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Quantum difference equation for Nakajima
varieties

A. Okounkov and A. Smirnov

Abstract

For an arbitrary Nakajima quiver variety X, we construct an ana-
log of the quantum dynamical Weyl group acting in its equivariant
K-theory. The correct generalization of the Weyl group here is the
fundamental groupoid of a certain periodic locally finite hyperplane ar-
rangement in Pic(X)®C. We identify the lattice part of this groupoid
with the operators of quantum difference equation for X. The cases
of quivers of finite and affine type are illustrated by explicit examples.
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1 Introduction

1.1 The quantum differential equation
1.1.1

This paper is about enumerative K-theory of rational curves in Nakajima
quiver varieties. The cohomological version of the questions that we answer
here may be asked very generally, for example one may replace a Nakajima
variety X by a general smooth quasiprojective variety over C as long as
rational curves in X satisfy certain properness conditions.

Consider the cone of effective curves in Hy(X,7Z) and its semigroup alge-
bra spanned by monomials z¢, where d € Ho(X, Z)effective- 1t has a natural
completion which we denote C[[2%]]. The cup product in H*(X,C) has an
associative supercommutative deformation

axf=aUp+0(z), (1)



parametrized by C[[2%]], in which one counts not only triple intersections of
cycles but also rational curves meeting three given cycles, see [12] for an in-
troduction. The corresponding algebra is known as the quantum cohomology
of X. The construction works equivariantly with respect to Aut(X); in what
follows, it will be important to work equivariantly with respect to a torus
G C Aut(X).

Associated to (1) is a remarkable flat connection on the trivial H, (X, C)-
bundle over Spec C[[z%]] known as the quantum connection, the Dubrovin
connection, or the quantum differential equation. It has the form

d . d , d

—U(2) =AxV(2), VY(z)e H(X), ——z=(\d)2z", (2)
d\ d\
where A € H?(X,C). Flat sections of this connection play a very important
enumerative role.

1.1.2

For Nakajima varieties, the formal series in z in (1) converge to rational func-
tions, and the connection extends as a connection with regular singularities
to a certain toric compactification

Kéhler moduli space D Pic(X) @ C* > 2.

In fact, the following representation-theoretic interpretation of this connec-
tion was proven in [37].

Recall that Nakajima quiver varieties [39, 40] play a central role in geo-
metric representation theory and very interesting algebras act by correspon-
dences between Nakajima varieties. In particular, quantum loop algebras
U (9xu) associated to a Kac-Moody Lie algebra gy, were realized geomet-
rically by Nakajima in equivariant K-theory of his quiver varieties, see [41].
Parallel results for Yangians Y (gx,) in cohomology were proven by Varagnolo
in [69].

A representation-theoretic description of the quantum differential equa-
tion requires a certain larger Lie algebra g D ggx. It coincides with the
Kac-Moody Lie algebra for quivers of finite ADE type and otherwise can
be significantly larger. This Lie algebra, together with the corresponding
Yangian Y'(g), was constructed in [37]. This construction will be recalled in
Section 3 below, in the generality of quantum loop algebras.



The Lie algebra g has a root decomposition
s=hoPae.

in which h = Pic(X) ® C @ center and o € £ Hy (X, Z)effective- The root sub-
spaces are finite-dimensional and g_, = g}, with respect to a nondegenerate
symmetric invariant form.

The main result of [37] reads

1MWk = AU =5 S (N @) — e+ ... 3
O =) U0 3 (o) )
where
AePic(X)®CcCh
and the subscript in .. means a shift of the form 2 +— (—1)(@%)24 for a
certain canonically defined k € H?(X,Z/2). We will see a parallel shift in
our formulas below (see the footnote after Theorem 4). Further in (3),

he Hi(pt) = (LieG)"

is the equivariant weight of the symplectic form and the pairing 6 - o with
the stability parameter § € H?(X,R) selects the effective representative from
each £« pair. The abbreviation

€al-o € oo C % (9)
stands for the image of the canonical element of g, ® g_, under multiplica-
tion. Finally, the dots in (3) stand for the a multiple of the identity. Such
normalization ambiguity is typical, and is resolved e.g. by the requirement
that the purely quantum part of (3) annihilates 1 € HY(X). We will see a
similar multiplicative scalar ambiguity in our main formula.
The poles in (3) are contained in

{z*=1,0<a<v}, (4)
where v is the dimension vector for a given quiver variety. The condition
a < v is necessary for g,H"(X) # 0 and hence for the occurrence of the

corresponding pole in (3). The singularities (4) lift to a periodic locally finite
arrangement of hyperplanes

{Na)eZ,0<a<v} (5)

on the universal cover H*(X,C) of the Kéhler torus Pic(X) ® C*. These
affine root hyperplanes will play an important role below.

4



1.1.3

The Yangian Y'(g) is a certain Hopf algebra deformation of the algebra
% (g[t]) of polynomial loops and one of its basic features is that the op-
erator ¢;(A) is a deformation of tA € h[t]. Thus (3) becomes an instance of
the trigonometric Casimir connection, studied in [68] for Yangians of finite-
dimensional semisimple Lie algebras, see also the work [66, 67] by Tarasov
and Varchenko.

In fact, the program of constructing the general Yangians Y (g) and iden-
tifying their Casimir connections with the quantum connection for Nakajima
varieties was born out of conjectures made by Nekrasov and Shatashvili on
one hand [46, 45] , and Bezrukavnikov and his collaborators — on the other.

Already back then it was predicted by Etingof that the correct K-theoretic
version of the quantum connection should be identified with a similar gener-
alization of dynamical difference equations studied by Tarasov, Varchenko,
Etingof, and others (see e.g. [65, 17] ) for finite-dimensional Lie algebras g. In
particular, Balagovic proved [4] that for a finite-dimensional g, the dynami-
cal equations degenerate to the Casimir connection in the appropriate limit.
While both our methods and objects of study differ significantly from the
above cited works, it is fundamentally this vision of Etingof that is realized
in the present paper.

1.1.4

For quivers of affine ADE type, Nakajima varieties are moduli of framed
coherent sheaves on the corresponding surfaces. In particular, the Hilbert
schemes Hilb(S, points), where S is an ADE surface, are Nakajima varieties.
Quantum differential equations for those were determined earlier in [50, 35],
and play a key role in enumerative geometry of curves in threefolds. Such enu-
merative theories exist in different flavors known as the Gromov-Witten and
the Donaldson-Thomas theories’. A highly nontrivial equivalence between
the two was conjectured in [33, 34] and its proof for toric varieties given in
[36] rests on reconstructing both from the quantum difference equation for
the Hilbert schemes of points in A,, surfaces.

In fact, it may be accurate to say that the GW/DT correspondence in

'Here the threefold need not be Calabi-Yau, to point out a frequent misconception. For
example, the equivariant Donaldson-Thomas theory of toric varieties is a very rich subject
with many applications in mathematical physics.



the generality known today, see especially [51] for state of the art results, is
proven by breaking the threefolds in pieces until we get to an ADE surface
fibration, for which the computations on both sides can be equated to a
computation in quantum cohomology of Hilb(S, points). It is not surprising
that such a connection exists, because a curve

C' — Hilb(S, points)

defines a subscheme of C' x S. However, it is very important for S to be a
symplectic surface for this correspondence to remain precise enumeratively,
and not be corrected by contributions of nonmatching strata in different
moduli spaces.

As a particular case of our general result, we compute the quantum dif-
ference connection in the quantum K-theory of Hilb(S, points). This has an
entirely parallel use in K-theoretic Donaldson-Thomas theory of threefolds,
see [47]. There is a great interest in this theory, for instance because of
its conjectural connection to a certain curve-counting in Calabi-Yau 5-folds,
which is expected to be an algebro-geometric version of computing the con-
tribution of membranes to the index of M-theory, see [44].

1.1.5

Another reason why quantum differential equations are important is because
the conjectures of Bezrukavnikov and his collaborators relate them to repre-
sentation theory of quantizations of X, see for example [15] and also e.g. [7]
for subsequent developments.

Much technical and conceptual progress in representation theory has been
achieved by treating algebras of interest, such as e.g. universal enveloping al-
gebras of semisimple Lie algebras, as quantizations of algebraic symplectic
varieties, see e.g. [6, 8, 22, 5], especially in prime characteristic. By con-
struction, Nakajima varieties are algebraic symplectic reductions of linear
symplectic representations, and hence come with a natural family of quanti-
zations X,. Here )\ is a parameter of the quantization, which is of the same
nature as commutative deformations of X, e.g. the central character in the
case

% (g) /central character = Quantization of T*G/B.

For example, the Hilbert scheme of n points in the plane yields the spherical
subalgebra of Cherednik’s double affine Hecke algebra of gl(n) — a structure
of great depth and importance in applications.
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Using quantization in characteristic p > 0, one constructs an action of
the fundamental group of the complement of a certain periodic locally fi-
nite arrangement of rational hyperplanes in H?(X,C) by autoequivalences
of D%(Coh X). It is known in special cases and conjectured in general that
these hyperplanes coincide with (5) and, moreover, one conjectures a precise
identification of the resulting action on K (X) with the monodromy of the
quantum differential equation. This can be verified for the Hilbert schemes
of points and other Nakajima varieties whose fixed loci under a torus ac-
tion consists of isolated points [50, 9] and it is quite possible that similar
arguments can be made to work for general Nakajima varieties. There are
parallel links between the singularities of (3) and representation theory of
X, for special values of \ in characteristic 0, see [15].

1.1.6

An important structure which emerges from the quantization viewpoint is an
association of a t-structure on D%(Coh X) to each alcove of the complement
of (5) in H*(X,R). The abelian hearts of the corresponding ¢-structures are
identified with X yx-modules for the corresponding range of parameters \. In
this way, the action of the fundamental group by derived autoequivalences
of Coh X fits into an action of the fundamental groupoid

B=m (HQ(X, C) \ affine root hyperplanes)

by derived equivalences between the categories of X x-modules. In particular,
B acts on the common K-theory K¢ (X) of all these categories.

The main object constructed in this paper is a dynamical extension of
the action of B on K (X). By definition, this means that the operators of
B depend on the Kahler variables z and the braid relations are understood
accordingly.

To be precise, in this paper we construct a dynamical action of B and we
prove its relation to the quantum difference equation. The connection with
quantization in characteristic p > 0 is not considered in this paper, see [9].
Similarly, a categorical lift of the dynamical action at this point remains an
open problem. It is possible that it easier to categorify the monodromy of
the quantum difference equation, which can be characterized in terms of an
action of an elliptic quantum group on the elliptic cohomology of Nakajima
varieties, see [2].



1.2 Quantum difference equations
1.2.1

The quantum difference equation is a flat g-difference connection
U(g?2) = My(2)U(z2)
on functions of z with values in Kg(X). It shifts the argument by
2 g%z,

where .Z € Pic(X) is a line bundle on X or, equivalently, a cocharacter of
the Kéhler torus Pic(X) ® C*. See [47] for an introductory exposition of
their construction and enumerative significance; these are briefly recalled in
Section 4.

In particular, in [47] it is shown that these equations commute with the
quantum Knizhnik-Zamolodchikov equations for the %(g)-action on Kq(X).
This commutation property will be the key ingredient in determining the
quantum difference equation.

1.2.2

The arrangement (5) is periodic under the action of the lattice Pic(X) and
hence there is a copy of this lattice in the fundamental groupoid. Our main
result is the identification of this lattice with the operators of the quantum
difference equation.

Concretely, this means the following formula for the quantum difference
equation. Let

V C Pic(X) @ R\ {affine root hyperplanes}

be the unique alcove contained in minus the ample cone and whose closure
contains the origin. Let £ be an ample line bundle and choose a path
connecting V to the alcove V — Z. Let wy,ws,... be the ordered list of
affine root hyperplanes that this path crosses.

Each w determines a set of affine roots that vanish on it and the corre-
sponding rank 1 subalgebra

g C g =g®C[tT].



While there is no canonical root subalgebra %4,(g.,) C %,(g) in the quantized
loop algebra, the choice of a path as above is precisely the additional data
needed to fix such %(gy)-

Each %(g.) is a triangular Hopf algebra and to any such one can asso-
ciate a universal element B,,(A), A € b, in its completion. It reduces to the
dynamical operator of Etingof and Varchenko when g,, = sl,. When g, is a
Heisenberg algebra, which happens in the case of Hilbert schemes of points
in ADE surfaces, there is an equally explicit formula for the element B,,()\),
see Sections 6 and 7.

Our main result, Theorem 9, says that

Mgy = const Z ---B,,Bu,Bu,

where .Z is the operator of tensor product by .2 in Kg(X). By the basic
property of the fundamental groupoid, the result is independent of the choice
of the path.

1.2.3

Intertwining operators between Verma modules, which are the main technical
tool of [17], are only available for real roots and g, = sly. Outside quivers
of finite ADE type, these do not generate a large enough dynamical Weyl
group. It is therefore important to use an abstract formula for the operator
B, (A).

Such a general formula is given by

— (-1
Bu(A) = m(l @ Su( 3, () )) ‘)\a)&shift ' (6)
where J~ lies in a completion of the tensor square of %;(g,) and is a fun-
damental solution of a qKZ-like equation known as the ABRR equation in
honor of D. Arnaudon, E. Buffenoir, E. Ragoucy, and Ph. Roche [3]. One
then applies the antipode S, of %,(g.) in one of the tensor factors and the
multiplication map

m: %fi(gw)@Q — U(9w)

to get an element in the completion of %4 (g.)-
One makes B, a function of A € h via the natural surjection

b= b, =0, (7)



where b, = C is the Cartan subalgebra of g,, and H is the Cartan subalgebra
of g that includes b and the infinitesimal loop rotation t%. In particular, the
operator B,,(\) depends on ¢ via

Tag 7 tat

The shift in (6) includes the shift by A*, where
2k =w—Cv

is the weight of the component with dimension vector v with respect to the
geometric action of the quantum loop algebra. Here C' is the Cartan matrix
of the quiver. The shifts by A in all formulas can be traced to the Acodim/4
prefactor in R-matrices, see Section 2.3.7.

For quivers of finite or affine type, all root subalgebras are either sl, or
Heisenberg algebras, and the general formula for B, (\) may be converted
into something very explicit. We consider these examples in Sections 6 and 7.

1.2.4

The main result of this paper is a description of the quantum difference
equations that arise in the enumerative K-theory of quasimaps to Nakajima
varieties, see [47] for an introduction. This is the natural generality in which
our methods of geometric representation theory work.

There exist both more general and more special problems in enumerative
K-theory. A very general study of K-theoretic questions using the moduli
spaces of stable maps was initiated many years ago by Givental. In that
theory, there exist difference equations as shown by Givental and Tonita
[20]. The general theory lacks certain crucial self-duality properties that
are exploited in the construction of the quantum Knizhnik-Zamolodchikov
equations, see the discussion in [47], and it remains to be seen how much
progress one can make in the study of the difference equations of [20].

On the other side, there exist quantum K-theory of homogeneous spaces,
initiated by Givental and Lee [19] who discovered, in particular, its connec-
tion to the difference Toda equations. One expects this theory to extend to
symplectic resolutions 7*G/ P, with a connection to Macdonald theory sim-
ilar to [10]. For G = GL(n), these were studied in [19]. In this case, T*G/P
is a Nakajima variety for a linear quiver and so is covered by our result.
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The relation of the quantum dynamical Weyl group to Macdonald operators
was already explicitly present in the original work of Etingof, Tarasov, and
Varchenko.

1.3 Other directions

Substantial progress has been made since the first release of this paper in
2016. The construction of stable envelope, which is an important tool of
this paper, was generalized to elliptic cohomology setting in [2]. Explicit
combinatorial formulas for the elliptic, K-theoretic and cohomological stable
envelopes are now available for many classes of varieties [62, 14, 60]. The
class of varieties for which the stable envelope exists has been extended in
[49], see also [55] for a super-algebra generalization.

An important new feature of the elliptic stable envelope is that, in addi-
tion to the torus equivariant parameters, it depends on the Kahler parame-
ters. This makes the elliptic stable envelope a natural object in the study of
the so called three-dimensional mirror symmetry which, among other things,
interchanges the equivariant and the Kahler parameters. Three-dimensional
mirror symmetry of the elliptic stable envelope has been investigated and
proven for many examples of symplectic varieties, see [58, 56, 64, 57, 13].

The elliptic stable envelope provides the transition matrices between var-
ious bases of solutions of the quantum difference equations which we study
in this paper, see [2]. In particular, one can use the elliptic stable enve-
lope to describe the monodromy of these equations and to obtain integral
representations for their solutions [48, 1]. These results, combined with the
three-dimensional mirror symmetry, lead to a new geometric descriptions of
many constructions of our paper. As an example, the dynamical braid group
generators (6), playing the most fundamental role in this paper, can be iden-
tified with K-theoretic R-matrices of certain subvarieties of the 3D-mirror
variety [63], see also [25, 26] for similar applications.

The ¢ — 1 limit of the quantum difference equations provides a natural
description of the quantum K-theory ring of corresponding varieties. Our
results can be used to relate quantum K-theory rings to known integrable
systems and give a proof of various predictions from theoretical physics [52,
27, 28|.
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2 Equivariant K-theory of Nakajima varieties
and R-matrices

2.1 Stable envelopes in K-theory
2.1.1

Let X be an algebraic symplectic variety and GG a reductive group acting on
X. Since the algebraic symplectic form w on X is unique up to a multiple,
the group G scales w by a character h. Replacing G by its double cover if
necessary, we can assume that h'/? exists.

Let A C G be a torus in the center of G and in the kernel of h. By defini-
tion, the K-theoretic stable envelope is a K-theory class on the product [47]:

Stab € Kg(X x X*),

uniquely defined by certain support, degree, and normalization conditions.
The corresponding conditions are summarized in the Theorem 1 below. The
stable envelope provides a wrong way map

Stab : Kg(X?) = Kg(X),
which we denote by the same symbol.

2.1.2

The construction of stable envelopes requires additional data, namely the
choice of:
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e a cone € C Lie(A), which divides the normal directions to X* into
attracting and repelling ones and determines the support of Stab,

e a polarization T2 € Kq(X), which is a choice of a half of the tangent
bundle T'X € K (X), that is, a solution of

T2 ¢ ht @ (TV?) =TX 8)
in Kg(X)7
e a slope s € Pic(X) ®z Q, which should be suitably generic, see below.

Of these pieces of data, the cone € is exactly the same as in cohomology [37].
The polarization reduces in cohomology to a certain sign, while the slope
parameter is genuinely K-theoretic.

