
Quantum Inf Process (2014) 13:757–770
DOI 10.1007/s11128-013-0687-5

Quantum decision tree classifier

Songfeng Lu · Samuel L. Braunstein

Received: 26 November 2012 / Accepted: 6 November 2013 / Published online: 19 November 2013
© Springer Science+Business Media New York 2013

Abstract We study the quantum version of a decision tree classifier to fill the gap
between quantum computation and machine learning. The quantum entropy impurity
criterion which is used to determine which node should be split is presented in the
paper. By using the quantum fidelity measure between two quantum states, we cluster
the training data into subclasses so that the quantum decision tree can manipulate
quantum states. We also propose algorithms constructing the quantum decision tree
and searching for a target class over the tree for a new quantum object.

Keywords Quantum information processing · Quantum entropy · Quantum decision
tree · Quantum classification · Machine learning

1 Introduction

Machine learning (ML) and pattern recognition aim to generate classifying expres-
sions simple enough to be understood easily by a human. The problem of search-
ing for patterns in data is a fundamental one and has a long and successful his-
tory [1,2]. Most research in pattern recognition is about methods for supervised
learning or unsupervised learning [3]. Classic decision tree classification belongs
to supervised learning methods. On the other hand, quantum information process-

The work is supported by the National Natural Science Foundation of China under Grant No. 61173050.

S. Lu (B)
School of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China
e-mail: lusongfeng@hotmail.com

S. L. Braunstein
Department of Computer Science, University of York, York YO10 5GH, UK

123

758 S. Lu, S. L. Braunstein

ing (QIP) has been achieving much progress in recent years [4]. Quantum infor-
mation is a natural generalization of classical information. It is based on quan-
tum mechanics, the most accurate and complete description of the world. How-
ever, it is quite different from its classical counterpart since the quantum version of
classical algorithms presents different characteristics. This paper concerns quantum
classification.

In classical machine learning, statistical classification is a supervised learning pro-
cedure in which individual objects are assigned into groups based on quantitative infor-
mation on one or more characteristics inherent in the objects and based on a training set
of previously labeled objects. Top-down induction of a decision tree is a powerful and
simple method of pattern classification. Formally, the problem can be stated as follows:
given a set of classes containing m values: C = {c1, c2, . . . cm}, a set of training data
containing n objects is described as {(x1, y1), (x2, y2), . . . , (xi , yi), . . . , (xn, yn)},
where xi is a vector of d attributes and yi ∈ C is the class label correspond-
ing to the object xi . The attributes set of the input objects can be denoted by
A = {a1, a2, . . . , ai , . . . , ad}. For each attribute ai ∈ A, its domain values set is
described by Vai = {vi,1, vi,2, . . . , vi,mi }, where mi is the cardinality of Vai . The goal
of classification is to develop an optimal classification rule that can determine the class
of any object from its values of the attributes. According to the classifier, we can find
the class y ∈ C for a new object x .

Decision tree classifiers are used successfully in many diverse areas such as data
mining, radar signal classification, character recognition, remote sensing, medical
diagnosis, expert systems, and speech recognition. A classical decision tree classifier
is a learning method for approximating discrete-valued target functions. Decision trees
can also be re-represented as sets of if-then rules easily [5]. The problem of decision
tree classification can be decomposed into two subproblems: (1) generate an optimal
decision tree classifier with minimum generalization error and (2) determine the class
of the unseen objects with as high of an accuracy as possible. Since the second problem
is trivial for classical decision tree classifiers, most researchers focused on the first
problem. The key task of the first problem is the selection of a node splitting rule. The
most common splitting criteria includes information gain, GINI index, chi-squared
statistic, and distance measure.

QIP promises to perform parallel information processing and rapid search over the
data potentially yielding significant advances to the whole field of computer science.
It will be very exciting to combine quantum computation with machine learning or
artificial intelligence (AI). The area of quantum machine learning, which investigates
its classical counterpart in quantum systems, has been of recent interest [6–11]. Sev-
eral papers have already reported how QIP could be used to construct a quantum
classifier. Ezhov [12] and Ventura [13] represented each of the labeled objects in the
training data as a basis state, say |ψ〉, in a superposition with some coefficient. They
take the basis state |ψ〉 as an initial state and iterate it using Grover’s algorithm [14].
The classification result was obtained by measuring the system after an appropriate
number of iterations. Reference [13] had a poor ability at generalization due to the
uncertainty in the number of iterations required. The classification pattern was limited
to binary classification in [12] and [13]. Schützhold [15] presented a quantum pat-
tern recognition algorithm which was more abstract than statistical classification. In

123

Quantum decision tree classifier 759

Ref. [16], an algorithm for quantum data classification was developed which referred
to quantum state distinction or detection rather than pattern classification. Further-
more, it only coped with labeled items. In Ref. [17], the problem of the classifica-
tion of two arbitrary unknown mixed qubit states is researched. To the best of our
knowledge, however, not much progress has been made in quantum classification up
to now.

