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ABSTRACT 

Degeneracy is an important concept in physics and chemistry. 
Degeneracy and symmetry are closely connected. We distinguish between 
two types of degeneracy - symmetric or systematic and accidental one. In 
this paper, we illustrate the concept of degeneracy through some two 
dimensional quantum mechanical problems. We have also indicated the 
breaking of the degeneracy by suitable application of perturbing 
potentials. 

 

 
 
 
1. Introduction 
 
Degenerate and non-degenerate eigenstates are 
important concepts in quantum mechanics. If 
there are two or more distinct eigen solutions 
having same energy eigenvalues of 
Schrödinger time-independent equation, then 
they are termed as degenerate. The word 
distinct in the above sentence needs some 
clarification. The distinct solutions are those 
which are linearly independent. In other words, 

the solutions which are differing by only 
multiplicative phase factors eiφ, however, they 
are not designated as distinct. In this paper, we 
would like to discuss the origin of degenerate 
solutions in various two dimensional quantum 
problems.  

The paper is organized as follows. With a 
brief discussion of an important theorem in one 
dimensional system in the next section, we 
mathematically justify the relation between 
symmetry and degeneracy. Then, we start with 



 

a very simple example of two dimensional 
infinite box and two dimensional linear 
harmonic oscillators to illustrate the various 
degeneracy. Finally, we give our conclusions 
in section 3. 
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2. An Important Theorem 

We would like to start the discussion of the 
degeneracy with a simple theorem. The 
statement of this theorem is: In one dimension, 
(for normalizable wave functions), there are no 
degenerate bound states.1,2,3 In other words, it 
implies that degeneracy should occur in higher 
spatial dimensions. And in fact, we will 
encounter that this degeneracy is very common 
to any higher dimensional system. The 
degeneracy is a dimensionless quantity which 
counts the number of states with same energy 
eigenvalue. The degeneracy of a system could 
be finite or infinite. Let us now discuss the 
proof of this simple theorem. Let us assume 
that the two wave functions ψ1 and ψ2 give rise 
to the same energy eigenvalues E in a one 
dimensional quantum problem with a potential 
V(x). Then, we have the following two 
equations: 
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Multiplying (1) by ψ2 and (2) by ψ1 and then 
subtracting from one another we get  

2 2
2 1

1 22 xx
ψ ψ

ψ ψ
⎛ ⎞∂ ∂

−⎜ ∂∂⎝ ⎠

On further simplification, we obtain a simple 
equation of the form 
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Now, we will use the basic postulates of 
quantum mechanics to evaluate the constant in 
the above equation (4). For well-behaved and 
normalizable wave functions (ψ(x)→0 as 

x→±∞ and 
2( ) 1x dxψ

+∞

−∞

=∫ ), the constant 

becomes zero. Hence, from equation (4), by 
integrating, we find 

ψ1 = cψ2              (5) 

Therefore, the two wave functions are not 
linearly independent and hence, they are same. 
Thus, there is no degeneracy in one 
dimensional quantum problems. This result is 
remarkable in the sense that it cannot be 
generalized to any higher dimension. 

The conclusion is true for any wave 
function including the ground state. Moreover, 
by definition, the ground state (ψ0) of any 
bound quantum mechanical system is nodeless, 
i.e. it does not vanish at any point in the space. 
It must keep its sign same throughout the 
region. This nodeless feature can be utilized4 to 
show the non-degeneracy of the energy levels. 
Let us assume that the contrary is true. We 
assume that there are two functions ψ0 and 0ψ  
are the two ground state wave functions 
corresponding to the ground state energy. 
Then, any linear combination such as c0ψ0+ 

0cψ  is also an eigenfunction of the same 
Hamiltonian with same ground state energy. 
However, we can make this wave function 
vanish at some point in space by choosing c0= 

1/ 2c− = . This implies that we can get a 
ground state wave function with node. Hence, 
our assumption is wrong. This argument can be 
easily generalized to show the ground state of 

⎟ =0               (3) 



 

higher dimensional system (except charged 
particle in a magnetic field) as non-degenerate.  

