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Abstract. We calculate the full probability density function (PDF) of inflationary cur-
vature perturbations, even in the presence of large quantum backreaction. Making use
of the stochastic-δN formalism, two complementary methods are developed, one based
on solving an ordinary differential equation for the characteristic function of the PDF,
and the other based on solving a heat equation for the PDF directly. In the classical
limit where quantum diffusion is small, we develop an expansion scheme that not only
recovers the standard Gaussian PDF at leading order, but also allows us to calculate the
first non-Gaussian corrections to the usual result. In the opposite limit where quantum
diffusion is large, we find that the PDF is given by an elliptic theta function, which is
fully characterised by the ratio between the squared width and height (in Planck mass
units) of the region where stochastic effects dominate. We then apply these results to
the calculation of the mass fraction of primordial black holes from inflation, and show
that no more than ∼ 1 e-fold can be spent in regions of the potential dominated by
quantum diffusion. We explain how this requirement constrains inflationary potentials
with two examples.
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1 Introduction and motivations

Cosmological inflation [1–6] is a period of accelerated expansion that occurred at very
high energy in the early Universe. During this epoch, vacuum quantum fluctuations
were amplified to become large-scale cosmological perturbations that seeded the cosmic
microwave background (CMB) anisotropies and the large-scale structure of our Universe
[7–12].

In the range of scales accessible to CMB experiments [13, 14], these perturbations
are constrained to be small, at the level ζ ≃ 10−5 until they re-enter the Hubble radius
during the radiation era, where ζ is the scalar curvature perturbation. At smaller scales
however, they may be sufficiently large so that when they re-enter the Hubble radius, they
overcome the pressure forces and collapse to form primordial black holes (PBHs) [15–17].
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In practice, PBHs form when the mean curvature perturbation in a given Hubble patch
exceeds a threshold denoted ζc ≃ 1 [18, 19] (see Ref. [20] for an alternative criterion
based on the density contrast rather than the curvature perturbation).

The abundance of PBHs is usually stated in terms of the mass fraction of the
Universe contained within PBHs at the time of formation, β. If the coarse-grained
curvature perturbation ζcg follows the probability distribution function (PDF) P (ζcg),
β is given by [21]

β (M) = 2

∫ ∞

ζc

P (ζcg) dζcg . (1.1)

Here, ζcg is obtained from keeping the wavelengths smaller than the Hubble radius at
the time of formation,

ζcg(x) = (2π)−3/2
∫

k>aHform

dkζke
ik·x , (1.2)

where a is the scale factor, H ≡ ȧ/a is the Hubble scale, and a dot denotes differentiation
with respect to cosmic time. In Eq. (1.1), M is the mass contained in a Hubble patch at
the time of formation [22–24], M = 3M2

Pl/Hform, where MPl is the reduced Planck mass.
Observational constraints on β depend on the masses PBHs have when they form.

For masses between 109g and 1016g, the constraints mostly come from the effects of PBH
evaporation on big bang nucleosynthesis and the extragalactic photon background, and
typically range from β < 10−24 to β < 10−17. Heavier PBHs, with mass between 1016g
and 1050g, have not evaporated yet and can only be constrained by their gravitational
and astrophysical effects, at the level β < 10−11 to β < 10−5 (see Refs. [25, 26] for
summaries of constraints).

Compared to the CMB anisotropies that allow one to measure ζ accurately in the
largest ∼ 7 e-folds of scales in the observable Universe, PBHs only provide upper bounds
on β(M), and hence on ζ. However, these constraints span a much larger range of scales
and therefore yield valuable additional information. This is why PBHs can be used
to constrain the shape of the inflationary potential beyond the ∼ 7 e-folds that are
accessible through the CMB.

In practice, one usually assumes P (ζcg) to be a Gaussian PDF with standard de-

viation given by the integrated power spectrum
〈

ζ2cg
〉

=
∫ kend
k Pζ(k̃)d ln k̃, where k is

related to the time of formation through k = aHform, and where kend corresponds to
the wavenumber that exits the Hubble radius at the end of inflation. Combined with
Eq. (1.1), this gives rise to

β (M) = erfc





ζc
√

2
∫ kend
k Pζ(k̃)d ln k̃



 , (1.3)

where erfc is the complementary error function, M is the mass contained in the Hubble
volume, and 2π/k is the comoving Hubble length when the black holes form. In the limit

β ≪ 1, this leads to
∫ kend
k Pζ(k̃)d ln k̃ ≃ ζ2c /(−2 lnβ). Assuming the power spectrum to
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be scale invariant, one has
∫ kend
k Pζ(k̃)d ln k̃ ≃ Pζ ln(kend/k) ≃ Pζ∆N , where ∆N =

∆ ln a is the number of e-folds elapsed between the Hubble radius exit times of k and
kend during inflation. This leads to

Pζ∆N ≃ − ζ2c
2 lnβ

. (1.4)

For instance, with ζc = 1, the bound β < 10−22 leads to the requirement that Pζ∆N <
10−2. This can be translated into constraints on the inflationary potential V = 24π2M4

Plv
and its derivative V ′ with respect to the inflaton field φ using the slow-roll formulae [27,
28]

Pζ =
2v3

M2
Plv′

2 , ∆N =

∫ φ

φend

v

M2
Plv′

dφ̃ . (1.5)

The crucial remark that motivates the present work is that the assumptions on
which the above considerations rely, namely the use of a Gaussian PDF for P (ζcg) to-
gether with the classical slow-roll formula for the curvature power spectrum Pζ and
number of e-folds ∆N , are valid only in the regime where quantum diffusion provides
a subdominant correction to the classical field dynamics during inflation. However, as
we shall now see, producing curvature fluctuations of order ζ ∼ ζc ∼ 1 or higher pre-
cisely corresponds to the regime where quantum diffusion dominates the field dynamics
over a typical time scale of one e-fold. The validity of the standard approach that is
summarised above is therefore questionable and this is why in this paper, we present a
generic calculation of the PBH abundance from inflation that fully incorporates quan-
tum backreaction effects, and we update Eq. (1.4) to take into account the full quantum
dynamics of the inflaton field.

In practice, we make use of the stochastic inflation formalism [29–37], which is an
effective theory for the long-wavelength parts of the quantum fields during inflation.
When light fields are coarse grained at a fixed, non-expanding, physical scale that is
larger than the Hubble radius during the whole period of inflation, one can show that
their dynamics indeed become classical and stochastic. In the slow-roll approximation,
the inflaton field φ follows a Langevin equation of the form

dφ

dN
= − V ′

3H2
+

H

2π
ξ (N) . (1.6)

The right-hand side of this equation has two terms, the first of which involves V ′ and
is a classical drift term, and the second term involves ξ which is a Gaussian white noise
such that 〈ξ (N)〉 = 0 and 〈ξ (N) ξ (N ′)〉 = δ (N −N ′), and which makes the dynamics
stochastic.

Over the time scale of one e-fold, the ratio between the mean quantum kick, H/(2π),
and the classical drift, V ′/(3H2), is of order

√

Pζ , provided Pζ follows the classical
formula (1.5) and where one has made use of the Friedmann slow-roll equation H2 ≃
8π2M2

Plv. Therefore, if PBHs form when this ratio is of order one or higher, this is
precisely when one expects quantum modifications to the standard result to become
important.
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The effects of quantum diffusion on PBHs formation can thus be dramatic and are
the subject of this paper, which is organised as follows. In Sec. 2, we explain how the
full PDF of curvature perturbations can be calculated in stochastic inflation. Using the
stochastic-δN formalism (see Sec. 2.1), we first derive a set of ordinary differential equa-
tions for the moments of this PDF (see Sec. 2.2), from which two methods of construction
of the distribution are proposed, one based on its characteristic function (see Sec. 2.3)
and one based on a heat equation (see Sec. 2.4). In Sec. 3, we derive the classical limit
of our formulation, where quantum diffusion is a subdominant correction to the classi-
cal field dynamics. At leading order, the standard result is recovered, and higher-order
corrections allow us to calculate the first non-Gaussian modifications to the PDF of cur-
vature perturbations and to the mass fraction β. In Sec. 4, we expand our calculation in
the opposite limit, where the potential is exactly flat and stochastic effects dominate. In
this case, the PDF of curvature perturbations is found to be highly non-Gaussian and is
given by an elliptic theta function. In Sec. 5, we explain how these two limits enable one
to treat more generic inflationary potentials and give a simple calculational programme
that updates Eq. (1.4) and allows one to translate PBH observational constraints into
constraints on the potential. We then illustrate this programme with two examples. We
finally summarise our main results and present our conclusions in Sec. 6.

2 Probability distribution of curvature perturbations

The calculation of the PBH mass fraction relies on the PDF of the coarse-grained cur-
vature perturbations through Eq. (1.1). Let us explain how this distribution can be
calculated in the stochastic-δN formalism.

2.1 The stochastic-δN formalism

2.1.1 The δN formalism

The starting point of the stochastic-δN formalism is the standard, classical δN formal-
ism [9, 38–42], which provides a succinct way of relating the fluctuations in the number
of e-folds of expansion during inflation for a family of homogeneous universes with the
statistical properties of curvature perturbations. Starting from the unperturbed flat
Friedmann-Lemâıtre-Robertson-Walker metric

ds2 = −dt2 + a2(t)δijdx
idxj , (2.1)

deviations from isotropy and homogeneity can be added at the perturbative level and
contain scalar, vector and tensor degrees of freedom. Gauge redundancies associated
with diffeomorphism invariance allow one to choose a specific gauge in which fixed time
slices have uniform energy density and fixed spatial worldlines are comoving (in the
super-Hubble regime this gauge coincides with the synchronous gauge supplemented by
some additional conditions that fix it uniquely). Including spatial perturbations only,
one obtains [9, 43, 44]

ds2 = −dt2 + a2(t)e2ζ(t,x)δijdx
idxj , (2.2)
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where ζ is the adiabatic curvature perturbation mentioned in Sec. 1. One can then
introduce a local scale factor

ã(t,x) = a(t)eζ(t,x) , (2.3)

which allows us to express the amount of expansion from an initial flat space-time slice
at time tin to a final space-time slice of uniform energy density as

N(t,x) = ln

[

ã(t,x)

a(tin)

]

. (2.4)

This is related to the curvature perturbation ζ via Eq. (2.3), which gives rise to

ζ(t,x) = N(t,x) − N̄(t) ≡ δN , (2.5)

where N̄(t) ≡ ln [a(t)/a(tin)] is the unperturbed expansion. This expression forms the
basis of the δN formalism, which follows by making the further simplifying assumption
that on super-Hubble scales, each spatial point of the universe evolves independently
and this evolution is well approximated by the evolution of an unperturbed universe.
This assumption is known as the “quasi-isotropic” [45–48] or “separate universe” ap-
proach [41, 49, 50], and allows us to neglect spatial gradients on super-Hubble scales.
As a consequence, N(t,x) is the amount of expansion in unperturbed, homogeneous
universes, and ζ can be calculated from the knowledge of the evolution of a family of
such universes.