The aim of this paper is to consider the quantum version of a decision tree clas-
sifier, which can also deal with multiclass situations. The remainder of the paper
is organized as follows: Sect. 2 devises a quantum decision tree classifier. There
von Neumann entropy is used for splitting the object space. To discretize the quan-
tum attribute states, a quantum clustering method is proposed. Section 3 presents
the algorithm for searching over the quantum decision tree. According to the quan-
tum fidelity metric, the unseen quantum data can be classified to a certain class.
This is also useful for predicting quantum states. A brief conclusion is drawn
in Sect. 4.

2 Quantum decision tree classifier model

2.1 Problem statement

A decision tree classifier learns from a training dataset which contains observations
about objets, which are either obtained empirically or acquired from experts. In a quan-
tum world, the training data consist of quantum objects instead of classical observations
on classical data.

A quantum training dataset with n quantum data pairs can be described as
D = {(|x1〉, |y1〉), (|x2〉, |y2〉), . . . , (|xn〉, |yn〉)}, where |xi 〉 is the i th quantum
object of the training dataset and |yi 〉 is the known class state corresponding
to the quantum state |xi 〉. We call the set of all example quantum states X =
{|x1〉, |x2〉, . . . , |xi 〉, . . . , |xn〉} the sample set, and the set of all quantum class states
Y = {|y1〉, |y2〉, . . . , |yi 〉, . . . , |yn〉} is called the class sample set. We also call a class
state |yi 〉 the target attribute state.

A quantum state, |xi 〉, is represented by a d-dimensional attribute vector (or
attribute state), |xi 〉 = (|x1,i 〉, |x2,i 〉, . . . , |xd,i 〉), depicting d measurements made
on the tuple from d attributes, respectively, a1, a2, . . . , ad . For attribute ai , where
i = 1, 2, . . . , d, its domain value set Vai is described as {|vi,1〉, |vi,2〉, . . . , |vi,mi 〉},
where |vi, j 〉 is the j th basis state and mi stands for its cardinality. These basis states
span a Hilbert space Si . Any quantum state |φ〉 belongs to the space Si and can be
described by a superposition of the basis states:

φ〉 =
mi∑

j=1

αi, j |vi, j 〉 (1)

The coefficients αi, j may be complex with
∑

j |αi, j |2 = 1. The set of all possible
input objects is called the instance space, which is defined as a tensor product of all
input attributes’ quantum systems: S = S1 ⊗ S2 ⊗ . . .⊗ Sd .

123

760 S. Lu, S. L. Braunstein

We assume that Cb = {|cb1〉, |cb2〉, . . . |cbm〉} is the set of m basis states which
describe the class state. |cbi 〉 is called class basis state, where i = 1, 2, . . . ,m. These
class basis states which span a Hilbert space Sc (called class space). A class state |y j 〉
can be described by a superposition of these class basis states : |y j 〉 = ∑m

i=1 αi |cbi 〉,
where

∑
i |αi |2 = 1. Provided the universal set of distinct class states is described

as C = {|c1〉, |c2〉, . . . , |ci 〉, . . . , |cM 〉}, where |ci 〉 ∈ Sc. For arbitrary class state
|ci 〉 ∈ C and |c j 〉 ∈ C , we have |ci 〉 �= |c j 〉 if i �= j .

Obviously, the sample set belongs to the instance space, i.e., X ⊂ S. We also have
Y ⊂ Sc. In this paper, we restrict arbitrary attribute state |xi, j 〉 and class state |yk〉 to
pure states.

Given a training dataset D with attribute set A = {a1, a2, . . . , ai , . . . , ad}, for
each attribute ai ∈ A, we denote the set of its attribute states by Di , where Di =
{|xi,1〉, |xi,2〉, . . . , |xi,n〉}. And then, the training dataset D can be rewritten as: D =
{DT

1 , DT
2 , . . . , DT

d ,Y T }.
The goal is to form a decision tree classifier that can be used to predict a previously

unseen object by explicitly assigning it to a specific class state. More accurately, using
the training quantum states and the corresponding class states, a decision tree classifier
t is designed. Provided we are given a finite copies of a new pure state |xnew〉 ∈ S.
By searching over the quantum decision tree t , we can obtain a precise class state
|ynew〉 ∈ C corresponding to the quantum state |xnew〉.

In a quantum world, learning is more difficult for a classification algorithm than in
a classical world. The reason is that the quantum mechanics forbids us to obtain two
or more identical copies of unknown quantum state. In this paper, the constraint can
be relaxed by considering the case of multiple copies of the state either to be learn
or to be classified (see the quantum template matching problem of [18]). So, in the
remainder of the paper, both the training state |xi, j 〉 and the state to be classified |xnew〉
have multiple copies.

2.2 Quantum decision trees

Sometimes, the term quantum decision tree is used while actually referring to a
quantum query algorithm or quantum black-box algorithm (for instance, Grover’s
algorithm [14]), which calculates the function f : {0, 1}n → {0, 1} with the
help of quantum superpositions [19,20]. Such quantum algorithms are in fact not
trees. In this context, our quantum decision tree is a real tree like the classical
version.

In classical trees, attributes may be either discrete, having values drawn from a
known set of possible values, or they may be continuous with values that are real
numbers. The outcomes of the test nodes can simply be the values for discrete attributes
or the intervals for continuous attributes in the classical setting. However, the above-
mentioned method is invalid for quantum decision trees since the values of an attribute
can be in superposition states which result in too much distinct data. Overtrained
classifier and larger tree would be generated if we split the training dataset according
to these distinct discrete values simply. For each attribute, in this paper, we partition
or cluster the attribute states into several subclasses according to the fidelity between

123

Quantum decision tree classifier 761

quantum states. For each subclass of an attribute, we calculate its centroid which can
represent the subclass.

