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Quantum defects and the 1/n dependence of Rydberg energies: Second-order polarization effects

G. W. F. Drake and R. A. Swainson
Department ofPhysics, University of Windsor, Windsor, Ontario, Canada%983P4

(Received 3 June 1991)

The principal result of this paper is a general expression for the second-order dipole polarization ener-

gy of a Rydberg electron resulting from the term —a&/r in the asymptotic potential, where o.
&

is the
core polarizability. It is shown that the second-order term contributes even as well as odd powers of 1/n
in a 1/n expansion of the energies for Rydberg states. The results are used to extend the interpretation
of the terms in a quantum-defect expansion. It is shown that the Ritz expansion for the quantum defect,
which contains only even inverse powers of the effective quantum number n*, provides a powerful
method for deducing the even-order terms in the second-order energy. Least-squares fits to high-

precision variational calculations for the Rydberg states of helium, using 1/n and quantum-defect expan-
sions, are presented. The results reveal well-defined "Ritz defects, "which represent the degree to which
the data cannot be represented by a Ritz expansion for the quantum defect. The implications for extra-
polations of quantum defects are discussed. Finally, it is shown that the second-order polarization ener-

gy plays a significant role in understanding the quantum defects for the alkali metals.

PACS number(s): 31.50.+w, 31.15.+q, 31.20.Di

I. INTRODUCTION

The quantum-defect method [1] is now well established
as the method of choice for the analysis of experimental
data on the term energies of Rydberg sequences of states.
A vast literature has grown up around its many varied
applications [2]. However, advances over the past ten
years in the precision of both experimental measurements
[3—12] and theoretical calculations [13—17] raise new
questions concerning the ultimate limits of the quantum-
defect method, and in particular the Ritz expansion for
the quantum defect, as a suitable functional form for the
representation of data.

This paper has three main purposes. The first is to ex-
tend the physical identification that can be made for the
terms in the Ritz expansion of the quantum defect, espe-
cially those arising from second-order polarization
effects. Exact analytic results are obtained in Sec. III for
the second-order dipole polarization term and compared
with the predictions of quantum-defect theory. It is
shown in Sec. IV that the second-order term is important
in the analysis of data if the core polarizability is large.
The second purpose is to apply these results in Sec. IV to
recent high-precision calculations [13—15] for the Ryd-
berg P, D, and F states of helium, and to identify what ex-
tensions of the usual Ritz expansion might be necessary.
The third is to identify the conditions under which the
Ritz expansion is no longer capable of representing data
in the broader context of quasihydrogenic spectra. Not
considered are the more general problems of multiple
Rydberg series and their perturbations [2].

II. QUANTUM-DEFECT THEORY
AND 1/n EXPANSIONS

As first pointed out by Ritz [18], the term energies of a
single Rydberg series of states for a quasihydrogenic

2=n —60—
(n —5) (n —5)

5 is called the "quantum defect. " A theoretical
justification of this result was given by Sommerfeld [19]
based on the old quantum theory, and by Hartree [20] us-
ing wave mechanics. The key point proved by Hartree is
that if the motion of an electron is describable by a Ham-
iltonian of the form

H=H, +A, V, (3)

where H, is the Hamiltonian for a purely Coulombic po-
tential and A, V is a short-range spherically symmetric
correction potential, then the eigenvalues of H are given
exactly by Eq. (1) with only the even powers of 1/(n —5)
appearing in Eq. (2). The proof is nonperturbative, and
so applies for arbitrary values of the strength parameter

As will be shown in Sec. III, this fact can be used to
advantage in calculating the general n dependence of the
terms in a perturbation expansion containing powers of
A, . However, notice that 6 appears in the denominators of
Eq. (2), rather than 5O. Replacing 5 by 5o, as is often
done in fitting experimental data, may lead to an ap-
parently adequate fit, but it spoils the theoretical
significance of the coeKcients. It will also ultimately lim-
it the accuracy of the quantum-defect method. This
point will be further discussed below and in Secs. III and
IV.

atom are well represented by the formula

T„= 2RM/—(2n* ),
where RM is the reduced mass Rydberg constant, 2RM is
the reduced mass atomic unit of energy, and n* is an
eA'ective quantum number given by

n*=n 5(n—*)

5448 1991 The American Physical Society
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The physical significance of the coefBcients in the Ritz
formula (2) is made evident by expanding Eq. (1) as a
power series in 1/n .Keeping terms up to quadratic in
the coefBcients, the result is

T„=—2R~ + + + + +.. .5o 5z 54 56

2n n n n n

+ + 6 + (5~+2505~)
3&o 5&o&z

2n n 2n

G4(L)
&.-') = '

[3 '—f, (L)],n'
366(L)

I
—",

'—10 '[f, (L)——',]+f (L)],

30G7(L)(r ) =
[ "n ———'"n [f,(L)——']

+n [f2(L)——',f, (L)+—', ]],

(13)

(14)

(15)+, (5056+5254)+ (4)
10Gs(L)(r ) = [—"'n —63n [fi(L)—

—,']
The influence of the 5 expansion in the denominators of
Eq. (2) first appears in the terms of order 1/n . Replac-
ing 5 by 50 reduces the coefficient of 52 from —', to —,

' and
the coefBcient of 5254 from 9 to 3. It will be shown in
Sec. III that the value —,

' is in fact correct.
The physical significance of the terms in Eq. (4) now

follows from a comparison with the asymptotic potential
experienced by the Rydberg electron. In order for a sin-
gle local potential as in Eq. (3) to be adequate, it is neces-
sary that nonlocal exchange effects be negligible. If in ad-
dition the angular momentum I. is large enough so that
there is little core penetration by the Rydberg electron,
then the asymptotic potential has the well-known form
[21]