2.1.2 The stochastic-δN formalism

The δN formalism relies on the calculation of the amount of expansion realised amongst
a family of homogeneous universes. When stochastic inflation is employed to describe
such a family of universes and to calculate the amount of expansion realised in them,
this gives rise to the stochastic-δN formalism [51–57].

This approach is sketched in Fig. 1. Starting from φ = φ∗ at an initial time, the
inflaton field evolves along the potential v(φ) under the Langevin equation (1.6), where
hereafter we use the rescaled dimensionless potential

v ≡ V

24π2M4
Pl

, (2.6)

until it reaches φend where inflation ends. A reflective wall is added at φuv to prevent
the field from exploring arbitrarily large values, which can be necessary to renormalise
infinities appearing in the theory [57] (whose results are still independent of φuv and of
the exact nature of the wall, reflective or absorbing, provided φuv lies in some range). The
amount of expansion realised along a given trajectory is called N , which is a stochastic
variable. Thanks to the δN formalism, the fluctuation in this number of e-folds, N−〈N〉,
is nothing but the coarse-grained curvature perturbation ζcg defined in Eq. (1.2),

δNcg (x) = N (x) − 〈N〉 = ζcg (x) =
1

(2π)3/2

∫ kend

k∗

dkζke
ik·x , (2.7)
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φ

v

φend φUVφ∗

Figure 1. Sketch of the single-field stochastic dynamics solved in this work. Starting from
φ∗ at initial time, the inflaton field φ evolved along the potential v(φ) under the Langevin
equation (1.6), until φ reaches φend where inflation ends. A reflective wall is added at φuv to
prevent the field from exploring arbitrarily large values. The number of e-folds realised along
a family of realisations of the Langevin equation is calculated, and gives rise to the probability
distribution of curvature perturbations using the δN formalism.

where k∗ and kend are the wavenumbers that cross the Hubble radius at initial and
final times when φ = φ∗ and φ = φend respectively. Since, as explained in Sec. 1, the
calculation of the PBH mass function relies on the PDF of coarse-grained curvature
perturbations, the next step is to calculate the PDF of δNcg.

Before doing so, let us note that quantities related to ζ, and not ζcg, can also be
calculated in the stochastic-δN formalism. For the power spectrum Pζ for instance,
since the coarse-grained δNcg receives an integrated contribution of all modes exiting

the Hubble radius during inflation, 〈δN2
cg〉 =

∫ kend
k∗

Pζdk/k, one has [52, 54]

Pζ =
d
〈

δN2
cg

〉

d 〈N〉 , (2.8)

where we have used the relation 〈N〉 = ln(aend/a∗) = ln(kend/k), where the last equality
is valid at leading order in slow roll only. In the same manner, the local bispectrum can
be written as Bζ ∝ d2〈δN3

cg〉/d〈N〉2, from which the effective f local
NL parameter, measuring

the ratio between the bispectrum and the power spectrum squared, is given by

f local
NL =

5

72

〈

δN3
cg

〉

d 〈N〉2

(

d
〈

δN2
cg

〉

d 〈N〉

)−2

. (2.9)
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2.2 Statistical moments of first passage times

In order to calculate the PDF of the realised number of e-folds N , and hence of δNcg

(i.e. of ζcg), a first step consists in calculating its statistical moments

fn(φ) = 〈N n(φ)〉 , (2.10)

where the dependence on the field value φ (denoted φ∗ in the discussion around Fig. 1) at
which trajectories are initiated is made explicit. This can be done using the techniques
of “first passage time analysis” [58, 59], applied to stochastic inflation in Refs. [29, 54],
which allow one to derive a hierarchy of ordinary differential equations

f ′′
n − v′

v2
f ′
n = − n

vM2
Pl

fn−1 . (2.11)

The hierarchy is initiated at f0 = 1, and for n ≥ 1 it has to be solved with two boundary
conditions, one related to the fact that all trajectories initiated at φend realise a vanishing
number of e-folds, and the other one implementing the presence of a reflective wall at
φuv, namely

fn(φend) = 0 , f ′
n(φuv) = 0 . (2.12)

The formal solution to this problem can be written as

fn(φ) = n

∫ φ

φend

dx

MPl

∫ φuv

x

dy

MPl

e
1

v(y)
− 1

v(x)
fn−1(y)

v(y)
, (2.13)

which allows one to calculate the moments iteratively. In practice, this relies on per-
forming integrals of increasing dimension, which quickly becomes numerically heavy but
provides a convenient way to study the first few moments required to calculate the power
spectrum given by Eq. (2.8) or the f local

NL parameter given by Eq. (2.9), see Refs. [54, 57].

2.3 The characteristic function approach

In order to relate the PDF of N to its statistical moments, let us introduce its charac-
teristic function

χN (t, φ) ≡
〈

eitN (φ)
〉

, (2.14)

which depends on φ and a dummy parameter t. By Taylor expanding χN (t, φ) around
t = 0, one has χN (t, φ) =

∑∞
n=0(it)

nfn(φ)/n!. If one applies the differential operator
appearing in the left-hand side of Eq. (2.11) to this expansion, and uses Eq. (2.11) to
replace each term by its right-hand side, one obtains

(

∂2

∂φ2
− v′

v2
∂

∂φ
+

it

vM2
Pl

)

χN (t, φ) = 0 . (2.15)

At fixed t, this is an ordinary differential equation in φ, so instead of the hierarchy of
coupled differential equations (2.11) one now has a set of uncoupled differential equations
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to solve, which improves the tractability of the problem. The boundary conditions (2.12),
together with the fact that f0 = 1, translate into

χN (t, φend) = 1 ,
∂χN

∂φ
(t, φuv) = 0 . (2.16)

Let us note that the characteristic function of the fluctuation in the number of e-folds,
ζcg = δNcg = N−〈N〉 = N−f1, can be found by plugging this expression into Eq. (2.14),
which gives rise to

χζcg (t, φ) = e−if1(φ)tχN (t, φ) . (2.17)

Finally, from Eq. (2.14), the characteristic function χN can be rewritten as

χN (t, φ) =

∫ ∞

−∞
eitNP (N , φ) dN , (2.18)

that is to say, the characteristic function is the Fourier transform of the PDF of curvature
perturbations. Therefore, the PDF is the inverse Fourier transform of the characteristic
function, i.e.

P (ζcg, φ) =
1

2π

∫ ∞

−∞
e−it[ζcg+f1(φ)]χN (t, φ) dt , (2.19)

where we have used Eq. (2.17). The calculational programme is thus the following:
solve Eq. (2.15) with boundary conditions (2.16), calculate f1 either taking n = 1 and
f0 = 1 in Eq. (2.13) or by noting that f1(φ) = −i∂χN /∂t(t = 0, φ), calculate the PDF
of curvature perturbations with Eq. (2.19), and then the mass fraction of PBHs with
Eq. (1.1).

Example: quadratic potential

In order to illustrate this computational programme, let us consider the case of a
quadratic potential

v(φ) = v0

(

φ

MPl

)2

. (2.20)

In this case, Eq. (2.15) together with the boundary conditions (2.16) has an exact solu-
tion. Taking the φuv → ∞ limit, it is given by

χN (t, φ) =

[

v(φ)

v(φend)

]

1−α(t)
4 1F1

[

α(t)−1
4 ; 1 + α(t)

2 ;− 1
v(φ)

]

1F1

[

α(t)−1
4 ; 1 + α(t)

2 ;− 1
v(φend)

] , (2.21)

where α(t) =
√

1 − 4it
v0

and 1F1(x; y; z) is the Kummer confluent hypergeometric func-

tion [60, 61]1. The inverse Fourier transform of Eq. (2.21) can then be computed nu-
merically, which gives rise to the PDF displayed in Fig. 2. At small v(φ) the PDF is

1Note that these references use the notation M(a, b, z) for the Kummer confluent hypergeometric
function while we use the notation 1F1.
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6
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10

P
(v

0
N
)

v = 0.5

v = 1

v = 2

v = 4

v = 8

Figure 2. Probability distributions of the number of e-folds N , rescaled by v0, realised in the
quadratic potential (2.20) between an initial field value φ parametrised by v(φ) given in the
legend, and φend =

√
2 MPl where inflation ends by slow-roll violation. The values displayed for

v correspond to very high energies far from the observational window of this model but this is for
illustrative purpose only. When v increases, one can see that the PDF has a larger mean value,
a larger spread and seems to be less Gaussian, which motivates the need to go beyond Gaussian
techniques.

rather peaked and almost Gaussian, while at large v(φ), it is more spread and deviates
more from a Gaussian distribution. In Secs. 3 and 4 we will study these two limits one
by one, i.e. the classical limit where the stochastic corrections are small and the PDF
is almost Gaussian, and the stochastic limit where quantum diffusion dominates the
inflaton dynamics.

2.4 The heat equation approach

Before investigating the classical and stochastic limits, let us note that the problem
can be reformulated in terms of a heat equation for the PDF P (N , φ). Indeed, if one
plugs Eq. (2.18) into Eq. (2.15), the two first terms apply on P (N , φ) directly, while the
third one is given by itχN =

∫∞
−∞ dNP (N , φ)∂eitN /∂N = −

∫∞
−∞ dN eitN∂P/∂N (N , φ).