Similar to the classical decision tree, a quantum counterpart R consists of nodes
that from a rooted tree, meaning it is a directed tree with a node called root that has
no incoming edges. All other nodes have exactly one incoming edge. A node with
outgoing edges is called an internal or test node which represents an attribute ai ∈ A.
All other nodes are called leaves or decision nodes which belong to C (the set of
class states). In a quantum decision tree, each internal node splits the training dataset
into two or more subsets according to a certain discrete function of the input attribute
states. In this paper, each test considers a single attribute, such that the training dataset
is partitioned according to the subclasses of the attribute. Each leaf is assigned to one
class representing the most appropriate target attribute state. A quantum decision tree
classifies objects by sorting them down the tree from the root to some leaf node, which
provides the classification of the object. An object is classified by starting at the root
node of the tree, testing the attribute specified by this node, and then moving down
the tree branch corresponding to the subclass of the attribute in the given object. This
decision is then repeated for the subtree rooted at the new node.

Given a quantum decision tree R deriving from the training dataset D =
{(|x1〉, |y1〉), (|x2〉, |y2〉), …, (|xn〉, |yn〉)} = {DT

1 , DT
2 , . . . , DT

d ,Y T }. Each node
in R is also a tree. Any node t in R is described as t = {D(t), ai , {tc1, tc2, . . . , tcti }},
where D(t) is the set of training data in the node t, ai ∈ A, and {tc1, tc2, . . . , tcti } is
the set of its ti subnodes. The tree t is split into ti subtrees according to the attribute
ai . Let t.attribute denote the attribute of the node t , then t.attribute = ai . For the
root R, D(R) = D.

For a node t, D(t) = {D(t)
1 , D(t)

2 , . . . , D(t)
d ,Y (t)}. Suppose t.attribute = ai , we

divide D(t)
i into ti clusters: D(t)

i,1, D(t)
i,2, . . . , D(t)

i,ti
, where D(t)

i, j ⊆ D(t)
i . Each cluster D(t)

i, j

has a centroid denoted by |xc(t)i, j 〉, then the set of centroids for attribute ai at node t is

described by XC (t)
i = {|xc(t)i,1〉, |xc(t)i,2〉, . . . , |xc(t)i,ti

〉}.
Then, for each item D(t)

j ∈ D(t), it is divided into ti clusters: D(t)
j,1, D(t)

j,2, . . . , D(t)
j,ti

,

where j �= i . The partitioning method is described as below. If a state |xi,k〉 ∈ D(t)
i is

divided into the set D(t)
i,l , then we assign the state |x j,k〉 ∈ D(t)

j into the cluster D(t)
j,l ,

where 1 ≤ l ≤ ti . The training dataset D(t) then is partitioned into ti subsets according
to the set of centroids, XC (t)

i . That is to say, the node t is split into ti descendant node:
tc1, tc2, . . . , tcj , . . . , tcti . In the meantime, the set of target attribute states, Y (t), is also

partitioned into ti subsets described by Y (t) = {Y (t)1 ,Y (t)2 , . . . ,Y (t)ti }, where t and i
mean that the class states is partitioned by attribute ai at node t . For a descendant node
tcj , we generate an edge with a label |xc(t)i,ti

〉 by linking node t to node tcj . This process
is then repeated for each subtree of t .

To construct a quantum decision tree, we need to (1) decide which attribute to
test at each node in the tree. We would like to select the attribute that is most useful
for classifying objects. We discuss the detail of node splitting criterion in Sect. 2.3.
(2) clustering the attribute states of expected attribute into appropriate clusters. The
problem is discussed in Sect. 2.4.

123

762 S. Lu, S. L. Braunstein

2.3 Node splitting criterion

Much of research in designing decision trees focuses on assigning which attribute test
should be performed at each node. The fundamental principle underlying tree creation
is that of simplicity: We prefer decisions that lead to a simple, compact tree with few
nodes. According to the principle of Occam’s razor, the simplest model that explains
data is the one to be preferred. To this end, we look for an attribute test at each node that
makes the subsidiary decision trees to be as simple as possible. In classical algorithms,
the most popular criterion is the entropy impurity: Entropy(t) = ∑mt

i=1 −pi log2 pi ,
where pi is the proportion of node t belonging to class i, mt is the total number of
classes of node t .

