensional subenvironments. �b� r� vs �, for 2, 3, 4, 8, 16-dimensional systems coupled

to qubit subenvironments. �c� r1% vs DE. �d� r1% vs DS. Discussion: Theory predicts the overall behavior of redundancy well. It is nearly

perfect for DS=2, but overestimates r� for larger systems. As � increases, r� saturates and even declines because of the �1−�� prefactor in

Eq. �5�. When � is large, the theory breaks down �see �a��, because a single subenvironment can provide sufficient information.
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r� �
ln�DE�

ln�DS� − ln���
. �48�

The plots in Fig. 12 show the ratio between numerical r� data

and the simple predictions of Eq. �48�. They confirm that Eq.

�48� is a good rule of thumb.

Equation �48� can be interpreted as a capsule summary of

how redundancy scales in the “random-state” model of de-

coherence.

�1� Redundancy is proportional to Nenv, the number of

independent subenvironments. More subenvironments pro-

duce more redundancy.

�2� Redundancy is proportional to d̄, the mean decoher-

ence factor of a single subenvironment, which grows as

ln DE. Larger subenvironments produce more redundancy, in

proportion to their information capacity.

�3� Redundancy is �roughly� inversely proportional to HS,

the total information available about the system. Larger sys-

tems require more space in the environment.

�4� The deficit ��� appears as a logarithmic addition to HS.

Reducing the amount of “ignorable” information is equiva-

lent to making the system bigger. Redundancy depends only

weakly (logarithmically) on the deficit, �.

VI. CONCLUSIONS AND DISCUSSION

“There is no information without representation”: infor-

mation must be stored somewhere. To retrieve it, we must

measure the systems where it is stored. To understand the

properties of information, we look at the properties of this

retrieval process. We have focused on one question: How

easily can information about a system be retrieved from its

environment?

The answer is strongly dependent on how the system be-

came correlated with its environment. Random interactions

between S and all of E leave no useful correlations—to learn

about S we must measure most of E. However, when local-

ized parts of E interact independently with S, an observer can

learn about S by measuring a small fragment of E. Further-

more, the information that he learns is objective—another

independent observer will arrive at the same conclusions.

This redundant imprinting of selected observables on the

environment is quantum Darwinism. It leads to objective re-

ality in a quantum Universe. Typical PIPs for branching

states �see Fig. 13� illustrate how different sorts of informa-

tion are selected or deprecated. The information in E about S

divides naturally into three parts,

IS:E = IR + INR + IQ. �49�

FIG. 12. �Color� “Efficiency:” specific redundancy rescaled by information capacity. Equation �48� provides a simple approximation for

redundancy, based on the relative information capacity of the system �with a correction for �� and its environment. We reproduce the data

of Fig. 11, but use Eq. �43� to rescale specific redundancy. Discussion: Efficiency is consistently near to 1, when the universe is in a random

branching state, information about S is efficiently recorded in E. Equation �43� is accurate for large DS and DE �and small ��. When the

system or the subenvironments are small, Eq. �43� underestimates information storage efficiency.

QUANTUM DARWINISM: ENTANGLEMENT, BRANCHES, ¼ PHYSICAL REVIEW A 73, 062310 �2006�

062310-15



The redundant information �IR� is classical—it can be ob-

tained easily, by many independent observers. Its selective

proliferation is the essence of quantum Darwinism. Ollivier

et al. showed, in Ref. �11�, that IR is not only easy to obtain,

but difficult to ignore. An observer who succeeds in extract-

ing IR, and continues to probe, finds a “classical plateau.”

Measurements on additional subenvironments increase his

knowledge of S only slightly—mostly, they only confirm

what he already knows. Only a perfect and global measure-

ment of everything can reveal more than the redundant infor-

mation.

Purely quantum information �IQ� represents observables

that are incompatible with the pointer observable. This is the

information that quantum Darwinism selects against. It is �a�
encoded amongst the environments, much as a classical bit

can be encoded in the parity of many ancilla bits; �b� acces-

sible only through a global measurement on all of E; and �c�
easily destroyed when E decoheres.

Finally, nonredundant information �INR� represents a grey

area—the border between the classical and quantum do-

mains. It exists only when the classical plateau in Ī�m� has a

nonzero slope. This is why we allow for a deficit ��� when

computing redundancy.