Here, in the first expression, we have simply differentiated Eq. (2.18) with respect to N ,
and in the second expression, we have integrated by parts (the boundary terms vanish
since P (N = ±∞, φ) must vanish for the distribution to be normalisable). This gives
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rise to the heat equation

(

∂2

∂φ2
− v′

v2
∂

∂φ
− 1

vM2
Pl

∂

∂N

)

P (N , φ) = 0 . (2.22)

Instead of the infinite set of uncoupled differential equations given in Eq. (2.15), the
problem is now reformulated in terms of a single, but partial, differential equation. Let
us note that Eq. (2.22) does not have the structure of a Fokker-Planck equation, and
should in any case not be confused with the usual Fokker-Planck equation considered
in stochastic inflation which governs the PDF of the field value.2 When plugging the
boundary conditions (2.16) into Eq. (2.18), one obtains

P (N , φend) = δ(N ) ,
∂P

∂φ
(N , φuv) = 0 . (2.24)

These form the boundary conditions associated to Eq. (2.22).
In order to show that Eq. (2.22) has the structure of a heat equation as announced

above, one can introduce a change of field variable

u(φ) =

∫ φ

φend

e
− 1

v(φ̃)
dφ̃

MPl

, (2.25)

which allows us to rewrite Eq. (2.22) as

(

ve−
2
v
∂2

∂u2
− ∂

∂N

)

P (N , u) = 0. (2.26)

This is a heat equation for a one dimensional medium with diffusivity ve−2/v, where
N plays the role of time and u the role of space. However, let us stress that heat
equations are usually endowed with boundary conditions of a different type as from those
in Eq. (2.24), since in standard heat equations, one usually gives the spatial temperature
distribution at an initial time, while Eq. (2.24) involves distributions of times at fixed
spatial positions. This is why the numerical methods developed in the literature to
solve heat equations would need to be adapted to this kind of boundary conditions but
they may provide efficient ways to solve the problem at hand, e.g. , in the context of
multi-field inflation.

2The Langevin equation (1.6) gives rise to Fokker-Planck equation for the probability density p(N,φ)
of the field to be at φ at time N , which, in the Itô interpretation, is given by

∂2

∂φ2
[vp(N,φ)] +

∂

∂φ

[

v′

v
p(N,φ)

]

−
1

M2
Pl

∂

∂N
p(N,φ) = 0 . (2.23)

This equation does not coincide with Eq. (2.22) for P (N , φ) which governs the probability to realise N

e-folds starting from φ.
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3 Expansion about the classical limit

In the limit of small quantum diffusion, the “classical” limit, one needs to check that
our formulation allows one to recover the standard results recalled in Sec. 1 around
Eq. (1.3). This is the goal of this section, where we also calculate the leading order
deviation from the standard result in order to best determine its range of validity. From
the heat equation (2.26), we saw that the diffusivity increases with v, which implies that
the classical limit has v ≪ 1 (this condition is not enough to define the classical regime as
we will see below but it constitutes a fair starting point). We thus perform an expansion
in increasing powers of v, first in the characteristic function approach introduced in
Sec. 2.3, and then in the heat equation approach introduced in Sec. 2.4. We will see that
the former is much more convenient than the later which only yields limited results in
the classical limit.

3.1 The characteristic function approach

In the ordinary differential equation satisfied by the characteristic function, Eq. (2.15),
an expansion in v is equivalent to an expansion in the diffusion term, involving ∂2/∂φ2.

3.1.1 Leading order

At leading order (LO) in the classical limit, the diffusion term in Eq. (2.15) can be simply
neglected, and one has

(

−v′

v

∂

∂φ
+

it

M2
Pl

)

χLO
N (t, φ) = 0 . (3.1)

Making use of the first boundary condition in Eq. (2.16),3 this equation can be solved
as

χLO
N (t, φ) = exp

[

it

∫ φ

φend

v(x)

M2
Plv′(x)

dx

]

. (3.2)

Note that the integral in the argument of the exponential is the classical number of
e-folds, which is also the mean number of e-folds at leading order in the classical limit,
i.e. the leading order saddle point expansion of Eq. (2.13) [57],

fLO
1 (φ) =

1

M2
Pl

∫ φ

φend

v(x)

v′(x)
dx . (3.3)

This is consistent with the formula given below Eq. (2.19), namely f1(φ) =
−i∂χN /∂t(t = 0, φ). As a consequence, Eq. (2.17) implies that χδNcg = 1, and hence its
inverse Fourier transform is P LO (δNcg, φ) = δ (δNcg), i.e. a Dirac distribution centred
around δNcg = 0. Thus, at leading order in the classical limit, one simply shuts down
quantum diffusion, the dynamics are purely deterministic, δN ≡ 0 and there are no
curvature perturbations.

3In the expansion about the classical limit, the second boundary condition in Eq. (2.16) cannot be
satisfied simultaneously with the first condition. This is why the solutions presented here are, strictly
speaking, only valid in the limit φuv → ∞.
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3.1.2 Next-to-leading order

One thus needs to go to next-to-leading order (NLO) to incorporate curvature pertur-
bations. At NLO, the LO solution (3.2) can be used to evaluate the term χ−1∂2χ/∂φ2

in Eq. (2.15), which then becomes

∂

∂φ
χNLO
N − v2

v′

(

it

vM2
Pl

+
1

χLO
N

∂2χLO
N

∂φ2

)

χNLO
N = 0 . (3.4)

Making use of the first boundary condition in Eq. (2.16), the solution of this first order
ordinary differential equation is

χNLO
N (t, φ) = exp

{
∫ φ

φend

[

itv(x)

M2
Plv′(x)

+
v2(x)

v′(x)

1

χLO
N (x)

∂2χLO
N

∂φ2
(x)

]

dx

}

. (3.5)

Notice that if ones replaces LO by an arbitrary nth order and NLO by the n+1th order of
the classical expansion, this equation is valid at any order since it is nothing but the
iterative solution of Eq. (2.15). At NLO, plugging Eq. (3.2) into Eq. (3.5), one obtains

χNLO
N (t, φ) = exp

[

itfNLO
1 (φ) − γNLO

1 vt2
]

, (3.6)

where fNLO
1 is the mean number of e-folds at NLO [57],

fNLO
1 (φ) =

1

M2
Pl

∫ φ

φend

dx

(

v

v′
+

v2

v′
− v3v′′

v′3

)

, (3.7)

and we have defined

γNLO
1 =

1

vM4
Pl

∫ φ

φend

dx
v4

v′3
. (3.8)

From this expression, Eq. (2.17) implies that χNLO
δNcg

(t, φ) = e−γNLO
1 vt2 , that is to say χNLO

δN

is a Gaussian and hence its inverse Fourier transform PNLO (ζcg, φ) is also a Gaussian
and is given by

PNLO(ζcg, φ) =
1

√

4πγNLO
1 v

exp

(

−
ζ2cg

4γNLO
1 v

)

. (3.9)

A crucial remark is that at this order, the power spectrum (2.8) is given by [54] Eq. (1.5),

so that the variance of the Gaussian distribution (3.9) reads 2γNLO
1 v =

∫ φ
φend

PNLO
ζ f

′LO
1 dx.

This precisely matches the standard result recalled above Eq. (1.3), namely that P (ζcg)
is a Gaussian PDF with standard deviation given by the integrated power spectrum
〈

ζ2cg
〉

=
∫ kend
k Pζ(k̃)d ln k̃, since d ln k ≃ dN = f ′

1(φ)dφ at leading order in slow roll.

3.1.3 Next-to-next-to-leading order

In order to study the first non-Gaussian corrections to the standard result, one needs to
go to next-to-next-to-leading order (NNLO). As explained in Sec. 3.1.2, one can simply
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increment the order of the iterative relation (3.5), i.e. replace LO by NLO and NLO by NNLO.
Plugging in Eq. (3.6), and making use of Eq. (2.17), this gives rise to

χNNLO
δNcg

(t, φ) = exp
(

−γNNLO
1 vt2 − iγNNLO

2 v2t3
)

, (3.10)

where we have only kept the terms that are consistent at that order and where we have
defined

γNNLO
1 =

1

vM4
Pl

∫ φ

φend

dx

(

v4

v′3
+ 6

v5

v′3
− 5

v6v′′

v′5

)

,

γNNLO
2 =

2

v2M6
Pl

∫ φ

φend

dx
v7

v′5
.

(3.11)

One can already see that since the characteristic function is not a Gaussian, the PDF is
not a Gaussian distribution. Using Eq. (2.19), it is given by

PNNLO (δNcg, φ) =
1

2π

∫ ∞

−∞
dt exp

(

−itδNcg − γNNLO
1 vt2 + iγNNLO

2 v2t3
)

. (3.12)

In this integral, the second term in the argument of the exponential makes the integrand
become negligible when γNNLO

1 vt2 ≫ 1, i.e. for |t| ≫ tc where tc = (γNNLO
1 v)−1/2. When

t = ±tc, the ratio between the third and the second terms in the argument of the
exponential of Eq. (3.12) is of order (γNNLO

2 /γNNLO
1 )

√

v/γNNLO
1 , i.e. of order

√
v in an

expansion in v since the γi parameters have been defined to carry no dimension of v (at
least at their leading orders). This is why, over the domain of integration where most
of the contribution to the integral comes from, the third term is negligible and can be
Taylor expanded. One obtains

PNNLO (ζcg, φ) =
1

√

4πγNNLO
1 v

exp

(

−
ζ2cg

4γNNLO
1 v

)[

1 − γNNLO
2

8 (γNNLO
1 )3 v

ζcg
(

6γNNLO
1 v − ζ2cg

)

]

.

(3.13)
For the quadratic potential example discussed in Sec. 2.3, in Fig. 3 we have repro-
duced Fig. 2 (for different values of v to better illustrate the behaviours of the classical
approximations) where we have superimposed the NLO approximation (3.9) and the
NNLO approximation (3.13). One can check that these approximations become better
at smaller values of v as expected, and that the NNLO approximation always provides
a better fit than the NLO one.

As a consistency check, one can verify that the distribution (3.13) yields the
same moments at NNLO order as the ones derived in Ref. [54] by calculating the
integrals (2.13) with a saddle-point approximation technique at NNLO. For the sec-
ond moment, one has 〈δN2

cg〉 =
∫∞
−∞ ζ2cgP

NNLO(ζcg, φ)dζcg = 2γNNLO
1 v, which co-

incides with Eq. (3.35) of Ref. [54]. Similarly for the third moment, 〈δN3
cg〉 =

∫∞
−∞ ζ3cgP

NNLO(ζcg, φ)dζcg = 6γNNLO
2 v2, which coincides with Eq. (3.37) of Ref. [54]. The

two methods, i.e. the iterative solution (3.5) of the characteristic function equation and
the saddle-point expansion of the integrals (2.13), are therefore equivalent.
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Figure 3. Probability distributions of the number of e-folds N , rescaled by v0, realised in the
quadratic potential (2.20) between an initial field value φ parametrised by v(φ) given in the
legend, and φend =

√
2 MPl where inflation ends by slow-roll violation, as in Fig. 2. The black

dashed lines correspond to the NLO (Gaussian) approximation (3.9), while the dotted lines stand
for the NNLO approximation (3.13). The smaller v is, the better these approximations are, and
the NNLO approximation is substantially better than the NLO one.

