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Measurement of a quantum system – the process by which an observer gathers information about it –
provides a link between the quantum and classical worlds. The nature of this process is the central issue for
attempts to reconcile quantum and classical descriptions of physical processes. Here, we show that the
conventional paradigm of quantum measurement is directly responsible for a well-known disparity between
the resources required to extract information from quantum and classical systems. We introduce a simple
form of quantum data gathering, ‘‘coherent measurement’’, that eliminates this disparity and restores a
pleasing symmetry between classical and quantum statistical inference. To illustrate the power of quantum
data gathering, we demonstrate that coherent measurements are optimal and strictly more powerful than
conventional one-at-a-time measurements for the task of discriminating quantum states, including certain
entangled many-body states (e.g., matrix product states).

O
bservation is at the heart of understanding physical phenomena. More broadly, it serves as the first step
in information processing. In the canonical example, a classical observer gathers data about a quantum
system by measuring it. This process yields classical information about the state, but at a high price – the

observer’s information gain is incomplete (it doesn’t uniquely identify the state), and accompanied by an
irreversible loss of information. It is typically further restricted by locality; most joint measurements on an N-
component quantum system are practically impossible when the components are spatially delocalized. This has
profound consequences for extracting information from multiple samples of a quantum state. Measuring them
individually is strictly less powerful than a joint measurement on the whole ensemble. By contrast, in classical
theories, measurement is a passive procedure with no accompanying information loss, and complete information
can be gathered from independent measurements of the samples. This implies a fundamental asymmetry between
data-gathering in quantum and classical theories.

The conventional paradigm of quantum measurement comprises: (i) a controlled unitary interaction between a
systemS and an apparatusA; (ii) decoherence onA, which forces its state into a mixture of ‘‘pointer basis’’ states1;
and (iii) experimental readout of the classical result from A (arguably accompanied by ‘‘collapse’’ of A’s state).
But this prescription breaks down if any part of the observing apparatus can sustain coherence. A coherent
apparatus has other, more powerful information-gathering strategies available to it. To demonstrate this in the
context of traditional information processing, we allow A to be a quantum information processor (QIP) –
basically a very small (perhaps just 1 qubit) non-scalable quantum computer. We focus on the case where A is
protected from decoherence until the very end of the protocol. What remains is a coherent measurement, a unitary
interaction between S and A that transfers information from S to A.

To explore and demonstrate the power of coherent measurement, let us consider the specific problem of
quantum state discrimination2,3: Given N quantum systems that were all prepared in one of K distinct states
jy1æ,…,jyKæ, decide in which state they were prepared. In principle, finding the optimal measurement is a
straightforward convex program. But when N . 1 copies of jykæ are available, this task (famously) requires joint
measurement on all N copies, which is prohibitively difficult. Observing each of the N copies independently yields
a strictly lower probability of success4,5. This contrasts starkly with the corresponding classical problem of
distinguishing K distinct probability distributions, where one-at-a-time observations are completely sufficient.
Discrimination thus provides an ideal scenario to test the information-processing utility of more general data
gathering paradigms.

Results
Simple discrimination with N copies. Suppose we are given N quantum systems S1 . . .SNð Þwith d-dimensional
Hilbert spaces Hn, and a promise that they were all identically prepared in one of K nonorthogonal states
{jy1æ…jyKæ}. Their joint state is jyki

6N [ H6N , with k unknown. Identifying k with maximum success
probability requires a joint measurement on all N samples. Non-adaptive, one-at-a-time measurement cannot
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achieve the optimal success probability. For K 5 2 candidate states,
there is an adaptive local measurement scheme that achieves the
optimal success probability6, but no such protocol has been found
for K . 2. It has recently been shown that for K 5 3, there exist cases
for which local measurements cannot achieve the optimal success
probability, even with multiple rounds of classical communication7.