Information storage in randomly selected arbitrary states

of the model universe is dramatically different from informa-

tion storage in randomly selected singly branching states.

The contrast between these two cases emphasizes the impor-

tance of the environment’s structure. Overly simple thermo-

dynamic arguments �e.g., maximum entropy in the absence
of gravity� indicate that the physical Universe should evolve
into states that are uniformly distributed. Our results, how-
ever, show that objects which display the redundancy char-
acteristic of our Universe must have structured correlations
with their environments.

Decoherence theory emphasizes the role of the environ-
ment in the quantum-to-classical transition, but only as a
reservoir where unwanted quantum superpositions and corre-
lations can be hidden, out of sight. Even this view—which
now seems somewhat narrow—has produced important ad-
vances in our understanding over the past quarter century.
Examples include einselection, the special role of pointer
states, and the view of classicality as an emergent phenom-
enon. Nevertheless, it is clear from our discussion above and
from related recent work �11,12�, that “tracing out E” ob-
scures crucial aspects of the environment’s role.

The environment is a witness—a communication channel

through which observers acquire the vast majority �if not all�
of their information about the Universe. Surprisingly, this

realization has taken more than 75 years since the formula-

tion of quantum mechanics in its present form. It goes

against a strong classical tradition of looking for solutions of

fundamental problems in isolated settings. This tradition is

incompatible with the role of states in quantum theory.

Quantum states, unlike classical states, do not define what

“exists objectively.” They are too malleable—too easily per-

turbed and redefined by measurements. Moreover, in quan-

tum mechanics, what is known about a system’s state is in-

extricably intertwined with what it is. Classical states, in

contrast, have existence independently of the knowledge of

them. To put it tersely �and in the spirit of complementarity�,
quantum states play both ontic �describing what is� and

epistemic �describing what is known to be� roles �41,33�.
Thus, for many purposes, it makes no sense to talk about a

state of a completely isolated quantum system.

Our Universe is quantum to the core �see, e.g., Ref. �34�
for an up-to-date review of the experimental evidence�, so

the only place to look for objective classicality is within the

quantum theory itself. Decoherence has certainly supplied

part of the answer: Only some of the states in an open sys-

tem’s Hilbert space are stable. Those that are not stable, can-

not “exist objectively.” Even these einselected pointer states,

however, are vulnerable to perturbation by an observer who

measures directly. Yet, objectivity implies that many differ-

ent �and initially ignorant� observers can independently find

out the state.

The environment-as-a-witness point of view solves this

problem by recognizing that we gain essentially all of our

information indirectly, from the environmental degrees of

freedom �with the possible exception of specific laboratory

experiments�. As the environment is the “channel,” and as

only a part of it can be intercepted, the obvious question is:

How is information is deposited in E? and what kind of in-

formation?

Quantum Darwinism, which we have begun to analyze

here and elsewhere �1,6,11,12�, aims to supply the answer.

Our basic conclusion is that the redundancy evident in our

Universe is not a generic property of randomly selected

states in large multipartite �system plus multicomponent en-

FIG. 13. �Color online� Quantum Darwinism selects certain ob-

servable properties of the system and propagates information about

them throughout the environment. The preferred observable�s� be-

come redundant at the expense of incompatible observables. As

shown here, PIPs illustrate the results of quantum Darwinism. In-

formation about S becomes divided into three parts: redundant in-

formation �IR�, quantum informatioin �IQ�, and nonredundant in-

formation �INR�. Redundant information is objective, and therefore

classical. It can be obtained with relative ease. Quantum informa-

tion represents the nonpreferred observables, marginalized by quan-

tum Darwinism, which can only be measured by capturing all of E.

Nonredundant information �determined by the slope of Ī�m� at m

=Nenv /2� represents the ambiguous borderline, undifferentiated as

yet into classical and quantum fractions. When INR is small, the

central region of the PIP becomes flat. This “classical plateau” in-

dicates that an observer can obtain full information without captur-

ing the entire environment.
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vironment� Hilbert spaces. However, when states in that Hil-

bert space are created by the interactions usually invoked in

discussions of environment-induced superselection, redun-

dancy appears. Thus, objectivity can arise through the dy-

namics of decoherence. In that sense, decoherence is the

mechanism that delivers quantum Darwinism—a more com-

plete view of classicality’s emergence.