We recall from [37], Section 2.2.7, that a Nakajima variety, like any sym-
plectic reduction of a cotangent bundle, has natural polarizations. For any
polarization T2, there is the opposite polarization

TV = e (TV2)” (9)

opp

2.1.3

Let .4 be the normal bundle to X”* in X. The A-weights v appearing in .4
define hyperplanes {v = 0} in Lie A. By definition, a cone

¢ C LieA\ | J{v =10}

is one of the chambers of the complement. We write v > 0 if v is positive on
€. A choice of € thus determines the decomposition

N =N D AN

into attracting and repelling directions, with the corresponding attracting
manifold

Attr = {(as,y),lir%a-x:y} C X x XA
a—

where a — 0 means that v(a) — 0 for all v > 0.
We define the full attracting set Attr/ € X x X* as the minimal closed set
which contains the diagonal X* x X and is invariant under taking Attr(-).
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In other words, the components of Attr’/ are obtained from the components
of the diagonal X x X* iterating taking Attr(-) and the closure. The stable
envelope is supported at the full attracting set:

supp(Stab) C Attr? . (10)

2.14

Let F be a component of X*. By Koszul resolution,

ﬁAttr

= ﬁdiagF X A._f/‘/_v )
FxF
where the subscript in A° indicates an alternating sum of exterior powers.
We require

Stab

= = line bundle ® O,
FxF FxF

where the sign and the line bundle are determined by the choice of polariza-
tion.
Concretely, let

1/2 1/2
2|, =1, e T,

v

be the splitting of the polarization into trivial and nontrivial A-characters.
We have

\Y%
N TS =0t (T2F) o T,

and therefore the determinant of this virtual vector bundle is a square (recall
that we replace GG by its double cover if the character A is not a square). We

set
det A 2
e _
Stab = (_1)rkTi{)2 <—1/2> ® Oatr
FxF det T;éo FxF

(11)

2.1.5

The key property of stable envelopes are degree bounds satisfied by Stab | FyxFy’

where F} and F, are two different components of X”. Note that because of
the support condition, this restriction vanishes unless F» < Fj in the partial
ordering defined by the closures of attracting manifolds, that is, by

Jr, lima*'z € Fy = F, > F_.

a—0
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Recall that in cohomology the degree bound reads

d Stab < d Stab 12
€ga nta Fox €ga vta FoxFy ] ( )

where deg, for an element of
HE (X", Q) = Heya(X*,Q) © Q[Lie Al

is its degree in the variables Lie A.

2.1.6

Now in K-theory the degree deg, f of a Laurent polynomial

f= fud" € ZA] = Ka(pt)

HEAN

is its Newton polygon

degn f = Convex hull ({y, f, #0}) C A" @2 Q,

with the natural partial ordering on polygons defined by inclusion.

Such a definition has a caveat, in that the degree of an invertible func-
tion a* should really be zero, and so the Newton polygons should really be
considered up to translation by the lattice A*. If we want to compare two
Newton polygons by inclusion, a possibility of inclusion after a shift appears,
and this is where the slope parameter s comes in.

The K-theoretic analog of (12) is the following condition

degy Stabg ® s

C degp Stabg
FQ ><F1

® s
FQXFQ

: (13)

F>

F1

where the weight of a fractional line bundle s € Pic(X) ®z Q is a fractional
weight, that is, an element of A" ®; Q. Note that (13) is independent of
the A-linearization of s. The dependence of the stable envelope Stab, on the

slope s is indicated for emphasis in the LHS of (13). The degree of Stab

Fox Fy
is given by (11) and is independent of s.

Remark 1. Observe that for a sufficiently generic s the inclusion in (13) is
necessarily strict, as the inclusion between fractional shifts of integral poly-
topes.
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2.1.7

Let us summarize the above definitions in the following result:

Theorem 1. Let X be a Nakajima variety, then for an arbitrary choice
of chamber ¢ C Lie(A), polarization T'? C Kq(X) and generic slope s €
Pic(X) ®7Q there exists a unique K-theory class Stabg 12, € Ka(X x X*)
which satisfies

1) support condition (10)

2) degree condition (13)

3) normalization condition (11)

Remark 2. Stronger results were obtained since the first release of this pa-
per. For the Nakajima varieties a version of above theorem for the elliptic
stable envelope was proven in [2]. The existence and uniqueness of the elliptic
stable envelope then implies Theorem 1 in the K-theoretic degeneration of
elliptic cohomology, see Section 4.5 in [2]. The existence of the stable enve-
lope under weaker conditions on X was also proved in [49]. In particular, the
existence of polarization of X is replaced in [49] by a weaker condition of ex-
istence of attracting line bundles. With these new tools, many constructions
of this paper translate to a setting more general than Nakajima varieties.

Uniqueness of stable envelopes implies the following transformation law
under duality on X x XA

(StabQTm’ )\/ =h" codim(X*)/4 Stab 1/2 . (14)

S ¢, Topp y =S

Here T (}gﬁ is the opposite polarization (9).

2.1.8

To keep track of the weights of the line bundles s restricted to components of
the fixed locus, it is convenient to introduce a locally constant map (a form

of moment map)
o XA — Hy(X,Z) @ A, (15)

defined up to an overall translation, such that

W(F) - p(F) = [Cl o
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if there is an irreducible A invariant curve C joining F; and F3; with tangent
weight v at F}. For any s, we then have

weight 8’F1 — weight S|F2 =(s,C)v.
By construction

Stab

Fox Fy 7é 0= ,U‘(Fl) - IJ’(FQ) € HZ(X’ Z)eff® A/>\0’ <16)

where A%, is the cone of weights positive on €.

2.2 Slope R-matrices
2.2.1

Following the sign conventions set in Section 3.1.3 of [37], we define the
transposition
KXxY)2&— 8 € K(Y x X)

as a permutation of factors together with a sign (—1)dimX—dim¥)/2,

The following is an analog of Theorem 4.4.1 in [37]

Proposition 1.
StabT 1/2 o StabQ’TI/27

T B s=1. (17)
s Lopp>
Here we do not distinguish between the structure sheaf of the diagonal and

the identity operator by which it acts on the K-theory.

Proof. Since the support of stable envelopes is the same as in cohomology,
the convolution (17) is an integral K-theory class on X* x XA,
Denoting by . and . the two stable envelopes in (17), we have

odim iy | ® S|
- codim F3 Fox F FoxF
(P70 P = D (TR 1)

1 >F>F3

by equivariant localization and the support condition, where F; are compo-
nents of the fixed point locus X*.

Since the convolution (18) is integral, its Newton polygon may be esti-
mated directly from (18). We denote by

p=(u(F3) — u(F),s) e A" @Q
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the difference of weights of s at F3 and F;. We have p ¢ A" for generic s
unless F3 = F} because an ample line bundle will pair nonzero with p(F3) —
p(Fy).

The degree bound (13) implies each term is O(|a|*) as a € A goes to
infinity in any direction. Since this number is fractional for F3 # F; while
the asymptotics are integral, it follows that terms with F} # F3 in (18)
vanish.

The remaining terms with F; = Fy, = Fj3 are easily seen to give the
identity operator. O]
2.2.2

In the same way, stable envelopes may be defined for real slopes s € H?*(X,R).
They depend on the slope in a locally constant way and change as s crosses
certain rational hyperplanes

w {se H*(X,R): (s,a) +n =0}, (19)

which we will call walls. Here
a=(a,n) € Hy(X,Z)DZ (20)

is an integral affine function on H?(X), which we call an affine root of X.
The connected components of the complements to the walls in H?*(X,R) are
called alcoves.
Below we will see that +« is an effective curve class for any affine root
a. If n #£ 0, we set
a'=1a e Hy(X,Q).

n
This depends only on the wall and not on the particular normalization of its
equation.

2.2.3

Let us consider two slopes s and s’ separated by a single wall w. To examine
the change in stable envelopes across the wall, we define the wall R-matriz:

RS = Stab! (21)

¢, T2, 8 9] StabQ‘,Tl/Z’

s *

To distinguish RS from its inverse, we assume

(s —s,a) >0.
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for the positive root o defining the corresponding wall. If we cross the wall
from s to s’ we say that it is crossed in the positive direction.

Theorem 2. We have
Rt =0

w F3><F1

unless
p(F) —p(f3) =a' ®@p (22)

where &' € Hy(X,Q)er and p is an integral weight of A positive on €. In this
case

dega Ri =K.
F3><F1

If n = 0 the condition (22) means u = 0 and that w(Fy) — p(F3) is propor-
tional to «.

As a corollary of the proof, we will see that

¢
R, rer 1.
Proof. As in the proof of Proposition 1, we see that RS is an integral K-
theory class and we compute its restriction to F3 x F; by localization as in
(18).
Consider the localization term corresponding to a component F, of X*A.
The slope-dependent part of its degree is

(W(Fy) — p(Fy), s) + (u(F3) — p(Fy), s)
= (u(F3) — p(F),s') + (u(F2) — p(F),s — ) (23)
= ((F3) — p(Fr), 8) + (u(Fo) — pu(F3),s — 5') . (24)

Since the ample cone is open, we may assume that +(s—s') is ample. If s > &,
the second summand in (23) is a negative weight, while the second summand
in (24) is a positive weight. If s < &', these conclusions are reversed. But in
either case,

R, = O(la]")

w F3x Fy

as a — 0 or a — oo, where

p={p(F3) — p(F), z)

19



for x € w and a — 0 as before means that v(a) — 0 for every positive weight
v. Since this is a Laurent polynomial in a, this means vanishing unless p is

an integral weight and RS, is a monomial.
F3><F1

For generic s on the hyperplane (19) the weight p is integral only if
p(F) — p(F3) e Qa o A™.

From (16) and since (z,a’) = —1 for n # 0 by construction, we conclude
(22). If n = 0 we have (z,a) = 0 and hence p = 0. O

2.3 Root subalgebras
2.3.1

We recall that Nakajima varieties depend on a quiver with a vertex set I, two
dimension vectors v,w € N’ and a stability parameter § € R/. The complex
deformation parameter ¢ € C!, which is the value of the complex moment
map in symplectic reduction, will always be set to zero in this paper. We fix
6 and denote

M) = | Ay(v,w).

We take the canonical polarization from Section 2.2.7 in [37] as polarization
T'/2 of Nakajima varieties.

2.3.2

Let W be a framing space defining a Nakajima variety with dimension w.
Let us consider its arbitrary decomposition into a direct sum of subspaces
W = W’'"a@ W” with dimensions w' and w”. Assume that a torus A = C*
acts on W scaling W’ with a character ' and W” with a character a”. In
this situation we say that A splits the framing w = a'w’ + a”"w”.

This action induces an action of A on the Nakajima variety .# (w). The
basic property of the Nakajima varieties is that the set of the A fixed points is

the product of Nakajima varieties for the same quiver but different framings:
MW= (W) x (W),
such that after localization:

Ka( M (W)*) = K (A (W) @ Ka(A(W")).
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One checks that the A characters appearing in the normal bundle to . (w)*

are of the form u*!, where u = a'/a”. Thus, we only have two chambers
which correspond to u — 0 and v — oo. We denote them by + and —
respectively. For a slope s these give the stable maps:

Staby , : Ka( A (W) @ Ka( M (W) = Ka( A (w+w))

for any G that commutes with A. To examine the change of the stable map
under the change of the chamber we introduce the following total R-matrix
with slope s:

K°(u) = Stab:}s oStaby g, (25)

One checks that it depends only on the ratio u. Just like the cohomological
R-matrices, Z°(u) acts in a localization K¢ (4 (w))® Ko (4 (W')). However,
the coefficients of the u — 0 or u — oo expansion of %Z°(u) are operators
in nonlocalized K-theory. The variable u is traditionally called the spectral
parameter.  The operators %°(u) satisfy the Yang-Baxter and unitarity
equations for arbitrary slope s, see (9.2.20) and (9.2.22) in [47] for explicit
form of these equations.

2.3.3

Let F} # F, be two components of XA. Let us consider the degree condi-
tion (13) as the slope s approaches infinity along the ample or anti-ample
direction in Pic(X) ®7z Q. By (13) in this limit the A characters appearing in
the restriction Stab|, approach infinity in Lie(A). Thus, in the suitable
topology of power series we have
sginoo Stabi’s’F1><F2 = 0.

Therefore, we can characterize Staby ., as the classes with restrictions (11)
near diagonal and vanishing at non-diagonal terms of X* x XA. Explicitly:

— i (e ( Qe AR N e A
Stabe a0 = Stabi, s = i (1) (det(T%)) S (AY)) € Ka(Xx X )i

where i is the inclusion of diagonal XA x XA — X x XA
We can include the given slope s into an doubly infinite sequence

... 85_9,5.1,8) = 8,817,892, ... (26)
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such that
§; — oo, 11— +o0,

where s; — +00 means that s; goes to infinity inside the ample cone of X.
We can assume that s; and s;;, are separated by exactly one wall w; and
that the sequence {s;} crosses each wall once. We can write the following
obvious identity:

Stab_,_,s =
Stab joo - - - Staby ,, Stabl!, Stab, ,, Stabl', Stab, , =
Stab+7+oo cee R$2R7j1 RjUO

Similarly for the negative chamber:

Stab_ ; =
Stab_ _o---Stab_ ,_, Stab~!,  Stab_ ,  Stab_',  Stab_ , =

Stab-, oo+ (Ry,_,) 7 (Ry ) (Ry )7
In the last case we cross the walls in the negative direction and by our
convention from Section 2.2.3 the corresponding contribution is given by the
inverse of the wall R-matrix.
From definitions we find

det A~

1/2
A (V) @y
det T;{f ) ( )

Stab oo (7)]p = (—1) 70 (

1/2
e (et A .
Stab- )] = (~1*7% (W) wese
#0

for any ~y supported at a component F' C XA. The restriction of Stab . (7)
to other components of X” vanish and thus R, := Stab:}_oo oStab, o is

diagonal in the basis of fixed components with the following matrix elements:

_ (_1)Codim(F)/2 I_IU<O(/UI/2 - U_1/2)
1_[1)>[)<Ul/2 - U71/2)

22
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where v are the Chern roots of A%. All together this gives the following
factorization of the total R-matrix:

s/ \ def 1 = = .
Z°(u) = Stab~! Stab, , = [ [ Ru, Reo [[ RS, (28)

1<0 >0

where ﬁz stands for the product of matrices ordered from right to left as
the index i increases. The factorization (28) converges in the topology of the
formal power series around u = oo as will be explained in the next section.
Similarly we can factorize the total R-matrix into infinite product near u = 0.
We consider:

Stab+,s =
Staby _o - --Staby ,_, Stab!,  Stab, , , Stabl',  Stab, , =

Staby oo (RE ) THRS )RS )T
and

Stab_ =

Stab_ -+ -Stab_ , Stab~', Stab_ , Stab~', Stab_ , =

= 52 - 51
Stab_ yoo - Ry, Ry Ry

This gives another factorization:

dof — —
X*(u) = Stab:}s Staby s = H (R,)™ Ry H(RL)” ; (29)

o i<0
with the same R, given by (27). We will call these formulas Koroshkin-
Tolstoy (KT) factorizations of total R-matrices.  An explicit example of
KT factorization for the simplest quiver variety X = T*P! can be found
in Section 6.1.7. For the quivers of finite type this formula reproduces the
factorization of quantum R-matrices considered in [23].

2.3.4

Recall that the partial ordering on the components of the fixed point set
coincides with “ample partial ordering”. If € Pic(X) is a choice of ample
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line bundle, and ¢ € € is a character of A then:
BAF & (0p,0) <(0n,0)

The choice of the stability parameter § € Z! for a Nakajima variety de-
fines a certain ample line bundle. If the fixed components have the form
F = #(v,w) x #(V',w') then the function defining the ordering takes the
following explicit form:

(Op,0) = {v,0)c + (V',0)0’

All the operators A acting in K-theory which we consider in this paper will
preserve the total weight, i.e., A = @ A, with:

Aa : Kg(Fl) — Kg(FQ)

and Fy = A (v,w) X AN W), Fy = M (v+a,w) X (N —a,w). Therefore
the difference of ordering function takes the form:

(0r,, 0) = (O, 0) = (a,0) (0 — o) (30)

In the present text we will always assume that the fixed components are
ordered using the positive chamber o —o’ > 0. Thus the sign of the difference
(30) is given by a sign of («, 6).

We will use the following terminology: an operator A = @@ A, with A,

as above is upper-triangular if («,0) > 0 and lower-triangular if {(a,0) < 0
for all « # 0. We say that A is strictly upper-triangular or strictly lower-
triangular if in addition Ay = 1. For example, the wall R-matrices R, and
R, are strictly upper and strictly lower triangular respectively. In particular,
the Khoroshkin-Tolstoy factorization (28) gives a LU decomposition of the
total R-matrix.

2.3.5

Let .%,, be a line bundle on the wall w. The wall R-matrices RE are triangular
with monomial in spectral parameter u matrix elements:

1 s Fl - F2 )
RE L wlBF2)—p(F1). L) P zF, (31)
0, otherwise .
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The condition (16) means
RE—1, w— +oo,

in the topology of formal power series.

2.3.6
From (27) we obtain

lim Ry, = A~ lim Ry, = A" (32)

u—0 U—00
where () is the codimension function:

~ codim(F)

Qy) = . (33)

for a class v supported on the fixed set component F' € . (w)”.

2.3.7

For Nakajima varieties, the codimension function (33) has the following de-
scription. For a torus A splitting the framing w = a’'w’ + a”"w”, every compo-

nent F' € . (v,w)" is of the form
F=4NwW)x.#N w" (34)
for some dimension vectors v/, v”. We have, see e.g. Section 2.4.2 in [37],

dmF 1 1
CEES = W) W) = SOV, (35)

where C' is the Cartan matrix of the quiver, see e.g. Section 2.2.5 of [37].
The map p has the form:
p(F)=v®l (36)

where 1 € A" is the weight of u, see e.g. Section 3.2.8 in [37].
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2.3.8

Let wy be a wall labeled by k£ € Z as in Section 2.3.3 and let %, be a
fractional line bundle at w;. We denote

5 (u), = Uy " %°(u) Uy

where Uy is a block diagonal matrix with the block corresponding to compo-
nent (34) given by:

Uk: _ (a/)<v/7jwk> (a//)<\,//7$wk>
F

Similarly we define:
Rik =U, " Rii Uy.
If Fi = #(V,wy) x AN, W) and Fy = (v, wh) x A (v, wh) are two

components of .# (v,w)”, then we have

/j?/ N (a/)(v’z,iﬂwk>(a//>(v’2/,$wk)
w;,k FyxFy =y, Fy % Fy (a’)<vll’gwk>(a”)<vl1/,fwk)'

Noting that vi 4+ v{ = v, + v we can rewrite this as

—_~—

+

! !
Vo=V, Lwy,)
w;,k

u
F1xF>

= R*

Wi

F1 x Fy

where u = d’/a”. From (31) and (36) we then find

—+ !\l _ )
Rwiak‘|F1><F2 - x U<V2 Vljzwk ng) ) Fl 2 F27 (37>
0, otherwise .

By construction of the sequence (26) we have:

(0, L — L) 20, iSk, (0, Lo —Lo)=0, i=k

—~—

when « is effective. From block-triangularity of RL r we see that in the
limit v — oo all non-diagonal matrix elements vanish for £ < 7. The matrix
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—_~—

elements of R; , do not depend on w if i = k. In summary we can write it
as

L DNE, k> i
Uk( lim R k) U ={ Rt k=i (38)

U—00 v t .

1, k<1

where DNE means that the corresponding limit may be undefined in this case.

—~—

The matrices R, are lower-triangular and similar consideration gives:
1y

o 1, k>
Ui( lim R, JU =4 Ry, k=i (39)
e DNE, k<i

Conjugating KT factorization around u = oo (28) by U, we obtain:
K (u), = H R, B Hthk
i<0 >0
From (38), (39) and (32) we see that £ = 0 and k = —1 are the only two

choices for which the limit © — oo of all factors in this product is well defined.
For these values the limit equals:

h® R k=0
: S -1 _ wo ) )
Ue (JLI?O‘@ (“)’“> U = {3;1 K, k=1, (40)
Arguing similarly for KT-factorization near u = 0 (29) we find:
: s -1 __ (R;())_lh_ﬂ ) k= 07
Ui (ili%‘@ (“)’“> U = {h—ﬂ (RY_ )Y, k=-1. (1)

In summary, we see that the wall R-matrices for wq, w_; which are the walls
immediately before and after the slope s in (26) can be obtained as limits of

K (u). As Z%(u) solves the quantum Yang-Baxter equation for any s, the
same is true for their limits. We thus obtain:

Theorem 3. The wall R-matrices multiplied by h*:
RRE RER®
satisfy the quantum Yang-Bazter equation for any wall w.