All the information about k is contained in a K-dimensional
subspace

KN~Span jyki
6N� �� �

: ð1Þ

So while the optimal measurement is a joint measurement, it does not
need to explore the majority ofH. We will implement it by rotating
the entire subspaceKN into the state space of our K-dimensional QIP
A (the coherent measurement apparatus). We do so via sequential
independent interactions between A and each of the N samples Sn,
‘‘rolling up’’ all information about k into A.
A is initially prepared in the j0æ state. We bring it into contact with
S1, and execute a SWAP gate between S1 and the {j0æ,…,jd 2 1æ}
subspace of A. This transfers all information from the first sample
into A, leaving S1 in the j0æ state.

Now we bring A into contact with S2. Their joint state is jyki
62,

although we do not know k. But we do know that the state lies within
K2~Span jyki

62� �� �
, (see Eq. 1), whose dimension is at most K. A

basis {jwjæ: j 5 1…K} for this space can be obtained by Gram-Schmidt
orthogonalization. We apply a unitary interaction betweenA andS2,

U2~
X

j

j0S2 jAihwjj: ð2Þ

where we have defined U2 only on the subspace of interest (for com-
pleteness, it can be extended to the complement, HA6H2=K2, in
any convenient manner). It rotates K2 into j0if gS2

6HA, which
places all the information about k in A and decouples S2 (S2 is
left with no information about k if and only if A is left with all
the information about k.). A is now in one of K possible states

jy 2ð Þ
k i, which (as a set) are unitarily equivalent to jyki

62� �
– e.g.,

hy 2ð Þ
j j y

2ð Þ
k i~hyj j yki

2.
The rest of the algorithm is now fairly obvious; we move on and

interact A with S3 in the same way, etc, etc. At each step, when A
comes into contact with Sn, their joint state is jy n{1ð Þ

k i6jyki. These

K alternatives reside in a K-dimensional space Kn (see Eq. 1),

spanned by a basis jw nð Þ
j i

n o
, which is then rotated into

j0if gSn
6HA by applying

Un~
X

j

j0Sn jAihw nð Þ
j j:

Each sample system is left in the j0æ state, indicating that all its
information has been extracted. After every sample has been sucked
dry, we simply measureA to extract k. This final measurement can be
efficiently computed via convex programming, since A is only
K-dimensional.

The sequence of coherent measurement interactions is independ-
ent of what sort of discrimination we want to do – e.g., minimum-
error4, unambiguous discrimination8–11, maximum-confidence12,
etc. – because KN is a sufficient statistic for any inference about k,
and our protocol simply extracts it whole, leaving the decision rule up
to the final measurement onA. As in the classical case, data gathering
can now be separated from data analysis.

As an example of the data gathering protocol, we consider now the
K 5 2 case, and take the two possible initial states to be single qubit
states, parametrized as follows

jy1i~cosh j0i{sinh j1i, ð3Þ

jy2i~cosh j0izsinh j1i: ð4Þ

The joint state of the first n samples is given by

jyki
6n

~
Xn

j~0

{1ð Þjk
ffiffiffiffiffiffiffiffiffiffiffiffi

n

j

� �s
coshð Þn{j sinhð Þjjn,ji ð5Þ

where jn,jæ is a normalized equal superposition of all tensor product
states with n 2 j systems in state j0æ and j systems in state j1æ.
A natural basis for the two-dimensional subspace Kn~Span
jyki

6n� �� �
is then given by

j0in~
X
j even

ffiffiffiffiffiffiffiffiffiffiffiffi
n

j

� �s
coshð Þn{j sinhð Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1z cos2hð Þnð Þ
r jn,ji, ð6Þ

j1in~
X
j odd

ffiffiffiffiffiffiffiffiffiffiffiffi
n

j

� �s
coshð Þn{j sinhð Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1{ cos2hð Þnð Þ
r jn,ji, ð7Þ

and the goal of the data gathering algorithm is to transfer the sub-
space spanned by these states into the processor A via sequential
interactions with each of the samples S1 . . .Sn.

