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Abstract. Quantum computers, that may become available one day, would impact
many scientific fields, most notably cryptography since many asymmetric primitives
are insecure against an adversary with quantum capabilities. Cryptographers are
already anticipating this threat by proposing and studying a number of potentially
quantum-safe alternatives for those primitives. On the other hand, symmetric primi-
tives seem less vulnerable against quantum computing: the main known applicable
result is Grover’s algorithm that gives a quadratic speed-up for exhaustive search.
In this work, we examine more closely the security of symmetric ciphers against
quantum attacks. Since our trust in symmetric ciphers relies mostly on their ability
to resist cryptanalysis techniques, we investigate quantum cryptanalysis techniques.
More specifically, we consider quantum versions of differential and linear cryptanalysis.
We show that it is usually possible to use quantum computations to obtain a quadratic
speed-up for these attack techniques, but the situation must be nuanced: we don’t
get a quadratic speed-up for all variants of the attacks. This allows us to demonstrate
the following non-intuitive result: the best attack in the classical world does not
necessarily lead to the best quantum one. We give some examples of application
on ciphers LAC and KLEIN. We also discuss the important difference between an
adversary that can only perform quantum computations, and an adversary that can
also make quantum queries to a keyed primitive.
Keywords: Symmetric cryptography · Differential cryptanalysis · Linear cryptanalysis
· Post-quantum cryptography · Quantum attacks · Block ciphers.

1 Introduction
Large quantum computers would have huge consequences in a number of scientific fields.
Cryptography would certainly be dramatically impacted: for instance, Shor’s factoring
algorithm [Sho97] makes asymmetric primitives such as RSA totally insecure in a post-
quantum world. Even if quantum computers are unlikely to become widely available in
the next couple of years, the cryptographic community has decided to start worrying
about this threat and to study its impact. One compelling reason for taking action is that
even current pre-quantum long-term secrets are at risk as it seems feasible for a malicious
organization to simply store all encrypted data until it has access to a quantum computer.
This explains why post-quantum cryptosystems, based for instance on lattices or codes,
have become a very hot topic in cryptology, and researchers are now concentrating their
efforts in order to provide efficient alternatives that would resist quantum adversaries.

In this paper, we focus on symmetric cryptography, the other main branch of cryptogra-
phy. Symmetric primitives also suffer from a reduced ideal security in the quantum world,
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but this security reduction turns out to be much less drastic than for many asymmetric
primitives. So far, the main quantum attack on symmetric algorithms follows from Grover’s
algorithm [Gro96] for searching an unsorted database of size N in O(N1/2) time. It can
be applied to any generic exhaustive key search, but merely offers a quadratic speed-up
compared to a classical attack. Therefore, the current consensus is that key lengths should
be doubled in order to offer the same security against quantum algorithms. This was one
of the motivations to require a version of AES with a 256-bit key, that appears in the
initial recommendations of the European PQCRYPTO project [ABB+15]:

“Symmetric systems are usually not affected by Shor’s algorithm, but they are
affected by Grover’s algorithm. Under Grover’s attack, the best security a key
of length n can offer is 2n/2, so AES-128 offers only 264 post-quantum security.
PQCRYPTO recommends thoroughly analyzed ciphers with 256-bit keys to
achieve 2128 post-quantum security.”

Doubling the key length is a useful heuristic, but a more accurate analysis is definitely
called for. Unfortunately, little work has been done in this direction. Only recently,
a few results have started to challenge the security of some symmetric cryptography
constructions against quantum adversaries. In particular, some works have studied generic
attacks against symmetric constructions, or attacks against modes of operations.

First, the quantum algorithm of Simon [Sim97], which is based on the quantum
Fourier transform, has been used to obtain a quantum distinguisher for the 3-round
Feistel cipher [KM10], to break the quantum version of the Even-Mansour scheme [KM12],
and in the context of quantum related-key attacks [RS15]. More recently, the same
quantum algorithm has been used to break widely used block cipher modes of operations
for MACs and authenticated encryption [KLLNP16] (see also [SS16]). All these attacks
have a complexity linear in the block size, and show that some constructions in symmetric
cryptography are badly broken if an adversary can make quantum queries.

Kaplan [Kap14] has also studied the quantum complexity of generic meet-in-the-middle
attacks for iterated block ciphers constructions. In particular, this work shows that having
access to quantum devices when attacking double iteration of block ciphers can only reduce
the time by an exponent 3/2, rather than the expected quadratic improvement from
Grover’s algorithm. In consequence, in stark contrast with classical adversaries, double
iteration of block ciphers can restore the security against quantum adversaries.

These are important steps in the right direction, providing the quantum algorithms
associated to some generic attacks on different constructions. These results also show that
the situation is more nuanced than a quadratic speed-up of all classical attacks. Therefore,
in order to get a good understanding of the actual security of symmetric cryptography
constructions against quantum adversaries, we need to develop and analyze quantum
cryptanalytic techniques. In particular, a possible approach to devise new quantum attacks
is to quantize classical ones.

Security of symmetric key ciphers. While the security of crypto-systems in public key
cryptography relies on the hardness of some well-understood mathematical problems, the
security of symmetric key cryptography is more heuristic. Designers argue that a scheme
is secure by proving its resistance against some particular attacks. This means that only
cryptanalysis and security evaluations can bring confidence in a primitive. Even when
a primitive has been largely studied, implemented and standardized, it remains vital to
carry on with the cryptanalysis effort using new methods and techniques. Examples of
standards that turned out to be non-secure are indeed numerous (MD5, SHA1, RC4. . . ).
Symmetric security and confidence are therefore exclusively based on this constant and
challenging task of cryptanalysis.

Symmetric cryptanalysis relies on a toolbox of classical techniques such as differential
or linear cryptanalysis and their variants, algebraic attacks, etc. A cryptanalyst can study
the security of a cipher against those attacks, and evaluate the security margin of a design
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using reduced-round versions. This security margin (how far the attack is from reaching
all the rounds) is a good measure of the security of a design; it can be used to compare
different designs and to detect whether a cipher is close to being broken.

Since the security of symmetric primitives relies so heavily on cryptanalysis, it is crucial
to evaluate how the availability of quantum computing affects it, and whether dedicated
attacks can be more efficient than brute-force attacks based on Grover’s algorithm. In
particular, we must design the toolbox of symmetric cryptanalysis in a quantum setting in
order to understand the security of symmetric algorithms against quantum adversaries.
In this paper, we consider quantum versions of cryptanalytic attacks for the first time1,
evaluating how an adversary can perform some of the main attacks on symmetric ciphers
with a quantum computer.

Modeling quantum adversaries. Following the notions for PRF security in a quantum
setting given by Zhandry [Zha12], we consider two different models for our analysis:

Standard security: a block cipher is standard secure against quantum adversaries if no
efficient quantum algorithm can distinguish the block cipher from PRP (or a PRF)
by making only classical queries (later denoted as Q1).

Quantum security: a block cipher is quantum secure against quantum adversaries if no
efficient quantum algorithm can distinguish the block cipher from PRP (or a PRF)
even by making quantum queries (later denoted as Q2).

A Q1 adversary collects data classically and processes them with quantum operations,
while a Q2 adversary can directly query the cryptographic oracle with a quantum super-
position of classical inputs, and receives the superposition of the corresponding outputs.
The adversary, in the second model, is very powerful. Nevertheless, it is possible to devise
secure protocols against these attacks. In particular, the model was used in [BZ13b],
where quantum-secure signatures were introduced. Later, the same authors showed how to
construct message authentification codes secure against Q2 adversaries [BZ13a]. It was also
investigated in [DFNS13] for secret-sharing schemes. This model is also mathematically
well defined, and it is convenient to use it to give security definitions against quantum
adversaries, a task that is often challenging [GHS15]. A more practical issue is that even if
the cryptographic oracle is designed to produce classical outcomes, its implementation may
use some technology, for example optical fibers, that a quantum adversary could exploit.
In practice, ensuring that only classical queries are allowed seems difficult, especially in a
world in which quantum resources become available. It seems more promising to assume
that security against quantum queries is not granted and to study security in this model.

Modes of operation. Block ciphers are typically used in a mode of operation, in
order to accommodate messages of variable length and to provide a specific security
property (confidentiality, integrity. . . ). In classical cryptography, we prove that modes of
operations are secure, assuming that the block cipher is secure, and we trust the block
ciphers after enough cryptanalysis has been performed. We can do the same against
quantum adversaries, but proofs of security in the classical model do not always translate
to proofs of security in the quantum model. In particular, common MAC and AE modes
secure in the classical model have recently been broken with a Q2 attack [KLLNP16].
On the other hand, common encryption modes have been proven secure in the quantum
model [ATTU16], assuming either a standard-secure PRF or a quantum-secure PRF. In
this work, we focus on the security of block ciphers, but this analysis should be combined
with an analysis of the quantum security of modes of operation to get a full understanding
of the security of symmetric cryptography in the quantum model.