In what follows we denote

R: = h®RE. (42)

27



2.3.9

Let us show that K-theoretic R-matrices (25) are unitary for an arbitrary
slope s. The derivation follows the same steps as in cohomology and we refer
to Section 4.5 of [37] for more details.

Let A = C* and let us consider the action of A on a Nakajima variety
A (v,w) corresponding to the splitting of the framing w = aw’ + w”. Let
F=.4(,w)x.#\" w') be acomponent of .4 (v,w)".

Similarly, let us consider the A-action on .# (v, w) corresponding the split-
ting w = aw” +w’. We denote by Fy; = #Z (V' ,wW") x .4 (V',w') the A-fixed
component corresponding to [’ under this action.

In the second case the A-action on .# (v, w) is the opposite of the A-action
in the first case. This means that the original action of A is precomposed
with the automorphism

d:A—=A odraral

We note that the correspondence Stabg 1/2  is exactly the correspondence
Stab_g 11/2 5 for the opposite action. Note also that the G-characters of the
normal bundles in these cases are related by:

By uniqueness of the stable envelopes we obtain:

(43)

Stab€7T1/275‘F><F’ - < Stab_C’T1/27S|F21XF2/1 > a—a~1 .

For an operator A € End(Kq (A4 (W))® Kg (4 (w"))) we denote by Ay €
End(Kg( A (W)@ Kqg(A (W'))) the operator corresponding to the permuted
matrix elements:

(A21)rr = Apyy 1y, -
With these notations from (43) we obtain the following result:

Proposition 2. K-theoretic R-matrices (25) of Nakajima varieties satisfy
the unitary condition:

R (u) = A (u™)y (44)

Remark 3. For an explicit example of identity (43) we refer to (120) and
(121) describing the stable envelopes for X = T*P!. In notations of this
example XA = {p;, po} with (p1)21 = p2, (p2)21 = p1. We also encourage the
reader to check that (44) holds for matrix (122).
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3 Construction of quantum groups

As we explain in Section 2.3.1 the equivariant K-theory of a Nakajima variety
provides a set of vector spaces K (. (w)) labeled by a dimension vector
w € ZHIl For any splitting of the framing w = uw’ + w” our construction
gives an R-matrix which acts in Kg(#Z(W')) @ Kg(#(w")) and satisfies
the quantum Yang-Baxter equation. This is a well known set up for the
Faddeev-Reshetikhin-Takhtajan formalism [54]. Using these data the FRT
construction provides a triangular Hopf algebra %, (g¢) acting in Kg (4 (w))
for all w.

Similarly, applying the FRT construction to the wall R-matrices RE one
constructs a set of triangular Hopf algebras %(g,,) which are, in fact, sub-
algebras of %,(9q)-

The aim of this section is to review the FRT method and to explain the
interaction between Hopf structures of different wall subalgebras %4 (g.)-

3.1 Quiver algebra %(gg)
3.1.1

For a splitting w = wywy + -+ - + u,w, and a slope s C H?(.# (w),R) the
construction of Section 2.3.2 provides a set of R-matrices

Ay, v, (uifuj) C End<V1 ®- - ® Vn> ® Clui, ..., u],

with Vi, = Ko (4 (wy)) satisfying the Yang-Baxter equation. We denote
Vilw) £ Vi @ Clu*!
and more generally

Vi) ®- -2V (u) @ Vi, @@V, ®Clut, .. u!

n n

3.1.2

We have a set of vector spaces 2 such that for any pair V;, V; € U we have
an R-matrix 2y, . (ui/u;).
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First, we note that this set is closed with respect to the tensor product.
The R-matrix for the tensor products has the following form:

—

R . _ B (). 15

& Vi(ui), ® Vi(ui) HH Vz,VJ( /J) ( )
i€l jeJ i€l jed

Second, following [53] we can assume that this set contains dual vector spaces
V.* with R-matrices defined by the following rules:

Ry vy = (Z0,) )"
Ry = (A, 0,) 7)™
'@\S'/l*,vz* = (1@317‘/2)*12

where *; means transpose with respect to the k-th factor. One checks that
the R-matrices defined this way satisfy the quantum Yang-Baxter equation
in the tensor product of any three spaces from the set U.

3.1.3

In the FRT formalism the quantum algebra %,(gg) is defined as the subal-
gebra

% (30) € [ [ End(v)

vey
generated by matrix elements of

Ry v, (u) € End(V) ® End(Vp) (46)

in the “auxiliary space” Vj for all choices of V € U.
An element of %*(gg) is fixed by a choice of the following data: an
auxiliary space V), a finite rank operator

m(ag) € End(Vp)(ao)

an integer | € Z and i € {4, —}. The element of %*(gq) corresponding to
this data acts in a representation V' (a) as the following operator:

Phtuns = Coeflly (trv, (1@ m(ao) 25y, (1)) € End(V(a)) (47)
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where %y, (u) is the R-matrix acting in V' (a) ® Vo(ag) with u = a/ag, and
Coeff;’l, Coeff , denote the coefficient of aly in the Laurent series expansions
0 0

near ag = 0 or ag = oo respectively. Since m(ag) is of finite rank the trace
over the auxiliary space Vj is defined even if it is infinite-dimensional.
The algebra %;(gq) is generated by all pi, ;.

Proposition 3. The algebras % (8q) are isomorphic for all s.

Proof. Let s and s’ be two slopes separated by a single wall w. Enough to
show that %°(go) and % (go) are isomorphic. From Khoroshkin-Tolstoy
factorization we find that

% (1) = (R, (w)) %" () Ry (u) = (R (u™")21) ™" 2 (w) R (u)

where the last equality is by (48) and definition (42).

It is known that the wall R-matrices R satisfy the cocycle condition, see
Corollary 2 in Section 5.3.1. Thus, the R-matrices %°(u) and %* (u) provide
isomorphic algebras by Theorem 2.3.4 in [32]. ]

Proposition 4.
RS = (Ro)at|,_, 1+ Ry = (Ry)nl,_, (48)

Proof. The first equality follows from (44) together with limits (40) and (41).

In notations of Section 2.3.9, the codimensions of the torus fixed com-
ponent F' = A (V' W) x AN, wW') and Fy; = AN, W") x AV, W) in
A (v,w) are equal. Therefore ) = )y; which gives the second equality. [

As the algebras %°(gg) are isomorphic for all s we will denote them
by %,(8q)-

3.2 Wall subalgebra %;(g.,) C % (80)
3.2.1

Let us define the wall algebra:

Un(gw) C [] End(V) (49)

Vey

as an algebra generated by the matrix elements of (R})y, and of (R, )‘_/1‘/0

in the auxiliary space Vj for all V € 0.
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For a choice of an auxiliary space Vj and a finite rank operator m &
End(Vy) we have an element of %;(g,,) acting in a representation V' (a) as the
following operator:

Py = (L@ m (RE)vw |, ;) € End(V). (50)

Note that by Theorem 2 the matrix elements of (R)yy, are monomials in
u = a/ag. Thus we do not need to consider all coefficients in the Laurent
series expansion as in (47).

Algebra (49) is generated by all such PJ\;O,m and also py,  which are given
by (50) with R} substituted by (R;)™'.

3.2.2

Next we show that %4(g.) is a subalgebra of %;(gq). For this we show that
all matrix elements (50) appear as matrix elements (47) for some choices of
[ and m.

Let w be a wall and s be a generic slope obtained by a shift s = w — €
for an infinitesimal ample e. Let %y, (u) with u = a/ag be the R-matrix
with slope s acting in V(a) ® Vp(ag). Let U be the diagonal matrix acting
in Vo(ao) by Ul ywome) = aévo’g“’>. The action of U by conjugation gives the
decomposition:

End(Vp) = @End, (Vo)

with End;(Vp) = {m € End(V}) : UmU’1 = alm}. Since %, is a fractional
line bundle, the weights [ appearing in this decomposition are rational. We
denote by End(“’)(Vo) the subspace spanned by integral weights:

End™)(Vy) = @D End;(Vo). (51)

IEZ

Let m € End;(Vp) for some | € Z which is constant in ay. Let us consider an
element (47) corresponding to this data:

p\to,m,—z = Coeff:al(trvo(l ® mggxs/,vo(u))) (52)
Since UmU~! = alm we have
1 = Const(tryy (1@ m (1@ U)™) By () (10 1))
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where Const denotes the constant term in the series expansion at ag = 0. By
(40), at ap = 0 we have the following expansion:

1@ U)" ' Zy,w1eU)=1U)  (R)vy,1aU)+...

where ... denote the higher order terms vanishing at ay = 0. Note that
by (31) the first term (1@ U) (R} )vv, (1@ U) does not depend on ag. Thus,
since m does not depend on ay we have:

Pyt =t (1@m (1@ U)T (RYvi (1@ U)) = try,(1@m (RY)v |, _,)

We find that PJ\;O,m,—l is of the form (50) and therefore represents an element
from %(g.). By Theorem 2 the matrix elements of R} are non-trivial only
for m € End;(Vp) with integral . Thus, all generators py, . (50) appear as
(47) with m from (51).

Applying the same logic to the power series expansion near ag = oo we
also find that all generators of %4 (g.,) corresponding to Pv,.m appear in the
same way.

By definition, these elements generate %;(g,) and therefore %4(g.) is
a subalgebra of %,°(gg). Finally, since %°(gg) are isomorphic for all s we
obtain the following result:

Proposition 5. %,(g.) is a subalgebra of %, (gg) for every wall w.

Remark 4. The quantum group elements (47) are defined as coefficient al,
of R-matrices depending on u = a/ag. This means that p‘t(),m,l acts as a
monomials a~! in any representation V (a).

Remark 5. In the following text we often understand the R-matrices and
other operators as universal elements of the corresponding quantum groups
or their completions. In particular, such universal elements do not depend on
the evaluation parameters u, which are the parameters of the representations,
not of the quantum groups. For instance, the unitarity relation (44) for the
universal R-matrix takes the form:

% = (%31)""

where 21 denotes the permutation of factors Z° € %,(gg) ® % (gg). Simi-
larly, the wall R-matrices give the universal elements RE € %4(gw) ® %i(gw)-
Relations (48) are understood as

(R)a1 =RE,  (RE)a = R, (53)
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for these elements.

As an example we refer to explicit formulas for universal R-matrices of
« /5, (gly) given by (129) and (130), which are related by permutation of tensor
factors (53). The generators of this algebra act in a representation C?(a) as
monomials £, ~ a¥ and F,, ~ a~*. Evaluation of these universal elements
in a representation C?(u;)®C?(uy) gives (123) which depends on the spectral
parameter u = uj/uy. The unitarity relation should be understood as (48)
for these matrices.

3.3 Hopf structures
3.3.1

The algebra %,(gg) carries Hopf structures labeled by the slope s. The set
0 is closed with respect to tensor product. It induces the natural projection:

[ End(v) - [ End(vi®W)
Vey Vi,Voel

which restricts to a coproduct map on matrix elements of %°(u):
Ay U(Bq) = %/(80)0(8q)

Note that this map depends on KT factorization of R-matrix and thus on
the slope s.

The set *U is closed with respect to taking dual % and thus we have an
antipode map:

Ss: Un(8q) — U(80)

which is the restriction of:
End(V) - End(V*)

The set U contains the trivial representation C which, similarly, induces a
counit map:

s U(gg) = C

The main result of FRT procedure is that (A, S, €5) provides %,(gg) with
a Hopf algebra structure for arbitrary slope s. The algebra % (gg) becomes
a triangular Hopf algebra with the triangular structure Z*(u).
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3.3.2

The same procedure applied to R} in place of %2°(u) defines a structure of
triangular Hopf algebra (A, Su, €,) on %(gw). It should be clear from
definitions that (A, Sw, €,) does not necessarily coincide with restriction of
(Ag, Ss, €5) from the ambient algebra %4(gg). The next proposition explains
the relation between these Hopf structures.

Proposition 6. Assume that the Khoroshkin-Tolstoy factorization for a total
R-matrix with slope s starts with some wall w, i.e. has the form:

#() = R, R

then the Hopf structure (Ay, Sw, €w) on Ui (gw) coincides with the restriction
of (As, Ss, €s) from the ambient algebra U (gg)-

Proof. Enough to check this statement for coproducts. Let V; and V5 be two
representations of %4(gg). We need to show that for any element = € %,(gy),
the identity Ag(z) = Ay, (x) holds in End(V; @ V5).

Assume that z is a generator of %4,(g.) as in Section 3.2.2 corresponding
to an auxiliary space V, and a matrix element m € End;(V}).

By definition Ay(x) and A, (z) act in Vi@ Vs by pi, . ; and pi, ,, defined
by formulas (47) and (50) for V' = V; ® V5. But in Section 3.2.2 we proved
the equality pi, ., , = p},,, for an arbitrary V. The Proposition follows

since such elements generate %;(guy).
[l

Corollary 1. If s and w are as in the previous proposition then for x €
U (8w) we have:

2 () Ds(2)2° () ! = RyAu(2)(R) ™ = (R,) ' Au(2)R, (54)
with RE as in Theorem 3.

Proof. In any triangular Hopf algebra we have 2% (u) A4 () %% (u) ™' = A% (x).
But, for * € %(g.,) we have A%(z) = A%(x) = RfA,(x)(RE)™!. This
proves the first equality. Applying (53) we arrive at the second equality.

[
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3.3.3

Let s and s’ be two slopes and let T' be a path in H?(X,R) connecting them.
This path intersects finitely many walls in some order It = {wy, wy, ..., w, }.
We define operators:

— —
=] By, T-=1]] R,
welp welp

Then, from Khoroshkin-Tolstoy factorization we obtain:
R (T =T~ %°(u)
which implies that coproducts at different slopes are related by:

THA, = AT, T AP = APT". (55)

3.3.4

As a slope s approaches infinity (in the ample cone) we obtain a special Hopf
structure with the coproduct which we denote by A,,. The corresponding
wall subalgebra %(g~) is generated by the matrix elements of (27). This
infinite slope R-matrix is diagonal in the basis of fixed components with
matrix elements given by operators of multiplication by tautological bundles
in the equivariant K-theory (27). In particular, these operators are elements
of %;(g0). Moreover, the line bundles . € Pic(X) are group-like:

Ao(L)=XL L. (56)

3.3.5

Let k = (K1, ka) where each ; € (3Z) is a function on the vertices of the
quiver with values in $Z. Define an operator h* acting in Kg(.#(w)) by
multiplication by AF1V*#2%) on the component .#(v,w) (recall that the
square root h'/? exists in the equivariant K-theory, see Section 2.1.1.). As
we discussed above, the operators of multiplications by tautological bundles,
and in particular the operators of multiplication by their dimensions are
elements of %,(gq). Thus h* € %,(gg). These elements enjoy the following

properties:

Ay () = B8 @ 1%, Sy(h") = h" (57)
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Recall that the codimension function 2 is quadratic in w, v which gives:
Sw ® Sw(2) = (58)
Finally, in any triangular Hopf algebra we have

Sw ® Su(RE) = RE (59)

w

and thus from (58) we conclude:

Sw ® Su(RY) = b R} b (60)

4 Quantum K-theory of Nakajima varieties

In this section we recall the main facts about the commuting difference equa-
tions which govern the quasimap count for Nakajima varieties. We refer the
reader to [47] for a detailed exposition.

4.1 Stable quasimaps to Nakajima varieties

4.1.1

Let us consider a quiver with set of vertices I and m,; arrows from a vertex
i €I toavertex j € I. Let n = |I| be the number of vertices.

Recall that a Nakajima variety .# (v, w) with dimension vectors v,w € N"
is defined as the following symplectic reduction:

M (v,w) = T*M oG = 117 (0) /oG (61)
where M is the representation of the quiver
M = @ Hom(V;, V) ® Qi; & @ Hom(W;, V)
i,j€I i€l

by vector spaces V; of dimensions v; and framing spaces W; of dimensions w;.
We denote by @;; the linear vector space of dimension m;; (the multiplicity

space). The representation M is equipped with an obvious action of G =
[T GL(V;) and
i€l

w:T*M — Lie(G)*
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stands for the corresponding moment map. Finally, § € Z™ denotes the
character of G .
0: (9i)ie1 — Hdet(gi)ei
i=1
which defines a stability parameter for GIT quotient (61).
The Nakajima varieties come together with a natural action of a group
Aut whose action preserves the symplectic form. Let G = Ax C; where A is a

maximal torus of Aut and C; is one-dimensional torus scaling the cotangent
direction in (61) with a character h™'.

4.1.2

The general theory of quasimaps to GIT quotients was developed in [11].
Here we briefly recall this construction specialized to the case of Nakajima
quiver varieties, see also Section 4.3 in [47].
A quasimap
f:C--»X

with a domain C' ~ P! to a Nakajima variety X = .# (v, w) is defined by the
following data:

e A collection of vector bundles 7;, ¢ € I on C' with ranks v;.

e A collection of trivial vector bundles 2;; and %#;, 7,5 € I on C with
ranks m;; and w; respectively

e A section

fe HO(O,///@//* ®h—1>

satisfying the the moment map condition p = 0, where

M =D Ao (1,7)) @ 2i; & D Hown (Wi, 7).

u,J€l iel

and A~! stands for a trivial line bundle on C' with G-equivariant weight
ht.

The degree of a quasimap is defined as d = (deg(¥%;))™~, € Z".
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4.1.3

Let p € C be a point in the domain of a quasimap f and fix a local trivializa-
tion of 2;; and #; at p. The value f(p) defines an G-orbit in p~*(0). This
orbit does not necessarily consist of semistable points in ¢~(0) and thus it
only defines an evaluation map into a quotient stack:

evy: f = f(p) € n7(0)/G.

The quotient stack contains the Nakajima variety as an open subset

X = M_l(o)stable/G C :LL_I(O)/G

A quasimap f is called stable if f(p) € X for all but finitely many points
p € C. The finite set of points for which f(p) ¢ X is called singularities of
the quasimap.

The moduli space QMd(X ) parameterizes the degree d stable quasimaps
up to isomorphism which is required to be identity on the curve C, the
multiplicity 2; ; and the framing bundles %#; [11]:

QM?(X) = {degree d stable quasimaps to X}/ =

This means that moving a point on this moduli space results in varying the
bundles ¥#; and the section f, while the curve C, bundles %#; and 2;; remain
fixed.

Let QMd(X)nonsingp C QM4(X) be the open subset of the moduli space
corresponding to the stable quasimaps nonsingular at a point p. By definition
this open subset is equipped with the evaluation morphism:

QMd<X)nonsing p

The moduli space of relative quasimaps QMd(X )relative p 1 & compactifi-
cation of the map ev, meaning that it fits into the following commutative
diagram:

evp

— X. (62)

Q Md (X)relative p

QMd<X)nonsingp X

with proper evaluation map ev,. The construction of the moduli space of
relative quasimaps QMd(X )relative p 15 explained in Section 6 of [47]. It follows
similar constructions of relative moduli spaces in Gromow-Witten theory
29, 30] and Donaldson-Thomas theory [31].
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4.2 Difference equations
4.2.1

As explained in [47] the moduli spaces defined in the previous sections carry
natural virtual structure sheaves ﬁAvir. Using these virtual sheaves one con-
structs different enumerative invariants of X. For example, one of the main
objects in quantum K-theory is the capping operator which is defined as
follows: let us consider the moduli space QM%aivey, (X) of quasimaps with

nonsingpg

relative conditions at p; € C' and nonsingular at p, € C' (we will assume
that p; = 0 and p; = oo in C' = P!). These two marked points define the
evaluation map:

eV = e~Vp1 X eVp2 . QMCfclativcpl (X) — X X X (63>
nonsingpg
This moduli space is equipped with an action of G x C7 where the action
of G comes from its action on X and CJ scales the local coordinate of C' at
the point p; with character q. Note that this action preserves p; and p,. The
capping operator is defined as the G x CJ equivariant push-forward:

T=3" 2o, (QMbissva, (X), G ) € Kooy (00 ® Qll]) (64)

nonsingpo
dez™

The map (63) is not proper, as we already mentioned in the previous section.
However, it becomes proper on the subset of fixed points QM%uivep, (X )GXC; ,

nonsingpg

see [47]. Thus the pushforward (64) is well defined in the localized K-theory.
The degrees of the quasimaps are counted with weight 24 = 2 ... zdn,

The parameters z; are referred to as Kahler parameters.