Let us pay attention to the equation (4) for a 
non-normalizable wave function. The simplest 
example arises in free particle in one 
dimension. The energy eigen functions eikx and 
e−ikx are degenerate to each other. However, the 
above theorem is saved since they are not well-
behaved and normalizable in the ordinary 
sense. Besides, a quick look into the equation 
(4) reveals that the constant is non-zero for 
such non-normalizable functions for free 
particles. Even for wave functions such as e±αx 

which are well behaved for the whole region of 
x (−∞ to ∞), the constant turns out to non-zero. 
However, for wave function (ψ(x)=e−α|x| in a 
delta potential in one dimension 
(V(x)=−V0δ(x)), the constant is identically zero. 
Moreover, the potential V(x) should go to zero 
at x→±∞. Thus, the non-degeneracy theorem 
works for potential which is bounded from 
below and piecewise continuous. If the 
potential consists of some isolated pieces 
separated by a region where the potential is 
finite, then this theorem will not hold good. For 
example, if there are two isolated infinite 
square well in one dimension, then there will 
be degenerate bound states.5 The second 
example is the famous double oscillator6 whose 
potential is given by 

21( ) (| | )
2

V x k x a= −              (6) 

A schematic variation of this potential is shown 
in Figure 1. It is evident that for a=0 is the 
usual harmonic oscillator with origin at x=0. In 
such a case, we find the non-degenerate equi-
spaced energy levels of the particle of mass m 
given by 

0
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           (7) 

However, with the increase of the value of 
a, the separate wells are developed having a 
large separation between them as seen from 
Figure 1. In fact, in a→∞ limit, since the 
system can have the equal probability to 
occupy in either of these harmonic oscillators 
right or left, then each of these bound state 
levels become doubly degenerate. 

As a corollary of this theorem, it is easy to 
show that the eigenfunctions of the real 
Hamiltonian can be chosen as real in the 
coordinate basis in one dimension. For the 
problems involving a magnetic field, the 
Hamiltonian is no longer real in the coordinate 
basis. In fact, due to non-degeneracy of the 
bound states in one dimension, within an 
irrelevant scale factor, one can choose the 
eigenfunctions as real. In one particle picture, a 
non-degenerate state carries no current and is 
describable by a real valued wave function. 
This implies that wave functions for real 
Hamiltonian carrying current are degenerate. 
As a simple example, the ground state of the 
hydrogen atom is real and non-degenerate and 
does not carry any current. However, the 
excited states of the hydrogen atom are 
complex and hence, are degenerate. 

2.1 Super-symmetry and Non-degeneracy 

In this section we would like to discuss the 
close connection between the super-symmetry 
(SUSY)7-9 technique and degeneracy of the 
quantum system. Let us first indicate how one 
can use the super-symmetry technique to show 
that the ground states as well as other states of 
one dimensional system are non-degenerate. 
Consider the one dimensional time independent 
Hamiltonian in equation (1) in a smooth 
potential V(x). This Hamiltonian can be written 
in the factorized form10 as 

H=A†A+E                    (8) 
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The explicit form of A can be chosen by 
assuming the real bound ground state wave 
function ψ0 satisfying the above Hamiltonian 
with eigenvalue E0. Thus, the Hamiltonian 
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      = A†A + E0               (9) 

Since, the ground state wave function is 
nodeless, both the operators A as well as A† are 
well defined. Now, for any arbitrary eigenstate 
ψ with eigenvalue E, we can write the equation 
for the operator A†A as   
 

A†A |ψ 〉 = (E−E0)|ψ〉             (10) 

If the wave function happens to be the ground 
state one, then we get immediately 

0|A ψ 〉 = 0 . This indicates A just acts like an 
annihilation operator with 0|A 0ψ 〉 = . For any 
other eigenstate 0ψ  corresponding to the 
energy eigenvalue E0, we must have the 
following relation from the operator A as 