Our results. We choose to focus here on differential cryptanalysis, the truncated
differential variant, and on linear cryptanalysis. We give for the first time a synthetic

1Previous results as [Kap14, KM10, KM12] only consider quantizing generic attacks.
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description of these attacks, and study how they are affected by the availability of quantum
computers. As expected, we often get a quadratic speed-up, but not for all attacks.

In this work we use the concept of quantum walks to devise quantum attacks. This
framework contains a lot of well known quantum algorithms such as Grover’s search or
Ambainis’ algorithm for element distinctness. More importantly, it allows one to compose
these algorithms in the same way as classical algorithms can be composed. In order to
keep our quantum attacks as simple as possible, we use a slightly modified Grover’s search
algorithm that can use quantum checking procedures. This simple trick comes at the cost
of constant factors (ignored in our analysis), but a more involved approach, making better
use of quantum walks may remove those additional factors.

We prove the following non-obvious results:

• Differential cryptanalysis and linear cryptanalysis usually offer a quadratic gain in
the Q2 model over the classical model.

• Truncated differential cryptanalysis, however, usually offers smaller gains in the Q2
model.

• Therefore, the optimal quantum attack is not always a quantum version of the
optimal classical attack.

• In the Q1 model, cryptanalytic attacks might offer little gain over the classical model
when the key-length is the same as the block length (e.g. AES-128).
• But the gain of cryptanalytic attacks in the Q1 model can be quite significant (similar
to the Q2 model) when the key length is longer (e.g. AES-256).

The rest of the paper is organized as follows. We first present some preliminaries on
the classical (Section 2) and quantum (Section 3) settings. Section 4 treats differential
attacks, while Section 5 deals with truncated differential attacks and Section 6 provides
some applications on ciphers LAC and KLEIN. We study linear cryptanalysis in Section 7.
In Section 8, we discuss the obtained results. Section 9 concludes the paper and presents
some open questions.

2 Preliminaries
In the following, we consider a block cipher E, with a blocksize of n bits, and a keysize of
k bits. We assume that E is an iterated design with r rounds, and we use E(t) to denote a
reduced version with t rounds (so that E = E(r)). When the cipher E is computed with a
specific key κ ∈ {0, 1}k, its action on a block x is denoted by Eκ(x). The final goal of an
attacker is to find the secret key κ∗ that was used to encrypt some data. A query to the
cryptographic oracle is denoted E(x), where it is implicitly assumed that E encrypts with
the key κ∗, i.e., E(x) = Eκ∗(x).

Key-recovery attack. The key can always be found using a brute-force attack; following
our notations, the complexity of such a generic attack is 2k. This defines the ideal security,
i.e. the security a cipher should provide. Therefore, a cipher is considered broken if the key
can be found “faster” than with the brute-force attack, where “faster” typically means with
“less encryptions”. Three parameters define the efficiency of a specific attack. The data
complexity is the number of calls to the cryptographic oracle E(x). The time complexity is
the time required to recover the key κ∗. We consider that querying the cryptographic oracle
requires one unit of time, so that the data complexity is included in the time complexity.
The memory complexity is the memory needed to perform the attack.

Distinguishers. Another type of attacks, less powerful than key-recovery ones, are
distinguishers. Their aim is to distinguish a concrete cipher from an ideal one. A
distinguishing attack often gives rise to a key-recovery attack and is always the sign of a
weakness of the block cipher.
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Our scenario. In this paper, we consider some of the main families of non-generic
attacks that can be a threat to some ciphers: differential and linear attacks. We propose
their quantized version for the distinguisher and the last-rounds key-recovery variants
of linear, simple differentials and truncated differentials. Our aim is to provide a solid
first step towards “quantizing” symmetric families of attacks. To reach this objective, due
to the technicality of the attacks themselves, and even more due to the technicality of
combining them with quantum tools, we consider the most basic versions of the attacks.

Success probability. For the sake of simplicity, in this paper we do not take into
account the success probability in the parameters of the attacks. In particular, because
it affects in the same way both classical and quantum versions, it is not very useful for
the comparison we want to perform. In practice, it would be enough to increase the data
complexity by a constant factor to reach any pre-specified success probability. A detailed
study of the success probability of statistical attacks can be found in [BGT11].

3 Quantum algorithms
We use a number of quantum techniques in order to devise quantum attacks. Most of
them are based on well-known quantum algorithms that have been studied extensively over
the last decades. The equivalent to the classical brute-force attack in the quantum world
is to search through the key space using a Grover’s search algorithm [Gro96], leading to
complexity 2k/2. Our goal is to devise quantum attacks that might be a threat to symmetric
primitives by displaying a smaller complexity than the generic quantum exhaustive search.

3.1 Variations on Grover’s algorithm
Although Grover’s algorithm is usually presented as a search in an unstructured database,
we use in our applications the following slight generalization (see [San08] for a nice
exposition on quantum-walk-based search algorithms). The task is to find a marked
element from a set X. We denote by M ⊆ X the subset of marked elements and assume
that we know a lower bound ε on the fraction |M |/|X| of marked elements. A classical
algorithm to solve this problem is to repeat O(1/ε) times: (i) sample an element from X,
(ii) check if it is marked.

The cost of this algorithm can therefore be expressed as a function of two parameters:
the Setup cost S, which is the cost of sampling a uniform element from X, and the Checking
cost C, which is the cost of checking if an element is marked. The cost considered by the
algorithm can be the time or the number of queries to the input. It suffices to consider
specifically one of those resources when quantifying the Setup and Checking cost.

Similarly, Grover’s algorithm [Gro96] is a quantum search procedure that finds a marked
element, and whose complexity can be written as a function of the quantum Setup cost S,
which is the cost of constructing a uniform superposition of all elements in X, and the
quantum Checking cost C, which is the cost of applying a controlled-phase gate to the
marked elements. Notice that a classical or a quantum algorithm that checks membership
to M can easily be modified to get a controlled-phase.

Theorem 1 (Grover). There exists a quantum algorithm which, with high probability,
finds a marked element, if there is any, at cost of order S+C√

ε
.

In particular, the setup and the checking steps can themselves be quantum procedures.
Assume for instance that the set X is itself a subset of a larger set X̃. Grover’s algorithm
can then find an element x ∈ X at a cost (X̃/X)1/2, assuming that the setup and
checking procedures are easy. Moreover, a closer look at the algorithm shows that if one
ignores the final measurement that returns one element, the algorithm produces a uniform
superposition of the elements in X, which can be used to setup another Grover search.
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Grover’s algorithm can also be written as a special case of amplitude amplification,
a quantum technique introduced by Brassard, Høyer and Tapp in order to boost the
success probability of quantum algorithms [BHMT02]. Intuitively, assume that a quantum
algorithm A produces a superposition of outputs in a good subspace G and outputs in a
bad subspace B. Then there exists a quantum algorithm that calls A as a subroutine to
amplify the amplitude of good outputs.

If A was a classical algorithm, repeating it Θ(1/a), where a is the probability of
producing a good output, would lead to a new algorithm with constant success probability.
Just as Grover’s algorithm, the amplitude amplification technique achieves the same result
with a quadratic improvement [BHMT02]. The intuitive reason is that quantum operations
allow to amplify the amplitudes of good output states, and that the corresponding
probabilities are given by the squares of the amplitudes. Therefore, the amplification is
quadratically faster than in the classical case.

Theorem 2 (Amplitude amplification). Let A be a quantum algorithm that, with no
measurement, produces a superposition

∑
x∈G αx|x〉+

∑
y∈B αy|y〉. Let a =

∑
x∈G |αx|2

be the probability of obtaining, after measurement, a state in the good subspace G.
Then, there exists a quantum algorithm that calls A and A−1 as subroutines Θ(1/

√
a)

times and produces an outcome x ∈ G with a probability at least max(a, 1− a).

A variant of quantum amplification amplitude can be used to count approximately,
again with a quadratic speed-up over classical algorithms [BHT98].

Theorem 3 (Quantum counting). Let F : {0, . . . N − 1} → {0, 1} be a Boolean function,
and p = |F−1(1)|/N . For every positive integer D, there is a quantum algorithm that
makes D queries to F and, with probability at least 8/π2, outputs an estimate p′ to p such
that |p− p′| ≤ 2π√p/D + π2/D2.

3.2 Quantum search of pairs
We also use Ambainis’ quantum algorithm for the element distinctness problem. In our
work, we use it to search for collisions.

Theorem 4 (Ambainis [Amb07]). Given a list of numbers x1, . . . , xn, there exists a
quantum algorithm that finds, with high probability, a pair of indices (i, j) such that
xi = xj, if there exists one, at a cost O(n2/3).

The quantum algorithm proposed by Ambainis can easily be adapted to finding a pair
satisfying xi + xj = w for any given w (when the xi’s are group elements and the “+”
operation can be computed efficiently).

Ambainis’ algorithm can also be adapted to search in a list {x1, . . . , xn} for a pair of
indices (i, j) such that (xi, xj) satisfies some relation R, with the promise that the input
contains at least k possible pairs satisfying R. If the input of the problem is a uniformly
random set of pairs, it is sufficient, in order to find one, to run Ambainis’ algorithm on a
smaller random subset of inputs.