4.2.2

Assume that we fixed some basis in Kg(X), then the capping operator is
represented by a matrix whose entries are certain power series in Kahler
parameters with coefficients given by rational functions of equivariant pa-
rameters for G x Cx. By theorems 8.1.16 and 8.2.20 from [47] this matrix
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is the matrix of fundamental solution of a system of g-difference equations?:

J(u, 2¢%).L = Mg (u, 2)J(u, 2)
(65)
J(uq, 2)E(u, z) = S(u, 2)J (u, 2)

Here .Z denotes the operator of multiplication by a line bundle .Z € Pic(X),
E(u, z) is the operator of multiplication by K-theory class given by (8.2.13)
in [47]. In particular E(u, z) and . commute.

Recall that the Pic(X) is generated by the tautological line bundles .Z; =
det(V;),i =1,...,n. For a bundle .¥ = Z™ @ --- @ L% the following
notation is used in (65):

2q% = (214™, .., 20g™).

The operators S(u, z) shifting the equivariant parameters are called shift
operators. The operators Mg (u, z) corresponding to line bundles .Z €
Pic(X) are called the quantum difference operators. They are the main object
of study in our paper.

4.2.3

We can write the system (65) in the following equivalent form:

KJ(u,2z) = J(u, z) K

(66)
Ag J(u, z) = JI(u, z) A
with the following ¢-difference operators:
K =T,S(u,z), K> =T E(u, 2)
(67)

Ay =T, Myg(u,z) AS=T,'¥¢

where Ty f(u,z) = f(u,2¢%) and T, f(u,2) = f(uq, z). As £ and E(u, 2)
commute, the consistency of this system of difference equations can be rep-
resented in the form of “zero curvature” condition:

[Ag, Az =0, [Ag,K]=0 (68)

where by [A, B] = AB — BA we denote the commutators for g-difference
operators.

2S(u, ) is denoted by S, (u, ) in [47] for a shift u — uq® by a specific A-character o.
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4.2.4

Let A = C* be a torus splitting the framing as w = uw’ + w”. This torus
acts on the Nakajima variety X = .# (v, w) with the set of fixed points:

XA = H MW W) x (VW)

v/ v'=v

The stable map defined in the previous section can be used to identify K¢ (X)
with Kg(X”?). After such identification, the first equation in (66) gets
identified with the quantum Knizhnik-Zamolodchikov equation ( qKZ ):?

Theorem 4. ([47], Section 10) Let V. C H*(X,R) be the alcove uniquely
defined by the conditions:
1) 0 € H*(X,R) is one of the vertices of V
2)V C —Clampie ( opposite of the ample cone)
then for all s € V we have*
Stab” !

+,T1/2,

s/CStab_i_’TUz?s = %S

where KC is the g-difference operator defined by (67) and J° is the quantum
Knizhnik-Zamolodchikov difference operator

A =T, % (u) (69)
for R-matriz %°(u) with slope s (25) and hf‘l) defined by (72).

Therefore, in the stable basis the first equation in (65) turns to the stan-
dard quantum Knizhnik-Zamolodchikov equation [18]

3See Theorem 9.3.1 in [37] for similar statement in the case of equivariant cohomology.
4Note, that we use modified quantum parameter z which differs by a sign:

PARTEN (_l)codim/sz7

see Theorem 10.2.8 in [47]. Explicitly, this change of variables amounts to the following
substitution of Kéhler parameters:

Zi (71)2’%21’

for canonical vector (81). To get rid of the minus sign, we will use modified notations in
this paper. :
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4.2.5

In Section 5.2 we construct a system of difference operators
dy =T, By(u,2), £ € Pic(X)

with B%,(u, z) given explicitly in terms of the algebra %,(gg). These op-
erators commute among themselves and with the qKZ operator (69) for all
slopes s € H*(X,R):

We then prove our main result Theorem 9: the quantum difference operator
M 4 (u, z) is identified with B%, (u, 2) for s as in Theorem 4. In particular the
compatibility condition (68) is identified with (70) for this slope.

5 Commuting difference operators

5.1 Wall Knizhnik-Zamolodchikov equations
5.1.1

It will be convenient to introduce a vector A = (t1, ..., t,) such that ht = z;,
which means that \ is a coordinate on a universal cover H?(X,C) ~ CHl of
the Kahler moduli space.

Let us consider a Nakajima variety X = .#(v,w) and denote by A a
subtorus of the framing torus corresponding to a decomposition:

Xh= [ Arwn)xx (v, W) (71)

Vi+...4+vp=v

In this section we consider rational functions of parameters z; which take
values in End(Kg(X*?)). Using the above notations we will denote such
functions as f(z;) or f(A).

The first function we need hz\k) € End(Kq(X?)) is defined to be diagonal
in the basis supported on the set fixed points:

Rig(1) = By = 2 ety (72)

for a class v supported on a component F' = 4 (vi,wy) X « -+ X M (Vyr, Wy,).
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We will need the so called dynamical notations below. Let x be a linear
combination of dimension vectors; the particular combination of importance
to us is

1
K= Q(Cv —w),
where C' is the Cartan matrix of the quiver. We define f(\ + &) by:

A+ RE@) () = FOA+ k(v wi)) ()

for a class v supported on a component F' = . (vi,wy) X - -+ X A (Vy, Wy,).
We will refer to such a transformation f(A) — f(A + A(;)) as the dynamical
shift of f by a weight s in the i-component. In the case of one component
we will omit subscript (1) and write f(\ + &).

Define g-difference operators by 1%, f (21, ..., Ziy «oey 2n) = (21, ey 2iy ooy Zn)-
We extend it to the action of Pic(X) ~ Z" by g¢-difference operators T'y as
in Sections 4.2.2-4.2.3.

5.1.2

Below, we use definitions of triangular operators from Section 2.3.4. The
torus A is as defined in Section 4.2.4.

Proposition 7. There exist unique strictly upper triangular J (X) and strictly
lower triangular J, (X) solutions of the following ABRR equations:

T NG Ry = Iy RISV, Roh) Ty () = J, (VR R (73)
Moreover, JE(\) are elements in a completion U(8.)@%(gw) satisfying:
S @ Su((T5(N)21) = 1o (V) (74)

where the subscript (21) stands for the transposition (a ® b)21) = b ® a and
Sy is the antipode in % (guw)-

Proof. We write the first ABRR equation in the form:
Ady 0 (JEO)) = TE ) (RE)
(recall that R} and R} are related by Theorem 3). By assumption J;(\) =
P J5(N)a where 0 is the stability parameter of the Nakajima variety. The

(a,0)>0
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wall R-matrix R} is upper triangular, thus, it has the same decomposition.
In the components the last equation is equivalent to the following system:

Adyy 0 (JE N ) = T Vo -+

where - -+ stands for the lower terms J}(\)y, i.e., the terms with («,0) >
(o/,6). The operator Adh?l)hfﬂ — 1 is invertible for general A, thus we can

solve the last system recursively starting from the component of the minimal
weight J(A\)o = 1. Thus the solution is unique. By construction of the
wall quantum algebra the R-matrix R is an element of %(g,,)®?. Thus, the
same is true for J;(N).

Next, we apply the antipode S, ® S, and the transposition to the first
ABRR equation and use (59)-(58) to obtain:

Rl S @ S ((J5()21) = S @ S ((JF ()21 ) iy 7

It is clear that for any upper or lower triangular operator X we have h(Az)X h(_2’)\ =

h(_l’)\X hE\l), therefore, the last equation takes the form:

By uniqueness of the solution we conclude S, ® S,, ((J*()\))m) =J,(\). O

w

Let f(z) = f(z1,...,2n) be a function of the Kéhler variables and 6§ =
(01,...,0,) be the stability parameter of the Nakajima variety. We denote

f(0p) = l%f(zel,...,zgn), f(oog) = lim f(2%,...,2%)

Z—00

if these limits exist.

Proposition 8.
Ju(00g) =1, Jj(0p) = R,

Proof. We write the first ABRR equation in the form:

Adyp oo (TN ) = TEO(RE)™ (75)
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Let us consider the corresponding components:

_1+€BJ,R+ =1+ P R
<

(a,0)>0 ,0)>0

The a-component of (75) is

Jo(2)20m™ = + > L(2)Rs
<'y}9-;—i<o(i9>

for some m and where z* = 2{" - - - z%». Thus

zahm— Z T3(2) B

y+i=a
(7,0)<{c,0)

Jo(2) =

By induction, assume that .J,(cop) = 0 for all v # 0 with (v,6) < (a, ). By
triangularity (o, #) > 0, and thus

Ja<009) = lim <W1m—l Z J,Y(Zel, ce ,Zen>R5) =0

z—+00
Y+o=a
(7,0) <(,0)

Therefore J; (00p) = 1.
Similarly, by induction, assume that J, (0p) exists for all v with (v, 8) < («, 6).

Then
-y (g 5 )
<ﬂe><<a70>

also exists. We conclude that .J;7 (0y) exists.
Let us denote J}(\) = hz\l)JJ(A)h(_l’)\. Then

Ji(A) =1+ @ Jo(2)
Wlth ja<z) = ZaJa(Z)- Since Ja<09) = hI% Ja(Zﬂl’ . ,ZO") eXiStS and <O[, 9) >
z—
0 we have )
Jo(0g) = hII[l) Ja (2% ,zen)z<‘”’9> = 0.
z—

Therefore J;(05) = 1.
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Finally, we rewrite the ABRR equation in the form:
Jo (VR = RETE(N)
Using above limits at 0y we obtain:
Ry, = 1275 (0p)
and therefore J(0p) = R}.

w

5.1.3
Let F' = A (vi,wy) X M (va,wo) and F' = (v}, w]) X A (vh, W) be two

fixed components. As we discussed in Section 2.3.5 the dependence of matrix
elements of a wall R-matrix on the equivariant parameter v is given by:

RE(u)] o~ w7050

Thus, for s with #° = ¢ and 7, = s.%,, we have

Iy R (u) bl = Ry (ug) (76)
From the previous proposition we obtain:
iy T (u) by = T, (ug) (77)

Shifting A - A\ — 7, in the ABRR equation (73) and using the previous two
identities we find:

Tt (u, X = 7)) R (uq) = i) BT (ug, X — 70y)

and same for J, . Finally, denoting
Jo () = Ja (A —7) (78)
we rewrite the last relation in the form:

Proposition 9. There ezist unique strictly upper triangular J,(X) € U (g.,)>
and strictly lower triangular J,(\) € U(gw)®? solutions of wall Knizhnik-
Zamolodchikov equations:
T (MR TuR,, = hy TR (),
(79)
R Tudy(N) = T, (M) Tuh?

where T, f(u) = f(uq).
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5.2 Dynamical operators B%,()\)
5.2.1

The following operator is playing a fundamental role in our paper. For a wall
w in the hyperplane arrangement (19) we define:

B.()\) = m(1 ® Su(J-(\)! ))( (80)

A=A +K

Here S, is the antipode of the Hopf algebra %4(g,,) and m(a ® b) L ab.
We denote by A — A + k the dynamical shift by the following vector:

k= (Cv—w)/2 (81)

where C' is the Cartan matrix of the corresponding quiver. Note that this
operator is well defined in the evaluation modules (even infinite dimensional)
because the operator J,(A) is lower triangular and thus B, (\) is normally
ordered. Note that by definition B, ()\) is an element in a completion of

U (8w)(21, -, 2n)-

Remark 6. In Section 6.3.5 we compute a universal formula for B,,(\) in
the case of %,(5[2). Up to a difference in notations, this operator coincides
with the element of the dynamical quantum group associated to a real root
reflection. See Proposition 14 in [17] for an explicit formula in this case.
Thus, in the case of real roots the operator (80) coincides with the one
constructed by Etingof-Varchenko. In contrast with the approach of [17], the
element (80) is defined in a more general situation, see examples in Section 7
for imaginary roots.

5.2.2

Let .Z € Pic(X) be a line bundle. Let us fix a slope s € H*(X,R) and
choose a path in H?(X,R) from s to s —.%. This path crosses finitely many
walls in some order {wy,wy, ..., w,,}. For this choice of a slope, line bundle
and a path we associate the following operator:

B (A) = ZBu,, (A) - - - Bu, (V) (82)
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The symbol .Z on the right side denotes the operator of multiplication by a
line bundle in K(X). By construction, B%,(\) is an element in a completion

of %(90)(21,- -+, 2n)-
We define the g-difference operators:

oy =T By (N, (83)

In Section 5.4.3 we will show that (82) does not depend on a choice of a
path and for every slope s the operators (83) commute. Thus, they provide
a representation of Pic(X) by ¢-difference operators.

5.3 Some properties of B, ()\)

In this section we discuss various properties of the operators (82) and associ-
ated g-difference connection (83). Our approach is close to one used in [16].

5.3.1

Let Ji( ) be the operators introduced in Proposition 7. Let us denote
JENE = Sy () @ L JEN)E = 1@ Jp(\), J5N)2 = (A, @ D)5,
JEN)PB = (1A )sz()\) the operators in the corresponding completion of
Un(gw)®”.

Theorem 5. The operators J*(\) satisfy the dynamical cocycle conditions:

TN (A + f)? = T (NPT (A = k) ®
(84)
T+ /%(3))12J+()\>123 JH = i) )23 ]+ (\) 123

with dynamical shift kK = (Cv — w)/2 where C' is the Cartan matriz of the
quiver.

We will need the three-component analog of Proposition 7. We start with
the definition of upper/lower triangular operators acting in a tensor product
of three %;(g,) modules. Let X = .#(v,w) - be a Nakajima variety, and let
A be a torus splitting the framing such that:

XA= [ A (vwi) x ot (v, wa) X A (v5, w3). (85)

vit+va+viz=v
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We say that an operator A € End(Kg(X?)) is upper triangular if A =
@ A, where 0 is the stability parameter of the Nakajima variety and:

(e,0)>0
(B,0)<0

An g Ka( A (vi,wr) X A (vo, Wa) X A (v, W3)) —

Ka(A (vi + o, wi) X A (va + 7, w2) X A (v3+ B, w3))

where 7 is fixed by the condition a+ 5+~ = 0. Similarly, the operator is lower
triangular if A = € A, p with the same A, 3 as above. Finally, we say

(a,0)<0
(8,0)>0

that an operator is strictly upper or lower triangular if, in addition, Ago = 1.
For example, the product of wall R-matrices B3R 12 or R 13RI (where
the indices indicate in which components of (85) the R-matrices act), are
strictly upper triangular.
In the three-component case we have two types of KZ operators h(AS) R$’13R:;’23

and h(_l’)\Ri’lgRi’m which correspond to the coproducts of the wall qKZ op-
erators in the first or the second component.

Proposition 10. If there exists a strictly upper triangular operator J(\) €
End(Kg(X?)) satisfying:

(86)
TV BIRESRE™ = h )+ J(3)

or a strictly lower-triangular operator J(\) € End(Kq(X?)) satisfying
RURHY 0) = TV R
RUR G () = TR )

then it is unique.

Proof. We prove the upper-triangular case. The lower-triangular case is sim-
ilar. Following [17] we introduce the operators:

AR(X) = hm 3 h S X By REPRE?,
Ap(X) = b= M2t XB AR PR
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Assume that there exists an operator J(\) satisfying the conditions of the
proposition. Then AgpAr(J(N)) = J(A). It is enough to check that the
solution for this equation is unique. We are given that J(A\) = @@ Jas(N\),

(a,0)>0
(B,8)<0
and thus this equation has the following form in components:
Jap V) = Adyy ona(Jas V) 4+ (87)

where Q = 203+ Qa3+ Q5 and - - - stands for the lower terms J, 5 ()\) with

(o —p5,0) < {a—p,0)

Note that the operator 1—Adh? Jhga is invertible for generic A. This means
1 3
that all J, g(\) can be expressed through the lowest term Jyo(A) = 1 and

therefore they are uniquely determined by (87). O

Let J(X) be as in Proposition 7. It is obvious that J* (A4 &) JT(N)1*?
is a solution of Ag(X) = X. Similarly J*(A — &q1))**JT(A)"* is a solution
of Ap(X) = X. Thus, by the previous proposition, to prove Theorem 5 it is
enough to prove the following lemma:

Lemma 1.
X = T (A + k) 2T (N2 is a solution of Ap(X) =X
X =J A= ka)PJT (NP s a solution of Ar(X) =X

Proof. As noted above the element X = J*(A+ &))" JT(A\)'?? is a solution
of Ar(X) = X. Note that Agr and A, commute (due to the Yang-Baxter
equation for R). Thus, Y = Ay (X) is also a solution of this equation. The
solution of Ar(X) = X is uniquely determined by the degree zero part in the
third component. Let us denote this component of X by X, and similarly
for Y by Yy. Enough to prove that Xy, = Y. For Xy we obtain:

Xo = J+()\ + %(3))12
For Yy we have:

Yb = h*melehf\l)JJr()\ + /%(3))12 h(—lx)\hﬁw R;r],12 (88)
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Set Z = Jt(\ + k))'?. By triangularity of R-matrix and J()\) it factors
Z = Z, with:

aeNI

Z, Kg <///(v1,wl) X M (Va, Wa) X .///(v3,W3)>

— Kg<///(v1 + a,wq) X A (v — a,w3) X ,///(v3,W3))

Thus, by the definition of codimension function (35) we have h=413 7, hth3 =
h™e 7., where

%(<V17W3> + (v3,w1) — (v1, CV3>) - %((Vl + o, ws) + (v3,w1) — (vi + a, CV3>)

= <oz, I{(g)>

with k(3 = (Cvs — ws)/2. Therefore, using the dynamical notations we can
write the equation (88) in the form:

—A—R(3)

Y, = h—(hzh?;)ﬂ%@) J+()\ + %(3))12 h(l) R$,12

As J*(\) satisfies the condition of Proposition 7 we obtain Yy, = J*T(\ +
fi(3))'?. Therefore Y = X. O

Corollary 2. The wall R-matrices Ry, satisfy the cocycle condition:
(R+)12<R+)12,3 — <R+)23(R+)1,23

Proof. By Proposition 8, Jf(0p) = R/} . The result follows by evaluating the
limit of the second identity in Theorem 5 at Oy. [

5.3.2

Let us consider the operators:

B, =m(1©S,(J;(N7). BL() = ma (571 @17 ()7).
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where S, is the antipode of %4(g.,) and m(a ® b) = ab my(a ® b) “ ba.
We define:

Bu(N) = B,(A+ k), Bu(A) = Bl,(A— &) (89)
with < as in Theorem 5.

Theorem 6.