Classical node splitting criteria are not working in quantum world since the classes
can be in superposition states. We present a new criterion quantum entropy impurity
to measure the attributes. Given a quantum decision tree or subtree t and the set of
class states Y (t) = {|y(t)1 〉, |y(t)2 〉, . . . , |y(t)nt 〉} which belongs to t , where Y (t) ⊆ Y ,

and nt is the cardinality of Y (t). Let Y (dt) = {|y(dt)
1 〉, |y(dt)

2 〉, . . . , |y(dt)
ndt 〉} denote the

set of distinct class states of Y (t), where ndt is the cardinality of Y (dt), then Y (dt) ⊆
Y (t),Y (dt) ⊆ C , and nt ≥ ndt . For any class states |y(dt)

i 〉 ∈ Y (dt) and |y(dt)
j 〉 ∈ Y (dt),

we have |y(dt)
i 〉 �= |y(dt)

j 〉 if i �= j . The quantum entropy impurity of node t can be
defined by the following:

S(ρ) = −tr(ρ log ρ) (2)

where ρ = ∑ndt
i=1 p(dt)

i |y(dt)
i 〉〈y(dt)

i | is the average state of Y (t) or density operator of

Y (t), where p(dt)
i is the fraction of states |y(dt)

i 〉 at node t that are in Y (t).
Equation (2) defines quantum entropy or von Neumann entropy of quantum state ρ.

When the target attribute states in Y (dt) are all orthogonal, the definition coincides
with the classical case.

Given a partial quantum tree down to node t with the set of class states Y (t) =
{|y(t)1 〉, |y(t)2 〉, . . . , |y(t)nt 〉}, the key problem is what attribute value we should choose for
the attributes test. If the expected splitting attribute is ai at node t , and then, the attribute
states belonging to set D(t)

i are partitioned into ti subsets D(t)
i,1, D(t)

i,2, . . . , D(t)
i,ti

, the set

of class states Y (t) will then be partitioned into Y (t)i = {Y (t)i,1 ,Y (t)i,2 , . . . ,Y (t)i, j , . . . ,Y (t)i,ti
},

where Y (t)i = Y (t), Y (t)i, j contains those target attribute states in Y (t) that have attribute

states belonging to D(t)
i, j . The quantum entropy of Y (t)i, j is denoted by S(ρ(t)i, j). Then, the

expected quantum entropy of the system after node t is split using attribute ai is

Se(ρ
(t)
i) =

ti∑

j=1

p j S(ρ(t)i, j) (3)

where ρ(t)i, j is the density operator of Y (t)i, j , which represents the set of class states of

the j th expected subnode tci j of attribute ai in node t , and p j = |Y (t)i, j |/nt is the

probability of state ρ(t)i, j . The sum of the probability is equal to 1, i.e.,
∑ti

j=1 = 1.

123

Quantum decision tree classifier 763

Quantum entropy specifies the minimum number of qubits of information needed
to encode the classification of an arbitrary member of Y (t). The smaller the value
of quantum entropy is, the fewer number of qubits is required, and then, the smaller
or simpler the quantum decision tree is. For each attribute, we calculate its expected
quantum entropy for node t , and then, we get d expected quantum entropies for node
t : Se(ρ

(t)
1), Se(ρ

(t)
2), . . . , Se(ρ

(t)
i), . . . , Se(ρ

(t)
d). We choose the attribute ai whose

expected quantum entropy Se(ρ
(t)
i) is the minimum among above values of quantum

entropies as the splitting attribute for node t .
We modify the algorithm proposed in [21] to find the splitting attribute with the

minimum expected quantum entropy. We call the algorithm finding the splitting node
Select_Splitting_Node, and the outline of the algorithm is as follows:

Algorithm Select_Splitting_Node(Tree t)
choose i uniformly at random from {1, 2, . . . , d};
set Semin = Se(ρ

(t)
i)

repeat
use Grover’s algorithm to search for j where Se(ρ

(t)
j) < Semin ;

if search succeeds then
set Semin = Se(ρ

(t)
j);

set i = j ;
else

return i ;
end if

First, the algorithm chooses randomly an index i and then calculates the expected
quantum entropy of attribute ai , i.e., Se(ρ

(t)
i) which is set to the initially minimum

value. Second, Grover’s algorithm is used to find a new index j such that the expected
quantum entropy of attribute a j is smaller than the previous minimum value Semin .

If the index j is found, we update the minimum value and the index i by Se(ρ
(t)
j)

and j , respectively, and then run Grover’s algorithm repeatedly; otherwise, we get the
splitting attribute ai of node t .

In the algorithm, the expected quantum entropy Se(ρ
(t)
i) of attribute ai will be cal-

culated. To obtain the expected quantum entropy, we need to design quantum circuits
computing the sum of variables and the von Neumann entropy of a quantum state.
Based on quantum mechanics, we can easily build these quantum circuits.

2.4 Attributes data partition

In a quantum decision tree, each decision outcome at a node is called a partition, since
it corresponds to splitting a subset of the training data. The root node splits the full
training dataset, and each successive decision splits a proper subset of the data. The
number of splits at a node is closely related to the type of the attribute and could
vary throughout the tree. For a discrete attribute, the classical algorithms create a
descendant of current node for each possible value of current attribute, and then, the
training objects are sorted to the appropriate descendant node.

123

764 S. Lu, S. L. Braunstein

Each attribute can be considered as discrete in a quantum decision tree since its
values are vectors of a Hilbert space spanned by the attribute’s basis states and can be
regarded as a member of an unordered set. An attribute value in the tree can be any linear
combinations of the attribute’s basis states; thus, the dataset of the attribute value holds
an infinite cardinality. Infinite set will invalidate the classical discrete attribute method.
Alternatively, we can extract the distinct values from the training objets for an attribute
and then generate a descendant of current node for each distinct attribute value. How-
ever, the prerequisite of the manner is the distribution of the attribute values is not too
sparse; namely, the number of the distinct attribute values cannot be too large. Other-
wise, the generalization of quantum classifier will be worse. An extreme example is that
the number of distinct attribute values is equal to the cardinality of the training dataset.