Theorem 5. Consider a list of numbers x1, . . . , xn with xi ∈ X and a set of pairs
D ⊂ X ×X such that D contains exactly k pairs. There exists a quantum algorithm that
finds, with high probability, a pair (i, j) such that (xi, xj) ∈ D, at a cost O(n2/3k−1/3) on
average over uniformly distributed inputs.

Proof. For a uniformly chosen subset X ′ ⊂ X such that |X ′| = n/
√
k, there is, with

constant probability, at least one pair from D in X ′ ×X ′. According to Theorem 4, the
cost of finding this pair is O(n2/3k−1/3). Therefore, the quantum algorithm starts by
sampling a random X ′ and then runs Ambainis’ algorithm on this subset.
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Table 1: Notations used in the attacks.

n block-size
k key-size
∆in size (log) of the set of input differences
∆out size (log) of the set of output differences
∆fin size (log) of the set of differences Dfin after last rounds
hS probability (− log) of the differential characteristic (hS < n)
hT probability (− log) of the truncated differential characteristic
hout probability (− log) of generating δout from Dfin
kout number of key bits required to invert the last rounds
Ckout cost of recovering the last round subkey from a good pair
C∗kout

quantum cost of recovering the last round subkey from a good pair
ε bias of the linear approximation
` number of linear approximations (Matsui’s algorithm 1)

Notice that if the algorithm runs on uniformly random inputs, the set X ′ does not
need to be itself chosen at random. Any sufficiently large subset will contain one of the
pairs with high probability, with high probability over the distribution of inputs.

Before ending this section on quantum algorithms, we make a remark on the outputs
produced by quantum-walk-based algorithms, such as Ambainis’ or Grover’s algorithm. In
our applications, we use these not necessarily to produce some output, but to prepare a
superposition of the outputs. Similarly to Grover’s algorithm, this can be done by running
the algorithm without performing the final measurement. However, since Ambainis’
algorithm uses a quantum memory to maintain some data structure, the superposition
could in principle include the data from the memory. This issue does not happen with
Grover’s algorithm precisely because it does not require any data structure.

In our case, the algorithm ends in a superposition of nodes containing at least one of
the searched pairs. It has no consequence for our application, because we are nesting this
procedure in Grover’s algorithm. Alternatively, it is possible to use amplitude amplification
afterwards in order to amplify the amplitude on the good nodes. However, this could be
an issue when nesting our algorithm in an arbitrary quantum algorithm. For a discussion
on nested quantum walks, see [JKM13].

4 Differential Cryptanalysis
Differential cryptanalysis was introduced in [BS90] by Biham and Shamir. It studies
the propagation of differences in the input of a function (δin) and their influence on the
generated output difference (δout). In this section, we present the two main types of
differential attacks on block ciphers in the classical world: the differential distinguisher
and the last-rounds attack, and then analyze their complexities for quantum adversaries.

4.1 Classical Adversary
Differential attacks exploit the fact that there exists an input difference δin and an output
difference δout to a cipher E such that

hS := − log Pr
x

[E(x⊕ δin) = E(x)⊕ δout] < n, (1)

i.e., such that we can detect some non-random behaviour of the differences of plaintexts
x and x ⊕ δin. Here, “⊕” represents the bitwise xor of bit strings of equal length. The
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value of hS is generally computed for a random key, and as usual in the literature, we will
assume that Eq. (1) approximately holds for the secret key κ∗. Such a relation between
δin and δout is typically found by studying the internal structure of the primitive in detail.
While it seems plausible that a quantum computer could also be useful to find good pairs
(δin, δout), we will not investigate this problem here, but rather focus on attacks that can
be mounted once a good pair satisfying Eq. (1) is given.

4.1.1 Differential Distinguisher

This non-random behaviour can already be used to attack a cryptosystem by distinguishing
it from a random function. This distinguisher is based on the fact that, for a random
function and a fixed δin, obtaining the δout difference in the output would require 2n trials,
where n is the size of the block. On the other hand, for the cipher E, if we collect 2hS

input pairs verifying the input difference δin, we can expect to obtain one pair of outputs
with output difference δout. The complexity of such a distinguisher exploiting Eq. (1) is
2hS+1 in both data and time, and is negligible in terms of memory:

T s. dist.
C = Ds. dist.

C = 2hS+1. (2)

Here, the subscript C refers to classical and s. dist. to “simple distinguisher” by opposition
to its truncated version later in the text.

Assuming that such a distinguisher exists for the first R rounds of a cipher, we can
transform the attack into a key recovery on more rounds by adding some rounds at the
end or beginning of the cipher. This is called a last-rounds attack, and allows to attack
more rounds than the distinguisher, typically one or two, depending on the cipher.

4.1.2 Last-Rounds Attack

For simplicity and without loss of generality, we consider that the rounds added to the
distinguisher are placed at the end. We attack a total of r = R + rout rounds, where R
are the rounds covered by the distinguisher. The main goal of the attack is to reduce
the key space that needs to be searched exhaustively from 2k to some 2k′ with k′ < k.
For this, we use the fact that we have an advantage for finding an input x such that
E(R)(x)⊕ E(R)(x⊕ δin) = δout.

For a pair that generates the difference δout after R rounds, we denote by Dfin the set
of possible differences generated in the output after the final rout rounds, the size of this
set by 2∆fin = |Dfin|. Let 2−hout denote the probability of generating the difference δout
from a difference in Dfin when computing rout rounds in the backward direction, and by
kout the number of key bits involved in these rounds. The goal of the attack is to construct
a list L of candidates for the partial key that contains almost surely the correct value, and
that has size strictly less than 2kout . For this, one starts with lists LM and LK where LM
is a random subset of 2hS possible messages and LK contains all possible kout-bit strings.
From Eq. (1), the list LM contains an element x such that E(R)(x)⊕E(R)(x⊕ δin) = δout
with high probability. Let us apply two successive tests to the lists.

The first test keeps only the x ∈ LM such that E(x)⊕E(x⊕δin) ∈ Dfin. The probability
of satisfying this equation is 2∆fin−n. This gives a new list L′M of size |L′M | = 2hS+∆fin−n.
The cost of this first test is 2hS+1.

The second test considers the set L′M ×LK and keeps only the couples (x, κ) such that
E

(R)
κ (x) + E

(R)
κ (x+ δin) = δout. This is done by computing backward the possible partial

keys for a given difference in Dout. Denote Ckout the average cost of generating those keys
for a given input pair. Notice that Ckout can be 1 when the number of rounds added is
reasonably small2, and is upper bounded by 2kout , that is, 1 ≤ Ckout ≤ 2kout . For a random

2For example, using precomputation tables with the values that allow the differential transitions through
the S-Boxes.
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pair (x, κ), the probability of passing this test is 2−hout . The size of the resulting set is
therefore expected to be 2−hout × |L′M | × |LK | = 2hS+∆fin−n+kout−hout . The cost of this
step is Ckout2hS+∆fin−n.

The previous step produces a list of candidates for the partial key corresponding to the
key bits involved in the last rout rounds and leading to a difference δout after R rounds. The
last step of the attack consists in performing an exhaustive search within all partial keys of
this set completed with all possible k−kout bits. The cost of this step is 2hS+∆fin−n+k−hout .

In practice, the lists do not need to be built and everything can be performed “on the
fly”. Consequently, memory needs can be made negligible. The total time complexity is:

T s. att.
C = 2hS+1 + 2hS+∆fin−n

(
Ckout + 2k−hout

)
, (3)

while the data complexity of this classical attack is Ds. att.
C = 2hS+1. The attack is more

efficient than an exhaustive search if T s. att.
C < 2k.

4.2 Quantum Adversary
We first give attacks in the Q2 model, using superposition queries.

4.2.1 Differential Distinguisher in the Q2 model

The distinguisher consists in applying a Grover search over the set of messages X, of size
2n. More precisely, the algorithm makes 2hS/2+1 queries to the encryption cipher, trying
to find a marked element x ∈M = {x ∈ X : E(x⊕ δin) = E(x)⊕ δout} . If it finds any, it
outputs “concrete”. If it does not, it outputs “random”.

With the notations of the previous sections, the fraction of marked elements is ε = 2−hS

and Grover’s algorithm finds a marked element after 1√
ε

= 2hS/2 iterations, each one
requiring two queries to the encryption cipher. The time and data complexities are:

T s. dist.
Q2 = Ds. dist.

Q2 = 2hS/2+1. (4)

It remains to prove that in the case of a random function, the probability of finding a
marked element is negligible. Assume that the probability of finding a marked element after
2hS/2 quantum queries is δ. Then, this can be wrapped into an amplitude amplification
procedure (Theorem 2), leading to a bounded error algorithm making (1/

√
δ)2hS/2 queries.

Since Grover’s algorithm is optimal, we get that (1/
√
δ)2hS/2 ≥ 2n/2, leading to δ ≤ 2hS−n.

4.2.2 Last-Rounds Attack in the Q2 model

An important point of the attack in the Q2 model is that it should avoid creating lists.
Instead, the algorithm queries the cryptographic algorithm whenever it needs to sample
an element from the list.