2) AuBu(N) = Jg (V) (B + i) @ Bulh = i) J5 (V)
Proof. Let X(\) = J,(\)~!. By Theorem 5:
X2+ f) XP0) = X3\ — k) X2 (90)

Set hA™ = M = ™M ...z ™ where m = (my,--- ,m,) is a multi-index.
We write our operators as power series:

X(N) =Y aim @bimz™, Ty (A =XTA) =D i @ b

then

B.()\) = (1@5 ) Zalm .

and in the sumless Sweedler notations we have:

Ay Bl (A Za(l)S b2y @ al?) S, (b)) 2

i,m

We denote by A the following contraction:
Alay; ® ay ® a3 ® ay) = a15,(as) @ asS,(as),
then, obviously A, B’ (\) = A(A, ® Ay (X)). From (90) we have:
Ay ® LX) = XA+ fi) XA = i) ) XN
or in the components:

Ap®UX(N) =Y (@5m®@bim@K™) (K ®0;,,®b;.0) (@b @b ) 2™ =
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= Z (@i K ag, ® Bi,maj,sb;(:’l) ® Kmbjﬁb,(fl)) Zmtst

where we denoted by K = h". Now, A, ® Ay, = (1010 A,)(A, ®1) and
therefore:

Au@AX(N) = 3 (50K @by mag b @K ™00 D iy b2 ) pmst

Applying contraction A, taking into account that the antipode S, is an
antihomomorphism and S,,(K) = K~! by (57) we obtain:

AN, @ AyX) =

) ai,mK—Sak,lSw(b,f;’(”)sw(bfg)f(—m ® by maj sh. 25 (bﬁf} yg (DY Fg=m gmts

7,8
= Jy (A — k) — Re) 2 K0S (b @) Su(08) @ 45,05 Su (b)) S, (B11)) 25+

where J /(A — Ry — Re)) = D GimKT" ® bimK~™2™ and in the last step
we used that the whole operator is weight zero and therefore commutes with
K ® K. From the simple Lemma 2 below, we obtain:

AN, @ AyX () =

Ty (A= k) = f2) X K 01180 (br1) S (b)) @ a6, (08)) 25+ =

w

T =y = Fa) BN @ 1+ (5 K8, (02) @ a8, (0{1)) 2*).

Let us consider the contraction defined by P(a;®ay®as) = Sy (as)®a; Sy (as).
For the expression in the brackets in the last formula we have:

Z K~ SS ® a] SSw(bg}.s?)Zs = p<X1,23(>\ + /%(3)>>
Again, by (90) we have:
X1’23()\ -+ Ii(g)) = ng()\ — I%(l) + I%(g))_leQ()\ -+ 2/%(3))X12’3()\ + l%(g))

- Z K= aj, Sakl) ® a; mb] Sal(cl ® bl me+2sb Klystmtl
Thus
p<Xl’23()‘ + ’%(3))) =
> K_lSw(bk,l)K_m—QSSU)(Bi,m) X K‘maj,sa,gl)S(a,(jl))Sw(bj’s)sw(ai’m)zwmﬂ
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Noting that akl)S (a,(fl)) = €y(ag,) we find:
P<X1’23(>\ + /%(3))> =3 K™ 28, (bim) ® K™a; 4Suw(bj.s)Sw (@i m) 25t
_ (Z K2 aj,ssw(ijs)zs) (Z K8 (Bim) @ K™ Sy (g )2 m)

- (1®B{U(/\—2/~@ ))S ® Su((Jy)21) (A — Ry — R2)

Overall we obtain the identity:

AuB, () = Ju Oy =) (BL (V@B (\=2k) ) Su@Su((J7)21) A=)

Finally, after shifting A — A\ 4+ A1) + A(2) and using (74) we obtain 1). The
equation 2) is obtained similarly. O

Lemma 2.
> 5@y @ M8 (W) = S(x) @1 (91)

Proof. Consider the contraction C'(a; ® ay ® as) = S(as) ® a15(ay) then,
obviously

S S(2®) @ M (22 W) = 0(1 ® A(Am)) - C(A ® 1(Ax)>

= $(z®) @ 200§z = §(2?) @ (zM) = S(z) ® 1
0

Corollary 3. The coproduct of the operator By, (\) defined by (80) has the
following form:

Bu(Bu(N) = L) (Bur + ) @ Bu(d = k) ) J5() (92)

Proof. Shift A — A\ — 7, and use definitions (78) and (80). O
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5.3.3

Let us consider the wall gKZ operators as in the Proposition 9:

K, =ThRE, A, =Ry, (93)
acting in the tensor product of two evaluation modules of %4 (gq).
Proposition 11.

Ky Du(Bu(N) = Au(Bu(N) £, (94)
Proof. We have

%_Aw(Bw()‘» =

P . . (79)
R T () (Bu(h + i) @ Bu(h — i) ) T50) 2
To T (Bu(h+ fi) @ Bu(d — i) ) I50) =

(79)

J-() (Bw(/\ + i) @ By(A — ,zw) TR0 B

J-(\) (Bw(A + R(2)) @ By (A — f%m))J;(A)h@;TuR; =

Aw(Buw(A) £,
[l
Proposition 12. For £ € Pic(X) the operators B, (\) satisfy:
LT, ' By(A) =By g(N\) LT, (95)

Proof. Let A be a torus splitting the framing w = u'w’+u"w”. For a Nakajima

variety X = .# (v,w) the components of X* are of the form F; = .Z (v}, w') x
A (V] ,w"). Let us consider the operators:

Se,s = ixa © Stabg i/ g Kg(X?) — Ka(X?)

56



where iya is the inclusion map. Let .Z € Pic(X) be a line bundle. We denote
by U(%#) a block diagonal operator acting in Kg(X”) with the following
matrix elements:

U g, = 2

F;

Let us consider an operator S¢ s = U(Z)SeU(Z)"L. A conjugation by a
diagonal matrix does not change the diagonal elements, thus:

S@,s = S@,s F,xF, (96)

|Fi><Fi

For the non-diagonal elements we have:
d o . $|F2
€ga ( S@,S‘F2><F1 ) = degp ( SQ,S|F2><F1 W)
P
(97)
( s® Ly, 5®$’FQ>

13) (96) G 2
C degp <S¢,3|F2XF2 S0 2. Zn ) = degA<SC7S|F2><F2 5L
Y 1

Note that the stable map is defined uniquely by these restrictions and thus
we conclude: SQS = Se st

Recall that the wall R-matrices are defined by R = S\ Sy, for two
slopes s; and sy separated by a single wall w. Therefore:

UL)R,UZL) " =R, 4.
Conjugating both sides of ABRR equation (73) by U(Z) we get:
Ruy 2l U(L) 1, MU(L) ™ = U(L) ], NU(L) iy BT

Thus, by uniqueness of the solution of this equation:

U(ZL) ]y NU(L) ™ = Ty (V) (98)

w

Without a loss of generality we can assume that £ = det(Vy) is the k-th
tautological line bundle. Then, we have:

V(L) =L oL

where .Z is the same tautological bundle twisted by some powers of trivial line
bundles «’ and u”: explicitly for the component F' = .Z (V/,w') x .4 (V",w")
we have: Z|, = (u)%.Z @ (u"): L.
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Let (J,(A\) ™' =30 @b, (. o(N)H =3, a; @b so that B{U()\) =
> @iSy(b;). Then we have:

LB NL = ZB. (NS =, La;Su(Lb;) =

(98)

m(1 ® Su(, La; @ .,?bi)) = m(1 ® Su(Y, alZ ® b;o?))

= Zz a;Sy(b}) = B’llﬂ-i-f()\)'

In the first equality we substituted £ by £ because for the one component
case the u-factors cancel. Thus we proved that:

ZLB,(\) = Bl y(N)Z
Note that B/, (\) = By (\ — k + 7,,) and thus:
LBy A—k+7) =Buio(A— K+ Tpr9)Z

By definition 7, ¢ — 7, = 8.Z thus, after substitution A - A+ x — 7, —s.Z
we obtain:

ZBy(A\—s8Z) =By s(N)Z
which gives (95). O

5.3.4

The following proposition describes the action of the difference operators (83)
in the tensor product of two %4(gg) modules.

Proposition 13.
Ag( ) = Wiy (N)Wary (A) - W, (M) Ao (3)7;’1

where wq, - -+, Wy—_1 18 the ordered set of walls separating slopes s and s+ .2,
Wo(A) = Ap(BuW)(RS)™ and Ay is the infinite slope coproduct from
Section 3.3.4.

Proof. First, by definition (82) we have:

Ay =T73' LBy, (A By, (M)Bu_,(\)
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where, we denote by w_q,--- ,w_,, the ordered set of walls between the
slope s and s — . By Proposition 12 we know that T,'ZB,, (\) =
Bu,,,,(A\)T5" % and thus we obtain:

’Q{JZ = BU}O()\)BU/'I (>‘) e B’wm—l ()‘) gT,,;ﬂl

where we denote w1, = wy + £ (recall that the hyperplane arrangement
is Pic(X) periodic).
Next, for the coproduct we have:

AS(@{,;) = As(Buy(A)Bu; (V) -+ Bu,, (/\)"%)Tél
and by (55) the coproducts at different slopes are related as follows

As(Buy, (V) = (Ri) ™" (R, )7 Au (Bu )Ry, - R,

Wi —1 Wi —1

Thus we obtain:

As( ) = Aue(Buy W) (Ry) ™+ Au,y(Bu, )Ry, )T Ry, R AT
The proposition follows from next Lemma. O
Lemma 3. Let wy, - -+ ,w,,_1 be the ordered set of walls between s and s+.Z .
Then we have:
Au(L) =Ry, - B, A(L) (99)

Proof. By (55) the coproducts are related as follows:
As(g) - (tho)_l T (R:o>_1AOO($)R:o T Ri—;o
By definition A, (%) = £ ® Z. In particular,
Aw(g)RzkAw(f)_l = Ri;ﬁf = R;ZHM

We use this identity to cancel all but finitely many factors in the previous
expression. O
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5.3.5

Assume the torus A splits the framing w = w'u/ + w”u”. Let %Z°(u) be
be the corresponding R-matrix with slope s acting in the tensor product
Keo(A (W) @ Ko(A(wW")). Let us define the qKZ operator with a slope s
by

H = W T %5 (w). (100)
"

where u = u'/u

Theorem 7. Let s,s" be two slopes separated by a single wall w, then we
have:

Wt swW=x*, W ldoW = o/ (101)

where W = A, (By,(\)(RE)™! and we assume that passing from s to s’ we
cross the wall w in the positive direction.

Proof. We have

A=Wy T B (), A = Wy T % (w), W= Ay (Bu(V)(R)) ™

w

We need to check that # W = W.#*". We have:
KW = 0T %7 (u) Ay (Bo (V) (R) ™ =

BT AR (B (V)2 () (R) ™ =
BT (RL) IR AZ (B, (V)2 (u) (R) ! =

BT (Ry) ™ Au(Bu (W) R Ry 2 (u) (RE) 2

Ay(Bu(N)(RE) 0T Ry (w) (Ry) ™ = W™
where the last equality uses Z° (u) = R, %°(u)(R};)™ because by assump-
tion s and s are separated by a single wall w.

Let s and s’ be two slopes separated by a single wall wy. We choose a
path from slope s to s + .Z crossing some sequence of walls wg, wy..., wWy,_1.
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Similarly, the path from s’ to s’ + .Z crosses the walls wy, ws..., w,, with
W, = wy + .£. By Proposition 13 we have:

As(y) = Way(N) -+ Wa,, 1 (N) Ao(L) T
Ag( ) = Wiy (\) - Wa,, (V) Ao () T3
To finish the proof of the theorem we need to note that
Wy V) A2 Wy () = A (75),

which follows from an identity obtained by applying A,, to (95).
[

Theorem 8. For arbitrary line bundles £, € Pic(X) and a slope s the
qKZ operators (100) commute with q-difference operators (83)

A(AY)H = H N A ).
Proof. Follows from Proposition 13. Indeed, we obtain

1 (101)

%sAs('QZ,%) = ‘%/SWMO(A)WHH ()‘) e mefl()‘)AOO("%)T,; -

Wag MW () - W, (N H A (LT = Ay( ) 2

5.4 Identification of B%,()\) and Mg (u, \)

Our main result is the identification of quantum difference operator M & (\)
with B%,(\)®. Recall that the quantum difference operators M g(u, \) for
Z € Pic(X) and the shift operator S(u,\) form a compatible system of
difference equations (65). The Theorem 4 then identifies the shift operator
S(u, \) with qKZ operator £ for some canonical choice of the slope s. We
now generalize this theorem to the case of quantum difference operator:

5In this section we often switch from the variables z, denoting Kihler parameters, to
their logarithms A and back. The two are related via (72).
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5.4.1

Theorem 9. Let V C H*(X,R) be the alcove uniquely defined by the condi-
tions:

1) 0 € H*(X,R) is one of the vertices of V

2) V C —Clampie ( opposite of the ample cone)
then for s € V we have:

Stab;l ,CSta/b_’_’Tl/Q’S = (}i/s

T1/2 s
Stab—?—,lTl/?s Ay Stab_'_’Tl/z,S = JZ{;

where K and Ay are the quantum difference operators defined by (67), H#*
is ¢KZ operator (100) and

oy = Const - T, B, (u, 2)
for some constant Const and £ € Pic(X).

Equivalently, up to a multiple, the operator M & (u, z) from (65) coincides
with operator (82) for the slope s specified in the above theorem.

Proof. Let A = C* be a torus splitting the framing w = uw’ + w”. We
denote the components of X” of a Nakajima variety X = .#(v,w) by F,, =
ANV W) x (V' w"). Note that we label them by the weight in the first
component. For a line bundle . we have two difference operators acting in
Ke(W') ®@ Kg(w”) and commuting with the qKZ operator (100). First, by
Theorem 4:
Ay =T, "Ny (u, )

for N (u, ) = Stab:Tl/% M.z (u, A) Stab, 712 , commutes with qKZ oper-
ator at the slope s. Second, by Theorem 8 the operator:

Ay =T, By(u,N)

commutes with the same qKZ operator (here by B%,(u,A) we mean the
action of the coproduct Ay(B%(u,\)) in Kg(W') @ Kg(w”)). We want to
prove that they coincide up to a constant multiple:

B (u, \) = N%(u, A\)Const
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Both N g (u, A) and B%,(u, A) are defined in integral K-theory, in partic-
ular they and their inverses are Laurent polynomials in u. It follows that the
operator:

Ulu) = B (u, NN (u, \)

is a Laurent polynomial in u. By construction, this operator commutes with
qKZ at a slope s which means that:

U (ug) = Wy () () (W 2°(u))

From Khoroshkin-Tolstoy factorization for the slope s R-matrix we obtain:

— —
#°(00) = [[ RS 2°(0) = [[(Ra) " 7°
Ocw Ocw

where R} and R, are strictly upper and lower triangular wall R-matrices.
The products run over walls passing through 0 € H*(X,R). Therefore, the
eigenvalues of conjugation by h?l)ﬁs(u) at u = 0,00 are either 1 or z™h"™
with m # 0. Solutions in Laurent series in u thus necessarily correspond to
eigenvalue 1. In particular, they are regular at u = 0 and u = oco. It follows
that U is a constant matrix in wu.

The constant matrix U commutes with hz\l)%S(u). Diagonalizing the ma-
trix h?l)g@S(O) we find that U is block upper triangular. Similarly diagonal-
izing hz\l)ﬁs(oo) we find that U is block lower triangular. We conclude that
U is block diagonal.

Let us consider the diagonal block Uy of the matrix U corresponding to
the lowest component of the fixed point set:

UO,(] : Kg<F0) — Kg(Fo)

Since U commutes with qKZ, the block Uj o commutes with the corresponding
block of the R-matrix Z%g,(u). From the definition of the R-matrix the
matrix element % (u) is the generating function for operators of classical
multiplication by tautological classes on Fy. As Kg(Fp) is generated by
tautological classes [38] the operator Uy is itself an operator of multiplication
by a K-theory class in Kg(Fp). To finish the proof it remains to note that:
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Where Up, denotes the same operator U for quiver variety Fj. Indeed, ap-
plying (102) to X in place of Fy we conclude that U is an operator of mul-
tiplication in K (X). However, no such nonscalar operator can be diagonal
in the stable basis. We conclude that U = Const. [

5.4.2

To finish the proof of the theorem we need to prove (102). It follows from
Propositions 14 and 15 below.

Proposition 14. The matriz of quantum difference operator M (0, \) has
the following form:

Mg(0,A)v,ny =0 for vi#0, Mg(0,A)o0=Mg(A—r)|g (103)

Proof. First, let us consider the limit v — 0 in the quantum difference equa-
tion (65):
My (u, 2)I(u, \) = J(u, 2¢%).L

First, we have .%,,,, ~ u??). Second, the matrix of fundamental solution
J(0, ) is block upper triangular, moreover, the “vacuum matrix element”
has the form

J(0, Moo = J|p (A —K)

Thus, we conclude that the operator M (u, \) has the form (103).

The limit J(0,A) in the stable basis exists by (10.2.19) from [47]. The
upper-triangularity statement follows by inspection of the breaking nodes.
Every one of them has the weight of the form (1 — ¢™a*) and it has to be
the case that & > 0 for all of them for the limit to be non-vanishing. In
particular, the curves which contribute to J(0, A)o never break, therefore,
stay entirely within the component Fp. Thus J(0, Moo = J[g, (A +...). The
exact form of the shift indicated by dots can be computed as the index limit
computation for the vertex Section 7.4 in [47] and gives exactly k. O

Let us denote B(u) = B¥,(\) for the slope s as in the Theorem 9 and
tautological line bundle .Z.

Proposition 15.

B(0)y,0, =0 for vi #0, B(0)oo = B(A—k)|g (104)
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Proof. First by Proposition 13, in the tensor product of two % (gg) modules
we have:

B(u) = Wiy (MW, (A) -+« W, 1 (M)A (Z) (105)

where Wy, (A\) = A, (By)(R)™ and wy, - - - w,_; is the ordered set of walls
crossed by a straight-line path from s to s + .Z.
By Corollary 92 we have:

Au(Bu(N) = 500 (Buld + i) @ Bul(A = i) ) T5()

Recall that the operators J (\) and R} are triangular with the following
matrix elements:

T () = é Jr  RE(N) = é Rua

s=0, s=0,
+(a,0)>0 +(c,0)>0

where 0 is the stability parameter of the quiver and « is the root defining
the wall w:
w={z € H*(X,R)|(x,a) = m}.

The matrix elements are of the form:
Jsou Rsa : KG<FV> — KG(Fersa)

and by Theorem 2 they have the following dependence on the equivariant
parameter u:
Json Rsa ~ us(a,$w>'

where %, is a line bundle on the wall w. We conclude that the matrix
elements of W,,(\) have the following form:

W (MNvgvy ~ ubZe) if vy = vy + sa. (106)

From (105) we see that the matrix element B,,,, has the form:

o0

BV2,V1 = Z BVQ,Vl (807 Ty Sn—l)

80, s8n—1=0

where By, v, (S0, - - , Sp—1) is the contribution of the following combination of
matrix elements:

65



ng,v1(807 Tty Sn—l) :

A W, _5(A)
KG’(FW) — KG’(FW) — KG(FVI'FSnflOCnfl) —2> KG(FV1+5n71an71+3n72an72)

such that
500+ + Sp_1Qp_1 = Vg — Vi (107)

From (106) we see that this matrix element has the following dependence
on the spectral parameter: By, ., (S0, -+, 8p_1) ~ uzvi(50-80-1) with expo-
nent:

dv27\,1 (SQ, ceey Sn—l) = S()(Oéo,go> 4+ ...+ Sn_1<an_1,gn_1> + <V1,$n> (108)

where we denote by .Z; the point at which the straight-line path (s,s +
Z) intersects the wall w; and %, = Z. The last term (v1,.%,) comes
from A, (%) which is a diagonal operator with diagonal matrix elements
Ao (L) vy vy ~ ul 2,

By our choice, we can assume that the slope s lies in an arbitrarily small
neighborhood of 0 € H%(X,R). Thus we can assume that .4, = 0 and write:

dVQ,Vl (SQ, ceey Sn—l) =

1
si{ar, L — L)+ . + sna(an1, L1 — L) + (1, 4 — L) 1)
We rewrite this equality in the following form:
Ayy vy (805 ooy Sp—1) =
Vi, %0 — L)+
(V1 + Sp_10n—1, Lpn1 — Ln-2)+ (110)

(Vi+ Sp_10p_1+ -+ 5101, L1 — L)
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Now, we have the set of inequalities:

Vi + Sp_10,-1 = 0

Vi + Sp—1Qn—1 + Spn—2Q0pn—2 2 0
(111)

Vi + Sp_1Qp_1 + -+ 5100 > 0

where v > 0 means that the inequality holds for all components of the
dimension vector: v; > 0. If they are not satisfied, the matrix element
By, v, (50, 51, -.., sp—1) vanishes as the corresponding operator annihilates any
class supported on component F,,.