While we have already witnessed the birth of this new

point of view, it is still far from mature. In particular, our

conclusion about redundancy and the typical structure of en-

tanglement was reached without analyzing dynamics per se.

We have laid the foundation for a full-fledged study of quan-

tum Darwinism by analyzing kinematic properties of states,

and postponed the study of dynamics in specific models to

forthcoming presentations �7,8�. Moreover, by employing

von Neumann entropy, we have focused on the amount of

information �rather than on what this information is about�.
Differences between various definitions of mutual informa-

tion exist �see “discord,” Ref. �18��, and are symptomatic of

the “quantumness” of the underlying correlations. Less

“quantum” definitions of mutual information, involving con-

ditional information, de facto presume a measurement. They

have also been used �1,11,12�, along with other tools �35,36�,
to show that the familar pointer observables are the “fittest”

in the �quantum� Darwinian sense. Studying the dynamics of

quantum Darwinism, and the connections with various defi-

nitions of information, are the obvious next steps.
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APPENDIX A: PROPERTIES OF QMI: THE SYMMETRY

THEOREM

The symmetry theorem for quantum mutual information is

important for understanding the shape of PIPs �partial infor-

mation plots�. It says, in essence, that the amount of infor-

mation that can be gained from the first few environments to

be captured, is mirrored by the amount of information that

can be gained from the last few environments. Thus, when

capturing a small fraction of E yields much information, an

equivalent amount of information cannot be gained without

capturing the last outstanding bits of E.

Theorem 1 (mutual information symmetry theorem): Let

the universe be in a pure state ���SE, and let the environment

E be partitioned into two fragments EA and EB. Then the total

mutual information between the system and its environment

is equal to the sum of the mutual informations between S and

EA and between S and EB: that is, IS:E=IS:EA
+IS:EB

.

Proof: We simply expand each mutual information as

Ix:y =Hx+Hy −Hxy, and use the fact that if a bipartite system

x � y has a pure state ���xy, then the entropies of the parts are

equal; Hx=Hy,

IS:EA
+ IS:EB

= HS + HA − HSA + HS + HB − HSB

= HS + HA − HB + HS + HB − HA

= HS + HS

= HS + HAB − 0 = IS:E.

Corollary 1: Under no circumstances can two subenviron-

ments both have I�HS information about the system.

If the universe is in a pure state, then the symmetry theo-

rem states that any bipartite division of the environment will

yield two fragments, at least one of which has I	HS. Ad-

ditionally, we note that a fragment has at least as much I

about the system as any of its subfragments �that is, decreas-

ing the size of a fragment cannot increase its I�. If we could

find two fragments A and B with I�HS, then by subsuming

the remainder of E into A we would have a bipartite division

into A� and B, each of which has I�HS—but this contra-

dicts the symmetry theorem.

The proof for a mixed state of the universe follows from

the “Church of the Larger Hilbert Space” argument. We pu-

rify �SE by enlarging the environment from E to E�, and

follow the same steps to show that E� cannot have two sub-

environments with I�HS. Since E is a subset of E�, it too

cannot have two such subenvironments.

Corollary 2: For a pure state ���SE of the universe, the

partial information plot �PIP� must be antisymmetric around

the point �m=N /2, I=HS�.
This follows straightforwardly from the symmetry theo-

rem. For each fragment E�m� of the environment that contains

m individual subenvironments, there exists a complementary

fragment E�N−m�, containing the complement of E�m�, with N

−m individual subenvironments. The symmetry theorem im-

plies that IS:E�m�
+IS:E�N−m�

=IS:E=2HS. By averaging this

equation over all possible fragments E�m�, we obtain an equa-

tion for the PIP, Ī�m�+ Ī�N−m�=2HS. This equation is

equivalent to the stated corollary.

APPENDIX B: PERFECT STATES

The primary intuition that we obtain from the Ī�m� plots

is that most states are “encoding” states, but an important

subensemble of states are “redundant” states. We are natu-

rally led to ask whether “perfect” examples of each type of

state exist—that is, a state that encodes information more

redundantly than any other state, or a state that hides the

encoded information better than any other state.