C4 C6 C7 CgV(r)= —— + + +
r4 r6 r7 rg

where

C4 =A)

c6 =a2 —6P),

c7 = —5' —16y /6,
cs =a3 —15P2+e—a)P)+72y[1+L (L +1)/10] .

r is the radial coordinate of the Rydberg electron, aL is
the 2 -pole polarizability, Pl is the corresponding nona-
diabatic correction, and the other terms in c7 and cg are
higher-order corrections defined by Drachman [21]. The
quantities c4,c6, . . . play the role of the strength parame-
ter A, in Eq. (3). The first-order correction to the energy is
then

E(1)—( V)

5()"= 2c4G4(L)+ "—, c666(L—)

+63c7G7(L)+231csGs(L)+

52"= ,'c4G4(L)f, (—L—) 15c6Gs(L)[f—) (L)——,
' ]

70c7G7(L)[—fi(L)——,']
—315csG8(L)[f,(L)——,']—

(17)

5~4"=—', c6G6(L)fz(L)+15c767(L)[f2(L)—
~)f)(L)+—', ]

+105csGs(L)[fz(L) —3f, (L)+ —",]+, (19)

56"= —
Scs Gs(L)f3(L)— (20)

correct to first order in the c s. The above are of course
asymptotic expansions which must be terminated after a
finite number of terms, depending on the value of I..

Except for the nonadiabatic and higher-order correc-
tions contained in c6, c7, and cg, the above identifications
coincide exactly with the standard ones discussed for ex-
ample by Edlen [1] and Curtis [23). What has not been
adequately discussed before is the origin and significance
of the even powers of 1/n in Eq. (4). The coefficients are
all quadratic in the 5's. They are uniquely determined
once the coefficients of the odd powers have been fixed
because Eq. (4) contains twice as many terms as the origi-
nal Ritz expansion for a given highest power of 1/n.

In fitting data, it has sometimes been argued that T„
should be written in the form

+21n [f2(L)—3f, (L)+ )4
]—f3(L) j .

(16)

Comparing with Eq. (4) for the odd powers of 1/n leads
immediately to the first-order identifications

2~Z"(2L —p +2)!
(2L +p —1)! (12)

the general expressions for the expectation values of the
powers of 1/r in Eq. (5) are [22)

where the expectation value is with respect to the Ryd-
berg electron. With the notation

f~(L) =(L +p) !/(L —p)!,

T„=—2R~(l/2n +a3/n3+a5/n + . ) (21)

where the even terms beyond 1/n have been dropped.
One argument is based on the fact that no inverse power
of r (whether even or odd) in the asymptotic potential can
produce even powers of 1/n, and additional exchange and
short-range effects not included in Eq. (S) decrease ex-
ponentially with n For example, .Chang and Poe [24]
fitted their results of many-body perturbation theory
(MBPT) calculations for He to a function of this form in
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a4=3a3/2,

Q6 = 5Q3Qg

(22)

and so on for the values implied by the assumed Ritz ex-
pansion. If a fit to experimental or theoretical energy lev-
els yields some other value for Q4, say Q4, then the
difference

order to extrapolate to high n, . It has even been argued
that the results of nonrelativistic MBPT can be represent-
ed exactly in the form of Eq. (21) [25]. However, if
Hartree's proof is to be taken seriously, then the even
terms in Eq. (4) have a significance which cannot be ig-
nored. As shown in Sec. III, they coincide exactly with
the second-order perturbation corrections generated by
the terms in the asymptotic potential. In fact, Eq. (4)
provides a trivial way of calculating them. For example,
if Eq. (21) is extended to include the even terms
a4In + a6 In +,then Eq. (4) predicts that

Numerical values for E' ' have been calculated by Drach-
man [21] and shown to be important for the Rydberg
states of helium. He succeeded in obtaining analytic ex-
pressions for E' ' for sequences of states with constant
n —I., but the general n dependence of E' ' for fixed L
has not previously been obtained.

Introducing the scaled quantities

x =Z,frr Iao, 6 =E (ao le )IZ,s,

where Z,z is the effective nuclear charge experienced by
the Rydberg electron, and defining a1=Z,&a1/Qo, the ra-
dial part of Eq. (27) becomes

1 d d L(L+1) 1 1+
2

——+ u (x)
2 « « 2x & 2n

AQ4=Q4 —Q4 (24)
CZ1

uo(x) =6"'uo(x), (28)

~ Zea
AT rel

2 3

1 3

j+—,
' 4n

(25)

A relativistic generalization of the quantum-defect
method has been developed by Johnson and Cheng [27].
The presence of the 1/n term was also noted in passing
by Curtis [23] in his semiclassical analysis of the
quantum-defect method. If experimental energies or
theoretical calculations are analyzed in terms of a 1/n ex-
pansion, it is important to realize that the even inverse
powers contain nonrelativistic as well as relativistic con-
tributions.

is the leading term in what might be called the Ritz de-
fect. It represents the degree to which the data cannot be
represented in the form of the Ritz expansion for the
quantum defect. This result does not depend on the
coeKcients being small since Hartree's proof is nonper-
turbative.

The even inverse powers also enter when relativistic
corrections are included. This is easily seen from the
well-known formula for the leading one-electron relativis-
tic energy shift [26]

where uo(x) is the radial part of $0 and

@'"=—(-,I2) & g, (29)

n+1
u, (x)= g g~x~ 'e

j=L —1

+ g h x~ 'lnxe
CX1

Jj=L+1

The hydrogenic uo(x) is given by

(30)

u (x)= g Ax' 'e
j=L+1

(31)

The assumed normalization condition & t(t, l go ) =0 can al-

ways be satisfied by adding an appropriate component of
uo to u, . The solution to (28) for a particular nL state
(L ~ 2) is easily found by writing u, (x) in the form

III. SECOND-ORDER DIPOLE
POLARIZATION ENERGY

E"'=—( I2) & q I
(26)

If the asymptotic expansion (5) is carried to terms of
order & r ) and & r ), then one should also include the
second-order dipole polarization correction (in atomic
units)

with

and

1/2
2 +' (n+L)!
n~+' (n I.+1)!—1

(2L + 1)!