At the first step, as indicated above, we perform a SWAP gate
between A and S1. At the next step, the joint state of A and S2 is

jykiS2
jykiA~cos2hj0S2 0Aizsin2hj1S2 1Ai

z {1ð Þkcosh sinh j0S2 1Aizj1S2 0Aið Þ

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1zcos22hð Þ
r

j0i2

z({1)k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1{cos22hð Þ
r

j1i2,

where j0æ2, j1æ2 are joint S2A states, given by the n 5 2 case of Eqs. 6
and 7. A two-qubit unitary acting as follows

U2j0i2~j0S2 0Ai,

U2j1i2~j0S2 1Ai,

thus leaves S2 in state j0æ while the processor, in state

jy 2ð Þ
k i~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1zcos22hð Þ
r

j0iz {1ð Þk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1{cos22hð Þ
r

j1i

now holds all the information previously contained in the two sam-
ples read so far. Now suppose the processor has interacted with and
processed the first n 2 1 samples. Then we have performed a unitary
which acts as follows on the relevant subspace:

Un{1 . . . U2U1 j0in{1j0iA
� �

~j0i6 n{1ð Þj0iA

Un{1 . . . U2U1 j1in{1j0iA
� �

~j0i6 n{1ð Þj1iA

Defining coshn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1z cos2hð Þnð Þ
r

, and using Eqs. 5–7, the state

of the processor is given by

jy n{1ð Þ
k i~coshn{1j0iz {1ð Þksinhn{1j1i

and we wish to update this state through interaction with the nth
sample. The basis states j0æn, j1æn spanning Kn are related to the
corresponding basis states spanning Kn{1, and the basis j0æ, j1æ of
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Sn as follows

j0in~
cosh coshn{1

coshn
j0in{1j0iz

sinh sinhn{1

coshn
j1in{1j1i,

j1in~
sinh coshn{1

sinhn
j0in{1j1iz

cosh sinhn{1

sinhn
j1in{1j0i:

Thus we wish to implement a 2-qubit unitary on the processor A
and the nth sample, which acts as follows:

Un
cosh coshn{1

coshn
j0Sn 0Aiz

sinh sinhn{1

coshn
j1Sn 1Ai

� �
~ j0Sn 0Ai,

Un
sinh cos hn{1

sinhn
j1Sn 0Aiz

cosh sinhn{1

sinhn
j0Sn 1Ai

� �
~ j0Sn 1Ai:

This can be achieved by, e.g., performing a CNOT gate with Sn as
the control and A as the target, followed by a controlled unitary on
Sn to rotate the residual state to j0æ, controlled on the state of A.
Continuing in this way we can roll up all the information contained
in the provided samples S1 . . .SN into the processor A. Each step
requires only a 2 qubit unitary, acting on the nth sample and the
processor. During the course of this process all the information
contained in the joint N qubit state is transferred to the processor,
where a single qubit measurement is sufficient to perform any
allowed data analysis operation.

This protocol can be modified to discriminate non-symmetric
product states, e.g., jy1æ fl jy2æ fl … jyNæ vs. jw1æ fl jw2æ fl …
jwNæ. A more general extension, however, is to discriminating many-
body states of the matrix product form.

Matrix product state discrimination. The information about k can
be ‘‘rolled up’’ using sequential interactions because it is contained in
a subspaceKN with Schmidt rank at most K across any division of the
N systems. By this we mean that, given any pure or mixed state r on
KN , if we trace out S1 . . .Snf g, the reduced state for Snz1 . . .SNf g
has rank at most K. Low Schmidt rank is critical. Consider
distinguishing between two states that are each maximally
entangled between the first N/2 samples and the last N/2 samples.
They lie in a 2-dimensional subspace, but it is not accessible through
our protocol with a low-dimensional QIP. The first N/2 samples are
maximally entangled with the rest, so their reduced state has rank
dN/2. At least N log2 d/2 qubits would be needed to store the
information extracted from the first N/2 samples.