The quantum attack can be described as a Grover search, with quantum procedures for
the setup and checking phases. The algorithm searches in the set X = {x : E(x⊕ δin)⊕
E(x) ∈ Dfin} for a message such that E(R)(x ⊕ δin) ⊕ E(R)(x) = δout. This procedure
outputs a message and when it is found, it suffices to execute the sequence corresponding
to the checking of the Grover search once more: generate partial key candidates and
search among them, completed with all possible remaining k − kout bits. This outputs the
correct key and only adds a constant overhead factor to Grover search. Notice that using
tailor-made quantum walks, it should be possible to suppress this overhead. Here we use
Grover search to keep the attacks as simple as possible.

The setup phase prepares a uniform superposition of the x ∈ X; this costs S =
2(n−∆fin)/2 using Grover’s algorithm. The checking phase takes a value x and must
determine whether (x, x⊕ δin) is a good pair; it consists of the following successive steps:
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1. Compute all possible partial keys κout for the kout bits that intervene in the last
rout rounds, assuming that (x, x⊕δin) is a good pair (E(R)(x⊕δin)⊕E(R)(x) = δout);

2. Complete the key by searching exhaustively using a Grover search, checking if the
obtained key is the correct one.

The cost of computing all possible partial keys is C∗kout
. The number of partial keys is

2kout−hout , then completed by k − kout remaining bits. The cost of checking through all of
them is thus C = C∗kout

+ 2(k−hout)/2.
The procedure succeeds whenever a message x is found such that E(R)(x)⊕E(R)(x⊕

δin) = δout. Therefore, the probability of finding a marked element is lower bounded by
ε ≥ 2−hS−∆fin+n. This is the conditional probability of getting E(R)(x⊕ δin)⊕E(R)(x) =
δout given that the output difference is in Dfin.

The total cost of the attack in the Q2 model is:

T s. att.
Q2 = 2hS/2+1 + 2(hS+∆fin−n)/2

(
C∗kout

+ 2(k−hout)/2
)
, Ds. att.

Q2 = 2hS/2+1, (5)

with a data complexity identical to that of the distinguisher.

4.2.3 Last-Rounds Attack in the Q1 model

We can also have a speed-up for the last-round attack in the Q1 model. In this model, the
quantum operations only take place after a classical acquisition of the data. In particular,
the data complexity will be the same as for a classical adversary. After the first filtering step
of the classical last-round attack, 2hS−n+∆fin couples satisfying E(x)⊕E(x⊕ δin) ∈ Dfin
are obtained. The attacker then uses a quantum algorithm to generate the partial keys
κout, and a Grover search among those, completed with all possible remaining k − kout
bits of the key, in order to find the key. This leads to data and time complexities of:

Ds. att.
Q1 = 2hS+1, T s. att.

Q1 = 2hS+1 + 2(hS+∆fin−n)/2
(
C∗kout

+ 2(k−hout)/2
)
, (6)

where C∗kout
denotes the average time complexity of generating the partial keys of length

kout, on a quantum computer.
Let us point out that any classical attack with data complexity smaller than square

root of the exhaustive search of the key can be translated into an effective attack also in
the Q1 model. This is more likely to happen for larger keys, where the limiting terms
are often the second and third terms of T s. att.

Q1 in Eq. (6). See a detailed example in 6.2.
The fact that long keys are more likely to “maintain” the validity of the attacks is an
interesting result, as longer keys correspond to the recommendations for post-quantum
symmetric primitives. In these cases, the Q1 model is particularly meaningful.

4.2.4 Generating partial keys on a quantum computer

We investigate further the average cost Ckout of generating the partial keys compatible
with some input x such that E(x)⊕ E(x⊕ δin) ∈ Dfin. These partial keys correspond to
the key bits involved in a transition from Dfin to δout.

Using a classical computer and a precomputation table, this usually takes constant
time, but can be up to 2kout in the worst case. It turns out that the worst case this can be
sped up using a quantum computer.

Let K = 2kout−hout be the average number of partial key candidates compatible with
some input x, and denote N = 2kout . Finding one partial key can be done using Grover
search with (N/K)1/2 steps. The cost of finding a second one is (N/(K − 1))1/2, and so
on. This leads to the following upper bound on C∗kout

, the quantum version of Ckout :

C∗kout
≤
√
N

K∑
i=1

i−1/2 ≤ 2
√
NK.
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Replacing with our parameters, this gives C∗kout
≤ 2kout−hout/2+1.

5 Truncated Differential Cryptanalysis
Truncated differential cryptanalysis was introduced by Knudsen [Knu94] in 94. Instead of
fixed input and output differences, it considers sets of differences (like the differences in
the output in the last-rounds attack that we have considered in the previous section).

We assume in the following that we are given two sets Din and Dout of input and output
differences such that the probability of generating a difference in Dout from one in Din is
2−hT . We further consider that Din and Dout are vector spaces.

5.1 Classical Adversary
As in the simple differential case, we first present the differential distinguisher based on
the non-random property of the differences behaviour, and then discuss the last-rounds
attack obtained from the truncated differential distinguishers.

5.1.1 Truncated Differential Distinguisher

Let 2∆in and 2∆out denote the sizes of the input and output sets of differences, respectively.
For simplicity and without loss of generality, we assume to have access to an encryption
oracle, and therefore only consider the truncated differential as directed from input to
output3. We denote by 2−hT the probability of generating a difference in Dout from one in
Din. The condition for the distinguisher to work is that 2−hT > 2∆out−n. In this analysis,
we assume that 2−hT � 2∆out−n.

The advantage of truncated differentials is that they allow the use of structures, i.e.,
sets of plaintext values that can be combined into input pairs with a difference in Din in
many different ways: one can generate 22∆in−1 pairs using a single structure of size 2∆in .
This reduces the data complexity compared to simple differential attacks.

Two cases need to be considered. If ∆in ≥ (hT + 1)/2, we build a single structure S of
size 2(hT +1)/2 such that for all pairs (x, y) ∈ S × S, x⊕ y ∈ Din. This structure generates
2hT pairs. If ∆in ≤ (hT + 1)/2, we have to consider multiple structures Si. Each structure
contains 2∆in elements, and generates 22∆in−1 pairs of elements. We consider 2hT−2∆in+1

such structures in order to have 2hT candidate pairs.
In both cases, we have 2hT candidate pairs. With high probability, one of these pairs

shall satisfy E(x)⊕ E(y) ∈ Dout, something that should not occur for a random function
if 2−hT � 2∆out−n. Therefore detecting a single valid pair gives an efficient distinguisher.

The attack then works by checking if, for a pair generated by the data, the output
difference belongs to Dout. Since Dout is assumed to be a vector space, this can be reduced
to trying to find a collision on n−∆out bits of the output. Once the data is generated,
looking for a collision is not expensive (e.g. using a hash table), which means that time
and data complexities coincide:

Dtr. dist.
C = max{2(hT +1)/2, 2hT−∆in+1}, T tr. dist.

C = max{2(hT +1)/2, 2hT−∆in+1}. (7)

5.1.2 Last-Rounds Attack

Last-rounds attacks work similarly as in the case of simple differential cryptanalysis. For
simplicity, we assume that rout rounds are added at the end of the truncated differential.
The intermediate set of differences is denoted Dout, and its size is 2∆out . The set Dfin,

3In the case where the other direction provides better complexities, we could instead perform queries
to a decryption oracle and change the roles of input and output in the attack. We assume that the most
interesting direction has been chosen.
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of size 2∆fin denotes the possible differences for the outputs after the final round. The
probability of reaching a difference in Dout from a difference in Din is 2−hT , and the
probability of reaching a difference in Dout from a difference in Dfin is 2−hout . Applying
the same algorithm as in the simple differential case, the data complexity remains the
same as for the distinguisher:

Dtr. att.
C = max{2(hT +1)/2, 2hT−∆in+1}. (8)

The time complexity in this case is:

T tr. att.
C = max{2(hT +1)/2, 2hT−∆in+1}+ 2hT +∆fin−n

(
Ckout + 2k−hout

)
, (9)

where Ckout is the average cost of finding all the partial key candidates corresponding to a
pair of data with a difference in Dout. As mentioned earlier, Ckout ranges from 1 to 2kout .

5.2 Quantum Adversary
The truncated differential cryptanalysis is similar to the simple differential cryptanalysis,
except that Din and Dout are now sets instead of two fixed bit strings.

5.2.1 Truncated Differential Distinguisher

Similarly to simple differential cryptanalysis, the distinguisher can only be more efficient
in the Q2 model. This comes from the fact that in both cases, the data complexity is the
bottleneck. Since the Q1 model does not provide any advantage over the classical one in
data collection, there is no advantage in this model.

We use Ambainis’ algorithm for element distinctness, given in Theorem 4, in order to
search for collisions inside the structures. If a single structure is involved, the algorithm
searches for a pair of messages (x, y) in a set of size 2(hT +1)/2, such that E(x)⊕E(y) ∈ Dout.
Since there is, on average, only one such pair, this can be done using a quantum algorithm
with 2(hT +1)/3 queries.