2(j n)—
n [j (j + 1) L(L + 1)]—

(32)

where Po is the unperturbed wave function for the nL
Rydberg electron and P, satisfies the first-order perturba-
tion equation Substituting into Eq. (28) yields the recursion relations

(H, +z'„I2n')q, ', q, = —(a, I2)&y, l—. 'lp, &1t. .
21

(27) and

hj+1 h
2(j n)—

n [j(j +1) L(L +1)]— (34)
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2

[j (j+1) L—(L +1)]

n

(2j+1)„1„
2 &+' n &

for j =L + 1, . . . , n + 1, with the starting values

gL ) AL+)/(2L 1 ) AL ) 0

(L n ——1)1
g =—AI. L L+2 gL —1

(L n)—2
gL+ i r L+1=0 h AL, +3

(35)

for the unnormalized solution.
The recursion relations (34) and (35) always terminate

after a finite number of terms, and so a closed form solu-
tion can be found for any particular values of n and L
(n )L + 1). However, our aim here is to find the general
functional dependence of E' ' on n and L. A direct
derivation of the general solution for arbitrary n and L
from the recursion relations appears to be a difficult task,
even with the use of symbolic manipulation programs
such as MACSYMA [21].

To circumvent this difficulty, we have followed the ex-
pedient of generating a sufficiently large array of values
for @( ' in quadruple precision arithmetic (32 decimal di-
gits) and deducing the general solution. To this end,
values of 6( '(n, L) were calculated for all 2(L (8 and
L+1 ~ n ~20. To proceed from here a great deal can be
learned about the form of the general solution from the
particular cases

2a, (128n —560n + 848n —518n + 105 )e' '(n, n —1)=-
n (2n —5)[(2n —1)(n —1)(2n —3)]

(36)

2a, (128n —400n —2320n + 12 666n —19 133n +4846n + 10228n —5880)e' '(n, n —2)=-
n (2n —7)[(n —2)(n —1)(2n —3)(2n —5)]

(37)

derived by Drachman [21]. These results do not allow
one to disentangle the dependence on n and L, but one
can extract the coeFicients of 1/n~ in the expansion

6' '(n, L) = g c~(L)/n~ (38)
J

for fixed L by differencing our numerical values. The re-
sult is that only the powers 3+j (8 contribute. As a
consequence, none of the factors in the denominators of
(36) and (37) can be of the form (n+L+ . ) because
this would lead to infinite expansions in 1/n They m. ust
all be of the form (2L+p), where p is an integer. The
denominators of (36) and (37) can therefore be written in
the forms

D(n, n —1)=n (2L —3)

X [(2L —1)2L (2L + 1)(2L +2)] /8 (39)

and

D(n, n —2)=n (2L —3)

X [(2L —1)2L (2L +1)(2L +2)]3/64 .

(40)

With this information in hand, it is relatively easy to
identify the numerical coefficients c (L) as rational frac-
tions. Observing how the prime factors in the denomina-
tors of the c (L) change with L for fixed j allows a unique
identification with factors of (2L +p). The numerators
are more complicated, but they can also be expressed as
finite polynomials in L with integer coefficients. The final
result is

(2) 2 (2L —3 )!!
(2L +3)!!

(2L —5)!! 1

(2L +5)!!n

9n4

[L (L +1)]
6n

[L (L +1)]
X I45+7[89f,(L)+520f2(L)+80f3(L)]}

+ [3+40[f, (L)+6f~(L) ] }

27n4 30n'
n [L(L+1)] L(L+1) (41)
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where

f, (L)=L (L +1),
f~(L) =(L —1)L (L +1)(L +2),
f3(L)=(L —2)(L —1 )L (L +1)(L +2)(L +3),

in accordance with definition (11). Finally E' ' is related to 6' ' by

E(&)—Z6 g(2)
elan (42)

For the Rydberg states of helium, Z,&=1 and a&=a&= —,', ao. The numerical values obtained from the above general
formula agree well with those tabulated by Drachman [21]. Explicit formulas for the first few L values are

a6' '(n, 2) =
4[(3)(5)(7)]'

10 127
3

1

n

4
n

5336 a )

n 2 [(3 )( 5 )( 7 ) ]

3 20
n n

28
n' (43)

a&
( ' '(n, 3)=

44[(5)(7)(9)]'
—94 169

1

8n n'
78 088

n

a 1

4[(5)(7)(9)]'
3 20

2n n

56
(44)

a i@("(n,4)=
260[(7)(9)(11)]

2 487 183
5

3

40n

1

n'
697 624 a i 27 12

n 4[(7)(9)(11)] 50n n n'

(45)

a i@("(n,5)=
140[(9)(11)(13)]

319243
5

1

Sn

4
n'

540 808 a
&

n 2[(9)(11)(13)]
3 4

25n n

(46)

a 1

68[(11)(13)(15)]'
4445 579

147
1

7n

4
n'

359 896
n 7

a 1

2[(11)(13)(15)]
3 20

49n 7n n'

(47)
2

8' '(n 7)=
836[(13)(15)(17)]

a2
+ 1

4[(13)(15)(17)]

a i~(2)(n, 8)=
364[(15)(17)(19)]

2

+
4[(15)(17)(19)]

287 142 879
196

27 30
392n 7n

22 740 989
36

1 10
24n 3n

3

112n

56
s

1 1

48n n

n'

n'
5 824 024

n7

3 233 288
n

(48)

(49)

For the D states of He, the coefficient of the n term
corresponds to —70.81 MHz and for the F states it cor-
responds to —1.967 MHz.