0 0

0 0

1 1d d
dx dx
ψ ψ

ψ ψ
=            (11) 

By integrating the equation (11) we find that 
the wave functions are connected to each other 
by a constant factor as found out in equation 
(5). This result can be generalized to other 
excited states to one dimensional problem by 
repeated applications of appropriate super-
symmetry transformation10. The whole 
argument is based on writing the Hamiltonian 
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H in factorized form shown in equation (8). In 
general, it is not possible to write in this 
factorized form in higher spatial dimensions.10 
That’s why, this super-symmetry arguments 
cannot be translated to any eigenstates. 
However, for class of the Hamiltonian H in any 
higher spatial dimension written as 

2 2

2
12

d

k k

H
m x=

∂
= − +

∂∑  1 2( , ,..., )dV x x x       

(12) 

it is possible to write in factorized form as H= 

A∑
=

d

k 1
k
†Ak  + E0  with Ak defined as 

0
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Repeating the previous arguments for 
k=1,2,…d, we can show that ψ =Cψ0 signaling 
that the ground state of the Hamiltonian 
defined in equation (12) is non-degenerate. 
However, it is not possible to make any 
comment for any excited states because of the 
impossibility of super-symmetry partner 
Hamiltonian which conserves the energy 
spectrum10 of the Hamiltonian. Moreover, we 
know that the excited states of any Hamiltonian 
in higher dimension d>1 is in general 
(always!) degenerate. 

3. Mathematical Meaning of Degeneracy 

It is a common folklore that if a system is 
symmetrical in some sense, its energy levels 
are usually degenerate. The symmetry and 
degeneracy are often closely linked.11-14 
However, it is not always easy to find out the 
symmetry which is responsible for the 
degeneracy in the problem. For example, 
classically, in a central field, the equations are 
invariant under rotations. As a consequence, 

the angular momentum of the system is 
conserved. This implies that corresponding to 
any fixed energy, there are many orbits 
differing in spatial orientations. In quantum 
mechanics, the corresponding wave functions 
are termed as degenerate. Let us clarify this 
concept mathematically. Let us consider a 
stationary state of a Hamiltonian H with 
eigenvalue En. In bra-ket notation, this can be 
stated simply as 

H|n〉 = En|n〉                (14) 

We assume now that this Hamiltonian H has a 
certain symmetry denoted by the operator T. It 
implies that T commutes H i.e. [T,H]=0. Now, 
let us consider the following operation: 

HT|n〉 = TH|n〉 = TEn|n〉 =  EnT|n〉           (15) 

This indicates that T|n〉 satisfies the eigen 
function criteria of the Hamiltonian with the 
same energy eigenvalue En. So, T|n〉 and |n〉 are 
degenerate eigenkets of the Hamiltonian. In 
other words, the energy eigenvalue 
corresponds to more than one eigen function. 
Besides, any linear combination of the wave 
functions is also an eigen function of the 
Hamiltonian with the same energy eigenvalue. 
Hence, the choice of the eigen fucntions of a 
degenerate energy level is not unique. In 
general, two situations may arise for T|n〉. T|n〉 
might be completely different from |n〉 or T|n〉 
could be simply a multiple of |n〉. In the later 
situation, we may write in mathematical form 
as 

T|n〉 = gn |n〉                (16) 

where gn could be termed as the degree of 
degeneracy of the n-th energy level. 



 

4. Degeneracy in Two Dimensional 
Problems 

In this section we would like to discuss the 
degeneracy of two dimensional quantum 
mechanical problems. We will consider first 
the particle in a rectangular box and then two 
dimensional harmonic oscillators. 
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4.1. Particle in a Rectangular Box 

The potential is zero inside the rectangular box 
of size Lx and Ly and outside the box, the 
potential is infinite. Thus, the particle is free 
inside the box having impenetrable wall. The 
time-independent Schrödinger equation1,2 of 
the particle of mass m in such a case is simply, 

2 2

2 2 2

2mE
x y
ψ ψ ψ∂ ∂

+ = −
∂ ∂                     (17) 