Let us also note that the characteristic function, χN (t, φ) defined in Eq. (2.14), is
closely related to the cumulant generating function for the probability distribution

KN (τ, φ) = ln〈eτN (φ)〉 =
∞
∑

n=1

κn(φ)

n!
τn . (3.14)

By comparing Eqs. (2.14) and (3.14) indeed, one simply has χN (t, φ) = exp [KN (it, φ)].
If we now compare Eqs. (3.10) and (3.14), we can read off the first cumulants

κ2(φ) = 2vγ1 , κ3(φ) = 6v2γ2 . (3.15)

One measure of the deviation from a Gaussian distribution is the skewness of the distri-
bution which is determined by the ratio of these cumulants

γskew ≡ κ3

κ
3/2
2

=
3v1/2γ2√
2 (γ1)3/2

. (3.16)

Since γ2 is non-vanishing at next-to-next-to-leading (and higher) order only, the NNLO
term thus represents the first non-Gaussian correction to the standard Gaussian result
obtained at NLO in the classical limit.
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At this order, the distribution is positively skewed, which is indeed the case for
all the distributions displayed in Figs. 2 and 3. One can also note that the parameter
introduced below Eq. (3.12), that must be small in order for the classical expansion to be
valid at NNLO, exactly coincides with γskew. The above formulae are therefore correct
in the limit γskew ≪ 1 only. Finally, the correcting term in the brackets of Eq. (3.13) can

be expressed as γskew
(

ζ2cg/
〈

ζ2cg
〉)3/2

, where we have used the relation 〈δN2
cg〉 = 2γNNLO

1 v
given above together with Eq. (3.16). This shows that γskew ≪ 1 only ensures the
correcting term to be small when ζ2cg is of order

〈

ζ2cg
〉

, i.e. around the maximum of the
distribution. The classical approximation is therefore an expansion about the maximum
of the distribution that should be expected to fail in the tail. Since the PBH threshold
ζc is usually in the far tail of the distribution (in the standard calculation recalled in
Sec. 1, at the level of the observational bounds, one has

〈

ζ2cg
〉

∼ 10−2 ≪ ζ2c ∼ 1), one
may need to go beyond the classical approximation in such cases.

3.2 The heat equation approach

Before moving on to the stochastic limit, let us briefly explain how the heat equation ap-
proach proceeds in the classical limit. At LO, neglecting the diffusion term in Eq. (2.22),
one has to solve M2

Plv
′/v ∂P/∂φ + ∂P/∂N = 0, with the first boundary condition of

Eq. (2.24). Using the method of characteristics to solve first-order partial differential
equations, one obtains

P LO (N , φ) = δ [N − fLO
1 (φ)] , (3.17)

where fLO
1 has been defined in Eq. (3.3) and corresponds to the classical number of e-

folds, which is also the mean number of e-folds at leading order in the classical limit. One
therefore recovers the result of Sec. 3.1.1. At NLO, one can use Eq. (3.17) to calculate the
diffusive term in Eq. (2.22) and iterate the procedure. However, by doing so, one has to
solve a first-order partial differential equation with a source term that involves derivatives
of the Dirac distribution. This makes the solving procedure technically complicated,
and we therefore do not pursue this direction further since a simpler way to obtain the
solution was already presented in Sec. 3.1. One can already see the benefit of having
two solving procedures at hand, which will become even more obvious in what follows.

4 The stochastic limit

We now consider the opposite limit where the inflaton field dynamics are dominated by
quantum diffusion. This is the case if the potential is exactly flat, since then the slow-roll
classical drift vanishes. We thus consider a potential that is constant between the two
values φend and φend + ∆φwell, where ∆φwell denotes the width of this “quantum well”.
Inflation terminates when the field reaches φend (where either the potential is assumed
to become very steep, or a mechanism other than slow-roll violation must be invoked
to end inflation), and a reflective wall is located at φend + ∆φwell, which can be seen as
the point where the dynamics become classically dominated so that the probability for
field trajectories to climb up this part of the potential and escape the quantum well can
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Figure 4. Schematic representation of the single-field stochastic dynamics solved in Sec. 4,
where the potential may be taken to be exactly constant over the “quantum well” regime delim-
ited by φend and φend + ∆φwell. Inflation terminates at φend, where either the potential becomes
very steep or a mechanism other than slow-roll violation ends inflation, and a reflective wall is
placed at φend + ∆φwell, which can be seen as the point where the dynamics become classically
dominated and the classical drift prevents the field from escaping the quantum well.

be neglected. The situation is depicted in Fig. 4, and in Sec. 5 we will see why these
assumptions allow one to study most cases of interest.

4.1 The characteristic function approach

If the potential v = v0 is constant, the potential gradient term vanishes in Eq. (2.15) and
making use of the boundary conditions (2.16), where φuv is replaced by φend + ∆φwell,
one obtains

χN (t, φ) =
cosh

[

α
√
t µ (x− 1)

]

cosh
(

α
√
t µ
) . (4.1)

In this expression, x ≡ (φ− φend)/∆φwell, α ≡ (i− 1)/
√

2 , and we have introduced the
parameter

µ2 =
∆φ2

well

v0M2
Pl

(4.2)

which is the ratio between the squared width of the quantum well and its height, in
Planck mass units, and which is the only combination through which these two quantities
appear.

The PDF can be obtained by inverse Fourier transforming Eq. (4.1), see Eq. (2.19),
which can be done after Taylor expanding the characteristic function (4.1) and inverse
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Figure 5. Probability distributions of the number of e-folds N , rescaled by µ2, realised in the
constant potential depicted in Fig. 4 between φ and φend, where different colours correspond to
different values of φ. When φ approaches φend, the distribution becomes more peaked and the
transparency of the curves is increased for displayed purposes.

Fourier transforming each term in the sum. This leads to

P (N , φ) =
1

2
√
π

µ

N 3/2
×

{

∞
∑

n=0

(−1)n [2(n + 1) − x] e−
µ2

4N
[2(n+1)−x]2 +

∞
∑

n=0

(−1)n [2n + x] e−
µ2

4N
[2n+x]2

}

.

(4.3)

This PDF is displayed in Fig. 5 for different values of x. Interestingly, Eq. (4.3) can be
resummed to give a closed form when combined with the result from the heat equation
approach presented below in Sec. 4.2. For now, we can derive closed form expressions
at both boundaries of the quantum well, i.e. in the two limits φ ≃ φend + ∆φwell and
φ ≃ φend.

Reflective boundary of the quantum well

In the case where φ = φend + ∆φwell, or x = 1, i.e. at the reflective boundary of
the quantum well, Eq. (4.3) reduces to P (N , φwell) = µ/

√
πN−3/2

∑∞
n=0(−1)n(2n +

1)e−
µ2

4N
(2n+1)2 . Making use of the elliptic theta functions [62, 63] introduced in Ap-
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pendix A, this can be rewritten as

P (N , φ = φend + ∆φwell) =
µ

2
√
πN 3/2

ϑ′
1

(

0, e−
µ2

N

)

, (4.4)

where ϑ′
1 is the derivative (with respect to the first argument) of the first elliptic theta

function, see Eq. (A.2).

Absorbing boundary of the quantum well

In the case where φ ≃ φend, or x ≪ 1, i.e. at the absorbing boundary of the quantum well,
an approximated formula can be obtained by noting that Eq. (4.3) can be rewritten as
P (N , φ) = µ/(2

√
πN 3/2)[xe−µ2x2/(4N )+F (−x)−F (x)], with F (x) ≡∑∞

n=0(−1)n[2(n+

1) + x]e−
µ2

4N
[2(n+1)+x]2 . In the limit where x ≪ 1, F (−x) − F (x) ≃ −2xF ′(0), where

F ′(0) = 1/2−1/2ϑ4(0, e
−µ2/N )−µ2/(4N )ϑ′′

4(0, e−µ2/4), see Eq. (A.3). This gives rise to

P (N , φ ≃ φend) ≃ µx

2
√
πN 3/2

[

e−
µ2x2

4N − 1 + ϑ4

(

0, e−
µ2

N

)

+
µ2

2N ϑ′′
4

(

0, e−
µ2

N

)]

. (4.5)

This approximation is superimposed to the full result (4.4) in the left panel of Fig. 6,
where one can check that the agreement is excellent even up to x ∼ 0.3.