By construction of .Z; we have (v, %, — %,_1) > 0 for v > 0 and (v,.%; —
Z—1) > 0 for v > 0. We conclude that for v; > 0

dVQ,Vl (507 -~->5n71) Z <V17$TL - $n71> > 0

and therefore
lim0 B,,,, =0 for v; #0.
u—

Next, let us analyze the case vo = v; = 0. Substituting v; = 0 into (110) we
see that dy, ., (S0, .., Sn—1) = 0 only when s; = s = -+ = 5,1 = 0. Thus,
from (107) we conclude: soag = vy = 0, so that so = 0. It means that only
the diagonal matrix elements (all s; = 0) of W,,, (A) contribute to the vacuum
matrix element B(u)go. From (105) we obtain:

B(0)oo =Bu,(A—k)-- By, ,(AN—k)Z = B, |p, (A — k)

The proposition is proven. O

5.4.3

Corollary 4. The operator B%,(\) does not depend on the choice of path
made in (82).

Proof. Let B%,()\) and B%(\)' be two elements given by formula (82) cor-
responding to different choices of a path from s to s + .Z. Assume that
the slope s belongs to the anti-fundamental alcove V. C —Cypple as in the
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theorem above. By Theorem 9, D = B%,(\)'B%,()\)~! is a constant. Recall
that the wall operators B, (\) are normally ordered (see Section 5.2.1). It
means that for a component of minimal weight v we have B,,(A\)y = 7. Thus
D(v) = v and the constant is 1. Finally, by Theorem 7 this statement holds
true for arbitrary slope. O]

Corollary 5. For arbitrary line bundles £, %" € Pic(X) and slopes s €
H?(X,R) the corresponding q-difference operators commute:

Ay = Ay

Proof. By Proposition 12 @734/, and </g,.e/; give an operator &7, o, with
two different choices of a path for B%, o/(A). The result is independent on
the choice of a path by Corollary 4. ]

6 Cotangent bundles to Grassmannians

In this section we consider the simplest quiver, which consists of one vertex.
In this case the dimension vectors are given by a couple of natural numbers
(v,w) = (k,n) € N? and the corresponding varieties are isomorphic to cotan-
gent bundles to Grassmannians of k£ -dimensional subspaces in n-dimensional
space:

M (v,w) =T*Gr(k,n) (112)

The framing torus A ~ (C*)™ acts on W = C”" in a standard way. This
induces an action of A on T*Gr(k,n). Note that this action preserves the
symplectic form on T*Gr(k,n). Let us denote by G = A x C* where the
extra factor acts by scaling the fibers of the cotangent bundle. This torus
scales the symplectic form with character which we denote h.

6.1 Algebra %;(gg) and wall subalgebras %(g.,)
6.1.1

Let us denote

X =t (w)=]] #,w)=]] 7°Gr(k,n) (113)

k=0
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Note that .# (1) is a variety consisting of two points, thus Kq(.Z(1)) is two
dimensional over K¢(pt). Therefore, if the torus A splits the framing as
w = u; + -+ u, then we have:

Ko(X) =C*(u;) ® - @ C*(uy,) (114)

so that the total dimension is 2". Note that T*Gr(k,n)” consists of n! /k!/(n—
k)! points, such that X is a set of 2" points p;. The fixed point basis of
(localized) K (X) consists of sheaves O,,.

6.1.2

We start from the case n = 2. We have:
X =pt U T*P!' U pt

where pt stands for a Nakajima variety consisting of one point. Therefore,
the only nontrivial block of the R-matrix corresponds to T*P!. The action
of torus G = A x C* is represented in Fig. 1. In this picture p; and p, are
two fixed points, corresponding to the points z = 0 and z = oo of the base
P! C T*P'. We also specify explicitly the characters of the tangent spaces to
T*P! at the fixed points. For example the tangent space at p, is spanned by
the tangent space to the base with character u; /us and the tangent space to
the cotangent fiber with character us/(uih).

To compute the stable envelopes of the fixed points we need to choose a
polarization T2 and a chamber &. We choose the positive chamber @ such
that u;/ug — 0. The arrows in Fig.1 represent the attracting and repelling
directions with respect to this chamber. We choose a polarization T/ given
by the cotangent directions.

We have H?(T*P',R) = R, thus we identify the set of slopes with real
numbers s € R.

6.1.3

Let us consider the restrictions of the stable envelopes to the fixed compo-
nents. By (11) we have:

det A\ 3

Stabe r1/2,4(p)| = (—1)rkTi62( 1 /2) A
det T;,,éo

p
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U2 U1
uih ush

UL U2
u2 U1

A

y4! D2

Figure 1: Toric representation of T*P!. Arrows represent the repelling and
attractive directions with respect to the chamber € = wu; /us — 0.

By definition .4” is the repelling part of the normal bundle to p, Ti{f is the

attracting part of the polarization and T;{)Q is the non-stationary part of the
polarization.

From the Fig.1 at p, we have 4. = us/uy, rkTiéz =1, T;ééz = uy1/(uzh).
Thus we find:

St&bQ?Tl/Qﬁ(pQ)‘pQ = (1 - UQ/Ul)h1/2 (115)

The support condition for the stable envelopes gives StabQ?Tl/Q’S(pQ)L?l =0

The unique K-theory class with these restrictions at the fixed points equals

Stabe 7172 4(p2) = (1 = O(1) /u1)vVh

where O(1) is the tautological bundle restricting to the fixed points by the
rule O(1)], = u;

Next, from Fig.1 at p; we find: A_ = uy/uy /A, rkT;()z =0, T;ééz =N =
ug/uy/h. Thus:

StabQTUz’s(pl)‘pl =1- hul/u2 (116)

The fractional line bundle corresponding to slope s is O(1)®. The degree
condition (13) for the point p; gives:

degA ( StabG’Tl/27s(p1)|p2> C degA ( Stabe,Tl/as(pQ)po X W
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Thus by (115):

degu ( StabQTl/z’s(pl)}m) C degp <(1 - UQ/Ul)\/E<Uz/u1)S> =(s,s+1)

For generic s this condition implies that Stab¢7Tl/2,S(p1)|p2 is a monomial

Stab¢,T1/2’s(p1)‘ = C(ﬁ) (UQ/Ul)LS—HJ (117)

p2

with unknown coefficient ¢(h).

The points p; and p, are connected by an equivariant P! with weights of
the tangent spaces given by (u;/us)*!. This means that for any equivariant
K-theory class F, we have F| = F| at uj/u; = 1. Applying this to
F = Stabg 7172 ((p1), from (116) and (117) we obtain

ch)y=1—nh
We conclude that
StabQTl/;S(pl)’m = (1 — h)(ug/uy) s+ (118)

The unique K-theory class which has restrictions (116) and (118) equals

[14s)
Stabg 7172 (p1) = (1 = hO(1)/uz) (O(l )

Uy

6.1.4

For the opposite chamber —€ we have u; /us — oo. It means that in Fig. 1
all arrows are reversed. In particular the stable envelope for —€ is obtained
from the last formula by permuting the fixed points:

Stab_¢gi/2,4(p1) = (1 = O(1) /us)Vh
(119)

0(1)) L1+s)

U2

St () = (1~ hO(1) /)
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6.1.5

In agreement with our general theory we see that the stable envelopes are
locally constant functions of the parameter s. From the last set of formulas
we see that it changes only when s crosses an integer point. We conclude
that the set of walls can be identified with Z C R and thus alcoves are of the
form (w,w+1) CR.

The alcove specified by Theorem 9 has the form V = (—1,0). To compute
the R-matrix corresponding to this alcove we choose s € V, then in the basis
of fixed points ordered as [ps, p1], from the above formulas we compute:

. 1—uYHVh 1-h
7 StabQ:,Tl/2,s - [ O 1 hu (120)
Stab Lot ’ (121)
1*Stab_g 71/ ¢ =
e -k (1-uVA

where we denote u = w;/us and * is the operation of restriction to fixed
points. The total R-matrix for slope s is defined as follows:

%S(U) - Stab:é T1/2 SStab¢7T1/275 = (i*stab_¢7T1/275)_1 (i*stab€7T1/27s)

and we obtain:

(1—whz u(h—1)

) =| " h=u (122)
h—1 (1 —u)h2
h—u h—u

6.1.6

The wall R-matrices are defined by (21) and similarly to what we have above:
Ri = (i*Stabi¢7T1/278/)_1 (Z.*StabiQTl/z,s)

where s and s’ are two slopes separated by a wall w. Let w be an integer
representing the wall and s = w — €, s = w + € for sufficiently small e
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(obviously enough to take 0 < ¢ < 1). Then from the above formulas we
obtain:

1-nh 1 0
0 1 NG

Observe that these matrices are related by transposition as in (48).

6.1.7
The KT factorization of R-matrix s € V has the form (28):

% (u) = f[ R, R ﬁ R (124)

w<0 w>0

This infinite product is convergent in the topology of power series in u ™'

From (123) we obtain:

1—h (1—h)u

= 1 — (1 +ut+-- 1 —

U=]] Ri=-RiR{ = \/?z( ) Va(u—1)
w>0 0 1 0 1

. 1 0 1 0
L=]] R,=R.R,--=| (1-h), _ =| (-7

w<0 Vh ( ) Vh(u—1)
Finally, the infinity slope R-matrix is given by (27). The attracting and
repelling directions are obvious from Fig. 1 and we obtain:

1 1

U 2 —u2
_1 _

h™2 —u

0

NI

h

[
[SIES

Ro=—| u

One easily checks that in agreement with (122) we have #Z*(u) = LR, U.
This gives canonical LU decomposition of the R-matrix.
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6.1.8

The R-matrix for the whole Nakajima variety X given by (113) is of the
form:

1 0 0 0
1
1 0 (1h— u)hz u%ﬁ— 1) 0
%) = 71 - ho1  (1—wht
1
h—u h—u 0
00 0 1

Up to a scalar multiple one recognizes the standard R-matrix for % \/ﬁ(gAlz)
acting in the tensor product of two fundamental evaluation modules C?(u;)®
C?%(up). We conclude that the quiver algebra corresponding to cotangent
bundles to Grassmannians is %(gg) = %, \/ﬁ(gAlz).

6.1.9

The codimension function (35) for X is given, obviously, by the following
diagonal matrix: L

B = diag(1, h2, h2,1)
We obtain that the wall R-matrices defined by the Theorem 3 have the
following explicit form:

1 0 0 0
Rt _ | 0 h2 (1= mu= 0
v 0 0 h2 0
0 0 0 1

In particular all wall R-matrices are conjugated to the zeroth one by a line
bundle:

R = O(w)RFO(w) ™ (125)

w

with O(w) = diag(1,u¥,u%,1). One recognizes that up to a multiple R}
coincides with the standard R-matrix for % /;(slz) in the tensor product of
two fundamental representations. Thus, the wall subalgebra, which is built
by FRT procedure from this R-matrix is %(go) ~ %;(slz). As the R-
matrices for other walls are conjugates of R{, we conclude that %4 (g.) ~
U 5 (slz) for arbitrary wall w.
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6.1.10

To get rid of the square roots it is convenient to change the notations A — h2,
which we assume starting from here and to the end of this section. With this
notation we have the algebra %;(gg) = % (gl,) and a set of subalgebras
U (9w) ~ %(sly) indexed by walls w € Z. It is convenient to organize
this data as follows: let E, F' and K be the standard generators of % (sls)
which we understand as %4;(go). Then by (125) the wall subalgebra % (g.,)
is generated by F,,, F, and K:

E,=O0Ww)EO(w)™, F,=0(w)FO(w)™. (126)

Let us denote 2t (w) = E,, 2~ (w) = . One can check that the relations
among these generators can be summarlzed as the Drinfeld’s realization of
%(glg) the algebra %, (glg) is an associative algebra with 1 generated over
C(h) by the elements 2*(k), a(l), K*! (k € Z,1 € Z\ {0}) with the following

relations:

KK '=K1'K=1
[a(k)’ a(m)] =0, [a<k)7 Ki} =0

Kot (k)K" = B2 (k)

(127)
2 (k)2 ()] = = (V(k + ) = ok +1)
(k). ()] = £ 201 4 1y
with
mffo W(m)z—" = K exp ((h _ Y é a(kz)z‘k>
niio p(—m)2™ = K" exp <—(ﬁ —h™) li a(—k)zk>

and h-number [n]; := (A" — ™) /(h — h™').
It may be convenient to visualize %4 (gl,) and its subalgebras as in the
Figure 2 : the wall %(g,) corresponds to a line with integer slope w.
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oF_2
oF_l
Fo
o F1 o a(=1) E_1
Fy o a(—2) .Efg
. o .

Figure 2: The structure of OZ/h(glz). The line through zero corresponds to the
slope 2 subalgebra U,(sly) C % (gl,) generated by Es, F, K.

6.2 R -matrices
6.2.1

To write the formulas for R-matrices for a general variety (113) it is enough to
substitute all formulas from the previous section by their “universal” versions.
The universal R-matrix for % (sly) is well known:

0 Nk(F  p—1\kp—k(k—1)/2
R = pHeH/2 3 (=1)"(n ?k] ? f F* @ E* (128)
he

k=0

with [k]z! = [1]n[2]5. .. [k]n and H related to K as K = hf’. Up to a scalar
multiple the codimension function is given by h*! = R~H®H/2 thus, we

6Note the substitution i — h? on the left side of this equality which was intro-
duced at the begining of Section 6.1.10. We have h*? = diag(1,h,h,1) and h~H@H/2 =
diag(h=Y/2, B1/2, B1/2 h=1/2) = pm 1229,
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conclude that there is the following universal formula for the wall R-matrices:

X (=B — pL)ep—k(k—-1)/2
O S U

FF® EF 12

k=0

The lower triangular wall R-matrix is obtained by transposition R, = (R} )21:

X (VB — B kRpR(E=1)/2
> (=1)"(h ﬁ{] ') h EF ® FF, (130)
B+

6.2.2

The KT factorization (28) provides the following universal formula for the
total R-matrix:

R (u) = ﬁ R; R ﬁ Rt (131)

w<s w>s

with RE with given explicitly by (129). The R -matrix R, is the operator
of multiplication by the class of normal bundles (27). It can be conveniently
expressed in terms of generators a(n) corresponding to the infinite slope in
the Fig2:

Roo = chH®H/2 exp <(h — R i [QZ]h a(—n) ® a(n)>

n=1

where c is some scalar multiple depending on normalization.

6.3 The quantum difference operator M ¢(2)
6.3.1
By definition A* acts on K-theory of (1) = .#(1,1)[[.#(0,1) as:

A Z on e%(].,1) A z 0 . % H/2
h_{1 on #01) & "=\o 1)

From this and (129) we see that the ABRR equation for %;(sly) takes the
following form:

J+(Z)Z—H®1/2 R — , H®1/2 h—H@H/QJ-i-(Z)
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with R given by (128). This is an equation for strictly upper triangular
operator J(z), which means that:

JH2) =14 JH(z) F* @ B
k=1
The Proposition 7 says that the ABRR equation determines the coefficients
Jx(2) uniquely. Computation gives:

0 -1 kh—k(k—l)/2 h— At k
=0 [k TI(1 = 21K @ K-1h%)

i=1

6.3.2

By definition (78) we have J:(\) = J-(A—7,). In our case 7, = sw and this
corresponds to a shift z — zh™%" = zq™" for integer wall w. We conclude
that:
i (_1>kh7k(k71)/2(h _ hfl)k
k
k=0 k]! TT(1 — 27 1¢* K @ K—1h%)

=1

Jh(2) = FFe EY (132)

6.3.3

The operator B, (2) is given by (80). To compute it, we need the formulas
for antipode S,, of %(g,). They can be obtained directly from the wall
R-matrix (129). First, from 1 ® A(R) = Ri3R;3 and A ® 1(R) = Ry3Rq3 we
obtain:

AE)=K'®9E+E®1, A(F)=10F+FoK, AK)=K®K (133)
and thus the antipode corresponding to this coproduct has the form:
S(E)=-KE, S(F)=-FK', S(K)=K"

6.3.4

The lower triangular solutions of the ABRR equation can be computed from
(132) by J_(2) = Sy ® S (I (2)21), which gives:

X NkE2k2—k(k—1)/2(5 _ p—1\k Ik —k
To(2) = ( 1)hk (h—hY)VEKFe K B @ Bk
k=0 [k]h! H(l — 2 g K ® K—lh%—z;k)

i=1
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To compute the inverse of this operator we write

I, () =14) anE" @ F"

m=1

and determine the unknown coefficients a,, from the equation J, (2)™1J_ (z) =
1. Comparing coefficients of E™ @ F™ we find the following system of linear
equations:
k#—2k*—k(k—1)/2—4km —1\k [k -k
> am(_l)h - — (h=h ) K@ K =0, n=12,...
k+m=n [k]hl H (1 _ Z_lqu ® K—lh2i—4k—4m)

=1

The coefficients a,, are determined uniquely from this system. For instance,
for n = 1 we obtain

_hP(h-hHYK@K!

1l -2l K ® K-1h2

a

For n = 2 we have
h’ﬁ(h — h’l)K ® K1 N
(1—z271¢gvK @ K~1h=%)
h—g(h _ h_1)2K2 ® K—2
h+h (1 —271q"K @ K'h=6)(1 — 27 1q K ® K—1h™)

Ao — 1

=0

+
(
which gives

hf’?(h _ h71)2K2 ® K72
2](1 — 27" K @ K~1h=2)(1 — 27 1¢* K @ K—1h~*)

a9 —

In general
k(3k+1)

A (h— PR @ K*

ap — A .
Kl T — 27 1gv K @ K—Yh=%)
i=1

which can be proved by induction on k. Finally, we obtain:

3 (—1)F(h — Rk pkUe)/2
m(l ® Sw(.];(z)*l)) = Z (=1 k( ) K*EREE,
k=0 [k]h] H(l — Zflqu2h—2i>

i=1
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6.3.5

To compute the operator B,(z) we need to shift parameter z by k. By
definition k = (Cv — w)/2. Enough to compute the action of x in one
evaluation module C?(u) of %ﬁ(é\[2). This module corresponds to w = 1.
The Cartan matrix corresponding to our case is C' = 2. We therefore find:

/2 on .#(1,1) /2 0
“:{ ~1/2 on .(0,1) ‘:”’“:( 0 —1/2>:H/2

Thus, we conclude that the shift A — \ + & is given by’
2z — 2h? = 2 = 2K

Thus, from the definition (80) we obtain:

i 1)l<: h— h—l)kﬁ—k(k—i—fﬂ)/? KkEka
k- wT w
=TT - =g K 2)

=1

6.3.6

The alcove specified by Theorem 9 corresponds to the interval V = (—1,0).
Let s € V and .Z = O(1). There is only one wall w = —1 between s and
s — 1. Thus, the definition (82) and Theorem 9 give the following explicit
formula for the quantum difference operator:

o (—1)k(h = Bk kKk+3)/2
Mo (z) = Const O(1) 3 (=D*h—=nh"")*n

k=0 i I
Kl TT (1 — 2=t P Kh=2)

i=1

K*Ek Fk - (134)

We expect that the constant factor in Theorem 9 is C'onst = 1 for the case
k < n/2 and non-trivial for & > n/2.8 In the rest of this section we assume
that Const = 1 for simplicity.