In view of the discussion in Sec. II, the even powers of
n in Eq. (41) are of particular significance. Equation (4)
predicts that the leading even terms are (in atomic units)

(&)— 6a)
&o =

L (L + 1)(2L —1)(2L + 1)(2L + 3) (51)

An examination of Eqs. (17)—(20) shows that only 50 and
52 depend in first order on c4 =a&. Retaining only the a,
dependence, Eqs. (17) and (18) reduce to

T„(even) =— 3&o 5~o&2
~ +

6
+ s (52+25O5~)+

n n 2n

2a(g(&)—
(2L —1)(2L +1)(2L +3)

(50) Substituting (51) and (52) into (50) yields

(52)
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T„(even) = 2(x )

n (2L —1)(2L + 1)(2L +3)
27n4 30n'

[L (L +1)] L(L +1) (53)

in exact agreement with the corresponding terms in Eq.
(41) obtained from the second-order perturbation calcula-
tion. This provides a remarkable confirmation that
Hartree's proof is an exact analytic result which can be
used to advantage in deriving at least the even-n terms in
second order perturbation energies. It also verifies the
correctness of the coefficient of the n term in Eq. (4).
The numerical value —', comes in part from the 6 expan-
sion in the denominators of Eq. (2).

IV. COMPARISON %'ITH THEORETICAL
AND EXPERIMENTAL TERM ENERGIES

A. Comparison with nonrelativistic energies for helium

High-precision variational calculations [13—15] and ex-
perimental data [12] are now available for the Rydberg
states of helium. The purpose of this section is to con-
struct 1/n and quantum-defect fits to the data in order to
assess the validity of the Ritz expansion, and identify the
contributions from E' '.

As a preliminary, Table I shows the orders of magni-
tude to be expected for the coefficients a; in the 1/n ex-
pansion

T„= —2R~(l/2n +a3/n +a& jn +a5ln + . )

(54)

9 ~ —15 ~ —525
32 ~ ~ 64 3 1024

p —43
512 ~

107 —319
2048 ~ 12 288

Qr —213 ~
—4329

512 ~ 32768

The above values were checked independently and found
to agree with those listed by Drachman [21].

Table I shows several interesting features. First, the
dramatic increase in the rate of convergence and accura-

for the term energy. The contributions are obtained from
Eq. (4), using expressions (17&—(20) for the first-order
quantum defects and Eq. (41) for E' '. The totals are ob-
tained from Drachman's [21] prescription for summing
these asymptotic series; i.e., the total includes the contri-
bution to a; from —,'(c7(r ) +c s(r ) ) with
+—,'(c7 ( r ) +cs ( r ) ) being the uncertainty. For
L =2 and 3, the total includes —,

' c6 ( r ) with
+—,'c6(r ) being the uncertainty. Previous comparisons

of the total energies with high-precision variational cal-
culations [15] show that these uncertainty estimates are
in good accord with the actual errors resulting from trun-
cating the asymptotic expansion. The numerical values
of the core polarizabilities, etc., required to calculate the
c; coefficients in the asymptotic potential are

TABLE I. Contributions from the asymptotic potential (5) to the coe%cients a; in the 1/n expansion
T„=—2R~(1/2n +a3/n +a4/n +Q5/n'+ - . ) for the nonrelativistic energies of helium (in 10 a.u. ). L is the angular momen-

tum of the Rydberg state.

Term

Q3

a4
a5

a6
Q7

Q8

Contribution

c4&r '&

c, &r '&

c, (r ')
c, &r

E(2)

total
uncertainty

E(2)

c, &r 4&

c, &r

c, &r '&

c, &r '&
E(2)

total
uncertainty

E(2)

c, (r ')
c, (r ')
c, (r ')
c, &r ')

E(2)

total
uncertainty

E(2)

L=2
2679.0

—832.0

58.0
2320.0
+416.0

11.0
—5357.0

3684.0

—231.0
—3746.0
+1842.0

—72.0
0.0

—1711.0

91.0
—765.0
+856.0

100.0

L=3
446.4

—15.1

0.7
439.5
+7.6

0.30
—1785.7

144.8

—5.4
—1718.7

+72.0
—4.0

0.0
—155.6

4.5
—73.3
+78.0

11.2

L=4
121.75
—1.16
—0.28

0.49
0.03

120.73
+0.11

0.022
—811.69

19.11
5.69

—11.86
—0.45

—796.11
+3.1
—0.49

0.00
—35.90
—22.04

67.78
0.64

—12.39
+23.0

2.31

L=5
43.706

—0.166
—0.023

0.029
0.003

43.547
+0.003

0.0029
—437.063

4.155
0.731

—1.101
—0.068

—433.160
+0.19
—0.096

0.000
—11.967
—4.401

9.986
0.143

—9.031
+2.8

0.669

L=6
18.731 27

—0.034 22
—0.003 17

0.003 35
0.000 51

18.697 65
+0.000 09

0.000 53
—262.237 8

1.207 5
0.142 6

—0.1809
—0.014 3

—261.063 7
+0.019
—0.024 56

0.000 00
—4.927 67
—1.225 66

2.367 13
0.042 42

—4.314 51
+0.57

0.240 69

L=7
9.090 17

—0.009 01
—0.000 60

0.000 57
0.000 10
9.081 26

+0.000 02

0.000 12
169.683 26

0.425 82
0.036 35

—0.041 58
—0.003 81
169.263 86
+0.002 6
—0.007 71

0.000 00
—2.334 16
—0.421 66

0.738 27
0.015 13

—2.160 72
+0.16

0.100 77

L=8
4.837 461

—0.002 830
—0.000 143

0.000 126
0.000 025
4.834 648

+0.000 009

0.000 035
—116.099 071

0.172 643
0.011 196

—0.011 958
—0.001 207

—115.928 016
+0.000 38
—0.002 808

0.000 000
—1.222 655
—0.168 274

0.276 175
0.006 178

—1.162 527
+0.054

0.047 176
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cy with increasing L is clearly evident. Second, the
coefficient a5 is negative in magnitude and becomes pro-
gressively larger with increasing L relative to the other
terms. Since a3 —-5O" and a ~