The boundary conditions for the above 
problem is simply ψ(Lx,Ly) = 0. This 
immediately gives the energy eigenvalues  as 

222 2
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yx
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E

m L L
π ⎛ ⎞

= +⎜⎜
⎝ ⎠
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and the normalized  wave function as  

, ( , )
x yn n x yψ =

 

          
4

x yL L
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x y

nn
L L

ππ ⎛ ⎞⎛ ⎞
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Here, the quantum numbers can take positive 
integer values starting from 1. It is obvious that 
in this case, two quantum numbers are required 
to describe the energy eigenvalues and the 
energy is the sum of one dimensional energy 
eigenvalues of particle in a box problem. The 

lowest energy of the system is non-degenerate 
and is given by  

2 2

1,1 2 2
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2 x y

E
m L L
π ⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

            (20) 

Although it is stated in many text books that 
the energy eigenvalues are non-degenerate 

( ,x y x yn n n nE E ,≠ ), however, there are peculiar 
type of degeneracy present in the system for 
some specific commensurate ratio of the two 
lengths Lx and Ly. It is known as accidental or 
non-geometric13,15 in contrast to more familiar 
one. Suppose, the ratio of two lengths Lx and Ly 

is a ratio of two prime integers /x

y

L
p q

L
⎛ ⎞
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⎝ ⎠

, 

then it is easy to notice that the states (nx, ny) 

and ,y xpn qn
q p

⎛ ⎞
⎜
⎝

⎟
⎠

 are degenerate to each other.  

To show this explicitly, we obtain the energy 
eigenvalues from equation (12) for 
pLy=qLx=L1((say)) as 

2 2
2 2 2 2

, 2
1

(
2x yn n x yE q n

mL
π

= + )p n            (21) 

Therefore, the energy levels remain the same 
for distinct wave functions under the 
transformation (qnx⇔pny). As a specific 
example, we take Lx=2Ly, then the energy 
levels corresponding to eigenstates (nx, ny) and 

12 ,
2y xn n⎛ ⎞

⎜
⎝

⎟
⎠  are degenerate. Thus, (4,1) and 

(2,2) are degenerate. This type of degeneracy is 
accidental because they are not related to any 
geometrical symmetry but to some hidden 
symmetry16,17 in the problem. 

 



 

52+52 = 72+12             (23) 4.2. Particle in a Square Box 

For a square box (Lx=Ly=L), the usual type 
degeneracy occurs known as systematic or 
symmetric one. However, it is also better 
known as geometrical one because of the 
obvious reason. The energy levels are invariant 
under the transformation (nx⇔ny). This is due 
to the fact that the box is square, one can 
interchange the sides x and y without changing 
the magnitude of the energy levels. Therefore, 
each energy level is at least doubly degenerate 
when nx and ny are different. Hence, (1,2) and 
(2,1) are degenerate. The eigenfunctions 
corresponding to these sates are 

This implies that E5,5=E7,1 although ψ5,5 ≠ ψ7,1. 
As stated earlier, this degeneracy is inherent in 
the structure and related to a hidden dynamical 
symmetry. It is also clear that the symmetry 
degeneracy disappears for rectangular box 
while the accidental persists in rectangular as 
well as square box. There are other few 
examples of non-geometric degeneracy 
(72+42=82+12 and 42+132=82+112). This 
problem being a mathematical one, have been 
addressed to find out the degree of degeneracy 
as well as the set/sets of quantum number 
required for a given energy level18. 
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y            

The connection between accidental 
degeneracy and the symmetric degeneracy can 
be illustrated through a simple diagram in 
Figure 2.