"The factor 2 in A%* is from our conventions introduced at the beginning of Section
6.1.10.

8This expectation is in agreement with explicit computations of capped vertex functions
[47] for the first values of k and n.
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6.3.7

Using (126) we can also rewrite this operator as:

> h h™ )kh—k(k+3)/2

Moy (2 (:E:
=0 [k]s! H(l — z g7 Kh™2%)

=1

KkEka)O(l). (135)

This form is particularly convenient for explicit computations as it expresses
the difference operator through the standard %;(sls).

6.3.8

An important feature of quasimap quantum K-theory of Nakajima varieties
is the degeneration formula, see Section 6.5 in [47]. This formula relates
the count of quasimaps from a curve C' and from its nodal degeneration
C — (1 U, Cy. The main element of the degeneration formula is the “glue
operator” G defined by (6.5.20) in [47]. We have the following result:

Theorem 10 (Corollary 8.1.19, [47]).
q—0

(136)
lim Myg(z¢g HZ ' =G
q—o0
It is elementary to check that the first limit in this Theorem is in agree-
ment with our formula (135). From the second limit we obtain a formula for
the glue operator in terms of representation theory:

G-y IR e,
S0 10 - KA

=1

6.3.9

Let us compute the matrices of the operator Mpq)(2/q) for the first few
cases. Let e; and es; be the standard basis of C? with standard action of

Un(gly):
FEe; =0, Eey=¢e,, Fei=ey, Fes =0, Key =he;, Key=Hh te,
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The K-theory of T*P! corresponds to the O-weight subspace of C?(u;) ®
C?(up). We use the stable map to identify the basis e; ® ey and ey ® e
in this space with the basis of stable envelopes for an anti-canonical slope
s € (—1,0) which we computed in Section 6.1.3 . As E? = F? = 0 and
A(K) =K ® K =1 we have:

(h— -2
1—z1p2
where A is coproduct (133). In the basis e; ® eg, €2 ® €3 we compute
At o1
1 h

Bo(z) =1 A(E)A(F)

A(B)A(F) = {

Thus, in the stable basis we have:

Wz —zh?—h2+2 (h—hY)z

h? (zh? — 1) 1 — zh?
Bo(#)ar = (h—hY2 1—2
1 — zh? 1 — zh?

Next, the matrix of the operator of multiplication by O(1) in the basis of
fixed points equals:
up 0
O(1),, = { ! }

0 U9

To compute the action of this operator in the stable basis we use explicit
formulas from Section 6.1.3. The transition matrix between the basis of
fixed points and the stable basis for s € (—1,0) is computed by:*

U
N 0
. Stabe ri/2,4(9))],, —uz + U (137)
b A.(Tpin) - _ (h — 1) (h’ + 1> U2ty u2h

(—ug + uy) (ugh? —uy)  ugh? — uy

Thus, the action of O(1) in the stable basis is given by

(751 0
O<1)stab = T_l O(1>pr = (FL — 1) (h + ].) U1
R 1

9 Note that we need to substitute i — h? in the geometric formulas to relate them to
the action of % (glsy), as we explain in Section 6.1.10.
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Finally, we compute:

up (z—1) (b=~ 2u

zh? — 1 (1 —2h?)

M z sa:B Zsao]-sa:
o) (2/@)stab 0(2)stabO (1) stat (h—h™Y)u, (z—1)usg
(1 — zh?) zh? —1

For T*P? the computation is the same: we consider the subspace spanned
by e1®es®eq, e2Re1Rey, ea®eas®e; in C2(ug) @C?(uy) @C?(usz). The element
K acts on this subspace via A(K) = K ® K ® K, i.e., as multiplication by
h=t. As F? = 0 we find:

(h=h"Hr? 2
B =1—-— 2 A(E)A%(F
0(2) = 1= T A E)AX(F)
The computation gives:
h? nto1
A*EYA*(F)=| Y 1 h
1 h h?

Next, computing the stable envelopes for T*P? as in Section 6.1.3 for s €
(—1,0) would give

(1 = O()? fuz) (1 = O(1)I? /us)
(1 = O(1) /ur)(1 = O(1)R? /us)
P*(1 = O(1)/ur)(1 = O(1)/ug)

StabQ,Tm’S (pl)
StabQ,Tl/Q’SQ?Q)
StabQTl/z s (pg)

Using these formulas we find:

(75} 0 0
(h2 — 1) U1
O =T'0MW),, T=| 5 U2 0
h? -1
(h2 — 1) U1 M us
L h i
where
(75} 0 0
O1),,=|0 u 0
0 0 us



and 7T is the transition matrix computed as in (137). Combining all this
together for Mo1)(2/q)stab = Bo(2)stasO(1)stap We find:

[ (1—-h2)uy  (h—hYhzuy (h—h')zus
1 —zh3 1—zh3 1—zh3
(h—h 1Y) u (1—h2)uy  (h—h"") hzug
M pumy
o) (#/)star (1 —zh3) 1—zh? 1—zh?
(h—hYHhu, (h—h Y uy (1 —hz)us
L 1 — 2R3 1—zh3 1 —zh? _

7 Instanton moduli spaces

In this section we consider the example of Jordan quiver: the quiver con-
sisting of one vertex and a single loop. The dimension vectors are given by
two non-negative integer numbers v = m, w = r. The corresponding variety
A (m,r) is the moduli space of framed rank r torsion-free sheaves F on P?
with fixed second Chern class c3(F) = m. A framing of a sheaf F is a choice
of an isomorphism:

¢: Fl,. — oL (138)

where L, is the line at infinity of C?> C P2. This moduli space is usually
referred to as instanton moduli space.

Let A ~ (C*)" be the framing torus acting on .#(m,r) by changing the
isomorphism (138). This torus acts on the instanton moduli space preserving
the symplectic form.

Let us denote by G = A x (C*)? where the second factor acts on C? C P?
by scaling the coordinates. This induces an action of G on .#(m,r). The
action of this torus scales the symplectic form with a character which we
denote by h.

We denote the equivariant parameters corresponding to A by uq, - - - , u,,
and to torus G//A by t,ty such that the weight of the symplectic form is:

h - tltg
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7.1 Algebra %(gg) and wall subalgebras % (g.,)
7.1.1

In the special case r = 1 the instanton moduli space is isomorphic to the
Hilbert scheme of m points on the complex plane .#(m,1) = Hilb™(C?).
As a vector space, the K-theory of Hilbert schemes can be identified with
polynomials in an infinite number of variables.

P KaHiIb™(C?) = F(ur) € Qpr,po, -] @ Qi 15, 687 (139)

m=0

If we introduce a grading in the polynomial ring Q[py, pa, - - - | by deg(px) = k.
Then the m-th term on the left side of (139) corresponds to degree m.

7.1.2

The fixed point set Hilb™(C?)% is discrete. Its elements are labeled by par-
titions v with |v| = m. The structure sheaves of the fixed points O, form a
basis of the localized K-theory. The polynomials representing the elements
of this basis under isomorphism (139) are the Macdonald polynomials P,
in Haiman normalization [21]. To fix the norms we write the first several
Macdonald polynomials here:

14t o, 1t 14ty o, 1ty

Puy=p1, Pg= 5 P+ 5 P2 Puy = 5 P 5

(1+t)(1 +t; +13) 5 (1 —t)(1 4+t +1t3) N (1+1t1)(1 —t,)?

P[s}z 6 1 9 b1p2
1+ t)(1 4ty + t2 1 —t9)(1 + tg + 2 14 19)(1 —t9)?
Py = (0 , Aot rerd) (66
1+ tite + 2t + 2t 1 —tit 1—t)(1—t
P[Zl} _ 1l2 - 1 Zpi’ i 21 2p2p1 i ( 1)3( 2)
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7.1.3

Assume, that the torus A splits the framing by w = uy + - - - 4+ u,. then in the
notations of Section 2.3.2 we obtain:

P Ka(A(n,r)) =F(uw) @ @ F(u,) (140)

7.1.4
Let us set Z = 72, Z° = 2\ {(0,0)} and:
Zt={(i,j)€Z;i>0 or i=0, j>0}, Z~=-Z"

Set

and for vector a = (a1, as) € Z denote by deg(a) the greatest common divisor
of a; and as, in particular deg((m,0)) = deg((0,m)) = m. We set €, = +1
for a € Z*. For a pair of non-collinear vectors we set €, = sign(det(a, b)).

The “toroidal” algebra Uq(; [1) is an associative algebra with 1 generated
by elements e, and K, with a € Z*, subject to the following relations [59]:

e clements K, are central and

Ko=1, KuKp=Kap

e if a, b are two collinear vectors then:
K;' - K,

Ndeg(a)

(141)

[eaa eb] - 5a+b

e if a and b are such that deg(a) = 1 and the triangle {(0,0),a,a + b}
has no interior lattice points then

\Ija—l—b

[ea> eb] = 6b,a[(oz(b,a)
ny

where
(a,b) = €a(€ad + €pb — €ayp(a+Db))/2 if e,p=1
a2, N Eb(eaa + epb — €a+b(a + b))/2 if €ab = -1
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and elements U, are defined by:

oo o0
E Va2t = exp ( E n; eiazl>
k=0 i=1

for a € Z such that deg(a) = 1.

7.1.5

For w € QU {oo} we denote by d(w) and n(w) the denominator and numer-
ator of w. We set d(0o) = 0 and n(co) = 1. From (141) we see that

= e(dw)kn(wk): k€ Z\{0}

generate a Heisenberg subalgebra of H, C Uq(al) with the following rela-
tions: () _dlw)
Kao ~ Kao)

Ny

[O‘?ﬁkv 042”] =

It is convenient to visualize the algebra Uq(ngl) as in the Figure 3. The

Heisenberg subalgebras of Uq(é\[l) are labeled by w € Q and correspond to
lines with slope w in this picture.
7.1.6

The action of Uq(gll) on the K-theory (139) was constructed in [59]. The
central elements act in this representation by:

1

11
Kao =tt", Koy=1 (142)
In particular, the “vertical” generators commute in this representation:
[e0,m), €0,m)) =0

The “horizontal” Heisenberg subalgebra:

—m
(B =) (6 = 1)

[e(m,0): €(n,0)] = Sntm
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S(=2,2) &(—1,2) J€(0,2) (1,2)  ,€(2,2)

&(-2,1) &(-1,1) JE(LL)  e2.1)

&(=2,0) &(—1,0) oo(1.0) €(2,0)

=2, -1)%Y—1,/41) §(0,—1) &(1,-1) €(2,-1)

&(—2,-2)%/~1,-2) §(0,-2) £(1,-2) £(2,-2)

Figure 3: The line with slope 2 corresponds to the Heisenberg subalgebra
generated by ey o for k € Z\ {0}.

acts explicitly as follows:
1
m 2 —m/2 m/2 —m/2
(77 =)0 = 1,7
€(m,0) = (143)

—Mm—= >0
m@pm m

P m <0

The action of vertical subalgebra is diagonal in Macdonald polynomials:

e (Pr) = uy 'sign(l) ( =) Z 110 ”) Py (144)
L
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The infinite sum here should be understood as the series expansion of a
rational function:

length(\) (1) " —length(\)l
t—l)\Zt — t—D\itfl i—1 + 2

It is clear that e and e generate the whole U, (g[l) Thus, the last two

formulas determine the action of U, (g[l) on the Fock space.

7.1.7

It is expected that the geometric algebra %4 (gg) is isomorphic to Uq(g/l\ll),
see [43] for discussion. Among other things, this isomorphism implies that
the R-matrix of %,(gg) evaluated in the tensor product of the Fock modules
coincides with the geometric R-matrix for the instanton moduli spaces. In
particular, comparing the “universal formula” for the R-matrix of Uq(gAll)
obtained in [42] with the KT-factorization (28), we find that the wall R-
matrices of %,(gg) coincide with the R-matrices of the slope Heisenberg
algebras H, (to see that it is enough to compare the limits (41) of the R-
matrices). This way, this leads to an isomorphism of the wall subalgebras

U (9w) C % (8g) and Heisenberg subalgebras H,, C U, (g[l)

In the remaining part of this section we derive formulas for the quan-
tum difference equation for the instanton moduli spaces assuming the above
isomorphism exists.

7.2 R-matrices
7.2.1

Recall that the quantum Heisenberg algebra is an algebra generated by ele-
ments e, f and a central element K modulo the following relations:

K- K1
c—c!

[676]:[f’f]20’ [67f]: (145>

The Fock space F = Q[z] ® Q[c¢*!] is a natural module over the Heisenberg
algebra with the following action:

e(p) = xp, f(p)=—j—§7 K(p) =cp

89



so that ¢ is a formal parameter fixing the value of central element K in F.
The Heisenberg algebra is a Hopf algebra with the following coproduct:

Ale)=ex1+K'®e
A(f)=foK+1® f

AK)=K®K
antipode:
S(e)=—Ke, S(f)=-K"'f, S(K)=K"
and counit:
e(e) =e(f) =0, e(K)=1
We consider the tensor product F ® F = Qx,y] ® Q[ct!], and define codi-
mension function by ¢(z'y’) = ¢*x'y/. We consider the following upper
and lower triangular R-matrices.

Rt =cexp(—(c—c ') f®e), R =c exp(—(c—cNe®[)
Proposition 16. The R-matrices satisfy the QYBE in F**:
ng RERE = RERﬁR%
and have the following properties:
RTA = AyRT, R Ay = AR
where Ayy is the opposite coproduct, and
1® A(RT) = RLERY,, A®1(RT) = RLRS;

1®A(R7) =RR;5, A®1(RT) = RuRy;

7.2.2

The Picard group Pic(X) = Z is generated by O(1). It acts on H*(X,R) =R
by shifts. The explicit computation of stable map for .# (m,r) [62, 14] shows
that Stab® is a locally constant function which changes only at the walls:

Walls:{w:%ER ca€Z, be{l,2,...,m}}

Therefore, the set of walls for #(r) = [] .4 (m,r) is identified with rational
m=0

numbers Q C R.
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7.2.3

We conclude that the R-matrix R, for the wall w € Q corresponding to the
Heisenberg subalgebra %;(g,,) takes the form:

Hexp —ngap @ av,) —exp( anak@)a > (146)

k=1

The lower triangular R-matrix is obtained by the transposition:

o0

= H exp(—ng ) @ o)) = exp ( Z ng o) @ ak> (147)

k=1

As the central element of the elliptic Hall algebra acts in the Fock space by
Ko = h~1/2 the central parameter ¢ of the quantum Heisenberg algebra
generated by e = ¥, and f = o}’ is given by ¢ = A~ FW)/2 = (¢,t,)~kdw)/2,

7.2.4

Let us fix a slope s € H?(X,R) = R. The Khoroshkin-Tolstoy factorization
(28) provides the following universal formula for the total R-matrix:

=[] Bw B~ [] RS (148)

weQ weQ
w<s w>s

The infinite slope R -matrix R, is the operator of multiplication by normal
bundles (27). From explicit formula for action of ag® (144) we can obtain:

_exp< ana k®ak>

This, together with formulas from the previous section give the following
universal expression for a slope s R-matrix:

S oo
K (u) = H exp(—z nkafk®a}€”).
weQU{oo} k=1

As we mentioned above, this universal factorization of toroidal R-matrix is
expected to coincide with one obtained in [42].
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Remark 7. The geometric R-matrices associated to a Nakajima variety with
a quiver () can be expressed as infinite products of R-matrices associated
with the universal cover quiver @), see Section 4.3 in [37]. This leads to
infinite product formulas for R-matrices different from the KT-factorization
described above. For the Jordan quiver (), the universal cover () is the
Ax-type quiver, and thus the R-matrices for the instanton moduli factor to
infinite products of the %4 (gl.,) R-matrices. In equivariant cohomology an
example of such factorization is considered in [61]. A similar formula holds
in equivariant K-theory.

7.3 The quantum difference operator M ¢(z)
7.3.1

In this section we derive the solution of the ABRR equation. We assume
that A splits the framing by r = ryu; + rous so that
Ka( A (r)) = FO (uy) @ Fo™2 (uy).

Let F' = . (my, 1) XA (ma,72) be a component of . (m, r)*. Asdim .4 (m,r) =
2rm we obtain that the corresponding eigenvalue of ) equals:

Q- COdiT(F) _ 2rm — 27’1?1 —2rymy _ mury 42- maty (149)

The ABRR equation (73) for a wall w € Q takes the form:
R R A Ty (2) = Ty (2)Rh ) (150)

We are looking for a strictly lower-triangular solution J (2) € %(g.)®?
which means that J (z) is of the form:

o) = e (3 h2)at m )

We have:
Ryhi S ()Rt = 12T, (2)R" (151)
and
) T (2 = exp (Y ()27 0% @ af). (152)
k=1
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We note that o, ® o}’ acts by
Ka( A (my, )} A (ma,r9)) — Ka( A (mi+kd(w), 1) XM (ma—kd(w),rs))

Thus, (149) for the corresponding matrix element we have:
kd(w)rqy —kd(w)r
%", @ alh =h E o ®al.
We note that K(; ) acts on F by the scalar A~'/2 and thus it acts on F®
via A"(K; ) = K%TO), i.e., by the scalar h~7/2. In this view, we can write the
last equation in universal form

2" @ aph? = K" @ K1 o) @ o

We conclude
F - (2)E® = exp (Z Je(2) K0 @ gMw) q, ag). (153)

Substituting (152) , (153) and (147) to the ABRR equation (151) gives the
linear system for the coefficients Jy(z):

S+ T2 = (K @ K

which gives

Jy() = exp (- f;

d(uw) kd(w)
”kK< )®K< 0)

_ kd “kd(w)

w w
osz®ozk>.

7.3.2

The shift A — X\ — 7, corresponds to substitution z — 2z¢~. Thus by
definition (78) we obtain:

o0

ng de(w) ® kad(w)

_ (1,0) (1,0) w w
Jw(z):exp<—§ = a ®a>
—kd(w) Akn(w (w) —kd(w) k k
o1 L 2GR 67 @ K
and
00 d(w) kd(w)
nkK QR K,
J_(z)’lzexp< E (L0) kd( 0 a” ®o/”>.
1 1 — =2 R (w) ghn( )K(l 0) ®K(l,o)
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7.3.3

From Section 7.2.1 it is clear that the antipode of %;(g,) has the following

form:

—kd(w
Swlap) = =K o ay

From this we obtain:

00 g de(w)

m(1®S,(J,(2)™h) =:ex (— (1.0) al_UO/"):
( Fo(=7) P kzz; 1_Z—kd(w)qkn(w)K(21’fg§w) Kok

The symbol :: stands for the normal ordering meaning that all “annihilation”
operators o) with £ > 0 act first.