The answer is somewhat surprising: whereas perfectly re-

dundant states exist for any N and any DS ,DE, perfect en-

coding states apparently exist only for certain N �at least for

DS=DE=2�. The perfectly redundant states are easy to un-

derstand; they are the generalized GHZ �and GHZ-like�
states of the form

�
SE� = ��0�S�
i

�0�Ei
+ ��1�S�

i

�1�Ei
, �B1�

with the obvious generalizations to higher DS ,DE. Of course,

it is necessary that DE�DS.
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A true GHZ state is invariant under interchange of any

two subsystems; however, since mutual information is in-

variant under local unitaries, we only require that the states

�0�Ei
and �1�Ei

be orthogonal. Clearly, such states exist for all

N. Any subenvironment with 0�m�N has exactly H�S�
information, but only by capturing the entire environment

�m=N� can we obtain the full I=2H�S�. Thus, the informa-

tion is stored with N-fold redundancy.

A perfect coding state, on the other hand, would be one

where Ī�m�=0 for any m�N /2, and Ī�m�=ISE for m

�N /2. An equivalent condition, for qubit universes, is the

existence of two orthogonal states of N qubits, each of which

is maximally entangled under all possible bipartite divisions.

If such pairs of states exist, then the system states �0� and �1�
can be correlated with them to produce the perfect coding

state. It is known �as detailed in Ref. �28�� that such states

only exist for N=2, 3, 5, 6, and possibly for N=7 �for N

=6, only a single state exists �37��. Thus, while for large N

almost every state is an excellent coding state, perfect ex-

amples seem not to exist except for N=2, 3, 5, �7� We are not

aware of any results for nonqubit systems.

APPENDIX C: ENTROPY OF A NEAR-DIAGONAL

DENSITY MATRIX

Suppose that the pure state �̂= ����� � , whose components

in the pointer basis are

�i��� = si, �C1�

is subjected to decoherence. The off-diagonal elements are

reduced according to

�i,j → �i,j = i,j�i,j , �C2�

where i,i=1 for all i. The limiting point of the process,

where i,j =0 for all i� j, is �,

�i,j = �ij�si�
2. �C3�

As the i,j approach zero, � converges to �. The partially

decohered � can be written as

� = � + � , �C4�

where � is strictly off-diagonal. � is defined by

�i,j = �1 − �ij�i,jsis j
*. �C5�

As � approaches �, its entropy approaches the entropy of �.

Our goal here is to write H��� as a power series �in ��
around H���.

The entropy of � is

H��� = − Tr�� ln �� = Tr�H̃���� , �C6�

where

H̃��� � − � ln � . �C7�

The difference between H��� and H��� is

�H = Tr��H̃� = Tr�H̃�� + �� − H̃���� . �C8�

We will seek a power series for �H̃. Keeping in mind that its

trace is the relevant quantity, we will discard traceless terms.

1. A naïve approach to expanding H„�+�…

It is tempting to begin by expanding Eq. �C7� around �
=�. Using the MacLaurin series for −� ln � gives

H̃ = − ��1 + ln �� − 

n=0

�
�− 1�n

�n + 1��n + 2�

�n+2

�n+1
�C9�

�−
�2

2�
+

�3

6�2
¯ . �C10�

We discarded the first term because it is traceless. Unfortu-

nately, matrix quotients are not well defined. � /� could

mean either ��−1 or �−1�—and, in fact, both are nonsym-

metric and therefore incorrect. Other symmetric orderings,

such as �−
1

2 ��−
1

2 , also give incorrect results. The expansion

in Eq. �C10� is an inappropriate generalization of a scalar

expansion, and is ill defined. We will take a different ap-

proach which �a� gives the correct result, and �b� defines the

correct representation of matrix quotients.

2. The correct approach

Instead of expanding H̃��� around �=�, we expand both

H̃��� and H̃��� around the identity:

�H̃ = H̃�� + �� − H̃��� = H̃�1 − �1 − � − ��� − H̃�1 − �1 − ��� .