2,1
2 2( , ) sin sinxx y y
L L L

π πψ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

        (22) 

Apart from this type of geometric degeneracy, 
there is also accidental one. In this case, two or 
different pairs of integers give the same sum of 
the squares. For 
example, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Illustration of accidental degeneracy in box 
 



 

 
We have incorporated a small rectangular 

box (white in color)) having sizes (pLx=qLy=L) 
with p and q prime positive integers. It can be 
shown that the degenerate wave functions for 
the smaller box when extended to the bigger 
one preserve their degeneracy property. 
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4.3 Breaking the Degeneracy in a Square 
Box 

To break the degeneracy in this system, we 
have to add a perturbation to it. Let us apply a 
very simple perturbation given in the exercise 
of Sakurai’s book19 and consider its effect on 
the first three eigenstates of the problem. The 
perturbation V(x,y)=λ xy within the square box 
of length L. The first order correction to the 
system for any n-th eigenstate is given as 

ΔEn = 〈n|λxy|n) ∝ λ             (24) 

The first excited state eigenfunction is doubly 
degenerate and its energy is given by 

2 2

2

5
2feE

mL
π

= . Using the two eigenfunctions 

given in equation (22), we construct the (2×2) 
perturbing matrix whose matrix elements are 
shown below. 
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By symmetry, we have P22=P11 and P12=P21. 
Diagonalizing this P matrix, we find the 

eigenvalues as 
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. Hence, the degenerate 

energy eigenvalue after the perturbation 
becomes  
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Thus, the systematic degeneracy in the first 
excited state for this square box has been 
removed by the perturbation potential.  

Note that in this problem, all the excited 
energy eigenstates are not degenerate. For 
example, the second excited state is non-
degenerate with energy eigenvalue 

2 2

2

4
seE

mL
π

= . One may also ask what happens 

to energy eigenvalues corresponding to the 
states in equation (23) giving rise to accidental 
degeneracy after the application of above 
perturbation.  The energy eigenfunctions are 
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In this case, a straightforward algebra reveals 

that P11=P22=
21

4
Lλ  while P12=P21=0. Thus, 

the new energy values are 
2 2

2
2

25 1
4

L
mL
π λ+ . 

Therefore, although the magnitude of the 
eigenvalue in the first order perturbation 
calculation is changed but the accidental 
degeneracy for the states (5,5) and (7,1) is not 
removed by the perturbation. 

           
1 ( )
2 x yω ω+ +             (29) 

The last term is the zero point of energy of the 
system and can be understood from the 
Uncertainty principle. Because of the positivity 
of the Hamiltonian, all the energy levels are 
positive definite and this is ensured by the 
quantum numbers which can take the positive 
integer values like 0,1, 2 . . ., etc. Although it 
might appear at first sight from the equation 
(29) that the energy levels are non-degenerate 
due to anisotropic nature of the system, 
however, there does appear a special kind of 
degeneracy known as accidental degeneracy or 
non-geometric one as discussed in 2d particle 
in a box problem. If we can choose the ratio of 
the frequencies as the ratio of the positive 
integers in the following way 

5 Degeneracy in 2d Harmonic Oscillator 
Problem 

The 2d harmonic oscillator is a system where 
the symmetry and degeneracy can be 
beautifully demonstrated without invoking too 
much mathematical tools.13,15,20 The accidental 
degeneracy and related symmetry group of the 
harmonic oscillator have been extensively 
discussed by Quesne.21  

2 2 21 ( )
2 x xH p m x

m
ω= + +  

2 21 ( )
2 y y

2p m y
m

ω+            (28) 5.1 Anisotropic Harmonic Oscillator 

The Hamiltonian of the two dimensional 
harmonic oscillators is given by Since this is sum of two harmonic motions in x 

and y directions, we can easily write down the 
energy levels of this anisotropic system as

, ( , ) ( )
x yn n x y x x y yE n nω ω ω= + ω  
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The degeneracy and the first few energy levels are shown in tabular form. 
nx ny n=nx+ny Comments 
0 0 0 Ground state 

Non-degenerate 
1 
0 

0 
1 

1 
1 

First Excited State 
Doubly Degenerate 

0 
2 
1 

2 
0 
1 

2 
2 
2 

Second Excited State 
Triply Degenerate 

0 
3 
1 
2 

3 
0 
2 
1 

3 
3 
3 
3 

Third Excited State 
 
Four Fold 
Degenerate 
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then, it is easy to notice from equation (29) that 
the energy remains the same. Thus, for such set 
of pairs of frequencies and quantum numbers, 
the energy levels are degenerate. 