7.3.4

The Cartan matrix of the Jordan quiver is C' = 0 and therefore K = (Cv —
w)/2 = —r/2. Thus the shift A — A+x corresponds to z — zh™"/? = z K1 g).
From (80) we obtain:

oo Nk K(kd(l)U)
B, (z) =: exp ( - Z L0 o afkoz}f> :
—~1 - Z—kd(w)qkn(w)K(Lé))

7.3.5

Let . = O(1) be the generator of the Picard group. Let V C R be the alcove
specified by Theorem 9. If s € V, then the interval (s — %, s) contains all
walls w € Q such that —1 < w < 0. We assume that C'onst in Theorem
9 for the case of . (n,r) is trivial for all values of n and r.'° Therefore, by
definition (82) we obtain the following explicit formula for quantum difference
operator:

— S Nk h—kzrd(w)/?
M(’)(l)('z) = O(l) g@ (exp ( - kz::l 1 Z_kd(w)qkn(w)h_krd(w)/g OO, ) (154)
—1<w<0

where we used that in the K-theory of instanton moduli space .# (m,r) the
central element acts by the scalar K g) = R/,

10This expectation is in agreement with explicit computations of the capped vertex
functions [47] for the first several values of n and 7.
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7.3.6

Let us consider some limits of the difference operator. First, for all terms in
in the previous formula d(w) > 0 and n(w) < 0. Thus we have:

lim Moq)(2) = lim Moqy(2) = O(1)
Second, to compute the limit of Mo1)(2¢™") as ¢ — oo we note that for all
terms in (154) d(w)+n(w) > 0. Moreover d(w)+n(w) = 0 only for w = —1.
We conclude that:

0 —kr/2
. 1 . ng 1 -1\ .
qlL% Moy (z¢7") = O(1) : exp ( — Z Ry )

From (136) and O(1)a?O(1)~! = "' we find a formula for the glue oper-
ator in this case:

0 Ny h—kr/?
G =: exp ( — Z wagk@]g) .

The action of “horizontal” Heisenberg algebra af on the K-theory is given by
(143). Using these formula glue operator can be easily computed explicitly.

7.3.7

Let us consider the example of X = Hilb*(C?). The walls which contribute
to (154) are w = —1 and w = —1/2. The quantum difference operator takes
the form:

Aoy =T 'O(1)B_1(2)B_1(2)
Using the identity (95) we can also write it in the form:
Aoqy = Bo(2)B1 () O()T!
which means that:

Moy (zg~") = Bo(2)B1(2)O(1)

1
2

Similarly, for X = Hilb*(C?) we have:

Moy (z¢7") = Bo(2)B

wl=



7.3.8

The torus acting on X is two-dimensional. The corresponding coordinates are
t; and t5. The framing torus does not act on X since r = 1. We consider the
one-dimensional torus corresponding to ker(). The coordinate on this torus
is given by t1/t5. For this torus let Staby () be the stable envelope of a fixed
point A with a slope from the anti-canonical alcove, chambers (¢;/t5)* — 0
and the standard polarization. Up to a multiple, as the elements of the Fock
space, Stab,(A) and Stab_(\) coincide with the so called plethystic Schur
polynomials:

S( D1 D2 > S( D1 D2 )
ST T A S e

respectively. Here sy(p1,p2,...) denotes the standard Schur polynomial as-
sociated with a partition A. See Proposition 3.3 in [24] for a proof.

Using a computer we find the following explicit examples in the basis of
plethystic Schur polynomials corresponding to the chamber (t;/t5) — 0.1* If
the basis of partitions of 2 is ordered as [1, 1], [2] we compute:

Bo(Zhl/Q) =

z—1 22t1t2 —1 — (tth — 1) z
(2261222 — 1) (2tata — 1) | — (tity — 1)z 2%ty — 1

(Zﬁl/z):1+M [ -1t ]

22t12t22 —q tl —tltg

ey
O(1) =

—tito+1 4

If the basis of partitions of 3 is ordered as [1, 1, 1], [2, 1], [3] we compute:

1We use a Maple package, implemented by the second author, which computes the

action of Uq(gAll) on the Fock space. The package is available from the author upon
request.
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1/2\ _ (z=1)(2t1to+1)(t1t2—1)
BO(Zh / ) - (z3t13t2371)(z122€212t22711§(zt1t271) X

(22tat2—1) (2341222 —1)
(t1te—1)(zt1t2+1)

41 242 3124 2.2, 25 2 o 2 2
— (Z2t1t2 _ 1) 2717t —2"11 %12 +72’12_tf 22%t1ta 42" —241 — (ZQtth _ 1)

22 (Zt12t22—1)
zti1ta+1

—Z (Zztltg — 1)

zQ(zt12t22—1) (z2t1t2—1)(23t12t22—1)

—z (22t1t2 — 1)

ztito+1 (tltgfl)(zt1t2+1)
-1 to —ty?
3 -1
By/3(zh!/?) =1+ %Zs,)q t1 —tity it

—t12  t1%ty  —to%t2

By p(zh/?) =1+ Ztita(tita—1) o

22t 2t2% —q
_ titott1—1 t1ta—1 to
t12t2 t12 t12
(t1t2—1)(t1ta+t1—1) _(t1t271)2 _ tite—1
to2t12 t12to t12
_ (tata+ti =) (tate—t1—1)  (tata—1)(t1te—t1—1)  tyto—t;—1
t1to2 t1to t1

Byjs(2h'/?) = 14 Z{tz-hta

23113123 —q
t1t227t17t2 _t2(t1t2_t1_1) _i
t1%to t12 12
_ (t1t2+t171)(t1t227t1*t2) (tr1to+t1—1)(t1ta—t1—1) to(tito+t1—1)
to?t12 12 t12
(t2124t1t2—1) (t1ta?—t1 —t2) (tito—t1—1)(t12+t1ta—1) to(t124t1ta—1)
ti1to? t1 t1
to? 0 0
o) = —(tita = 1) (t2 + 1) t2 t1ta 0

(tita — 1) (tat12 + 2% — 1) —(tita — 1) (L1 + 1) tg 143
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7.3.9

The operators B,,(z) have remarkable symmetries and applications which
are far from obvious. The explicit formulas for matrices of B, (z) simplify

drastically if computed in the “mixed” stable basis. Let us denote by B, (2)
the matrix of the operator B, (z) in the mixed stable basis: the input is the
stable basis before a wall w,

sy := Staby () (155)
and the output in the stable basis after w:
51)1\]4_5 = Stab+7w+5()\). (156)

for small enough e. Explicitly, we have

Bu(2)(s17) = 3 Bul(2)un 547 (157)

8%
One can show that the matrix elements of B,,(z) only depend on parameters
z and K = t1t5 but are independent on the equivariant parameter a = t /ts.

Moreover, the matrix ]gw(z) coincides with the K-theoretic R-matrix of the
cyclic quiver variety with d(w) vertices. This variety appears as a subvari-
ety in the “symplectic dual” Hilbert scheme. Both z and A play a role of
equivariant parameters of a certain torus acting on the dual side. We refer
to Theorem 12 in [63] for a proof. The examples of the corresponding K-
theoretic R-matrices for cyclic quiver varieties can be found in Appendix D
of [63].
We note also that the operator
B, := lim B,(z)
Z—00
describes the monodromy of the quantum differential equation for Hilb"(C?)
[50], around a loop containing the singularity z,, = exp(2miw). This means, in
particular, that the operators B, provide a representation of the fundamental
group
71 (P \ {singularities of qde for Hilb"(C?)},0)

in the Fock space. We refer to Theorem 17 of [63] for details a proof. A
categorical version of these results is a topic of ongoing research [9].

98



References

1]

2]

M. Aganagic and A. Okounkov. Quasimap counts and Bethe eigenfunc-
tions. Mosc. Math. J., 17(4):565-600, 2017.

M. Aganagic and A. Okounkov. Elliptic stable envelopes. J. Amer.
Math. Soc., 34(1):79-133, 2021.

D. Arnaudon, E. Buffenoir, E. Ragoucy, and P. Roche. Universal solu-
tions of quantum dynamical Yang-Baxter equations. Lett. Math. Phys.,
44(3):201-214, 1998.

M. Balagovi¢. Degeneration of trigonometric dynamical difference equa-
tions for quantum loop algebras to trigonometric Casimir equations for
Yangians. Comm. Math. Phys., 334(2):629-659, 2015.

R. Bezrukavnikov and M. Finkelberg. Wreath Macdonald polynomials
and the categorical McKay correspondence. Camb. J. Math., 2(2):163—
190, 2014. With an appendix by Vadim Vologodsky.

R. Bezrukavnikov and D. Kaledin. Fedosov quantization in positive
characteristic. J. Amer. Math. Soc., 21(2):409-438, 2008.

R. Bezrukavnikov and I. Losev. Etingof’s conjecture for quantized quiver
varieties. Invent. Math., 223(3):1097-1226, 2021.

R. Bezrukavnikov and I. Mirkovi¢. Representations of semisimple Lie
algebras in prime characteristic and the noncommutative Springer reso-
lution. Ann. of Math. (2), 178(3):835-919, 2013.

R. Bezrukavnikov and A. Okounkov. In preparation.

A. Braverman, D. Maulik, and A. Okounkov. Quantum cohomology of
the Springer resolution. Adv. Math., 227(1):421-458, 2011.

I. t. Ciocan-Fontanine, B. Kim, and D. Maulik. Stable quasimaps to
GIT quotients. J. Geom. Phys., 75:17-47, 2014.

D. A. Cox and S. Katz. Mirror symmetry and algebraic geometry, vol-
ume 68 of Mathematical Surveys and Monographs. American Mathe-
matical Society, Providence, RI, 1999.

99



[13]

[14]

[15]

[16]

[21]

23]

[24]

H. Dinkins. 3d mirror symmetry of the cotangent bundle of the full flag
variety. arXiv e-prints, page arXiv:2011.08603, Nov. 2020.

H. Dinkins. Elliptic stable envelopes of affine type A quiver varieties.
arXiv e-prints, page arXiv:2107.09569, July 2021.

P. Etingof. Symplectic reflection algebras and affine Lie algebras. Mosc.
Math. J., 12(3):543-565, 668-669, 2012.

P. Etingof, T. Schedler, and O. Schiffmann. Explicit quantization of
dynamical r-matrices for finite dimensional semisimple Lie algebras. J.
Amer. Math. Soc., 13(3):595-609 (electronic), 2000.

P. Etingof and A. Varchenko. Dynamical Weyl groups and applications.
Adv. Math., 167(1):74-127, 2002.

I. B. Frenkel and N. Yu. Reshetikhin. Quantum affine algebras and
holonomic difference equations. Commun. Math. Phys., 146:1-60, 1992.

A. Givental and Y.-P. Lee. Quantum K-theory on flag manifolds, finite-
difference Toda lattices and quantum groups. Invent. Math., 151(1):193—
219, 2003.

A. Givental and V. Tonita. The Hirzebruch-Riemann-Roch theorem
in true genus-0 quantum K-theory. In Symplectic, Poisson, and non-

commutative geometry, volume 62 of Math. Sci. Res. Inst. Publ., pages
43-91. Cambridge Univ. Press, New York, 2014.

M. Haiman. Notes on Macdonald polynomials and the geometry of
Hilbert schemes. In Symmetric functions 2001: surveys of developments
and perspectives, volume 74 of NATO Sci. Ser. II Math. Phys. Chem.,
pages 1-64. Kluwer Acad. Publ., Dordrecht, 2002.

D. Kaledin. Derived equivalences by quantization. Geom. Funct. Anal.,
17(6):1968-2004, 2008.

S. M. Khoroshkin and V. N. Tolstoy. Universal R-matrix for quantized
(super)algebras. Comm. Math. Phys., 141(3):599-617, 1991.

Y. Kononov, A. Okounkov, and A. Osinenko. Correction to: The 2-
leg vertex in K-theoretic DT theory. Comm. Math. Phys., 388(2):1129,
2021.

100



[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

Y. Kononov and A. Smirnov. Pursuing quantum difference equations I:
stable envelopes of subvarieties. arXiv e-prints, page arXiv:2004.07862,
Apr. 2020.

Y. Kononov and A. Smirnov. Pursuing quantum difference equations
II: 3D-mirror symmetry. arXiv e-prints, page arXiv:2008.06309, Aug.
2020.

P. Koroteev, P. P. Pushkar, A. V. Smirnov, and A. M. Zeitlin. Quantum
K-theory of quiver varieties and many-body systems. Selecta Math.
(N.S.), 27(5):Paper No. 87, 40, 2021.

P. Koroteev and A. M. Zeitlin. 3d Mirror Symmetry for Instanton Mod-
uli Spaces. arXiv e-prints, page arXiv:2105.00588, May 2021.

J. Li. Stable morphisms to singular schemes and relative stable mor-
phisms. J. Differential Geom., 57(3):509-578, 2001.

J. Li. A degeneration formula of GW-invariants. J. Differential Geom.,
60(2):199-293, 2002.

J. Li and B. Wu. Good degeneration of Quot-schemes and coherent
systems. Comm. Anal. Geom., 23(4):841-921, 2015.

S. Majid. Foundations of quantum group theory. Cambridge University
Press, Cambridge, 1995.

D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande. Gromov-
Witten theory and Donaldson-Thomas theory. 1.  Compos. Math.,
142(5):1263-1285, 2006.

D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande. Gromov-
Witten theory and Donaldson-Thomas theory. II.  Compos. Math.,
142(5):1286-1304, 2006.

D. Maulik and A. Oblomkov. Quantum cohomology of the Hilbert
scheme of points on A,-resolutions. J. Amer. Math. Soc., 22(4):1055—
1091, 20009.

D. Maulik, A. Oblomkov, A. Okounkov, and R. Pandharipande.
Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds.
Invent. Math., 186(2):435-479, 2011.

101



37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

D. Maulik and A. Okounkov. Quantum groups and quantum cohomol-
ogy. Astérisque, (408):ix+209, 2019.

K. McGerty and T. Nevins. Kirwan surjectivity for quiver varieties.
Inventiones mathematicae, 212(1), Nov 2017.

H. Nakajima. Instantons on ALE spaces, quiver varieties, and Kac-
Moody algebras. Duke Math. J., 76(2):365-416, 1994.

H. Nakajima. Quiver varieties and Kac-Moody algebras. Duke Math.
J., 91(3):515-560, 1998.

H. Nakajima. Quiver varieties and finite-dimensional representations of
quantum affine algebras. J. Amer. Math. Soc., 14(1):145-238, 2001.

A. Negut. The R-matrix of the quantum toroidal algebra. arXiv e-prints,
page arXiv:2005.14182, May 2020.

A. Negut. Quantum Algebras and Cyclic Quiver Varieties. ProQuest
LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)-Columbia University.

N. Nekrasov and A. Okounkov. Membranes and sheaves. Algebr. Geom.,
3(3):320-369, 2016.

N. A. Nekrasov and S. L. Shatashvili. Quantum integrability and super-
symmetric vacua. Prog. Theor. Phys. Suppl., 177:105-119, 2009.

N. A. Nekrasov and S. L. Shatashvili. Supersymmetric vacua and Bethe
ansatz. Nuclear Phys. B Proc. Suppl., 192/193:91-112, 2009.

A. Okounkov. Lectures on K-theoretic computations in enumerative
geometry. In Geometry of moduli spaces and representation theory, vol-
ume 24 of IAS/Park City Math. Ser., pages 251-380. Amer. Math. Soc.,
Providence, RI, 2017.

A. Okounkov. Nonabelian stable envelopes, vertex functions with de-
scendents, and integral solutions of ¢-difference equations. arXiv e-
prints, page arXiv:2010.13217, Oct. 2020.

A. Okounkov. Inductive construction of stable envelopes. Lett. Math.
Phys., 111(6):Paper No. 141, 56, 2021.

102



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

A. Okounkov and R. Pandharipande. The quantum differential equa-
tion of the Hilbert scheme of points in the plane. Transform. Groups,
15(4):965-982, 2010.

R. Pandharipande and A. Pixton. Gromov-witten/pairs correspondence
for the quintic 3-fold. Journal of the American Mathematical Society,
30:389-449, 2012.

P. P. Pushkar, A. V. Smirnov, and A. M. Zeitlin. Baxter ()-operator
from quantum K-theory. Adv. Math., 360:106919, 63, 2020.

N. Y. Reshetikhin. Quasitriangular Hopf algebras and invariants of links.
Algebra i Analiz, 1(2):169-188, 1989.

N. Y. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev. Quanti-
zation of Lie groups and Lie algebras. Algebra i Analiz, 1(1):178-206,
1989.

R. Rimanyi and L. Rozansky. New quiver-like varieties and Lie super-
algebras. arXiv e-prints, page arXiv:2105.11499, May 2021.

R. Riméanyi, A. Smirnov, A. Varchenko, and Z. Zhou. Three-dimensional
mirror self-symmetry of the cotangent bundle of the full flag variety.
SIGMA Symmetry Integrability Geom. Methods Appl., 15:Paper No. 093,
22, 2019.

R. Rimanyi and A. Weber. Elliptic classes on Langlands dual flag vari-
eties. Commun. Contemp. Math., 24(1):Paper No. 2150014, 15, 2022.

R. Riményi, A. Smirnov, A. Varchenko, and Z. Zhou. Three-Dimensional
Mirror Symmetry and Elliptic Stable Envelopes. International Mathe-
matics Research Notices, 02 2021. rnaa389.

O. Schiffmann and E. Vasserot. The elliptic Hall algebra and the K-
theory of the Hilbert scheme of A%. Duke Math. J., 162(2):279-366,
2013.

Y. Shou. Bow Varieties—Geometry, Combinatorics, Characteristic
Classes. ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)-The
University of North Carolina at Chapel Hill.

103



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

A. Smirnov. On the Instanton R-matrix. Comm. In Math. Phys.,
345:703-740, 2016.

A. Smirnov. Elliptic stable envelope for Hilbert scheme of points in the
plane. Selecta Math. (N.S.), 26(1):Paper No. 3, 57, 2020.

A. Smirnov. Quantum differential and difference equations for
Hilb™(C?). arXw e-prints, page arXiv:2102.10726, Feb. 2021.

A. Smirnov and Z. Zhou. 3d mirror symmetry and quantum K-theory
of hypertoric varieties. Adv. Math., 395:Paper No. 108081, 61, 2022.

V. Tarasov and A. Varchenko. Difference equations compatible with
trigonometric K7 differential equations. Internat. Math. Res. Notices,
(15):801-829, 2000.

V. Tarasov and A. Varchenko. Duality for Knizhnik-Zamolodchikov and
dynamical equations. Acta Appl. Math., 73(1-2):141-154, 2002. The
2000 Twente Conference on Lie Groups (Enschede).

V. Tarasov and A. Varchenko. Dynamical differential equations com-
patible with rational ¢ K Z equations. Lett. Math. Phys., 71(2):101-108,
2005.

V. Toledano Laredo. The trigonometric Casimir connection of a simple
Lie algebra. J. Algebra, 329:286-327, 2011.

M. Varagnolo. Quiver varieties and Yangians. Lett. Math. Phys.,
53(4):273-283, 2000.

104



Andrei Okounkov

Department of Mathematics, Columbia University
New York, NY 10027, U.S.A.

Institute for Problems of Information Transmission
Bolshoy Karetny 19, Moscow 127994, Russia

Laboratory of Representation Theory and Mathematical Physics
Higher School of Economics
Myasnitskaya 20, Moscow 101000, Russia

Andrey Smirnov
Department of Mathematics, University of North Carolina
Chapel Hill, NC, 27599 U.S.A.

Steklov Mathematical Institute of Russian Academy of Sciences
Moscow, Gubkina 8, Russia, 117966.

105