The expansion around 1 is always well defined, because 1

and its inverse commute with everything,

H̃�1 − x� = x − 

n=0

�
xn+2

�n + 1��n + 2�
. �C11�

Using this expansion in �H̃ yields

�H̃ = − � + 

n=0

�
��1 − ��n+2 − �1 − � − ��n+2�

�n + 1��n + 2�
. �C12�

We once again discard � because it is traceless, leaving only

the sum. The two matrix powers within the sum can be re-

written using the identity

�1 + x�n = 

j=0

n �n

j
�xn, �C13�

which yields

�H̃ = − 

n=0

�



j=0

n+2

�− 1� j�n + 2

j
���� + �� j − � j� . �C14�

In order to simplify this, we must introduce a new nota-

tion. Consider �x+y�p, where x and y may be either scalars or

matrices. For scalar x and y,
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�x + y�p = 

k=0

p �p

k
�akbp−k, �C15�

whereas for matrices, � p

k
�xkyp−k is replaced by a sum over � p

k
�

orderings of k x’s and p−k y’s. We define the notation xk

�yp−k to describe this sum, e.g.,

x2
� y2 =

x2y2 + xyxy + xy2x + yx2y + yxyx + y2x2

6
,

�C16�

but when x and y are scalars

x2
� y2 = x2y2. �C17�

Using this definition of a totally symmetric product,

�� + �� j = 

k=0

j � j

k
��k

� � j−k, �C18�

and the entropy difference operator �H̃ is

�H̃ = − 

n=0

�



j=0

n+2



k=0

j−1
�− 1� j

�n + 1��n + 2�
�n + 2

j
�� j

k + 1
��k+1

� � j−k−1

�C19�

=− 

k=1

�



n=0

�



j=0

n
�− 1� j+k+1

�n + k��n + k + 1�
�n + k + 1

j + k + 1
�

�� j + k + 1

k + 1
��k+1

� � j �C20�

− 

n=0

�



j=0

n+1
�− 1� j

�n + 1��n + 2�
�j + 1��n + 2

j + 1
�� � � j . �C21�

The k=0 term can be discarded because Tr�� �� j�=Tr��� j�
=0. We then perform the sum over j to obtain

�H̃ = − 

k=1

�



n=0

�
�− 1�k

�n + k��n + k + 1�
�n + k + 1

k + 1
��k+1

� �1 − ��n.

�C22�

Expanding the binomial coefficients and simplifying leads

to the following result:

�H̃ = 

k=1

�
�− 1�k

k�k + 1�
�k+1

� 

n=0

� �k + n − 1

n
��1 − ��n.

�C23�

We have come full circle. The sum over n in Eq. �C23� is just

the MacLaurin expansion for �−k around �=1. Equation

�C23� can thus be written symbolically as

�H̃ = 

k=1

�
�− 1�k

k�k + 1�
�k+1

� ��−k� , �C24�

if the symmetric product �k+1 ��−k is interpreted as “take the

symmetric product of �k+1 with the power series represent-

ing �−k.”

Essentially, what we have derived is the “correct” inter-

pretation of the matrix quotient �k+1 /�k. This result is inter-

esting in its own right, but for now we are interested only in

the leading order �i.e., �2� term. Truncating the series at k

=1, we obtain the following simple result:

�H � −
1

2


n=0

�

Tr��2
� �1 − ��n� + O��3� . �C25�

This is the simplest possible general form for �H. In order to

perform the traces, we need to take advantage of the form of

the symmetric product.

From the definition of the symmetric product, we can

write out explicit expressions for �k �Mn, for particular small

values of k,

� � Mn =
1

n + 1


p=0

n

Mp�Mn−p, �C26�

�2
� Mn =

2

�n + 1��n + 2� 
p=0

n



q=0

n−p

Mq�Mp�Mn−p−q.

�C27�

The second case �for �2� is the useful one. We need the trace

of the symmetric product, which can be simplified using the

cyclic property of trace,

Tr��2
� Mn� =

1

n + 1


p=0

n

Tr��Mp�Mn−p� . �C28�

Together with Eq. �C25�, this formula yields an explicit ex-

pression for �H,

�H � −
1

2


n=0

�
1

n + 1


p=0

n

Tr���1 − ��p��1 − ��n−p� .