A new attributes data partition method is proposed in this paper. Suppose we are
given the training dataset D(t) at node t and the set of attribute states for attribute
ai ∈ A : D(t)

i = {|x (t)i,1〉, |x (t)i,2〉, . . . , |x (t)i,nt
〉}, where nt is the number of attribute states

for tree t . We have D(t) = {(D(t)
1)T , (D(t)

2)T , . . . , (D(t)
d)T , (Y (t))T }. Let D(dt)

i =
{|x (dt)

i,1 〉, |x (dt)
i,2 〉, . . . , |x (dt)

i,ndt
〉} denotes the set of distinct attribute states of D(t)

i , where

ndt is the cardinality of D(dt)
i , then D(dt)

i ⊆ D(t)
i , D(dt)

i ⊆ Di . For any attribute

state |x (dt)
i, j 〉 ∈ D(dt)

i and |x (dt)
i,k 〉 ∈ D(dt)

i , we have |x (dt)
i, j 〉 �= |x (dt)

i,k 〉 if j �= k. We

partition the set D(t)
i into ti subclasses: D(t)

i,1, D(t)
i,2, . . . , D(t)

i, j , . . . , D(t)
i,ti

, where D(t)
i, j ⊆

D(t)
i ,

⋂ti
k=1 D(t)

i,k = D(t)
i . For any D(t)

i, j ⊆ D(t)
i and D(t)

i,k ⊆ D(t)
i , D(t)

i, j

⋂
D(t)

i,k = ∅ if

j �= k. For each |x (t)i, j 〉 ∈ D(t)
i , we can find one and only one subclass D(t)

i,k which

contains |x (t)i, j 〉, i.e., |x (t)i, j 〉 ∈ D(t)
i,k , where D(t)

i,k ⊆ D(t)
i . For each subclass D(t)

i, j , we

calculate its centroid |xc(t)i, j 〉 which represents the subclass, and the set of the centroids

is described by XC (t)
i = {|xc(t)i,1〉, |xc(t)i,2〉, . . . , |xc(t)i,ti

〉}. In the meantime, the class states

set Y (t) is also split into ti subset Y (t)i = {Y (t)i,1 ,Y (t)i,2 , . . . ,Y (t)i,ti
}, where Y (t)i = Y (t).

For each |y(t)j 〉 ∈ Y (t), we can find one and only one subset Y (t)i,k which contains

|y(t)j 〉, i.e., |yo, j 〉 ∈ Y (t)i,k , where Y (t)i,k ∈ Y (t)i . And then, the training dataset D(t) is

also partitioned ti subsets: D(tc1), D(tc2), . . . , D(tcj), . . . , D(tcti), and the j th partition
is described by D(tcj) = {(D(t)

1, j)
T , (D(t)

2, j)
T , . . . , (D(t)

d, j)
T , (Y (t)i, j)

T }.
Before partitioning an attribute, the data distribution pattern of the attribute is dis-

criminated in advance. Given the attribute ai ∈ A and its attribute states set D(t)
i at

node t , for an attribute state |x (t)i, j 〉, we call the multiplicity of the state to the cardinality

of the set multiplicity ratio, denoted by mr (t)i, j = m(t)
i, j/ti , where m(t)

i, j is the multiplicity

of |x (t)i, j 〉 in set D(t)
i . We say that an attribute state |x (t)i, j 〉 large state if its multiplicity

ratio is not smaller than the user-specified minimum multiplicity ratio (called minmr).
The number of large states to the number of distinct attribute states in the set is called
simple pattern ratio of the attribute ai at node t , defined by spr (t)i . The data pattern
of an attribute at a node is simple pattern if its simple pattern ratio is equal or greater
than the user specified minimum simple pattern ratio (called minspr); otherwise, it is
called complex pattern.

123

Quantum decision tree classifier 765

In order to determine the data distribution of an attribute, we need to look over all
distinct variables in the training data of the given attribute. To achieve this, a quan-

tum search algorithm needs (1 + √
2 + √

3 + · · · + √
n) ≈ 2

3 n
3
2 times Grover’s

oracle computing, where n is the number of the values. On the other hand, sort-
ing the states and then counting them is an alternative method which generally
makes cn log n comparisons to sort n items in a classical world, where c is a con-
stant. For the above reason, we just use a classical sorting algorithm, like Quick-
sort, sorts the attribute states of a node and then counts the large states from the
beginning to the end. At last, we determine the data pattern by using simple comput-
ing. The algorithm is called Calculating_Pattern. We omit its description due to its
triviality.

For an attribute with simple pattern, we just assign each distinct attribute states into
an unique subset. When an attribute ai is characterized by complex pattern, we then
group the attribute states into ti clusters so that states in the same cluster are similar
in some sense, and the dissimilar states are in different clusters. An important task in
a clustering is to select a similarity measure. Fidelity is a static distance measure of
the close degree between two quantum states. Given two quantum states |xi 〉 and |x j 〉,
their fidelity is denoted by the following:

F(ρ, σ) = tr

√
ρ

1
2 σρ

1
2 (4)

where ρ = |xi 〉〈xi | and σ = |x j 〉〈x j |. The fidelity of two quantum states has the
properties of the metric property, contractivity, and strong concavity, and the fidelity
is bounded between 0 and 1, i.e., 0 ≤ F(ρ, σ) ≤ 1. The more similar two states are
the greater fidelity between them is, in contrast, the more dissimilar two states are
the smaller fidelity between them is. In this paper, we take the fidelity distance as the
clustering criterion of quantum states.