But whenever the Schmidt rank condition is satisfied, a variation
of our algorithm will work. For product states (above), each state has
Schmidt rank 1, and the span of K such states has Schmidt rank at
most K.

This property of low Schmidt rank is generalized by matrix prod-
uct states (MPS)13,14. An N-particle MPS with bond dimension D is
guaranteed to have Schmidt rank at most D across any division of the
1D lattice. Thus, the span of K such MPS, each with bond dimension
# D, has Schmidt rank at most DK. We denote such a subspace,

K~Span jykif gð Þ,

a matrix product subspace with bond dimension DK. Such a set of
MPS can be distinguished optimally with coherent measurements
and (log2 D 1 log2 K) qubits.

Our algorithm is a straightforward generalization of the one for
product states, and proceeds as shown in Figure 1. First, we represent
the MP subspace K by its purification – a single MPS jYæ for
S1 . . .SN and a fictitious reference system R,

jYi!
X

k

jkiRjykiS1...SN
, ð8Þ

Information about k, which is contained inK, equates to correlation
with the imaginary R.

Now, we initialize A in the j0æ state, then SWAP its state
with that of S1 (the first lattice site). This decouples S1, leaving
A6S2 . . .SN6R in a matrix product state,

j0iAjYiS1...SN ,R?j0iS1
jYiA,S2...SN ,R , ð9Þ

with Schmidt rank no greater than DK.
Now, to roll up each successive site Sn n~2, . . . Nð Þ, we find the

Schmidt decomposition of the current state betweenA6Sn and the
remainder of the lattice, write it (generically) as

XDK

j~1

cjjmjiASn
jvjiSnz1...SN ,R, ð10Þ

and apply a unitary operation to A6Sn,

Un~
X

j

0Sn jAj ihmjj, ð11Þ

which decouples Sn and leaves all the information previously in
Sn6A inA. As in Eq. 2, this unitary is specified only on the subspace
of interest, and can be completed in any convenient fashion. Doing
this successively at each site decorrelates all the Sn, and we are left in
the state

jY’i!
X

k

jkiRjykiA,

with all information about k in A, where it can be extracted by a
simple measurement.

Recent proposals for local tomography15 are also based on sequen-
tial interactions. Our protocol, with coherent measurements, offers a
tremendous efficiency advantage (at the cost of requiring a small
QIP!). It can distinguish near-orthogonal MPS states with a single
copy, whereas local tomography requires O(N) copies. Distin-
guishing non-orthogonal states requires multiple (M) copies. To
apply our algorithm, we simply line up the copies (they do not have
to exist simultaneously) and treat them as a single NM-particle MPS
of bond dimension D.

Mixed state discrimination and tomography. In the context of N-
copy states, one may ask:

1. Can coherent measurement be used to discriminate mixed
states, i.e. r6N

k ?
2. Can coherent measurement be used for full state tomography

(rather than discrimination)?

The answer to both is ‘‘Yes, but it seems to require an O(log N)-
qubit apparatus.’’ This is a very favorable scaling, but less remarkable
(and less immediately useful) than the O(1) scaling for pure state
discrimination.

This is possible because the order of the samples is completely
irrelevant. As we scan through the samples, we can discard ordering
information, keeping only a sufficient statistic for inference about r.
The quantum Schur transform does this16. It is based on Schur-Weyl
duality17, which states that because permutations of the N samples
commute with collective rotations on them, the Hilbert space H6N

d
can be refactored as

H6N~
M

l

Ul6Pl:

The Ul factors are irreducible representation spaces (irreps) of
SU(d), the Pl factors are irreps of SN, and l labels the various irreps.
The Schur transform can be implemented by a unitary circuit that
acts sequentially on the samples, mapping N qudit registers into three
quantum registers containing (respectively) l, U , and P:
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H6N?Hl6HU6HP :

The ‘‘ordering’’ register HP accounts for nearly all the Hilbert
space dimension of H6N

d , and since it is irrelevant to inference it
can be discarded as rapidly as it is produced. What remains to be
stored in A is:

1. a ‘‘label’’ register l (a sufficient statistic for the spectrum of r),
2. a SU(d) register U (a sufficient statistic for the eigenbasis of r).