If multiple structures are required, the strategy is to search for one structure that
contains a pair (x, y) such that E(x)⊕E(y) ∈ Dout. This is done with a Grover search on
the structure, using Ambainis’ algorithm for the checking phase. This returns a structure
containing a desired pair, which is sufficient for the distinguisher. The setup cost is constant.
The checking step, consisting in searching for a specific pair inside a structure of size 2∆in ,
can be done with C = 22∆in/3 queries. Finally, since there is, with high probability, at
least one structure in 2hT−2∆in+1 containing a pair such that E(x)⊕ E(y) ∈ Dout, we get
a lower bound on the success probability ε ≥ 22∆in−hT−1. Using Theorem 1, the total
queries complexity is at most 2(hT +1)/2−∆in/3.

Combining both results leads to overall data and time complexities given by:

Dtr. dist.
Q2 = T tr. dist.

Q2 = max
{

2(hT +1)/3, 2(hT +1)/2−∆in/3
}
. (10)

Similarly to the the quantum simple differential distinguisher, applying the same
algorithm to a random function, and stopping it after the same number of queries only
provides a correct answer with negligible probability.

5.2.2 Last-Rounds Attack in the Q1 model

As seen in Section 5.1.2, last-round attacks for truncated differential cryptanalysis are very
similar to attacks with a simple differential. The attack in the Q1 model will differ from
the attack of Section 4.2.3 only in the first step, when querying the encryption function
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with the help of structures. We start by generating a list of 2hT pairs with differences in
Din, which is done with data complexity:

Dtr. att.
Q1 = max{2(hT +1)/2, 2hT−∆in+1}. (11)

The second step is to filter the list of elements to keep only the pairs (x, y) such that
E(x)⊕ E(y) ∈ Dfin. Notice that such a filtering can be done at no cost. It suffices to sort
the elements according to the values of their image, while constructing the list.

Finally, similarly to the Q1 simple differential attack, a quantum search algorithm is
run on the filtered pairs, and the checking procedure consists in generating the partial key
candidates completed with k − kout bits, and searching exhaustively for the key used in
the cryptographic oracle. In the Q1 model, the quantum speed-up only occurs in this step.

The average cost of generating the partial keys on a quantum computer is denoted
by C∗kout

. The average number of partial keys for a given pair of input is 2kout−hout . The
fraction ε of marked elements is ε = 2−hT−∆fin+n, the setup cost is S = 1 and the checking
cost, a Grover search over the key space, is C = C∗kout

+ 2(k−hout)/2. This gives a total cost:

T tr. att.
Q1 = max

{
2(hT +1)/2, 2hT−∆in+1

}
+ 2(hT +∆fin−n)/2

(
C∗kout

+ 2(k−hout)/2
)
. (12)

5.2.3 Last-Rounds Attack in the Q2 model

In the Q2 model, we want to avoid building classical lists. Instead, we query the crypto-
graphic oracle each time we need to sample a specific element. This is challenging in the
case of truncated differential because the use of structures made of lists is crucial. The
idea is to query the elements of the list on the fly.

Assume first that hT ≤ 2∆in − 1. Then, it is possible to get 2hT pairs with differences
in Din with a single structure, S, of size 2(hT +1)/2. The attack runs a Grover search over
X = {(x, y) ∈ S × S : E(x)⊕E(y) ∈ Dfin}. The checking procedure is the same as for the
quantum simple differential attack. For a given a pair of inputs, it generates all possible
partial keys, and completes them to try to get the key used by cryptographic oracle. This
procedure returns a pair (x, y). The final step is to execute the checking procedure in
Grover search once more, suitably modified to return the key given the pair (x, y).

We analyze the setup cost of the attack. To prepare a superposition of the pairs in X,
we use a new quantum search algorithm given in Theorem 5. This algorithm searches in a
list for a pair of elements with a certain property, considering there exist k such pairs. In
our case, the list of elements is S of size 2(hT +1)/2. The total number of elements such
that E(x)⊕ E(y) ∈ Dfin is therefore 2hT−n+∆fin . The algorithm of Theorem 5 prepares a
superposition of elements in X in time S = 2(hT +1)/3−(hT−n+∆fin)/3 = 2(n−∆fin+1)/3. The
cost of the checking procedure is C = C∗kout

+ 2(k−hout)/2, as before. The procedure is
successful whenever a pair (x, y) such that E(R)(x)⊕E(R)(y) ∈ Dout is found. Given that
the search is among pairs satisfying x⊕ y ∈ Din and E(x)⊕ E(y) ∈ Dfin, the probability
for a pair to be good is ε = 2−hT−∆fin+n. This gives a total running time:

2hT /2−(n−∆fin)/6 + 2(hT +∆fin−n)/2
(
C∗kout

+ 2(k−hout)/2
)
.

Suppose now that multiple structures Si of size 2∆in are required, where i goes from 1 to
2hT−2∆in+1. The search is now over the set X =

⋃
i{(x, y) ∈ Si×Si : E(x)⊕E(y) ∈ Dfin}.

To get a superposition of the pairs in X, we compose a Grover search over the structure
with the algorithm from Theorem 5 inside the structures Si. This returns a superposition of
the pairs in X, together with some additional quantum registers containing the structures
the pairs belong to, and the data structure used by our new search algorithm. This
additional data does not disturb the Grover search (see Section 3.2). In each structure,
the average number of pairs in X is 22∆in−1−n+∆fin . The total cost of the setup phase is
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therefore S = 2hT /3−2∆in/3+2/3+(n−∆fin)/3. The rest of the attack is similar to the previous
case. Putting everything together, the total running time and data complexities of the
quantum truncated differential attack in the Q2 model are:

T tr. att.
Q2 = max

{
2hT /2, 25hT /6−2∆in/3+2/3

}
2−(n−∆fin)/6 + 2(hT +∆fin−n)/2

(
C∗kout

+ 2(k−hout)/2
)
,

(13)

Dtr. att.
Q2 = max

{
2hT /2, 2hT−∆in+1

}
2−(n−∆fin)/6. (14)

6 Applications on existing ciphers
In this section we describe three examples of classical and quantum differential attacks
against block ciphers. We have chosen examples of real proposed ciphers where some of
the best known attacks are simple variants of differential cryptanalysis. This allows us to
illustrate the important counter-intuitive points that we want to highlight, by comparing
the best classical attacks and the best quantum attacks. We first consider the block cipher
used in the authenticated encryption scheme LAC [ZWW+14], and build for it a classical
simple differential distinguisher and a more efficient classical truncated distinguisher. We
quantize these attacks, and obtain that the quantum truncated distinguisher performs
worse than a generic quantum exhaustive search. In the next application we consider the
lightweight block cipher KLEIN [GNL12]. Its 64-bit key version, KLEIN-64, has been
recently broken [LN14] by a truncated differential last-rounds attack. When quantizing this
attack, we show that it no longer works in the quantum world, and therefore KLEIN-64 is
no longer broken. Finally, we consider KLEIN-96 and the best known attack [LN14] against
this cipher. We show that its quantum variant still works in the post-quantum world (both
in the Q1 and the Q2 models). These applications illustrate what we previously pointed
out and believe to be particularly meaningful: block ciphers with longer keys, following
the natural recommendation for resisting to generic quantum attacks, are those for which
the truncated attacks are more likely to still break the cryptosystem in the postquantum
world. Consequently, it is crucial to understand and compute the optimized quantum
complexity of the different families of attacks, as we have started doing in this paper.

6.1 Application 1: LAC
We now show an example where a truncated differential attack is more efficient than
a simple differential attack using a classical computer, but the opposite is true with a
quantum computer.

We consider the reduced version of LBlock [WZ11] used in LAC [ZWW+14]. According
to [Leu15], the best known differential for the full 16 rounds has probability 2−61.5. This
yields a classical distinguisher with complexity 262.5 and a quantum distinguisher with
complexity 231.75. The corresponding truncated differential has the following characteris-
tics4:

n = 64 ∆in = 12 ∆out = 20 h̃T ≈ 55.3

We note that h̃T > n −∆out, which is too large to provide a working attack. However,
h̃T only considers pairs following a given characteristic, and we expect additional pairs
to randomly give an output difference in Dout. Therefore, we estimate the probability of
the truncated differential as 2hT = 2−44 + 2−55.3. In order to check this hypothesis, we

4We consider the truncated differential with Din = 000000000000**0* and Dout = 0000***00000**00.
If the input differential is non-zero on all active bytes, a pair follows the truncated differential when 14
sums of active bytes cancel out, and 3 sums of active bytes don’t cancel out. This gives a probability
(15/16)6 · (1/15)14 ≈ 2−55.3.
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implemented a reduced version of LAC with 3-bit APN S-Boxes, and verified that a bias
can be detected5. In every structure, the probability that a pair follows the truncated
differential is 223 · 2hT = 2−21 + 2−32.3, rather than 2−21 for a random permutation.

As explained in Section 3 (Theorem 3), this bias can be detected after examining
2 · 2−21 · 232.3·2 = 244.6 structures, i.e. 256.6 plaintexts in a classical attack (following
[BGT11]). In a quantum setting, we use quantum counting [BHT98, Mos98, BHMT02]
and examine 4π · 2−21/2 · 232.3 ≈ 225.4 structures, for a total cost of 225.4 · 22/3·12 = 233.4.