5.2 Isotropic Harmonic Oscillator 

For isotropic case (ωx=ωy=ω), the energy levels  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, ( ) ( 1)
x yn n x yE n nω ω= + +                (31) 

For a given n, the energy is determined from 
nx+ny=n equation. However, each nx and ny can 
take (n+1) values starting from 0 to n. Hence, 
the degeneracy of n-th energy level is simply 
(n+1) fold. The degeneracy in second excited 
state marked with bold font is known as the 
accidental one while the others are related with 

are geometric or systematic degeneracy. Using 
the property of confluent hypergeometric 
function, the degeneracy has been computed22 
for d-dimensional confined harmonic 
oscillator. In fact, the degeneracy of any  d-
dimensional   harmonic oscillator23,24 can be 
computed in the following way. In such a 
situation, the total quantum numbers ( ni, 
1<i<d) required are d; however, their sum is 
restricted to n. In addition, there is no 
degeneracy in one dimensional system and 
hence 
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Figure 3: Variation of Degeneracy with energy level n
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We show in Figure 3, the variation of 
degeneracy with quantum number n for spatial 
dimensions. It is obvious from Figure 3 that 
with increase of spatial dimension d, the 
degeneracy increases non-linearly with discrete 
integer n. It is to be noted the degeneracy in 
one dimension is one and hence, all the energy 
levels are non-degenerate. 

Like the energy eigenvalues, the wave 
functions are also labeled by nx and ny. Thus, 
ψ0,1(x,y) and ψ1,0(x,y) are degenerate eigen 
functions corresponding to first excited state 
having the same energy eigenvalue 2 ω. As 
discussed earlier, the second excited state has 
one peculiar so called non-geometric 
degeneracy aside from two usual degenerate 
systematic or geometric states. The root of this 
accidental degeneracy lies in some extra 
hidden symmetry13,15 in the Hamiltonian. Let 
us define three operator 

1 2
x yp p

F m xy
m

ω
ω

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
 

2 2
2 2

2 (
4 4
y xp p m
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)F y x
m

ω
ω

⎡ −
= + −⎢ ⎥

⎢ ⎥⎣ ⎦

⎤
          (33) 

3
1 [ ]
2 y xF xp yp= −  

to note that these three are constants of motion, 
i.e. [H, Fi]=0 for i=1,2,3. Third component F3 
is simply related to third component of angular 
momentum. The second one can be viewed as 
the difference between two Hamiltonians in y 
and x direction. In fact, for two degrees of 
freedom, there cannot be more than 3 
(2×2−1=3) constants of motion. In this case, 
we have exactly three independent constants of 
motion.  More importantly, these operators 

satisfy the commutations as followed by the 
usual angular momentum operators [F1,F2]=i 

F3. They are the generators of O(3) group or 
more generally SU(2) group. The commutation 
relation enforces one to rewrite the equation of 
eigenvalues of the Hamitonian as 

2 2
2 2 2 2

1 2 3( )
2 2

lE
F F Fω ω⎛ ⎞ ⎛ ⎞− = + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

       2 2 ( 1)l lω= +               (34) 

giving the energy eigenvalues  

El = ω(2l+1)              (35) 

with l=0, ½,1,3/2, 2, 5/2, . . . . A comparison 
with equation (21) indicates that l=2n with 
equal spacing and characteristic zero point 
energy ω. Moreover, the degeneracy of n-th 
level is (2l+1)=n+1 as discussed earlier. 
To have a clear picture of the symmetry, it is 
better to rewrite the above Hamiltonian in polar 
coordinates. The isotropic Hamiltonian in the 
polar coordinates reads as 

2 1
2

H r
m r r r

∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠
  

          
2 2

2 2
2 2

1
22

m r
mr

ω
φ
∂

− +
∂           (36) 

It is not surprising to verify that the z-
component of the angular momentum Lz= 

i
φ
∂

−
∂  which is perpendicular to the x-y plane 

is a constant of motion of the system. In other 
words,[H,Lz]=0. 
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Figure 4: Variation of the probability density P0,1(x,y) as a function of y for two values 
of α. The dashed curve is drawn for α=0.1 while for continuous curve, the value of 
for α=0.3. 