The l register requires a Hilbert space with dimension $ the
number of Young diagrams with N boxes in at most d rows, which
is approximately

dim lð Þ< 1
d!

N
d

	 

:

The U register must hold the largest N-copy irrep of SU(d), whose
size can be calculated using hook-length formulae18, and upper
bounded by

dimmax Uð Þ~ Nzd{1ð Þ
1
2d d{1ð Þ:

Together, these registers require O(d2 log N) qubits of memory
(although for pure state tomography, O(d log N) qubits of memory
are sufficient).

O(log N) memory appears to be necessary for optimal accuracy.
Consider the simplest possible case – discrimination of two classical
1-bit probability distributions

p
1{p

	 

vs:

q
1{q

	 

:

The sufficient statistic is frequencies of ‘‘0’’ and ‘‘1’’, {n, N 2n}. For
any given problem, there is a threshold value nc such that the answer

depends only on whether n , nc, so only one bit of information
is required. However, extracting that bit via sequential queries
requires storing n exactly at every step (using O(log N) bits of mem-
ory). Any loss of precision could cause a 61 error at the final step,
and thus a wrong decision. In this example, classical storage is suf-
ficient. But in the general case, where the candidate rk do not com-
mute, no method is known to compress the intermediate data into
classical memory without loss (previous work suggests it is probably
impossible19).

Discussion
Quantum information science is rife with gaps between what is
theoretically achievable and what is practically achievable. Our algo-
rithm eliminates performance gaps for pure state discrimination
with local measurements – but it requires a new kind of measurement
apparatus with at least 1 controllable qubit of quantum storage.
Its utility depends on its applications, and on the difficulty of
implementation.

One immediate application of our protocol is detection of weak
forces and transient effects. A simple force detector (e.g., for mag-
netic fields) might comprise a large array of identical systems (e.g., j#æ
spins). Each system is only weakly perturbed by the force, so
information about the force is distributed across the entire array.
Our algorithm efficiently gathers up that information with no loss –
whereas local measurements with classical processing waste much
information.

A more sensitive N-particle ‘‘antenna’’ would incorporate entan-
glement between the N particles20. High sensitivity can be achieved
by simple MPS states with D 5 2, like N00N states21,

Figure 1 | Discrimination of MPS. Our protocol represents an unknown MPS | ykæ from a set { | y1æ … | yKæ} by its purification – a single MPS |Yæ
involving a fictitious reference R. The algorithm then successively decorrelates each sample Sn from the rest, storing Sn’s correlations with the remainder

of the lattice in the ‘‘apparatus’’ A. Ultimately, all existing information about k (i.e., its correlation with R) is contained in A, which can be measured.
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jyi~ jN,0izj0,Niffiffiffi
2
p ~

j:i6N
zj;i6Nffiffiffi

2
p :

Collective forces do not change D, so the final states to be discri-
minated are also MPS. Our approach can discriminate such states
and it can be used to prepare them, by running the ‘‘rolling up’’
process in reverse22.

More ambitious applications include direct probing of many-body
states, to test a particular MPS ansatz for a lattice system, or to
characterize results of quantum simulations in optical lattices or
ion traps. Without fully scalable quantum computers that can couple
directly to many-body systems, coherent measurements may be the
only way to efficiently probe complex N-particle states. Our protocol
does not obviously scale to PEPS, the higher-dimensional analogues
of MPS14. Like MPS, PEPS obey an area law – entanglement across a
cut scales not with the volume of the lattice (N), but with the area of
the cut. For a 1-dimensional MPS on N systems, any cut has area 1, so
the Schmidt rank scales as O(1), and our algorithm requires an O(1)
qubit QIP. Rolling up a general PEPS on an n-dimensional lattice
would require O N

n{1
n

� �
bits of quantum memory. However, some

PEPS can be sequentially generated23, and are likely amenable to our
protocol.