Given nt attribute states set D(t)
i of attribute ai at node t . The clustering process

consists of two steps. During the first step, all pairs of states with the largest similarity
are searched; then, we create a cluster for each state of the found states, and mark the
state as the centroid of each cluster. During the second step, each noncentroid state is
assigned to its most similar cluster. The description of the algorithm is as follows:

Algorithm Clustering_Attribute(Tree t , Attribute i)
if Calculating_Pattern(t, i) = simple pattern then

put |x (t)i,k 〉 ∈ D(t)
i to D(t)

i, j where |x (t)i,k 〉 = |x (dt)
i, j 〉 for each k;

else
set Fmax = 0;
for each state |x (dt)

i, j 〉 ∈ D(dt)
i do

use Grover’s algorithm find a state |x (dt)
i, jk

〉 where F(ρ(dt)
i, j , ρ

(dt)
i, jk
) is maximum;

if F(ρ(dt)
i, j , ρ

(dt)
i, jk
) > Fmax then

clear XC (t)
i ;

set Fmax = F(ρ(dt)
i, j , ρ

(dt)
i, jk
);

put |x (dt)
i, j 〉, |x (dt)

i, jk
〉 into XC (t)

i ;

123

766 S. Lu, S. L. Braunstein

elseif F(ρ(dt)
i, j , ρ

(dt)
i, jk
) = Fmax then

put |x (dt)
i, j 〉, |x (dt)

i, jk
〉 into XC (t)

i ;
end if

end for
for each state |x (dt)

i, j 〉 ∈ D(dt)
i and |x (dt)

i, j 〉 /∈ XC (t)
i do

use Grover’s algorithm find a centroid|xc(t)i,k〉 ∈ XC (t)
i which makes fidelity

between it and |x (dt)
i, j 〉 is maximum;

put |x (dt)
i, j 〉 into the cluster D(t)

i,k with centroid |xc(t)i,k〉;
end for

end if

In the algorithm of Clustering_Attribute, Fmax denotes the variable of the largest
fidelity, ρ(dt)

i, j = |x (dt)
i, j 〉〈x (dt)

i, j | and ρ(dt)
i, jk

= |x (dt)
i, jk

〉〈x (dt)
i, jk

| are the density operators of

the attribute states |x (dt)
i, j 〉 and |x (dt)

i, jk
〉, respectively, where |x (dt)

i, jk
〉 ∈ D(dt)

i . During the

process of computing the subroutine Calculating_Pattern, the distinct stateset D(dt)
i

is calculated in advance: D(dt)
i = {distinct x |x ∈ D(t)

i }. To a simple pattern, every
class member in the same cluster is the same and the centroid of a cluster is just its
member. To a complex pattern, we first search the farthest state to each state in set
D(dt)

i , and we then obtain the all pairs of centroid. And then, we assign each state into
an appropriate group by computing the fidelity between it and each centroid belonging
to the set XC (t)

i .

Let DC (t)
i = {D(t)

i,1, D(t)
i,2, . . . , D(t)

i, j , . . . , D(t)
i,ti

} to be the set of clusters which are
obtained by assigning attribute states for simple pattern or clustering items of an
attribute for complex pattern, where DC (t)

i = D(t)
i , and D(t)

i, j is the j th clusters of the
attribute ai at node t of a quantum decision tree. We then partition the training data
of attribute ai at node t into ti subspaces. The attribute states in a cluster D(t)

i, j are all

equal or similar. The centroid of a cluster D(t)
i, j is denoted by |xc(t)i, j 〉 which is a real

state belonging to D(t)
i, j . For a simple pattern attribute, the centroid of a cluster is the

member of the cluster. For a complex pattern, the centroid of an attribute subpartition
D(t)

i, j is the state which belongs to the intersection of the subpartition D(t)
i, j and the set

of centroids, XC (t)
i , i.e., |xc(t)i, j 〉 = D(t)

i, j ∩ XC (t)
i .

2.5 Constructing quantum decision tree

We now construct the quantum decision tree t . At first, for each attribute ai , we cluster
the data into ti clusters D(t)

i,1, D(t)
i,2, . . . , D(t)

i,ti
, and these clusters have mutually exclusive

centroids |xc(t)i,1〉, |xc(t)i,2〉, . . . , |xc(t)i,ti
〉 which represent the ti clusters, respectively. The

set of the clusters is denoted by D(t)
i ; we then have d clusters set: D(t)

1 , D(t)
2 , …, D(t)

d .
Second, according to Eq. (3), we calculate the expected quantum entropy after t is
split for each attribute, and then, we choose the attribute with the smallest expected
quantum entropy as the splitting node. Suppose the splitting attribute is ai , we then

123

Quantum decision tree classifier 767

split t into ti descendant nodes and label the edges from node t to each descendant
node |xc(t)i,1〉, |xc(t)i,2〉, . . . , |xc(t)i,ti

〉, respectively.
The process of choosing a new attribute and dividing the training data is then

repeated for each internal child node. In the process, only the attribute states
associated with the child node is used. This process continues until any of two
stopping criteria is met: (1) Every attribute has already been included along
this path through the tree, or (2) the attribute states associated with the cur-
rent node all have the same target attribute state (i.e., their quantum entropy is
zero).