 
This is due to the fact that the Hamiltonian 

is invariant under rotation by any angle φ. 
After rotation, the rotated Hamiltonian remains 
the same as the original Hamiltonian. Note that 
for three dimensional systems, when the 
Hamiltonian is spherically symmetric, it is 
invariant under rotations about any axis. In that 
situation, the Hamiltonian commutes with all 
three components (Lx, Ly and Lz) of the angular 
momentum. The vanishing commutator 
relation also points out that the Lz and H must 
have simultaneously same eigenstate provided 
the states are non-degenerate. The degeneracy 
can be viewed from the eigenstates ψ0,1(x,y) 
and ψ1,0(x,y). The wave function ψ0,1(x,y) can 
be written within a normalization constant N1 
as 
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ψ0,1(x,y) = 
2 2( )

In Figure 4, we show schematically the 
probability density P0,1(x,y) corresponding to 
ψ0,1(x,y) as a function of y keeping x constant 
for two values of α. It is seen from the figure 
that the probability density P0,1(x,y) is peaked 
at two points along y directions. Moreover, the 
magnitudes as well as the positions of the 
peaks are functions of α. It is amazing to note 
that although the oscillator does not possess 
any preferred direction; however, one of the 
first excited states namely ψ0,1(x,y) has 
acquired a particular direction. By symmetry 
principle, since x and y are equivalent for this 
2d harmonic oscillator, there must be another 
wave functions whose probability density must 
peak up along x directions. A quick look 
reveals that the probability density of ψ1,0(x,y) 
has the required property. This implies that 
these two wave functions must have the same 

x
1

yN ye α− +               (37) 



 

energy. One should also note that there could 
be other wave functions – linear combinations 
of these two wave functions - which also have 
the same energy. Now, let us pay attention to 
the ground state wave function ψ0,0(x,y) 

222

0
)(

00,0 ),( ryx eNeNyx ααψ −+− ==  (38) 

This state is independent of φ, so rotation does 
not produce any new state and hence, this is the 
only state which is non-degenerate. A close 
inspection points out that this is also an eigen 
state of Lz with eigen value zero. Thus, the 
commutator between H and Lz is satisfied by 
this wave function. However, the situation is 
slightly complicated for the two degenerate 
eigen functions. In polar coordinates, the wave 
functions are given by 
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2

1,0 1( , ) cos( ) rr N r e αψ φ φ −=  

2

0,1 1( , ) sin( ) rr N r e αψ φ φ −=              (39) 

A straightforward calculation shows that they 
are not the eigen functions of Lz. In fact, 
Lzψ1,0=λψ0,1 and vice versa. Then, one might 
worry about the commutator relation between 
the Hamiltonian and Lz. These wave functions 
are the eigen functions of H; but surprisingly, 
not the eigen functions of Lz.  It is due to the 
fact that degenerate eigen functions are not 
necessarily the eigen functions of Lz. However, 
a linear combination of the degenerate eigen 
functions can be constructed to form the eigen 
functions of  Lz. For example, the wave 
functions 

2

1,0 0,1 1
i ri N e eφ αψ ψ ψ −= + =  

2

1,0 0,1 1
i ri N e eφ αψ ψ ψ − −= − =             (40) 

correspond to  and −  eigen values of Lz 
respectively. 