=52", the reason for this be-
havior is clear from the denominators in Eqs. (51) and
(52). Third, E' ' makes a relatively small contribution to
the odd-order terms, but it is solely responsible for the
even-order terms. Since E' ' scales in proportion to a&, it
becomes relatively much larger in other hydrogenic
atoms such as the alkali metals. For example,
ai(Cs+)=56. 2ai(He+) [28]. For L =2, this makes the
E' ' contribution to a3 about the same size as the leading
c4 ( r ) contribution. Even for the D states of helium,
omitting the E' ' contribution would reduce the value of
a, deduced from the measured quantum defect by about
3%. Results for the alkali metals are further discussed
below.

Turning now to the numerical fits, Table II lists nonre-
lativistic eigenvalues for the P, D, and F states of helium,
obtained by the double basis set variational calculations
described previously [13—15]. A full account of the cal-
culations is in preparation [29]. The exceptional accura-
cy of the results provides an ideal "experiment, " free of
relativistic and @ED corrections, against which the Ritz
expansion can be tested. The following three functional
forms, all containing six adjustable parameters, will be
compared:

T„= 2—RM(l/2n +a3/n +a4/n +a5/n

+a6/n +a7!n +as/n ),
T„' = R—M /(n —

5O
—5 i ln

' —52/n '
53—/n ' 5~—/n * —55 /n "

)

T„"= R—~ I(n —50—5z/n * 5—4In '
5—6/n —5 /n 5—,0/n '

)

(55)

(56)

(57)

T„corresponds directly to Eq. (54) and the asymptotic
numerical values for the coeKcients shown in Table I. T„'

contains all inverse powers of n* in the quantum-defect
expansion, while T„" contains only the even inverse
powers (the Ritz expansion).

Beginning with T„,Table III compares the first two or
three fitting coefticients for the P, D, and F states with the
asymptotic values from Table I. In every case, the agree-
rnent is within the estimated accuracy of the asymptotic
coefFicients. The "Ritz" value for a4 corresponds to
a4= —', a3 „„;„;,„,i [cf. Eq. (22)], and the Ritz defect is as
defined by Eq. (24). In each case the Ritz defect is statist-
ically significant, indicating that the variational eigenval-
ues cannot be represented by a Ritz expansion. However,
the agreement is close enough to provide strong
confirmation for the calculated E' ' contributions.

The P states are a special case because the asymptotic

TABLE II. Variational nonrelativistic eigenvalues for helium.

State

2'P

4'p
5'p

8'P
9'P

1O'P

E (a.u. )

—2.123 843 086 498 093(10)'
—2.055 146 362 091 944(31)
—2.031 069 650 4SO 235(24)
—2.019905 989 900 825(22)
—2.013 833 979 671 734(23)
—2.010 169 314 529 353(20)
—2.007 789 127 133214(18)
—2.006 156 384 652 846(37)
—2.004 987 983 802 218(44)

State

2 P
3 P
4 p
5 p
6 p
7 P
8 P
9 P

10 'P

E (a.u. )

—2.133 164 190779 274(9)
—2.0S8 081 084 274 274 (34)
—2.032 324 354 296 619(16)
—2.020 551 187 256 247(23)
—2.014207 958 773 734( 12)
—2.010404 960 007 936(21)
—2.007 947 013 771 117(13)
—2.006 267 267 366 410(42)
—2.005068 805 497766(99)

3'D
4'D
5'D
6'D
7'D
8'D
9'D
10'D

5'F

8'F
9'F

10 'F
11 'F

—2.055 620 732 852 246(6)
—2.031 279 846 178 687(7)
—2.020 015 836 159984(4)
—2.013 898 227 424 286(4)
—2.010210028 457 978( 11)
—2.007 816 512 563 811(6)
—2.006 175 671 437 641(7)
—2.005 002 071 654 250(6)

—2.031 25S 144 381 749 6{17)
—2.020002 937 1S8 742 7(5)
—2.013 890 683 815 549 7{4)—2.01020S 248 074011 7(3)
—2.007 813297 11S014 1(6)
—2.006 173406 897 324 6( 8)
—2.005 000 417 564 669 0( 17)
—2.004 132 547 315 1300(38)

3 D
4 D
5 D
6 D
7 D
8 D
9 D

10 D

4 F
5 F
6 F
7 F
8 F
9 F

10 F
11 F

—2.055 636 309 453 261(3)
—2.031 288 847 501 795( 3)
—2.020 021 027 446 911(6)
—2.013 901 415 453 793(7)
—2.010212 105 955 595(3)
—2.007 817 934 711 706( 3 )
—2.006 176 684 884 697(3)
—2.005 002 818 080 233( 10)

—2.031 255 168 403 245 6(7)—2.020 002 957 377 369 4( 5 )—2.013 890 698 348 532 0(2)—2.010205 258 374 864 2(1)—2.007 813 304 535 090 8(4)—2.006173412 365 043 0(7)—2.005 000 421 686 604 0( 11)—2.004 132 550488 506 7(35)

'Numbers in parentheses indicate the uncertainties in the final one or two figures quoted.
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TABLE III. Comparison of the T„ fit [Eq. (55)] to the variational eigenvalues of helium with the

asymptotic coeScients from Table I (in 10 a.u.). The Ritz value is a4 =3a 3/2.