�C29�

We now insert specific forms for � and �, from Eqs. �C3�
and �C5�,

Tr��Mp�Mn−p�

= 

i,j,k,l=0

DS−1

�ij�1 − �� jk
p �kl�1 − ��li

n−p �C30�

= 

i,j,k,l=0

DS−1

sis j
*
sksl

*ijkl� jk�il�1 − �s j�
2�p�1 − �si�

2�n−p

�C31�

= 

i,j�i

�si�
2�1 − �si�

2�n−p�s j�
2�1 − �s j�

2�p�ij�
2. �C32�

Since the goal is to average over an ensemble of states, we

replace �ij�
2 with an average, ��2,
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Tr��Mp�Mn−p� = ��2�

i

��si�
2�1 − �si�

2�p�

�

j

��s j�
2�1 − �s j�

2�n−p�

− 

k

��sk�
4�1 − �sk�

2�n��
= ��2�Tr���1 − ��p�Tr���1 − ��n−p�

− Tr��2�1 − ��n�� . �C33�

Inserting this expression into Eq. �C29� yields

�H � −
��2

2


n=0

�
1

n + 1


p=0

n

�Tr���1 − ��p�Tr���1 − ��n−p�

− Tr��2�1 − ��n�� . �C34�

We now use the identity 
n=0
� �1−��n=�−1, and rearrange

the summation variables:

�H � −
��2

2
�


n=0

�



p=0

n
Tr���1 − ��p�Tr���1 − ��n−p�

n + 1

− 

n=0

�

Tr��2�1 − ��n�� �C35�

=−
��2

2
�


n=0

�



p=0

�
Tr���1 − ��p�Tr���1 − ��n�

n + p + 1

− Tr��2

n=0

�

�1 − ��n�� �C36�

=−
��2

2
�


n=0

�



p=0

�
Tr���1 − ��p�Tr���1 − ��n�

n + p + 1
− 1� .

�C37�

Rewriting �H in terms of the eigenvalues �i of �, and chang-

ing the summation over n , p to one over n+ p ,n− p, we ob-

tain:

�H = −
��2

2
�


i,j=0

dS−1
�i�j�ln�i − ln�j�

�i − �j

− 1�
APPENDIX D: PROBABILITY DISTRIBUTIONS FOR

ADDITIVE DECOHERENCE FACTORS

If ��� and ���� are selected at random from the uniform

ensemble of DE-dimensional quantum states, then the prob-

ability that ���������= �for � �0¯1�� is

p�� = 2�DE − 1��1 − 2�DE−2. �D1�

The additive decoherence factor d is given by d=−ln��, so

that =e−d and d� �0¯��. The probability distribution

transforms as

p�d�dd = p��d ,

p�d� = p���d

dd
� = e−dp�� = 2�DE − 1�e−2d�1 − e−2d�DE−2.

�D2�

The decoherence factor for a collection of subenviron-

ments is simply the sum of d�i� over the contributing suben-

vironments. Ideally, we could obtain exact distributions

pm�d� for a sum of m such d-factors. For an environment

composed of qubits �DE=2�, p�d� is an exponential distribu-

tion, so pm�d� is an mth-order Erlang distribution �for details,

see Ref. �20��.
For DE�2, the distribution functions p�d� are well ap-

proximated by Gaussian distributions. Appealing to the cen-

tral limit theorem, we treat the summing problem as a biased

random walk, where the addition of another subenvironment

represents a step forward with an approximately Gaussian-

distributed stepsize.

To compute the mean and variance of an m-step random

walk, we first compute the mean value d̄ and variance �d

=�d2− d̄2� for a single subenvironment. Extrapolating to a

collection of m systems requires setting dm=md̄ and �dm

=m�d.

For a single subenvironment, the mean d̄ is given by d̄

=�0
�dp�d�dd. This integral is somewhat nontrivial, involving

an expansion in binomial coefficients,

d̄ = 2�DE − 1��
0

�

de−2d�1 − e−2d�DE−2dd

= 2�1 − DE��
0

�

de−2d 

k=0

DE−2 �DE − 2

k
��e−2kd�dd

= 2�1 − DE� 

k=0

DE−2

�− �k�DE − 2

k
��

0

�

d�e−2�k+1�d�dd

=
DE − 1

2


k=0

DE−2
�− �k�DE − 2�!

�k + 1�2k ! �DE − 2 − k�!
=

1

2
�
�DE� + EM� ,

�D3�

where 
�DE� is the digamma function, and EM=0.5772¯ is

the Euler-Mascheroni constant. A virtually identical calcula-

tion for d2 yields

�d2 =
�2

24
−


1�DE�

4
�D4�

in terms of the trigamma function 
1�DE�. Both inte-

grals were previously computed by Larcombe et al. �42�;
Coffey �43� presents several ways of computing all moments

of p�d�.
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