4.2 The heat equation approach

Let us now move on to the heat equation approach, since combined with the results
of the characteristic function approach, this will allow us to derive a closed form for
the PDF at arbitrary values of x. In the case of a constant potential, the heat equa-
tion (2.22) becomes (v0M

2
Pl∂

2/∂φ2−∂/∂N )P (N , φ) = 0. The second boundary condition
of Eq. (2.24), ∂P/∂φ(N , φend + ∆φwell) = 0, leads to a Fourrier decomposition of the
form

P (N , φ) =

∞
∑

n=0

{

An (N ) sin
[(π

2
+ nπ

)

x
]

+ Bn (N ) cos (nπx)
}

, (4.6)

where, by plugging Eq. (4.6) into the heat equation (2.22), the coefficients An and Bn

must satisfy
∂An

∂N = −π2

µ2

(

n +
1

2

)2

An ,
∂Bn

∂N = −π2

µ2
n2Bn . (4.7)

This leads to

An(N ) = an exp

[

−π2

µ2

(

n +
1

2

)2

N
]

, Bn(N ) = bn exp

(

−π2

µ2
n2N

)

, (4.8)

where an and bn are coefficients that depend only on n. They can be calculated by
identifying Eqs. (4.3) and (4.6) in the N → 0 limit. In this limit, in Eq. (4.3), the
term with n = 0 of the second sum is the dominant contribution, and using the fact
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Figure 6. Probability distributions of the number of e-folds N , rescaled by µ2, realised in
the constant potential depicted in Fig. 4 between φ and φend. In both panels, different colours
correspond to different values of φ, and the black dashed lines correspond to approximations.
Left panel: the approximation (4.5) is displayed with the black dashed lines. Right panel: the
approximation (4.12) is displayed with the black dashed lines. These approximations are valid
close to the absorbing boundary of the quantum well where inflation ends. When φ increases,
the approximation becomes worse, and the transparency of the curves is increased for displayed
purposes, but one can see that the approximation (4.5) is excellent up to (φ−φend)/∆φwell ∼ 0.3,
and slightly better than the approximation (4.12).

that e−x2/(4σ)/(2
√
πσ ) → δ(x) when σ → 0, hence −xe−x2/(4σ)/(4σ

√
πσ ) → δ′(x) when

σ → 0, one has
P (N , φ) −→

N→0
−2v0M

2
Plδ

′(φ− φend) . (4.9)

In passing, one notes that this expression implies that P (N = 0, φ) = 0 when φ 6= φend,
which is consistent with the continuity of the distribution when N = 0 and with the
fact that the probability to realise a negative number of e-folds obviously vanishes. The
case φ = φend is singular because of the first boundary condition of Eq. (2.24), which
explains the singularity in Eq. (4.9). The coefficients an and bn can then be expressed as
an =

∫ 1
−1 dxP (N = 0, φ) sin[(n+1/2)πx] for n ≥ 0 and bn =

∫ 1
−1 dxP (N = 0, φ) cos[nπx]

for n ≥ 0, where we recall that the link between φ and x is given above Eq. (4.2). This
gives rise to an = 2π(n + 1/2)/µ2 and bn = 0, hence

P (N , φ) =
2π

µ2

∞
∑

n=0

(

n +
1

2

)

exp

[

−π2

µ2

(

n +
1

2

)2

N
]

sin

[

xπ

(

n +
1

2

)]

, (4.10)
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which can be written as

P (N , φ) = − π

2µ2
ϑ′
2

(

π

2
x, e

−π2

µ2N
)

, (4.11)

see Eq. (A.4). A few comments are in order.
First, let us stress that the results from both methods, the characteristic function

one and the heat equation one, have been necessary to derive this closed form, since
the expression coming from the characteristic function has allowed us to calculate the
coefficients an and bn in the heat equation solution. This further illustrates how useful
it is to have two approaches at hand.

Second, the expansion (4.10) is an alternative to the one given in Eq. (4.3) for
the PDF. One can numerically check that they are identical, and in Fig. 5, P (N , φ) is
displayed as a function of N for various values of φ. The difference between Eqs. (4.3)
and (4.10) is that they correspond to expansions around different regions of the PDF.
In Eq. (4.3), since one is summing over increasing powers of e−1/N , one is expanding
around N = 0, i.e. on the “left” tail of the distribution. In Eq. (4.10) however, since one
is summing over increasing powers of e−N , one is expanding around N = ∞, i.e. on the
“right” tail of the distribution. Therefore, if one wants to study the PDF by truncating
the expansion at some fixed order n, one should choose to work with the expression that
better describes the part of the distribution one is interested in, so that both expressions
can a priori be useful (let us stress again that, in the limit where all terms in the sums
are included, both expressions match exactly for all values of N ).

Third, by plugging x = 1 in Eq. (4.11), one obtains an expression for P (N , φ =
φend + ∆φwell) that is an alternative to Eq. (4.4) even if both formulae involve elliptic
theta functions. In Appendix A, we show that both expressions are equivalent, due
to identities satisfied by the elliptic theta functions. In fact, a third expression for
P (N , φ = φend + ∆φwell) can even be obtained by plugging x = 1 into Eq. (4.10) and
the consistency with the two other ones is also shown in Appendix A.

Fourth, an approximated formula for the PDF in the limit φ ∼ φend can be derived
by Taylor expanding Eq. (4.11),

P (N , φ ≃ φend) ≃ − π2

4µ2
xϑ′′

2

(

0, e
−π2

µ2
N
)

, (4.12)

see Eq. (A.5). This provides an alternative to the approximation (4.5), that is displayed
in the right panel of Fig. 6. Numerically, one can check that Eq. (4.5) is slightly better.

Fifth, the PDF of coarse-grained curvature perturbations decays exponentially as
e−ζcg , i.e. much slower than the Gaussian decay e−ζ2cg . Since PBHs form along the tail
of these distributions, we expect their mass fraction to be greatly affected by this highly
non-Gaussian behaviour. More precisely, on the tail, one has

P (ζcg, φ) ∝ e
− π2

4µ2 ζcg , (4.13)

which is given by the dominant mode n = 0 in the expansion (4.10). Interestingly, the
decay rate of the distribution is independent of φ. Let us also note that another case
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where the PDF decays exponentially is in presence of large local non-Gaussianities, when
the PDF is a χ2 distribution [64, 65].

5 Primordial black holes

The formalism developed so far allows one to derive the PDF of coarse-grained curvature
perturbations produced during a phase of single-field slow-roll inflation. Let us now apply
this result to the calculation of the mass fraction of PBHs discussed in Sec. 1.

5.1 Classical limit

In the classical limit detailed in Sec. 3, the PDF is approximately Gaussian, see Eq. (3.9),
so that the considerations presented in the introduction apply. Plugging Eq. (3.9) into
Eq. (1.1), one has β = erfc[ζc/(2

√
vγ1 )], which is consistent with Eq. (1.3) as noted

below Eq. (3.9). In the β ≪ 1 limit, this leads to

vγ1 ≃ − ζ2c
4 lnβ

, (5.1)

where from now on, the order at which the γi parameters are calculated is omitted
for simplicity. Approximating γ1 given in Eq. (3.8) by γ1 ≃ (v/v′)3∆φ/M4

Pl, where
∆φ = |φ− φend| is the field excursion, one obtains

∣

∣

∣

∣

∆φv4

v′3M4
Pl

∣

∣

∣

∣

≃ − ζ2c
4 lnβ(M)

. (5.2)

In this expression, let us recall that the left-hand side must be evaluated at a value
φ which is related to the PBH mass M by identifying the wavenumber that exits the
Hubble radius during inflation at the time when the inflaton field equals φ, with the
one that re-enters the Hubble radius during the radiation-dominated era when the mass
contained in a Hubble patch equals M . For instance, with ζc = 1, the bound β < 10−22

leads to the requirement that the left-hand side of Eq. (5.2) be smaller than 0.005, which
constrains the inflationary potential.

In passing, let us see how the first non-Gaussian correction derived in Sec. 3.1.3
affects this result. Plugging Eq. (3.13) into Eq. (1.1), one obtains

β(M) = erfc

(

ζc
2
√
vγ1

)

+
γ2

4
√

vπγ51
e
−

ζ2c
4vγ1

(

ζ2c − 2vγ1
)

. (5.3)

In the β ≪ 1 limit, i.e. in the ζ2c ≫ vγ1 limit, this reads β ≃ 2e−ζ2c /(4vγ1)
√

vγ1/π /ζc[1 +
γ2ζ

3
c /(8vγ31)]. In this regime, one can see that the non-Gaussian correction is in fact larger

than the Gaussian leading order, which signals that the non-Gaussian expansion breaks
down on the far tail of the distribution. This also suggests that non-Gaussianities cannot
be simply treated at the perturbative level when it comes to PBH mass fractions [65].
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Figure 7. Mass fraction β of primordial black holes in the quantum diffusion dominated regime.
The left panel displays β evaluated at φ = φend + ∆φwell (blue), i.e. at the reflective boundary
of the quantum well, and at φ = φend + 10−4∆φwell, i.e. close to the absorbing boundary of
the quantum well, as a function of µ = ∆φwell/(

√
v0 MPl). In the right panel, β is plotted as

a function of φ for a few values of µ. One can see that the mass fraction depends very weakly
on φ but very strongly on µ. In both panels, we have taken ζc = 1, the solid lines correspond
to the full expression (5.4) and the dashed line to the approximation (5.5). The shaded region
is excluded by observations, the light shaded area roughly corresponds to constraints for PBH
masses between 109g and 1016g, the dark shaded area for PBH masses between 1016g and 1050g
(see discussion in Sec. 1).

5.2 Stochastic limit

Let us now see how the constraint (5.2) changes in the presence of large quantum diffu-
sion, as considered in Sec. 4. In this case, the PDF of coarse-grained curvature pertur-
bations ζcg = δNcg = N − 〈N〉 can be obtained from Eq. (4.10),

β(M) =
4

π

∞
∑

n=0

1
(

n + 1
2

) sin

[

π

(

n +
1

2

)

x

]

exp

{

−π2

(

n +
1

2

)2 [

x
(

1 − x

2

)

+
ζc
µ2

]

}

.

(5.4)
In this expression, we have replaced 〈N〉 = f1 = µ2x(1−x/2) which can be obtained by
setting the potential to a constant in Eq. (2.13). Let us recall that x = (φ−φend)/∆φwell

and that M and φ are related as explained below Eq. (5.2). When x = 0, i.e. when
φ = φend, Eq. (5.4) yields β = 0, which is consistent with the fact that the PDF of ζcg
is a Dirac distribution in this case.

The mass fraction (5.4) depends only on φ, µ and ζc. It is displayed in Fig. 7 for
ζc = 1, as a function of µ for x = 1, i.e. φ = φend + ∆φwell, and x = 10−4, i.e. φ =
φend + 10−4∆φwell, in the left panel, and as a function of φ for a few values of µ in the
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right panel. One can see that β depends only weakly on φ but very strongly on µ, which
is constrained to be at most of order one. More precisely, if one assumes that ζc ≫ µ2 so
that ζc is well within the tail of the distribution and one can keep only the mode n = 0
in Eq. (5.4), as was done when deriving Eq. (4.13), one has

β(M) ≃ 8

π
sin
(πx

2

)

e
−π2

8
[x(2−x)]+ 2ζc

µ2 . (5.5)

This expression is superimposed to the full result (5.4) in Fig. 7 where one can see that
it provides a very good approximation even when the condition ζc ≫ µ2 is not satisfied.
This is because, in Eq. (5.4), higher terms in the sum are not only suppressed by higher
powers of e−ζ2c /µ

2
but also by higher powers of e−π2x(1−x/2), so that Eq. (5.5) is an

excellent proxy for all values of µ except if x is tiny. With x = 1, it gives rise to

µ2 =
∆φ2

well

v0M2
Pl

= − 2ζc

1 + 8
π2 ln

(

π
8β
) . (5.6)

Several comments are in order regarding this result. First, with ζc = 1, β < 10−24

gives rise to µ < 0.21 and β < 10−5 gives rise to µ < 0.47. The requirement that µ
be smaller than one is therefore very generic and rather independent of the level of the
constraint on β or the precise value chosen for ζc. Since v0 needs to be smaller than 10−10

to satisfy the upper bound [14] on the tensor-to-scalar ratio in the CMB observational
window, this also means that ∆φwell cannot exceed ∼ 10−5MPl.