To summarize, the best attack in the classical setting is a truncated differential attack
(with complexity 260.9 rather than 262.5 for a simple differential attack), while the best
attack in the quantum setting is a simple differential attack (with complexity 231.75 rather
than 233.4 for a truncated differential attack). Moreover, the quantum truncated differential
attack is actually less efficient than a generic attack using Grover’s algorithm.

6.2 Application 2: KLEIN-64 and KLEIN-96
6.2.1 KLEIN-64

We consider exactly the attack from [LN14]. We omit here the details of the cipher and
the truncated differential, but provide the parameters needed to compute the complexity.

When taking into account the attack that provides the best time complexity, we have6:
hT = 69.5, ∆in = 16, ∆fin = 32, k = 64, kout = 32, n = 64, Ckout = 220 and hout = 45.

In this case, we can recover the time and data complexities from the original result
as7 D = 254.5 and T = 254.5 + 257.5 + 256.5 = 258.2, which is considerably faster than
exhaustive search (264), breaking in consequence the cipher.

In the quantum scenario, the complexity of the generic exhaustive search, which we
use to measure the security, is 232. The cipher is considered broken if we can retrieve
the key with smaller complexity. When considering the Q2 or the Q1 case, the two last
terms in the time complexity are quadratically accelerated. More precisely, the third is
accelerated by square root, the second has a square root in 2hT−n+∆fin , which is then
multiplied by C∗kout

. As shown in Section 4.2.4, C∗kout
is 2kout−hout/2+1 = 211 instead of 220.

Consequently, the second term is also completely accelerated by a square root. But this is
not the case of the first term, corresponding to data generation. In the Q1 case, it stays
the same, being larger than 232 and invalidating the attack. In the Q2 model, the first
term becomes 242.6, which is also clearly larger than 232, thus the attack does not work.

We have seen here an example of a primitive broken in the classical world, but remaining
secure 8 in the quantum one, for both models.

6.2.2 KLEIN-96

Here we consider the attack of type III given in [LN14], as it is the only one with data
complexity lower than 248, and therefore the only possible candidate for providing also an
attack in the Q1 model.

5The truncated path for the reduced version has a probability 2hT = 2−33 + 2−40.5. We ran 32
experiments with 231 structures of 29 plaintexts each. With a random function we expect about 231 ·
29 · (29 − 1)/2 · 2−33 = 32704 pairs satisfying the truncated differential, and about 32890 with LAC. The
median number of pairs we found is 33050 and it was larger than 32704 is 31 out of 32 experiments. This
agrees with our predictions.

6For the attacks from [LN14] on KLEIN, hT is always bigger than n−∆in, but the distinguisher from
∆in to ∆out still works exactly as described in Section 5.1.2 because we compare with the probability of
producing the truncated differential path and not just the truncated differential.

7The slight difference with respect to [LN14] is because here we have not taken into account the relative
cost with respect to one encryption, for the sake of simplicity.

8We want to point out that notions “not-secure” (i.e. can be attacked in practice) and “broken” (i.e.
can be attacked faster than brute-force), are not the same, though they are difficult to dissociate.
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The parameters of this classical attack are: hT = 78, ∆in = 32, ∆fin = 32, kout = 48,
n = 64, Ckout = 230 and hout = 52. We compute and obtain the same complexities as the
original results in time and data: D = 247 and T = 247 + 246+30 + 290. When quantizing
this attack, we have to compare the complexities with 296/2 = 248.

In the Q1 model we obtain 247 + 223+23 + 245 = 247.7, which is lower that 248, so the
attack still works. The second term comes from C∗kout

2(hT−n+∆out)/2. We can compute
C∗kout

as before, obtaining 248−26+1 = 223.
In the Q2 model, the first term is reduced to 239 and becomes negligible, with the final

complexity at 239 + 246 + 245 = 246.6.

7 Linear Cryptanalysis
Linear cryptanalysis was discovered in 1992 by Matsui [MY92, Mat93]. The idea of linear
cryptanalysis is to approximate the round function with a linear function, in order to find
a linear approximation correlated to the non-linear encryption function E. We describe
the linear approximations using linear masks; for instance, an approximation for one round
is written as E(1)(x)[χ′] ≈ x[χ] where χ and χ′ are linear masks for the input and output,
respectively, and x[χ] =

⊕
i:χi=1 xi. Here, “≈” means that the probability that the two

values are equal is significantly larger than with a random permutation.
The cryptanalyst has to build linear approximations for each round, such that the

output mask of a round is equal to the input mask of the next round. The piling-up lemma
is then used to evaluate the correlation of the approximation for the full cipher. As for
differential cryptanalysis, we assume here that the linear approximation is given and use it
with a quantum computer to obtain either a distinguishing attack or a key recovery attack.
In this section, we consider linear distinguishers and key recovery attacks following from
Matsui’s work [Mat93].

7.1 Classical Adversary
7.1.1 Linear distinguisher

In the following, C denotes the ciphertext obtained when encrypting the plaintext P with
the key K. We assume that we know a linear approximation with masks (χP , χC , χK) and
constant term χ0 ∈ {0, 1} satisfying Pr

[
C[χC ] = P [χP ]⊕K[χK ]⊕ χ0

]
= (1 + ε)/2, with

ε� 2−n/2; or, omitting the key dependency:

Pr
[
C[χC ] = P [χP ]

]
= (1± ε)/2.

An attacker can use this to distinguish E from a random permutation. The attack
requires D = A/ε2 known plaintexts Pi and the corresponding ciphertexts Ci, where
A is a small constant (e.g. A = 10). The attacker computes the observed bias ε̂ =
|2# {i : Ci[χC ] = Pi[χP ]} /D − 1|, and concludes that the data is random if ε̂ ≤ ε/2 and
that it comes from E otherwise.

If the data is generated by a random permutation, then the expected value of ε̂ is
0, whereas, if it is generated by E, the expected value of ε̂ is ε. We can compute the
success probability of the attack assuming that the values of Ci[χC ]⊕Pi[χP ] are identically
distributed Bernoulli random variables, with parameter 1/2 or 1/2± ε. From Hoeffding’s
inequality, we get:

Pr
[
ε̂ ≥ ε/2

∣∣∣random permutation
]
≤ 2 exp

(
−2ε

2

42D

)
≤ 2 exp

(
−A8

)
,

Pr
[
ε̂ ≤ ε/2

∣∣∣cipher E] ≤ exp
(
−2ε

2

42D

)
≤ exp

(
−A8

)
;
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both error terms can also be made arbitrarily small by increasing A.
Overall, the complexity of the linear distinguisher is

Dlin. dist.
C = T lin. dist.

C = 1/ε2. (15)

As explained in Section 2, we do not take into account the factor A that depends on the
success probability, and keep only the asymptotic term in the complexity.

7.1.2 Key-recovery using an r-round approximation (Matsui’s Algorithm 1)

The linear distinguisher readily gives one key bit according to the sign of the bias: if
K[χK ] = 0, then we expect # {i : Ci[χC ] = Pi[χP ]⊕ χ0} > D/2. The attack can be
repeated with different linear approximations in order to recover more key bits. If we
have ` independent linear approximations (χjP , χ

j
C , χ

j
K , χ

j
0) with bias at least ε, the total

complexity is:

DMat.1
C = 1/ε2, TMat.1

C = `/ε2 + 2k−`. (16)

7.1.3 Last-rounds attack (Matsui’s Algorithm 2)

Alternatively, linear cryptanalysis can be used in a last-rounds attack that will often be
more efficient. Following the notations of the previous sections, we consider a total of
R+ rout rounds, with an R-round linear distinguisher (χP , χC′) with bias ε, and we use
partial decryption for the last rout rounds.

We denote by kout the number of key bits necessary to compute C ′[χC′ ], where
C ′ = E−rout(C) from C. The attack proceeds as follows:

1. Initialize a set of 2kout counters Xk′ to zero, for each key candidate.
2. For each (P,C) pair, and for every partial key guess k′, compute C ′ from C and k′,

and increment Xk′ if P [χP ] = C ′[χC′ ].
3. This gives Xk′ = #

{
P,C : E−rout

k′ (C)[χC′ ] = P [χP ]
}
.

4. Select the partial key k′ with the maximal absolute value of Xk′ .
This gives the following complexity:

DMat.2
C = 1/ε2 TMat.2

C = 2kout/ε2 + 2k−kout , (17)

where, as before, we neglect constant factors.
We note that this algorithm can be improved using a distillation phase where we count

the number of occurrences of partial plaintexts and ciphertexts, and an analysis phase
using only these counters rather the full data set. In some specific cases, the analysis phase
can be improved by exploiting the Fast Fourier Transform [CSQ07], but we will focus on
the simpler case described here.

7.2 Quantum Adversary
7.2.1 Distinguisher in the Q2 model

As in the previous sections, a speed-up for distinguishers is only observed for the Q2 model.
The distinguisher is based on the quantum approximate counting algorithm of Theorem 3.
As in the classical case, the goal is to distinguish between two Bernoulli distributions with
parameter 1/2 and 1/2 + ε, respectively.