We then come to a leaf node. A class label is assigned to the node; this is the
simplest step in tree construction. The process for constructing a quantum decision
tree is described as follows:

Algorithm Quantum_Decision_Tree_Classifier(D, A, C)
Create a node t ;
if any of stopping criteria is met then

mark t as a leafnode;
set Selecting_Class(D.Y) to t ;

else
for each ai ∈ A do Clustering_Attribute(t, i);
set j = Select_Splitting_Node(t);
set t.attribute = j ;
for each |xc(t)j,i 〉 do

tci = Quantum_Decision_Tree_Classifier(D(tci), A,C);
connect t to tci with an edge labeled by |xc(t)j,i 〉;

end for
end if
return t ;

In the algorithm, j means that a j is chosen as a splitting attribute at node t, tci

is the i th childtree of t, D(tci) is the i th subset of training dataset D. According the
ideal stoping criteria, each training object will be classified perfectly and each leaf
node corresponds to the lowest quantum entropy impurity. While this is sometimes
a reasonable strategy, in fact it can lead to difficulties when there is noise in the
data. In this case, the training data will typically be overfit. Conversely, if splitting
is stopped too early, then the error on the training data is not sufficiently low and
hence performance may suffer. We then set a small threshold value in the reduction in
quantum entropy, and splitting is stopped if the best candidate split at a node reduces
the impurity by less than that preset amount. Thus, when a quantum tree down to a
leaf node, there will be more than one class in the set of target classes, and then, the
function Selecting_Class chooses a class state with the most number in the set of class
states at the node t , the input parameter D.Y of the function means the set of class
states of a training dataset D.

Besides the quantum entropy impurity threshold, minimum multiplicity ratio, and
minimum simple pattern ratio are also used in the subfunction of the algorithm Quan-

123

768 S. Lu, S. L. Braunstein

tum_Decision_Tree_Classifier. To select better values of these thresholds, we need
train them in advance.

2.6 Running time analysis

For the sake of simplicity, we just analyze one case of the algorithm constructing a
quantum decision tree. We have the following restrictions:

(1) The tree is a full quantum decision k-tree with n training data.
(2) All attribute states for each attribute are mutually exclusive.
(3) The bound errors of the algorithm are not considered.

We first analyze the running time of the sub-algorithms Select_Splitting_Node and
Clustering_Attribute.

For the algorithm Select_Splitting_Node, the expected quantum entropy calcula-
tion is k times. The running time of the algorithm is T1 = c1k

√
d because that it needs

c1
√

d queries for finding the most appropriate splitting node, where c1 is a constant.
For the algorithm Clustering_Attribute, to compute the data pattern, we need to

sort the training data and then count them in order, so c2nlogn +c3n times is required,
where c2 and c3 are constant. Let |x (dt)

i,1 〉 be the member of D(dt)
i at the beginning of

clustering process, it requires
√

n queries for searching an attribute state |x (dt)
i, j 〉. For

the second member, we need
√

n − 1 queries since we dot not need to examine the
state |x (dt)

i, j 〉 at this time. Similarly, for the third state, we query
√

n − 2 times, and then,

we need query (
√

n +√
n − 1+· · ·+√

2) ≤ 2
3 n

3
2 times for the first step of clustering.

At the second step, the quantum algorithm takes a time in c4(n − k)
√

k, where c4 is a

constant. The running time is then T2 = c2nlogn + c3n + 2
3 n

3
2 + c4(n − k)

√
k.

Now, we calculate the running time of the whole algorithm. At the root node (level
0) of the tree, for each attribute the query time is T1 + T2. Thus for level 0, the running
time is d(T1 + T2). For the full k − tree, each of the k branches contains 1/k training
objects. Accordingly, we need 1√

k
d(T1 + T2) queries in level 1. For the level 2, the

query times is 1
k d(T1 + T2), and so on. The total running time of the algorithm is

(
√

n−1)
√

kd√
n(

√
k−1)

(T1 + T2) for the logkn levels in the tree.

3 Searching over decision tree

Provided we are given a new object |xnew〉 = |x1,new〉⊗ |x2,new〉⊗ · · ·⊗ |xd,new〉, the
classification begins the root node t of a quantum decision tree. Let attribute of the root
node be ai , we calculate ti fidelities between |xi,new〉 and the centroids of ti branches
of the root node: F(ρi,new, ρ

(t)
i,1), F(ρi,new, ρ

(t)
i,2), . . . , F(ρi,new, ρ

(t)
i, j), . . . , F(ρi,new,

ρ
(t)
i,ti
), where ρi,new = |xi,new〉〈xi,new| and ρ(t)i, j = |xc(t)i, j 〉〈xc(t)i, j |. Suppose the j th

branch with the largest fidelity is selected, we then follow the j th branch to a descendant
node tcj . The second step is to make the decision at the childnode tcj , which can be
considered the root of a sub-tree. We continue this way until we reach a leaf node,

123

Quantum decision tree classifier 769

which has no further test. The new object is then assigned the class of the leaf node
reached.