Second, Eq. (5.6) should be compared with its classical equivalent, Eq. (5.2). In
the left-hand sides of these formulae, the scalings with ∆φ and v are not the same.
In particular, while the PBH mass fraction increases with the energy scale v in the
classical picture, in the stochastic limit, it goes in the opposite direction. One should
also note that when the potential is exactly flat, v′ = 0, the classical result diverges,
but the stochastic one remains finite. In the right-hand sides, the scaling with ζc is also
different, since the shape of the PDF P (ζcg) is not the same (it has a Gaussian decay in
the classical case and an exponential decay in the stochastic one). The expressions (5.2)
and (5.6) are therefore very different, and thus translate into very different constraints
on the inflationary potential.

Third, as mentioned below Eq. (5.4), the mean number of e-folds realised across
the quantum well is of order µ2,

〈N〉 = µ2x
(

1 − x

2

)

. (5.7)

The conclusion one reaches is therefore remarkably simple: either the region dominated
by stochastic effects is much less than one e-fold long and PBHs are not overproduced
(µ ≪ 1), or it is much more than one e-fold long and PBHs are overproduced (µ ≫ 1).
Interestingly, heuristic arguments lead to a similar conclusion in Ref. [66], in the context
of hybrid inflation.

Fourth, in terms of the power spectrum, since Eq. (2.8) gives Pζ = f ′
2/f

′
1 − 2f1,

with f1 given above and f2 = µ4x(1 − x2/2 + x3/8)/3 as can be obtained by setting the
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potential to a constant in Eq. (2.13), one has

Pζ =
µ2

3

(

2x2 − 4x + 2
)

, (5.8)

so µ2 is also the amplitude of the power spectrum. With β < 10−22, the constraint (5.6)
on µ translates into Pζ < 1.6×10−2 for the value of the power spectrum close to the end
of inflation. However, contrary to the classical condition Pζ∆N < 10−2 recalled below
Eq. (1.4), this constraint does not involve the number of e-folds since here, a single
parameter, µ, determines everything: the mean number of e-folds, the power spectrum
amplitude, and the mass fraction.

5.3 Recipe for analysing a generic potential

So far, we have calculated the PBH mass fraction produced in the classical limit and when
the inflaton field dynamics are dominated by quantum diffusion. In order to analyse a
generic potential, it remains to determine where both limits apply. This can be done by
comparing the NLO and NNLO results in the classical limit to estimate the conditions
under which the classical expansion is under control. For instance, comparing Eqs. (3.8)
and (3.11) for γ1, which gives the mass fraction β at NLO as explained in Sec. 5.1, one
can see that |γNLO

1 − γNNLO
1 | ≪ γNLO

1 if v ≪ 1 and |v2v′′/v′2| ≪ 1. The first condition is
always satisfied, since as already pointed out, v needs to be smaller than 10−10 to satisfy
the upper bound [14] on the tensor-to-scalar ratio in the CMB observational window.
The second condition defines our “classicality criterion” [54]

ηclass ≡
∣

∣

∣

∣

∣

v2v
′′

v′2

∣

∣

∣

∣

∣

. (5.9)

When ηclass ≪ 1, the classical expansion is under control, at least at NNLO, and one
can use the results of Sec. 5.1. Of course, the classical expansion could a priori break
down at NNNLO even with ηclass ≪ 1, but since higher-order corrections are suppressed
by higher powers of v, such a situation is in practice very contrived, and ηclass provides a
rather generic criterion. When ηclass ≫ 1, one is far from the classical regime, quantum
diffusion dominates the inflaton field dynamics and the results of Sec. 5.2 apply. When
ηclass is of order one, a full numerical treatment is required. The “recipe” for analysing
a generic potential is therefore the following:

• calculate ηclass given by Eq. (5.9) and identify the regions of the potential where
ηclass ≪ 1 and ηclass ≫ 1;

• in the regions where ηclass ≪ 1, make use of the constraint from Eq. (5.1);

• in the “quantum wells” defined by ηclass ≫ 1, make use of the constraint from
Eq. (5.6).

In the following, we illustrate this calculational programme with two examples and
check its validity .
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5.4 Example 1: V ∝ 1 + φp

We first consider the case where PBHs can form at scales that exit the Hubble radius
towards the end of inflation, where the potential can be approximated by a Taylor
expansion around φ = 0 where inflation is assumed to end (φend = 0), so

v = v0

[

1 +

(

φ

φ0

)p]

. (5.10)

In this model, inflation does not end by slow-roll violation but another mechanism must
be invoked [67–71]. We also assume that the potential is in the vacuum-dominated
regime for the range of field values relevant for PBH formation, so that φ ≪ φ0. A
comprehensive study of this potential is performed in Appendix B where all cases of
interest are systematically identified and investigated. Here, we simply check that the
calculational programme sketched above allows us to recover the main results.

In order to describe the model (5.10) in terms of the situation depicted in Fig. 4, one
has to assess ∆φwell, which marks the boundary between the classical and the stochastic
regimes. In the vacuum-dominated approximation, Eq. (5.9) gives rise to ηclass ≃ (p −
1)v0(φ/φ0)

−p/p, which is of order one when φ = ∆φwell with

∆φwell ≃ φ0v
1
p

0 . (5.11)

Since (∆φwell/φ0)
p = v0 ≪ 1, the vacuum-dominated condition is always satisfied at

this transition point. However, the slow-roll conditions are not always met, and in
Appendix B it is shown that slow roll is indeed violated at φ = ∆φwell if φ0/MPl <

v
(p−2)/(2p)
0 , unless p = 1 for which slow-roll is violated if φ0 < MPl. In such cases, the

expansion (5.10) fails to cover the whole quantum well and higher-order terms in the
potential must be included for a consistent analysis. Otherwise, we can keep following
the recipe given above.

In the classical regime, φ ≫ ∆φwell, Eq. (5.1) applies, where vγ1 is given by
Eq. (3.8). In the vacuum-dominated approximation, it reads vγ1 ≃ v0(φ0/MPl)

4/(4p3 −
3p4)[(φ/φ0)

4−3p− (φend/φ0)
4−3p]. Neglecting the contribution from φend, which lies out-

side the validity range of the classical formula anyway, one can evaluate this expression
at φ = ∆φwell where the power spectrum is maximal, and combining this with Eq. (5.1)
leads to

v
2
p
−1

0
√

|4p3 − 3p4|

(

φ0

MPl

)2

≃ ζc

2
√

| lnβ|
. (5.12)

In the stochastic regime, combining Eqs. (5.6) and (5.11), one has

v
2
p
−1

0

(

φ0

MPl

)2

≃ 2ζc
∣

∣1 + 8
π2 ln

(

π
8β
)
∣

∣

. (5.13)

It is interesting to notice that up to an overall factor of order one, the two con-
straints (5.12) and (5.13) are very similar, even though they are obtained in very different
regimes that yield very different PDFs for the curvature perturbations.
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Figure 8. Power spectrum of curvature perturbations Pζ produced in the potential (5.10) with
p = 2, v0 = 10−11, φ0 = 4MPl and φuv = 104φ0 (solid black line). The blue line corresponds to
the slow-roll classical limit (1.5), while the green dashed line is obtained from solving the full
Klein-Gordon equation. The red line corresponds to the stochastic limit assuming the potential
is exactly flat for φ < ∆φwell and that a reflective wall is located at φ = ∆φwell. The value
of ∆φwell obtained from requiring ηclass = 1 is displayed with the grey vertical dotted line and
delimitates the classical and stochastic regimes.

It is also important to note that the slow-roll conditions given above imply that

v
2/p−1
0 (φ0/MPl)

2 ≫ 1 except if p = 1. Therefore, if p is different from 1, either PBHs are
too abundant and the model is ruled out, or slow roll is strongly violated before one exits
the classical regime and one needs to go beyond the present formalism to calculate PBH
mass fractions. The case p = 1 is subtle, since Eq. (5.9) gives ηclass = 0. One would thus
have to extend the classical expansion of Sec. 3 to next-to-next-to-next to leading order
(NNNLO) to determine what the first stochastic correction is and under which condition
the classical approximation holds, and investigate numerically the regime where it does
not. This goes beyond the scope of the present paper and we leave this study for future
work.

In passing, let us check that approximating the full potential (5.10) as a piecewise
function consisting of a constant piece and a classical one, separated at φ = ∆φwell,
is numerically justified. In Fig. 8, we show the power spectrum computed numerically
from Eqs. (2.13) and (2.8), which gives Pζ = f ′

2/f
′
1 − 2f1, in the potential (5.10) with

p = 2, v0 = 10−11, φ0 = 4MPl and φuv = 104φ0 (solid black line). The blue line
corresponds to the slow-roll classical limit (1.5), and the green dashed line is obtained
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Figure 9. The potential (5.14) for running-mass inflation (RMI) with φ0 = 0.5MPl. The blue
curve takes c = 0.8 and the green curve takes c = −0.8 (these values may not be physical but
they have been chosen to produce a clear plot). RMI is shown to have four possible realisations
(RMI1, RMI2, RMI3 and RMI4), depending on the sign of c and on whether φ is initially smaller
or larger than φ0. Except for RMI2, the potential flattens as inflation proceeds, which can lead
to the formation of PBHs for scales exiting the Hubble radius towards the end of inflation.

from solving the full Klein-Gordon equation. The agreement of this solution with the
slow-roll formula confirms that the slow-roll conditions are satisfied for the parameters
used in this example. The red line corresponds to the stochastic limit (5.8) Pζ = 2µ2/3 at

φ = 0, where µ is given by Eqs. (4.2) and (5.11), which yields Pζ ∼ 2(φ0/MPl)
2v

2/p−1
0 /3.