5.3 Breaking the Degeneracy of Isotropic 
Harmonic Oscillator 

To break the degeneracy of the isotropic 
oscillator, one can add some potential such as 
H′ = λ xy or any other functional form. We 
would like to illustrate here simple perturbation 
in terms of spring constants to remove the 
degeneracy in the system. To do this, we have 
to introduce a very simple perturbation in terms 
of different spring constants in two directions x 
and y. Let us assume that the spring constants 
kx and ky are different by an infinitesimal 
amount η in the following way: 

xk k η→ + and yk k η→ −  with kη << . Thus, 
the Hamiltonian in this new variable reads as 

2 2 2 2 21 1( ) (
2 2x y

2 )H p m x p m y
m m

ω ω= + + +  

                             2 21 ( )
2

x yη+ −  

                  
2

2 2 21 1 cos(2 )
2 2 2

kr r
m

η φ= − ∇ + +   

                  = H0 + H′                                 (41) 

where H0 is the unperturbed part of 2d 
harmonic oscillator and H′ is the perturbed part 
of it. Now, because of this angle dependence of 
the perturbed part, it is easy to visualize that 
[H0,Lz]=0 but [H′,Lz]≠0. In other words, the 
perturbation breaks the rotational invariance 
already present in the unperturbed part. We 
will notice immediately that this deficiency of 
this symmetry is responsible for the breaking 
of the degeneracy. It is easy to notice that from 
equation (41) even after the introduction of the 
perturbation, the Hamiltonian can be separated 
into two directions with the modifications of 
frequencies. In the limit of ,kη <<  the 
frequencies along x direction and y direction 



 

are respectively, 0 1
2k
ηω ⎛ ⎞+⎜

⎝
⎟
⎠  and 0 1

2k
ηω ⎛ −⎜

⎝
⎞
⎟
⎠  

with 0
k
m

ω = . Therefore, the energy in this 

limit is  
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, 0( , ) ( 1)
x yn n x yE n n 0ω η ω= + +

0
1 ( )
2 x yn n

k
ηω ⎛ ⎞+ − ⎜ ⎟

⎝ ⎠
                          (42) 

Thus, we notice that the energy depends not 
only on sum of the quantum numbers nx and ny 
but also their difference. For example, the first 
excited states are now non-degenerate 

0,1 0 0
12
2

E
k
ηω ω ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 

0,1 0 0
12
2

E
k
ηω ω ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
           (43) 

with the difference 

1,0 0,1 0E E
k
ηω ⎛ ⎞− = ⎜ ⎟

⎝ ⎠
           (44) 

The higher energy in (1,0) is expected in 
compared to (0,1) states because of the higher 
value of the spring constant however small 
may be. This eventually points out the role 
played by η. In fact, in the limit η→0, the 
energy levels E0,1 and E1,0 become degenerate. 
Thus, not only the first excited states, but also 
the other excited energy levels are non-
degenerate by the application of this simple 
perturbation. Therefore, without the presence 
of rotational invariance, the symmetry 
degeneracy disappears. One might wonder 
about the fate of accidental degeneracy in such 
a situation. Suppose 9x yk k=  and then, it 
immediately implies 3x yω ω= . Thus, the ratio 
of two frequencies is 1/3, i.e. ny = 3nx. The 

energy levels in such a situation from equation 
(29) can be written as 

, ( ) (3 ) 2
x yn n y y x y yE n nω ω ω= + +            (45) 

It is easy to notice that E0,3 = E1,0 in such a 
situation. Although, the eigenfunctions 
ψ0,3(x,y) and ψ1,0(x,y) are not the same but they 
have the same energy and degenerate to each 
other in spite of having any continuous 
symmetry. Hence, remarkably, accidental 
degeneracy is not removed by the introduction 
of the above perturbation. 

6. Conclusions 

Thus, we have shown how the symmetry in the 
problem can lead to degeneracy in the problem. 
We have been able to distinguish between the 
two types of symmetry namely the systematic 
degeneracy and accidental one. We have also 
considered a simple example in two 
dimensional harmonic oscillators where the 
systematic degeneracy is broken while the 
accidental degeneracy persists upon the 
application of a perturbation into the system. 
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