States

n P

n'p

Coef.

Q3

a4

Q3

a4

Variational

68 295.8239(13)
6 927.23(3)

—12 115.1027(17)
248.49(4)

Asymptotic Ritz

6996.47

220.16

Ritz defect

69.24(3)

28.33(4)

n D Q3

a4
a&

2 880.4734(4)
13.761(11)

—6 380.93(12)

2320(415 )

10(5)
—3745(1800)

12.446 1.315(11)

n 'D Q3

a&

a5

2 101.8984(4)
5.987(11)

—3 076.50(12)

2320(415)
10(5)

—3745(1800)
6.627 —0.640(11)

n 'F

n'F

Q3

Q4

a5

Q3

a4
a5

439.0430(6)
0.330(22)

—1 739.9(3)

434.3202(7)
0.329(24)

—1 678.2(3)

439(8)
0.299(20)

—1719(72)

439(8)
0.299(20)

—1719(72)

0.283

0.283

0.047(22)

0.046(24)

n*=n —6 —6 /n —5 /n*—0 1 2 (58)

for a given set of the 5, coefficients, and then iterating the
least-squares fit for the 5; to convergence. The iteration
automatically takes into account the expansion of the
denominators discussed in Secs. II and III. Approximat-

potential is no longer of use due to large core penetration
effects. The coefficient a3 even becomes negative for the
n P states. Despite this, the Ritz estimate of a4 remains
remarkably accurate when applied separately to the 'P
and P states, giving relatively small Ritz defects. How-
ever, the Ritz relation (22) becomes strongly violated if a
singlet-triplet average of the variational eigenvalues is
first formed, and the Ritz defect rises dramatically. The
numerical values are a4 „„;„;,„,~ =3587.86(4) X 10 a.u.
and a4&;„=1183.60X10 a.u. , for a Ritz defect of
2404.26(4) X 10 a.u. The Ritz expansion will clearly be
much more successful if the singlet-triplet average is not
performed.

Table IV compares the results using the T„, T„', and
T„" functional forms for the quantum defect expansion.
The quantity y measures the goodness of fit (in the g
sense [30]), normalized to unity for an adequate fit. The
uncertainties in the fitting coefficients were estimated
both from the statistics of the least-squares fit [30] and by
actually varying the input data up and down by the
amount of their uncertainties. Both methods gave about
the same results. Although some of the y values appear
to be rather large, the fits are still extremely good by usu-
al standards. For example, the largest deviation from the
data listed in Table II for the T„ fit to the n P states is
only 242 kHz at n =5. The largest deviations become
much less for the higher I. states. The T„' and T„" fits are
true quantum-defect expansions in that n is determined
by solving iteratively the equation

ing the denominators by, for example, n ' =n —
6O causes

a remarkable deterioration of the accuracy of the fits by
several orders of magnitude in the case of T,", , and leads
to unphysically large values for the higher-order
coefficients. The T„' fits are only slightly affected. For
the D and I' states, the 6&0 term in T„" is not included in
the fits because it does not produce a further irnprove-
ment in the quality as measured by y, and the values of
5,0 are statistically consistent with zero.

At first sight, the T„" fits appear to be clearly superior
(as measured by y), especially for the P states. However,
close examination reveals subtle problems related to the
Ritz defect. First, the values of 60 are not consistent with
the values obtained from T„and T„'. The differences are
much larger than the apparent uncertainties. The reason
is that accuracy estimates for the coefficients in a least-
squares fit are not reliable if the functional form is not
correct. The high euen powers of 1/n* in T„" give it an
important functional flexibility in fitting the low-n data,
but the absence of the 5&/n* term becomes relatively
more serious in fitting the higher-n data where the value
of 5O is most strongly determined. Second, T„" seriously
overestimates the accuracy of extrapolated term energies.
For intermediate n (n (100), the error in T„' is dominat-
ed by the term 5i/n*, while the error in T„" decreases
more rapidly as 52/n" . However, this more rapid de-
crease is not real —it is a consequence of not including
the Ritz defect in T„". Notice that the values of 6& in T„'

are approximately equal to the Ritz defects listed in
Table III.

The T„" form has long been used to provide a compact
and accurate representation of atomic term values. How-
ever, the T„' form rapidly improves in accuracy with in-
creasing I. The above results suggest that if the accuracy
of the data is sufficient to reveal a statistically significant
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TABLE IV. Comparison of 1/n and quantum-defect fits to the nonrelativistic eigenvalues of helium.
T„' includes all powers of 1/n * and T„"contains eUen powers only (the Ritz expansion) (in 10 a.u. ).

States

n 'P

n'P

n 'D

n'D

Coef.

Q3

a4
Qg

a6
Q7

Q3

a4
a,
a6
Q7

Q8

Q3

Q4

a,
a6
Q7

a8

Q3

a4
a&

a6
Q7

Q8

T„ fit [Eq. (55)]

68 295.9239(13)
6 927.23(3)

—17 158.9(3)
—11 412.2(1.3)

2 353.1(2.7)
—28 055.0(2.0)

3 357

—12 115.1027(17)
248.49(4)

7 157.8(4)
1 656.7(1.7)
7 306(3)
9 037.3(2.6)

860

2 880.4734(4)
13.761(11)

—6 380.93(12)
50.3(6)

—232.4( 1.6)
1 285.9(1.6)

33

2 101.8984(4)
5.987(11)

—3 076.50(12)
—100.7(6)

276.0( 1.6)
—474.3(1.6)

24

Coef.