One can see that both limits are correctly reproduced, and that the value of ∆φwell

obtained in Eq. (5.11) from our classicality criterion ηclass < 1, and displayed with
the grey vertical dotted line, indeed separates the two regimes. In Appendix B, an
analytical expression for Pζ in the regime φ ≪ ∆φwell is derived, and one finds Pζ =

2Γ2(1/p)v
2/p−1
0 (φ0/MPl)

2/p2, see Eq. (B.11), where Γ is the gamma function. Up to an
overall numerical constant of order one, one recovers the result obtained from simply
assuming the potential to be exactly flat until φ = ∆φwell, where ηclass = 1, and setting
a reflective wall there. This confirms the validity of this approach.
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5.5 Example 2: running-mass inflation

Let us now consider another example, running-mass inflation (RMI) [72], where the
inflationary potential is given by

v (φ) = v0

{

1 − c

2

[

−1

2
+ ln

(

φ

φ0

)]

φ2

M2
Pl

}

. (5.14)

In this expression, c is a dimensionless coupling constant assumed to be much smaller
than one, c ≪ 1 (more precisely, as discussed in Ref. [73], within supersymmetry, natural
values of c are c ≃ 10−2 to 10−1 for soft masses values matching the energy scale of
inflation), and φ0 must be sub-Planckian, φ0 ≪ MPl.

The potential (5.14) is displayed in Fig. 9, where one can see that depending on the
sign of c and on whether φ is initially smaller or larger than φ0, inflation can proceed
in four regimes [74], that we denote RMI1, RMI2, RMI3 and RMI4. In RMI1, c > 0,
φ < φ0 and φ decreases towards φ = 0 as inflation proceeds. RMI2 also has c > 0 but
in this case φ > φ0 and φ increases away from φ0 throughout inflation. RMI3 and RMI4
both have c < 0, but RMI3 has φ < φ0 with φ increasing towards φ0 during inflation,
while RMI4 has φ > φ0 and φ decreases towards φ0 during inflation. In RMI1, RMI3
and RMI4, the potential flattens as inflation proceeds, which may lead to the production
of PBHs at scales that exit the Hubble radius towards the end of inflation, as studied
in Refs. [75–77]. The width of the “quantum well” in these cases is determined by the
condition ηclass > 1, where ηclass is given by Eq. (5.9). In the vacuum-dominated regime,
it reads

ηclass ≃
v0
|c|

M2
Pl

φ2

∣

∣

∣
1 + ln

(

φ
φ0

)
∣

∣

∣

ln2
(

φ
φ0

) . (5.15)

For RMI1, the equation ηclass(φwell) = 1 yields φwell/φ0

√

| ln(φwell/φ0)| =
√

v0/cMPl/φ0, where we have assumed that φwell ≪ φ0 so that | ln(φwell/φ0)| ≫ 1.
This can be solved as

φwell = φ0 exp

[

1

2
W−1

(

−2
v0
c

M2
Pl

φ2
0

)]

, (5.16)

where W−1 is the −1 branch of the Lambert function [78]. The approximation
| ln(φwell/φ0)| ≫ 1 is satisfied when the argument of the Lambert function in Eq. (5.16)
is much smaller than one, which is typically the case for the values of v0, c and φ0 consid-
ered in the literature [73, 79]. In this limit, one can Taylor expand the Lambert function
according to W−1(−x) ≃ lnx when x ≪ 1, which gives rise to φwell ≃

√

2v0/cMPl, and
hence

∆φwell = |φwell| ≃
√

2v0
c

MPl . (5.17)

In this expression, we have assumed that inflation terminates at φ = 0 (otherwise, φend

must be subtracted from the right-hand side). Making use of Eq. (4.2), this leads to

µ2 ≃ 2

c
≫ 1 . (5.18)
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The result is remarkably simple since it depends only on the coupling constant c, and
on neither v0 nor φ0. As explained at the beginning of this section, c is always much
smaller than one, which implies that µ ≫ 1 and according to the discussion of Sec. 5.2,
PBHs are too abundant in this case. One concludes that the stochastic regime of the
potential cannot be explored in RMI1, i.e. φend should be at least of the order of ∆φwell

given in Eq. (5.17).
For RMI2, the potential does not flatten as inflation proceeds so the inflaton field

dynamics is never dominated by quantum diffusion for scales smaller than those probed
in the CMB.

For RMI3 and RMI4, assuming that φwell is very close to φ0 so that | ln(φwell/φ0)| ≪
1, the equation ηclass(φwell) = 1 reduces to φwell/φ0| ln(φwell/φ0)| =

√

v0/|c|MPl/φ0. This
can be solved as

φwell = φ0 exp

[

W0

(

∓
√

v0
|c|

MPl

φ0

)]

, (5.19)

where W0 is the principal branch of the Lambert function, and its argument comes with a
minus sign in RMI3 and with a plus sign in RMI4. The approximation | ln(φwell/φ0)| ≪ 1
is satisfied when the argument of the Lambert function in Eq. (5.19) is much smaller
than one, which is the same condition as the one coming from φwell ≪ φ0 in RMI1. In
this limit, one can Taylor expand the Lambert function as W0(x) ≃ x when x ≪ 1. One
obtains φwell ≃ φ0 ∓MPl

√

v0/|c| , and hence

∆φwell = |φwell − φ0| ≃ MPl

√

v0
|c| . (5.20)

Up to a factor
√

2 , this expression is the same as Eq. (5.17). This leads to

µ2 ≃ 1

|c| ≫ 1 , (5.21)

and the same conclusions as the ones drawn for RMI1 apply, namely that one cannot
explore the quantum well of the potential without producing too many PBHs, so |φend−
φ0| should be at least of order ∆φwell given in Eq. (5.20).

If this is indeed the case, the classical approximation is valid throughout the entire
period of inflation, and Eq. (1.5) gives rise to

Pζ ≃ 2
v0
c2

M2
Pl

φ2
ln−2

(

φ

φ0

)

. (5.22)

When this expression is evaluated at φwell, given by Eq. (5.16) for RMI1 and by Eq. (5.19)
for RMI3 and RMI4, one finds

Pζ (φwell) ≃
{

4
c in RMI1
2
|c| in RMI3 and RMI4

. (5.23)

It is interesting to notice that, up to an overall numerical constant of order one, this
also corresponds to the stochastic limit (5.8), Pζ ∼ µ2 ∼ 1/c, where one makes use of
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Eqs. (5.18) and (5.21). This is similar to what was found in Sec. 5.4. Since |c| ≪ 1,
this means that the classical power spectrum is already larger than one when one enters
the quantum well. This implies that, for this model, analyses relying on the classical
formalism only should exclude the quantum well (even if not for the correct reason) and
should therefore be valid. Let us however stress that the approach developed in this
work was necessary in order to check the consistency of the standard results.

6 Conclusion

Let us now summarise our main findings. Making use of the stochastic-δN formalism,
we have developed a calculational framework in which the PDF of the coarse-grained
curvature perturbations produced during inflation can be derived exactly, even in the
presence of large quantum backreaction on the inflaton field dynamics. More precisely, we
have proposed two complementary methods, one based on solving an ordinary differential
equation for the characteristic function of the PDF, and the other based on solving a
heat equation for the PDF directly. We have shown that depending on the problem
one considers, the method to be preferred can vary. We have then derived a classicality
criterion that determines whether the effects of quantum diffusion are important or not.
When this is not the case, i.e. in the classical limit, we have developed an expansion
scheme that not only recovers the standard Gaussian PDF at leading order, but also
allows one to calculate the first non-Gaussian corrections to the usual result. In the
opposite limit, i.e. when quantum diffusion plays the dominant role in the field dynamics,
we have found that the PDF follows an elliptic theta function, whose tail decays only
exponentially, and which is fully characterised by a single parameter, given by µ2 =
∆φ2

well/(v0M
2
Pl). This parameter measures the ratio between the squared width of the

quantum well and its height, in Planck mass units. The mean number of e-folds realised
across the quantum well, the amplitude of the power spectrum, and, if ζc ∼ 1, the
inverse log of the PBH mass fraction, are all of order µ2. Therefore, observational
constraints on the abundance of PBHs put an upper bound on µ2 that is of order one,
and imposes that one cannot spend more than ∼ 1 e-fold in regions of the potential
dominated by quantum diffusion. For a given potential, one must therefore determine
whether a diffusion dominated quantum well exists, and check that its width squared is
smaller than its height. Finally, we have illustrated our calculational programme with
two examples.

We now mention a few of the new and interesting research directions that open up
as a consequence of the results obtained in this work:

• First, we have shown that the effects of quantum diffusion on the PDF of curvature
perturbations and on the mass fraction of PBHs can be dramatic in regions of the
potential where the classical approximation breaks down. This implies that some of
the constraints on inflationary models derived in the literature, from non-observations
of PBHs and using only the classical approximation, may have to be revised. This
could have important consequences for these models.
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• Second, we have seen that even when the classical approximation is under control close
to the maximum of the PDF, it fails on its tail, where deviations from Gaussianity
cannot be simply described by increasing the order at which the classical expansion
is performed. Since PBHs are precisely sourced by the tail of the distribution of
curvature perturbations, this implies that a more thorough investigation of quantum
diffusion effects on PBH mass fraction may be required, even in what is referred to as
the “classical” regime in the present work.

• Third, there are cases where slow roll is violated when scales smaller than those
probed in the CMB exit the Hubble radius and the standard PBH calculation does
not apply, as recently pointed out in Refs. [80–82]. This, for instance, happens when
the inflationary potential has a flat inflection point [83], around which slow roll is
transiently violated and one can even enter an ultra slow-roll phase. However, close
to the inflection point, quantum diffusion plays an important role and this also needs
to be included. This requires the formalism presented in this work to be extended
beyond the slow-roll approximation [84].

• Fourth, it has recently been shown [56, 57] that in presence of multiple fields, the
effects of quantum diffusion can be even more drastic. Formation of PBHs in multi-
field models of inflation, such as hybrid inflation [55, 66, 85–87], would therefore be
interesting to study with our formalism.