Quantum decision tree is an ordered list. Theoretically, a tree with arbitrary branch-
ing factor at different nodes can always be represented by a functionally equivalent
binary tree. However, multibranch decision tree is still very popular since the rulers
from them are more human readability and understandability in many occasions. We
now describe the algorithm for searching over the decision tree:

Algorithm Searching_Quantum_Tree(Tree t , Object |xnew〉)
if the root node of t is a leaf node then;

return the class label of t ;
else

set t.attribute to i where ai ∈ A;
repeat Grover’s algorithm to search j from XC (t)

i where F(|xi,new〉, |xc(t)i, j 〉) is
the largest;

return Searching_Quantum_Tree(tcj , |xnew〉);
end if

In the algorithm Searching_Quantum_Tree, tcj denotes the j th subtree of t ,

and XC (t)
i = {|xc(t)i,1〉, |xc(t)i,2〉, . . . , |xc(t)i,ti

〉} represents the set of centroids of all sub-
branches of tree t .

Supposing that the quantum decision tree is a full k − tree with n training data,
the tree contains (kn − 1)/(k − 1) nodes with a height h = logkn + 1. For algorithm
Searching_Quantum_Tree, since we use Grover’s algorithm to search the most pos-
sible branch in each node, thus for each node, we need c5

√
k queries, and then, the

algorithm would have a running time c5
√

klogkn if there is no errors, where c5 is a
constant.

4 Conclusion

In this paper, we have investigated the quantum decision tree classification, and then,
we described a new simple learning model which could grow a quantum decision
tree used for classifying the quantum objects. To construct a quantum tree, we used
von Neumann entropy instead of classical shannon entropy as the splitting criterion
to determine which attribute should be split. We introduced a quantum clustering
algorithm to discretize the quantum training data.

The study of machine learning in the quantum world is still at the budding stage.
Many research topics related to decision trees were not involved in this paper. These
open problems include the following: (1) how to analyze the error bound of a quantum
decision tree; (2) the pruning strategies to stop splitting; (3) how to construct quantum
decision trees if some attributes samples are missed; (4) the problem of attributes with
differing costs; (5) the problem of training data with quantum noise; and (6) how
to generate the quantum classifier if the training data are composed of mixed states
instead of pure states. In addition, as a supervised learning method, it is important that
the performance of an algorithm is demonstrated experimentally. In classical world,

123

770 S. Lu, S. L. Braunstein

the experiments can be carried out conveniently since there are plenty of repositories
of data are publicly available online. On the contrary, it is still uncultivated land for a
quantum field.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
2. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
3. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE T. Pattern Anal. 22,

4–37 (2000)
4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University

Press, Cambridge (2000)
5. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
6. Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12, 2027–2070

(2013)
7. Tarrataca, L., Wichert, A.: A quantum production model. Quantum Inf. Process. 1q, 189–209 (2011)
8. Hirsh, H.: A quantum leap for AI. IEEE Intell. Syst. 14, 9–16 (July/August 1999)
9. Bonner, R., Freivalds, R.: A survey of quantum learning. In: Proceedings of the 3rd Workshop on

Quantum Computation and Learning, pp. 106–119 (2002)
10. Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. Proc. Can. AI 2006,

431–442 (2006)
11. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90,

261–287 (2013)
12. Ezhov, A.A.: Pattern recognition with quantum neural networks. In: Proceedings of Advances in Pattern

Recognition, pp. 60–71 (2001)
13. Ventura, D.: Pattern classification using a quantum system. In: Proceedings of the 6th Joint Conference

on Information Science, pp. 537–540 (2002)
14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual

ACM Symposium on the Theory of Computing, pp. 212–219 (1996)
15. Schützhold, R.: Pattern recognition on a quantum computer. Phys. Rev. A. 67, 062311 (2003)
16. Gambs, S.: Quantum Classification (2008). arXiv: quant-ph/0809.0444
17. Guta, M., Kotlowski, W.: Quantum learning: asymptoticallly optimal classification of qubit sates. New

J. Phys. 12, 123032 (2010)
18. Sasaki, M., Carlini, A.: Quantum learning and universal quantum matching machine. Phys. Rev. A.

66, 022303 (2002)
19. Shi, Y.: Entropy lower bounds of quantum decision tree complexity. Inform. Process. Lett. 81, 23–27

(2002)
20. Buhrman, H., Wolf, R.D.: Complexity measures and decision tree complexity: a survey. Theor. Comput.

Sci. 288, 21–43 (2002)
21. Dürr, C., Hφyer, P.:. A Quantum Algorithm for Finding the Minium (1996). arXiv: quant-ph/9607014

123

	Quantum decision tree classifier
	Abstract
	1 Introduction
	2 Quantum decision tree classifier model
	2.1 Problem statement
	2.2 Quantum decision trees
	2.3 Node splitting criterion
	2.4 Attributes data partition
	2.5 Constructing quantum decision tree
	2.6 Running time analysis

	3 Searching over decision tree
	4 Conclusion
	References