5o
5,
52

63
54

5,

5o
5[
5~

5,
54

6,
x
5o
5i
5~

63
64

55

x
6o
6i
62

53
64
6~

x

T„' fit [Eq. (56)]

68 295.4521(12)
—56.37(3)

—17 958.93(27)
—4 041.9( 1.2)

122.4(2.3)
—17 966.5{l.7)

3 103

—12 114.8601(17)
21.02(4)

7 247.4(4)
1 619.4(1.7)
8 676(4)
8 429.8(2.7)

595

2 880.4727(4)
1.341(11)

—6 381.31(12)
144.1(6)

—238.2( 1.6)
1 144.5(1.6)

13

2 101.8983(4)
—0.636(11)

—3 076.58(12)
—67.8(6)
274.5( 1.6)

—504.6( 1.6)
8.3

Coef.

6o
52

54

56
5,
6lo

x
5o

5~

54.

66
6s
6~o

x
5o
5~

54

56
5~

5io

x
6o
52

54
56
58

6[o
x

T„" fit [Eq. (57)]

68 293.614 29( 10)
—18 636.068( 13 )—12 316.3(6)
—8 080(9)
—4 469(61)
—2017(125)

5.7

—12 114.192 00( 14)
7 507.874( 19)

13 959.7(8)
4 868(14)

967(99)
565(215)

2.9

2 880.509 901(8 )
—6 351.8977( 10)

335.98(4)
840.5(6)
380.4(2.8)

0.64

2 101.880 697(8)
—3 085.780 7( 10)

9.25(4)
—320.1(6)
—311.0(2.8)

n F a3
a4
a5
a6
Q7

Q8

n 'F a,
a4
a&

a6
Q7

Q8

x

439.0430{6)
0.330(22)

—1739.9(3)
0.6( 1.9)

88(6)
46(8)
83

434.3202(7)
0.329(24)

—1678.2(3)
1.8(2. 1)

—91(7)
51(8)
6.9

6o
6i
6,
63
54
5,
x
6o
6i
6~

63
64
6~

x

439.0430(6)
0.041(22)

—1739.9(3)
4.5(1.9)

88(6)
36(8)
43

434.3202(7)
0.046(24)

—1678.2(3 )

5 ~ 4(2. 1)
—91(7)

41(8)
0.60

5o
5~

54

66
5g

5io
x
5o
5~

54

56
58

6lo
x

439.044 111(11)
—1739.328 4(21 )

105.43( 12 )

27.4(2. 8)
1.7(21.4)

5.1

434.321 410( 12)
—1677.464 4(23 )

—68.66(13)
18(3)
77.5(23.6)

2.8

Ritz defect, then the T„' form should be used, especially
for purposes of extrapolating the term energies to higher
n. This point should always be checked before adopting
the Ritz expansion as a suitable functional form. The re-
markable thing is that the Ritz expansion works so well.
It is only the very high precision of the variational eigen-
values that makes the Ritz defect significant.

B. Alkali-metal quantum defects and polarizabilities

As a final application of the results of this paper, we
examine the effect of the second-order dipole polarization

a, a2 —6p,
oo(D states) = + +

105 324

o;, a —6P,
50(F states) = + +

630 17 820

10 1270'. )

l2[(3)(5)(7)]'
941 69(x

&

352[(5)(7)(9)]'

(59)

(60)

correction E' ' on polarizabilities extracted from the
quantum defects of the alkali metals. Since E' ' grows in
proportion to e„ it becomes much more important for
these atoms. Keeping only terms up to ( r ) and
neglecting relativistic corrections, core penetration
effects, etc. , 50 can be written in the form
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a, a2 —6P, 7 461 549a,
50(G states) = + +

2310 231 660 52Q QQQ[(7)(9)(11)]3

(61)

Similar equations for higher I. can be immediately writ-
ten down using Eqs. (17) and (41). Assuming that 5& and
the small correction term az —6Pt are known, the above
are quadratic equations that can be solved for a, . A sum-
mary of experimental values of 5O in the alkali metals has
been given by Lorenzen and Niemax [9]. More accurate
values for the cesium S, P, D, I, and G states have been
obtained by Weber and Sansonetti [31], who also point
out significant systematic errors in the quantum defect
fits obtained in Ref. [9]. Values for a& and a2 calculated
in the relativistic random phase approximation (RRPA)
have been tabulated by Johnson, Kolb, and Huang [28].
For Li+ the nonadiabatic correction factor P& is
0.035 26ao/e [32]. For Na+ and K+, values of P& have

S(k)= b,E+ +
2 S(0),

2. 5 —k (2.5 —k)2
(62)

where S(0) is the number of electrons and AE is the
smallest excitation energy (in Rydbergs) which contrib-
utes to the oscillator strength sums. Then S ( —3) =P&/4.

The required input values of S( —1) for the alkali-
metal ions were estimated by scaling the isoelectronic
"experimental" inert gas values derived by Dalgarno and
Kingston [34] (their Table 3) according to

been estimated by Eissa and Opik [33] from oscillator
strength sum rules, using the method of Dalgarno and
Kingston [34]. In this method, the input data are
S(—1)=&(g,r;) )/3 and S( —2)=a&/4, where S(k) is
the usual energy-weighted oscillator strength sum and the
expectation value is with respect to the closed-shell
ground state. These are used to calculate the constants a
and b in the extrapolation formula [34]

'k

,t,~;,„=S(—1);„„,s„[g (alkali-metal ion)/y (inert gas)], (63)

where y, the diamagnetic susceptibility, is proportional
to the closely related quantity ( g; r; ) . Using the
Hartree-Fock values for y [35] and the polarizabilities
in Table V, this procedure, together with Eq. (62), yields
essentially the exact P& for Li+ (+0.2%), and it repro-
duces the estimates of Eissa and Opik [33] for Na+ and
K+ to within 5% (when their older polarizabilities are
used). The scaling factor in Eq. (63) ranges from 0.3776
for Li to 0.8386 for Cs+. The final results for P& are
listed in Table V. The accuracy is adequate for purposes
of the illustration to follow.