We note that the engineering requirements for a coherent mea-
surement apparatus are achievable with near-future technology. A
should be a clean K-dimensional quantum system with:

1. Universal local control,
2. Long coherence time relative to the gate timescale,
3. Controllable interaction with an external d-dimensional

‘‘sample’’ system,
4. Sequential coupling to each of N samples,
5. Strong measurements (which may be destructive).

Although adaptive local measurements can discriminate 2 states
optimally, K 5 2 is nevertheless sufficient for a proof of principle
experiment demonstrating quantum data gathering. That a sufficient
statistic for any desired measurement is stored as quantum data in the
processor could be demonstrated by e.g. performing minimum error
or unambiguous discrimination through eventual measurement on
the processor in different runs of the same experiment. However, K $

3 would be more exciting as optimal discrimination of 3 states via
local, adaptive measurements is not possible in all cases7.

These requirements are much weaker than those for scalable
quantum computing. Coherent measurement could be an early
application for embryonic quantum architectures. Furthermore,
scalability is not required, just a single K-dimensional system. Only
local control has to be universal, since the interaction with external
systems is limited. Error correction is not mandatory, for coherence
need only persist long enough to interact with each of the N systems
of interest. Since measurements are postponed until the end, they can
be destructive.

We do requireA to be portable – i.e., sequentially coupled to each
of the N samples – whereas a quantum computer can be built using
only nearest neighbor interactions. Fortunately, most proposed
architectures have selective coupling either through frequency space
(NMR, ion traps with a phonon bus) or physical motion of the qubits
(some ion traps) or flying qubits (photonic architectures). Devices
that are not viable for full-scale quantum computing may be even
better for coherent measurement. For example, an STM might pick
up and transport a single coherent atomic spin along an array of
sample atoms, interacting sequentially with each of them.

There are broad implications stemming from the results above.
Coherent measurements are a genuinely new way to gather informa-
tion. We have not just removed collapse from standard quantum
measurements! That kind of coherent measurement is used already
in quantum error correction, where it’s common to replace a mea-
surement of X with a controlled unitary of the form

USA~
X

x

jxihxjS6U xð Þ
A : ð12Þ

Such unitaries transfer information about a specific observable X

from S to A. For appropriate jy0iA and U xð Þ
A , later measurements

of A produce exactly the same result as if S had been measured
directly. The coherent measurements in our discrimination proto-
cols are not of this form. They do not measure (i.e., transfer informa-
tion to A about) a specific basis. For example, in N-copy state
discrimination, A interacts with the first sample by a SWAP opera-
tion, which has no preferred basis. Later interactions are also not of
controlled-U form (Eq. 12).

One might ask where the ‘‘measurement’’ occurs, since the inter-
action between S and A is purely unitary. The essence of measure-
ment is that an observer or apparatus gains information. Quantum
measurements are usually construed as mysterious processes that
consume quantum states and excrete specific, definite measurement
outcomes. Quantum theories of measurements usually represent
them as (i) unitary interaction, (ii) decoherence and superselection,
and finally (iii) wavefunction collapse or splitting of the universe.
Our results suggest that unitary interaction (the only part of this
sequence that is really understood) can stand alone as an informa-
tion-gathering ‘‘measurement.’’ And by avoiding decoherence, we
can gather information strictly more effectively.

Decoherence is ubiquitous in human experience. But in its
absence, there is no compelling reason why gathering information
must be accompanied by collapse or definite outcomes. The whole
point of quantum information science is to produce devices that do
not decohere, and that can process information more efficiently than
classical computers. The central message of this paper is that they can
also gather information more efficiently. Unfettered by decoherence,
they may still be constrained by locality. For such devices, coherent
measurements are the natural way to gather information.
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