Using the quantum approximate counting algorithm, it is sufficient to make O(1/ε)
queries in order to achieve an ε-approximation. The data complexity of the quantum
distinguisher is therefore,

Dlin. dist.
Q2 = T lin. dist.

Q2 = 1/ε, (18)

which constitutes a quadratic speed-up compared to the classical distinguisher.
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7.2.2 Key-recovery using an r-round approximation in the Q1 model

Each linear relation allows the attacker to recover a bit of the key using 1/ε2 data, as
the classical model. Once ` bits of the key have been recovered, one can apply Grover’s
algorithm to obtain the full key. For ` linear relations, the attack complexity is therefore:

DMat.1
Q1 = `/ε2 TMat.1

Q1 = `/ε2 + 2(k−`)/2. (19)

7.2.3 Key-recovery using an r-round approximation in the Q2 model

Each linear relation allows the attacker to recover a bit of the key using 1/ε data. If there
are ` such relations, the attack complexity is:

DMat.1
Q2 = `/ε TMat.1

Q2 = `/ε+ 2(k−`)/2. (20)

Note that we do not a priori obtain a quadratic improvement for the data complexity
compared to the classical model. This is because the same data can be used many times
in the classical model, whereas it is unclear whether something similar can be achieved
using Grover’s algorithm.

7.2.4 Last-rounds attack in the Q1 model

As usual for the Q1 model, one samples the same quantity of data as in the classical
model and stores it in a quantum memory. Then the idea is to perform two successive
instances of Grover’s algorithm: the goal of the first one is to find a partial key of size
kout for which a bias ε is detected for the first R rounds: this has complexity 2kout/2/ε
with quantum counting; the second Grover aims at finding the rest of the key and has
complexity 2(k−kout)/2. Overall, the complexity of the attack is

DMat.2
Q1 = 1/ε2 TMat.2

Q1 = 1/ε2 + 2kout/2/ε+ 2(k−kout)/2. (21)

7.2.5 Last-rounds attack in the Q2 model.

The strategy is similar, but the first step of the algorithm, i.e. finding the correct partial
key, can be improved compared to the Q1 model. One uses a Grover search to obtain the
partial key, and the checking step of Grover now consists of performing an approximate
counting to detect the bias. Overall, the complexity of the attack is

DMat.2
Q2 = 2kout/2/ε TMat.2

Q2 = 2kout/2/ε+ 2(k−kout)/2. (22)

8 Discussion
In this section, we first recall all the time complexities obtained through the paper. The
data complexities correspond to the first term of each expression for the differential attacks.
Next, we discuss how these results affect the post-quantum security of symmetric ciphers
with respect to differential and linear attacks. As a remainder, notations are given in
Table 1.

Simple Differential Distinguishers:

T s. dist.
C = 2hS+1 T s. dist.

Q2 = 2hS/2+1
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Simple Differential Last-Rounds Attacks:

T s. att.
C = 2hS+1 + 2hS+∆fin−n

(
Ckout + 2k−hout

)
T s. att.

Q1 = 2hS+1 + 2(hS+∆fin−n)/2
(
C∗kout

+ 2(k−hout)/2
)

T s. att.
Q2 = 2hS/2+1 + 2(hS+∆fin−n)/2

(
C∗kout

+ 2(k−hout)/2
)

Truncated Differential Distinguishers:

T tr. dist.
C = max{2(hT +1)/2, 2hT−∆in+1} T tr. dist.

Q2 = max
{

2(hT +1)/3, 2(hT +1)/2−∆in/3
}

Truncated Differential Last-Rounds Attacks:

T tr. att.
C = max

{
2(hT +1)/2, 2hT−∆in+1} + 2hT +∆fin−n

(
Ckout + 2k−hout

)
T tr. att.

Q1 = max
{

2(hT +1)/2, 2hT−∆in+1} + 2(hT +∆fin−n)/2
(
C∗kout

+ 2(k−hout)/2
)

T tr. att.
Q2 = max

{
2hT /2, 25hT /6−2∆in/3+2/3}2−(n−∆fin)/6 + 2(hT +∆fin−n)/2

(
C∗kout

+ 2(k−hout)/2
)

Linear Distinguishers:

T lin. dist.
C = 1/ε2 T lin. dist.

Q2 = 1/ε

Linear Attacks:

TMat.1
C = `/ε2 + 2k−` TMat.2

C = 2kout/ε2 + 2k−kout

TMat.1
Q1 = `/ε2 + 2(k−`)/2 TMat.2

Q1 = 1/ε2 + 2kout/2/ε+ 2(k−kout)/2.

TMat.1
Q2 = `/ε+ 2(k−`)/2 TMat.2

Q2 = 2kout/2/ε+ 2(k−kout)/2

The first observation we make is that the cost of a quantum differential or linear attack
is at least the square root of the cost of the corresponding classical attack. In particular, if
a block cipher is resistant to classical differential and/or linear cryptanalysis (i.e. classical
attacks cost at least 2k), it is also resistant to the corresponding quantum cryptanalysis
(i.e. quantum differential and/or linear attacks cost at least 2k/2). However, a quadratic
speed-up is not always possible with our techniques; in particular truncated attacks might
be less accelerated than simple differential ones.

Q1 model vs Q2 model. We have studied quantum cryptanalysis with the notion of
standard security (Q1 model with only classical encryption queries) and quantum security
(Q2 model with quantum superposition queries). As expected, the Q2 model is stronger,
and we often have a smaller quantum acceleration in the Q1 model. In particular, the
data complexity of attack in the Q1 model is the same as the data complexity of classical
attacks. Still, there are important cases where quantum differential or linear cryptanalysis
can be more efficient than Grover’s search in the Q1 model, which shows that quantum
cryptanalysis is also relevant in the more realistic setting with only classical queries.

Quantum differential and linear attacks are more threatening to ciphers with larger
key sizes. Though it seems counter-intuitive, the fact is that larger key sizes also mean
higher security claims to consider a cipher as secure. In the complexity figure given above,
the terms that depend on the key size (the right hand size terms) are likely to be the
bottleneck for ciphers with long keys with respect to the internal state size. In all the
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attacks studied here, this term is quadratically improved using quantum computation,
in both models. Therefore, attacks against those ciphers will get the most benefits from
quantum computers. We illustrated this effect in Section 6.2, by studying KLEIN with
two different key sizes.

This effect is very strong in the Q1 model because most attacks have a data complexity
larger than 2n/2 (because hS > n/2, hT > n/2, or ε < 2−n/4). If the keysize is equal to n,
this makes those attacks less efficient than Grover’s search, but they become interesting
when k is larger than n. In particular, with k ≥ 2n, the data complexity is always smaller
than 2k/2.

This observation is particularly relevant because the recommended strategy against
quantum adversaries is to use longer keys [ABB+15]. We show that with this strategy, it
is likely that classical attacks that break the cryptosystem lead to quantum attacks that
also break it, even in the Q1 model where the adversary only makes classical queries to
the oracle.

The best attack might change from the classical to the quantum world. Since trun-
cated differential attacks use collision finding in the data analysis step, they do not enjoy
a quadratic improvement in the quantum setting. Therefore, as we show in Section 6.1, a
truncated differential attack might be the best known attack in the classical world, while
the simple differential might become the best in the quantum world. In particular, simply
quantizing the best known attack does not ensure obtaining the best possible attack in the
post-quantum world, which emphasizes the importance of studying quantum symmetric
cryptanalysis.

More strikingly, there are cases where differential attacks are more efficient than brute
force in the classical world, but quantum differential attacks are not faster than Grover’s
algorithm, as we show in the example of Section 6.2.1.

9 Conclusion and open questions
Our work is an important step towards building a quantum symmetric cryptanalysis
toolbox. Our results have corroborated our first intuition that symmetric cryptography
does not seem ready for the post-quantum world. This not a direct conclusion from the
paper, though indirectly the first logical approach for quantum symmetric cryptanalysis
would be to quantize the best classical attack, and that would simplify the task. As we
know for sure applications where the best attacks might change exist, cryptanalysis must
be started anew. The non-intuitive behaviors shown in our examples of applications help
to illustrate the importance of understanding how symmetric attacks work in the quantum
world, and therefore, of our results. For building trust against quantum adversaries, this
work should be extended, and other classical attacks should be investigated. Indeed, we
have concluded that quantizing the best known classical differential attacks may not give
the best quantum attack. This emphasizes the importance of studying and finding the
best quantum attacks, including all known families of cryptanalysis.

We have devised quantum attacks that break classical cryptosystems faster than a
quantum exhaustive search. However, the quantum-walk-based techniques used here
can only lead to polynomial speed-ups, and the largest gap is quadratic, achieved by
Grover’s algorithm. Although this is significant, it can not be interpreted as a collapse
of cryptography against quantum adversaries similar to public-key cryptography based
on the hardness of factoring. However, we already mentioned that attacks based on
the quantum Fourier transform, which is at the core of Shor’s algorithm for factoring
and does not fall in the framework of quantum walks, have been found for symmetric
ciphers [KM10, KM12, RS15, KLLNP16].
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We end by mentioning a few open questions that we leave for future work. In this work,
we have studied quantum versions of differential and linear cryptanalysis. In each of these
cases, we were either given a differential characteristics or a linear approximation to begin
with, and used quantum algorithms to exploit them to perform a key recovery attack for
instance. A natural question is whether quantum computers can also be useful to come up
with good differential characteristics or linear approximations in the first place.