To illustrate the influence of the quadratic term in a&

in Eqs. (59)—(61), Table V shows the values of 5o calculat-
ed with and without this term included [called 5c (quad. )

and 5o (linear), respectively]. The effect is particularly
large for the D states, where core penetration and ex-
change effects are also large [36]. In the case of Cs, the
quadratic term increases 50 by about 70% to 0.442, but
this is still much less than the observed value of 2.4663...
due to core penetration. The G states of Cs are particu-
larly interesting because core penetration and exchange
effects become small. Estimates of these effects have been
calculated by Sansonetti, Andrew, and Verges [36]. Ex-
tracting the coefftcient of the leading 1/n term from

TABLE V. Comparison of quantum defects for the alkali metals calculated from Eqs. (59)—(61) with
the experimental values. 50(quad. ) includes the term quadradic in the polarizability while 50(linear)
does not. All quantities are in atomic units.

States

Li D
Na D
Na 2F
K D
K F
Rb D
Rb F
Cs D
Cs2F
Cs G

a'
1

0.1894'
0.9457
0.9457
5.457
5.457
9.076
9.076

15.81
15.81
15.81

0.112
1.521
1.521

16.27
16.27
35.41
35.41
86.4
86.4
86.4

0.03526'
0.206'
0.206'
2.39'
2.39'
4.40'
4.40'
8.50'
8 ~

50'
8 50'

5o(linear)

0.001 497
0.009 89
0.001 517
0.057 9
0.008 770
0.1142
0.01491
0.259 8
0.027 08
0.006 997

5o(quad. )

0.001 523
0.01054
0.001 525
0.079 6
0.009 025
0.174 3
0.015 62
0.442 1

0.029 22
0.007 105

5o(expt. )

0.002 129
0.015 543
0.001 453
0.277 0
0.010 10
1.347 16
0.01631
2.466 315
0.033 414
0.007 039

'RRPA results from Johnson, Kolb, and Huang (Ref. [28]).
Lorenzen and Niemax (Ref. [9]),except as noted.

'The nonrelativistic variational value for a, is 0.1924a 0 (Ref. [32]).
Drake (Ref. [32]).

'Oscillator strength sum rule extrapolation (see text).
'Weber and Sansonetti (Ref. [31]).
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their results, the contribution to 5O is 0.000026 to give a
corrected quantum defect of 0.007013 for the 6 states.
Using the corrected value in Eq. (61) and solving for ct,
yields a, =15.61ao. This is somewhat smaller than the
RRPA value of 15.81ao, but within the range of probable
accuracy. It is also smaller than the value 15.770(3)ao
obtained by Weber and Sansonetti [31], who did not in-
clude the quadratic term in their fit to the measured fre-
quencies. The quadratic term accounts for most of the
difference. For the I'" states, the corresponding penetra-
tion and exchange correction [36] to 6o is 0.00788. This
is the same order of magnitude as the difference between
the calculated and measured values shown in Table V.
However, Eqs. (59)—(61) are based on just the leading two
terms in the asymptotic potential, together with the
quadratic term. For the F states, and possibly also for
the 6 states, the leading two terms may not be sufficient
at this level of accuracy.

V. DISCUSSION

The central result of this paper is the general expres-
sion (41) for the second-order dipole polarization correc-
tion E( ). The coeIIicients of the even powers of 1/n have
been shown to be in accord with what one would expect
from quantum-defect theory, using the Ritz expansion for
the quantum defect. In fact Hartree's proof that the Ritz
expansion is an exact analytic result for local central po-
tentials provides a powerful method for finding at least
the even terms in a 1/n expansion for the second-order
energy resulting from any short-range perturbation. For
example, the same techniques could be applied to the
1/r 6 term in the asymptotic potential.

The exact effective potential experienced by the Ryd-
berg electron is known to be nonlocal and energy depen-
dent because of short-range and exchange effects. In this
case, one would expect to see deviations from the Ritz ex-

pansion as an exact functional form for the n dependence
of Rydberg energies. A 1/n expansion fit to high pre-
cision variational eigenvalues in fact shows a well-defined
"Ritz defect, " which represents the degree to which the
Ritz expansion for the quantum defect is not valid. In
this case, the odd as well as the even powers of 1/n*
should be included in the quantum-defect expansion. The
lowest-order Ritz defect then reappears as the coefficient
of 1/n*. A particularly important point is that unless
this term is known to vanish, it dominates the error of ex-
trapolations of Rydberg energies up to moderately high
values of n. Omitting it gives unrealistically small error
estimates, even though a fit to the data may appear to be
quite adequate. It is also important to bear in mind that
the quality of the fit improves dramatically if a full itera-
tive definition of the quantum defect is used. This impli-
citly takes into account the quantum-defect expansion in
the denominators of Eq. (2).

The final conclusion of this paper is that the second-
order polarization energy has a significant effect on polar-
izabilities extracted from experimental quantum defects.
The results of Table V show that the accuracy of polari-
zabilities obtained in this way rapidly improves with in-
creasing I.. The 6 state result for Cs is particularly accu-
rate, and provides an important test of calculations.
However, a complete reanalysis of the experimental data
with the quadratic term included would be desirable.
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