So far, we have only scratched the surface of linear cryptanalysis by quantizing the
simplest versions of classical attacks, that is excluding more involved constructions using
counters or the fast Fourier transform. Of course, since the quantum Fourier transform
offers a significant speed-up compared to its classical counterpart, it makes sense to
investigate whether it can be used to obtain more efficient quantum linear cryptanalysis.

A major open question in the field of quantum cryptanalysis is certainly the choice
of the right model of attack. In this work, we investigated two such models. The Q2
model might appear rather extreme and perhaps even unrealistic since it is unclear why
an attacker could access the cipher in superposition. But this model has the advantage of
consistency. Also, a cipher secure in this model will remain secure in any setting. On the
other hand, the Q1 model appears more realistic, but might be a little bit too simplistic.
In particular, it seems important to better understand the interface between the classical
register that stores the data that have been obtained by querying the cipher and the
quantum register where they must be transferred in order to be further processed by the
quantum computer.

References
[ABB+15] Daniel Augot, Lejla Batina, Daniel J Bernstein, Joppe Bos, Johannes Buch-

mann, Wouter Castryck, Orr Dunkelman, Tim Güneysu, Shay Gueron,
Andreas Hülsing, et al. Initial recommendations of long-term secure
post-quantum systems. Available at http: // pqcrypto. eu. org/ docs/
initial-recommendations. pdf , 2015.

[Amb07] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM J.
Comput., 37(1):210–239, 2007.

[ATTU16] Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo Noel Tabia, and
Dominique Unruh. Post-quantum security of the CBC, CFB, OFB, CTR,
and XTS modes of operation. In Tsuyoshi Takagi, editor, Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan,
February 24-26, 2016, Proceedings, volume 9606 of Lecture Notes in Computer
Science, pages 44–63. Springer, 2016.

[BGT11] Céline Blondeau, Benoît Gérard, and Jean-Pierre Tillich. Accurate estimates
of the data complexity and success probability for various cryptanalyses. Des.
Codes Cryptography, 59(1-3):3–34, 2011.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplification and estimation. In Quantum computation and infor-
mation (Washington, DC, 2000), volume 305 of Contemp. Math., pages 53–74.
Amer. Math. Soc., Providence, RI, 2002.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum counting. In
Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors, Automata,
Languages and Programming, 25th International Colloquium, ICALP’98,
Aalborg, Denmark, July 13-17, 1998, Proceedings, volume 1443 of Lecture
Notes in Computer Science, pages 820–831. Springer, 1998.

http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://pqcrypto.eu.org/docs/initial-recommendations.pdf


92 Quantum Differential and Linear Cryptanalysis

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in
Cryptology - CRYPTO ’90, 10th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1990, Proceedings, volume
537 of Lecture Notes in Computer Science, pages 2–21. Springer, 1990.

[BZ13a] Dan Boneh and Mark Zhandry. Quantum-secure message authentication
codes. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer
Science, pages 592–608. Springer, 2013.

[BZ13b] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext
security in a quantum computing world. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
II, volume 8043 of Lecture Notes in Computer Science, pages 361–379. Springer,
2013.

[CSQ07] Baudoin Collard, François-Xavier Standaert, and Jean-Jacques Quisquater.
Improving the time complexity of matsui’s linear cryptanalysis. In Kil-Hyun
Nam and Gwangsoo Rhee, editors, Information Security and Cryptology -
ICISC 2007, 10th International Conference, Seoul, Korea, November 29-30,
2007, Proceedings, volume 4817 of Lecture Notes in Computer Science, pages
77–88. Springer, 2007.

[DFNS13] Ivan Damgård, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Su-
perposition attacks on cryptographic protocols. In Carles Padró, editor,
Information Theoretic Security - 7th International Conference, ICITS 2013,
Singapore, November 28-30, 2013, Proceedings, volume 8317 of Lecture Notes
in Computer Science, pages 142–161. Springer, 2013.

[GHS15] Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner. Seman-
tic security and indistinguishability in the quantum world. arXiv preprint
arXiv:1504.05255, 2015.

[GNL12] Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family of
lightweight block ciphers. In RFID. Security and Privacy - 7th International
Workshop, RFIDSec 2011, Amherst, USA, June 26-28, 2011, Revised Selected
Papers, volume 7055 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2012.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 212–219. ACM, 1996.

[JKM13] S. Jeffery, R. Kothari, and F. Magniez. Nested quantum walks with quantum
data structures. In Proceedings of 24th AMC-SIAM symposium on discrete
algorithms, 2013.

[Kap14] Marc Kaplan. Quantum attacks against iterated block ciphers. CoRR,
abs/1410.1434, 2014.



Marc Kaplan, Gaëtan Leurent, Anthony Leverrier and María Naya-Plasencia 93

[KLLNP16] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016 (to appear), Lecture
Notes in Computer Science. Springer, 2016.

[KM10] H. Kuwakado and M. Morii. Quantum distinguisher between the 3-round
Feistel cipher and the random permutation. In Information Theory Proceedings
(ISIT), 2010 IEEE International Symposium on, pages 2682–2685, June 2010.

[KM12] H. Kuwakado and M. Morii. Security on the quantum-type Even-Mansour ci-
pher. In Information Theory and its Applications (ISITA), 2012 International
Symposium on, pages 312–316, Oct 2012.

[Knu94] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, Fast Software Encryption: Second International Workshop. Leuven,
Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture Notes in
Computer Science, pages 196–211. Springer, 1994.

[Leu15] Gaëtan Leurent. Differential forgery attack against LAC. In Orr Dunkelman
and Liam Keliher, editors, Selected Areas in Cryptography - SAC 2015 - 22nd
International Conference, Sackville, NB, Canada, August 12-14, 2015, Revised
Selected Papers, volume 9566 of Lecture Notes in Computer Science, pages
217–224. Springer, 2015.

[LN14] Virginie Lallemand and María Naya-Plasencia. Cryptanalysis of KLEIN. In
Carlos Cid and Christian Rechberger, editors, Fast Software Encryption - 21st
International Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised
Selected Papers, volume 8540 of Lecture Notes in Computer Science, pages
451–470. Springer, 2014.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory
and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27,
1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pages
386–397. Springer, 1993.

[Mos98] Michele Mosca. Quantum searching, counting and amplitude amplification
by eigenvector analysis. In MFCS’98 workshop on Randomized Algorithms,
pages 90–100, 1998.

[MY92] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known plaintext
attack of FEAL cipher. In Advances in Cryptology - EUROCRYPT ’92,
Workshop on the Theory and Application of of Cryptographic Techniques,
Balatonfüred, Hungary, May 24-28, 1992, Proceedings, pages 81–91, 1992.

[RS15] Martin Roetteler and Rainer Steinwandt. A note on quantum related-key
attacks. Information Processing Letters, 115(1):40–44, 2015.

[San08] Miklos Santha. Quantum walk based search algorithms. In Theory and
Applications of Models of Computation, pages 31–46. Springer, 2008.

[Sho97] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509,
1997.

[Sim97] Daniel R Simon. On the power of quantum computation. SIAM journal on
computing, 26(5):1474–1483, 1997.



94 Quantum Differential and Linear Cryptanalysis

[SS16] Thomas Santoli and Christian Schaffner. Using simon’s algorithm to attack
symmetric-key cryptographic primitives. arXiv preprint arXiv:1603.07856,
2016.

[WZ11] Wenling Wu and Lei Zhang. Lblock: A lightweight block cipher. In Applied
Cryptography and Network Security - 9th International Conference, ACNS
2011, Nerja, Spain, June 7-10, 2011. Proceedings, volume 6715 of Lecture
Notes in Computer Science, pages 327–344, 2011.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 679–687. IEEE Computer
Society, 2012.

[ZWW+14] Lei Zhang, Wenling Wu, Yanfeng Wang, Shengbao Wu, and Jian Zhang. LAC:
A Lightweight Authenticated Encryption Cipher. Submission to CAESAR.
Available from: http://competitions.cr.yp.to/round1/lacv1.pdf (v1),
March 2014.

http://competitions.cr.yp.to/round1/lacv1.pdf

	Introduction
	Preliminaries
	Quantum algorithms
	Variations on Grover's algorithm
	Quantum search of pairs

	Differential Cryptanalysis
	Classical Adversary
	Quantum Adversary

	Truncated Differential Cryptanalysis
	Classical Adversary
	Quantum Adversary

	Applications on existing ciphers
	Application 1: LAC
	Application 2: KLEIN-64 and KLEIN-96

	Linear Cryptanalysis
	Classical Adversary
	Quantum Adversary

	Discussion
	Conclusion and open questions