• Fifth and finally, there are other astrophysical objects for which the knowledge of the
full probability distribution of cosmological perturbations produced during inflation
is important, such as ultra-compact mini-halos [88]. Using our results to calculate the
abundance of such objects is also an interesting prospect.
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A Elliptic theta functions

In Sec. 4, the PDF of coarse-grained curvature perturbations is expressed in terms of
elliptic theta functions. In this appendix, we define these special functions and give
some of their properties that are relevant for the considerations of Sec. 4. There are four
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elliptic theta functions, defined as [62, 63]

ϑ1 (z, q) = 2
∞
∑

n=0

(−1)nq(n+ 1
2)

2

sin [(2n + 1) z] ,

ϑ2 (z, q) = 2

∞
∑

n=0

q(n+ 1
2)

2

cos [(2n + 1) z] ,

ϑ3 (z, q) = 1 + 2
∞
∑

n=1

qn
2

cos (2nz) ,

ϑ4 (z, q) = 1 + 2
∞
∑

n=1

(−1)nqn
2

cos (2nz) .

(A.1)

By convention, ϑ′
i denotes the derivative of ϑi with respect to its first argument z. For

instance, one has

ϑ′
1 (z, q) = 2

∞
∑

n=0

(−1)nq(n+ 1
2)

2

(2n + 1) cos [(2n + 1) z] , (A.2)

which appears in Eq. (4.4). As another example, one has

ϑ′′
4 (z, q) = −8

∞
∑

n=1

(−1)nqn
2
n2 cos (2nz) , (A.3)

which is used in Eq. (4.5). As a third example, one has

ϑ′
2 (z, q) = −2

∞
∑

n=0

q(n+ 1
2)

2

(2n + 1) sin [(2n + 1) z] , (A.4)

which appears in Eq. (4.11). As a last example, one has

ϑ′′
2 (z, q) = −2

∞
∑

n=0

q(n+ 1
2)

2

(2n + 1)2 cos [(2n + 1) z] , (A.5)

which is used in Eq. (4.12). The function ϑi(z, q) is noted EllipticTheta[i,z,q] in
Mathematica and ϑ′

i(z, q) is noted EllipticThetaPrime[i,z,q].
Let us now show that the different expressions for P (N , φ = φend+∆φwell) obtained

in Sec. 4 in the stochastic dominated regime are equivalent. A first expression is given
by Eq. (4.4), a second expression can be derived by plugging x = 1 into Eq. (4.10) and
making use of Eq. (A.2), and a third expression is given by plugging x = 1 in Eq. (4.11).
The three formulae are equivalent if

(

µ√
πN

)3

ϑ′
1

(

0, e−
µ2

N

)

= ϑ′
1

(

0, e
−π2

µ2
N
)

= −ϑ′
2

(

π

2
, e

−π2

µ2N
)

. (A.6)
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The first equality in Eq. (A.6) can be shown from the Jacobi identity for a modular
transformation of the first elliptic theta function, see Eq. (20.7.30) of Ref. [89],

(−iτ)
1
2 ϑ1

(

z, eiπτ
)

= −ie−
z2

πτ ϑ1

(

−z

τ
,−e−

iπ
τ

)

. (A.7)

By taking τ = i/(aπ) and differentiating Eq. (A.7) with respect to z, one obtains

(πa)
1
2 ϑ′

1

(

z, e−
1
a

)

= −2iz

a
eaz

2
ϑ1

(

−iπaz, e−π2a
)

+ aπeaz
2
ϑ′
1

(

−iπaz, e−π2a
)

. (A.8)

Taking z = 0, one recovers the first equality in Eq. (A.6). The second equality in
Eq. (A.6) simply follows from Eqs. (A.2) and (A.4).

B Detailed analysis of the model V ∝ 1 + φp

In this appendix, we present a detailed analysis of the model discussed in Sec. 5.4, where
the inflationary potential is of the form

v(φ) = v0

[

1 +

(

φ

φ0

)p]

. (B.1)

In order to use the slow-roll approximation, one needs to check that the slow-roll
conditions [90], M2

Pl(v
′/v)2 ≪ 1, M2

Pl|v′′/v| ≪ 1, and M4
Pl|v′′′v′/v2| ≪ 1, are satisfied.

Here, we use the three first slow-roll conditions only, since these are the only ones cur-
rently constrained by observations. In order to satisfy the third condition, one requires
a condition involving the position of φ with respect to

φsr1 ≡ φ0

(

φ0

MPl

)
2

p−2

, (B.2)

i.e. φ ≪ φsr1 if p > 2 and φ ≫ φsr1 if p < 2. The second slow-roll condition reduces to
an equivalent condition. If p = 1, there is no such condition and if p = 2, it reduces to
φ0 ≫ MPl. The first condition constrains the position of φ with respect to

φsr2 ≡ φ0

(

φ0

MPl

)
1

p−1

, (B.3)

namely φ ≪ φsr2 if p > 1 and φ ≫ φsr2 if p < 1 (if p = 1, it reduces to φ0 ≫ MPl).
As explained in Sec. 5.4, quantum diffusion plays an important role when ηclass ≫ 1,

where ηclass is given in Eq. (5.9), which leads to φ ≪ ∆φwell, where

∆φwell = φ0v
1
p

0 , (B.4)

see Eq. (5.11). Hereafter, we work in the vacuum-dominated regime, in which φ ≪ φ0

and v ≃ v0. Making use of Eq. (5.6), this gives rise to

µ2 =

(

φ0

MPl

)2

v
2
p
−1

0 . (B.5)
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In the classical regime, i.e. when φ ≫ ∆φwell, the power spectrum is given by
Eq. (1.5), which gives rise to

Pζ |cl =
2v0
p2

(

φ0

MPl

)2(φ0

φ

)2p−2

. (B.6)

Thus we see that the classical power spectrum is larger than unity when φ < φPζ |cl>1 if
p > 1, and φ > φPζ |cl>1 if p < 1, where

φPζ |cl>1 = φ0

[

2v0
p2

(

φ0

MPl

)2
]

1
2p−2

. (B.7)

The number of e-folds realised between φ and φend can also be calculated in the classical
regime using Eq. (1.5), and one obtains

Nend −N ≃ φ2
0

p(p− 2)M2
Pl

[

(

φ0

φend

)p−2

−
(

φ0

φ

)p−2
]

. (B.8)

Note that this expression is singular for p = 2, and this case is treated separately in
Sec. B.1. Combining Eqs. (B.7) and (B.8), one can rewrite the classical power spectrum
as

Pζ |cl =
2v0
p2

(

φ0

MPl

)2
[

p(2 − p)M2
Pl

φ2
0

(Nend −N) +

(

φ0

φend

)p−2
]

2p−2
p−2

. (B.9)

In the stochastic regime, i.e. when φ ≪ ∆φwell, the mean number of e-folds can be
computed from Eq. (2.13) for f1. In the limit φuv → ∞, and taking φ ≪ ∆φwell, one
obtains

〈N〉 = Γ

(

1

p

)

φ0

pM2
Plv

1− 1
p

0

(φ− φend) . (B.10)

Similarly, using Eq. (2.13) for f2, and the formula Pζ = f ′
2/f

′
1 − 2f1 from Eq. (2.8), the

power spectrum is given by

Pζ(φ) =
2

p2
Γ2

(

1

p

)

v
2
p
−1

0

(

φ0

MPl

)2

. (B.11)

B.1 Case p = 2

We first consider the case of p = 2, where the slow-roll conditions reduce to φ0 ≫ MPl.
Let us also note that Eq. (B.8) is singular for p = 2, and that it should be replaced by

Nend −N ≃ φ2
0

2M2
Pl

ln

(

φ

φend

)

. (B.12)

As noted in Sec. 5.4, the constant value found for the power spectrum in the stochastic
limit, Eq. (B.11), corresponds (up to an order one prefactor) to the classical power
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spectrum (B.9) evaluated at ∆φwell. Therefore, when φ decreases, the stochastic and
the classical result coincide until φ becomes smaller than ∆φwell, where the stochastic
power spectrum saturates to a constant value and the classical power spectrum continues
to increase. Since the slow-roll condition implies that φ0 ≫ MPl, the power spectrum is
always larger than one in this regime. This can be also seen from φPζ |cl>1 < ∆φwell, as
can be checked explicitly from Eqs. (B.4) and (B.7).

Furthermore, the number of e-folds (B.10) spent in the stochastic regime is of order
〈N〉 =

√
π /2(φ0/MPl)

2, which is larger than unity. It is interesting to note that both the
amplitude of the power spectrum and the number of e-folds during which the stochastic
regime depend only on φ0. PBHs are therefore overproduced in this case.

B.2 Case p > 2

We now consider values of p such that p > 2. In this case, the slow-roll condition that is
the strictest depends on whether φ0 is sub-Planckian or super-Planckian. More precisely,
since 2/(p− 2) > 1/(p− 1) for p > 2, if φ0 < MPl, then φsr1 < φsr2 and the slow-roll
condition is given by φ ≪ φsr1, and if φ0 > MPl then φsr2 < φsr1 and it is given by
φ ≪ φsr2.

B.2.1 Case p > 2 and φ0 > MPl

In this case, the slow-roll condition reads φ ≪ φsr2. Making use of Eqs. (B.3), (B.4) and
(B.7), one can show that

∆φwell < φPζ |cl>1 < φsr2 . (B.13)

As a consequence, when stochastic effects become important, the classical power spec-
trum is already larger than one and so quantum diffusion cannot “rescue” the model
in this case. Stochastic effects do reduce the amount of power, but not soon enough to
keep the amount of PBH below the observationally constrained level.

B.2.2 Case p > 2 and φ0 < MPl

In this case, the slow-roll condition reads φ ≪ φsr1. Two sub-cases need to be distin-
guished.

Case p > 2 and v
p−2

2p

0
< φ0/MPl < 1

In this case, Eqs. (B.2), (B.4) and (B.7) lead to

∆φwell < φPζ |cl>1 < φsr1 . (B.14)

The situation is therefore very similar to the case p > 2 and φ0 > MPl, and quantum
diffusion does not sufficiently suppress PBH production.

Case p > 2 and φ0/MPl < v
p−2

2p

0

In this case, Eqs. (B.2), (B.4) and (B.7) give a reversed hierarchy, namely

φsr1 < φPζ |cl>1 < ∆φwell . (B.15)

– 35 –



In the region where the slow-roll approximation applies, φ ≪ φsr1, the classical power
spectrum is therefore always larger than one. However this region is dominated by
stochastic effects since φsr1 < ∆φwell. In the stochastic regime, the expressions we have
previously derived receive a contribution from φ > φsr1 since we are integrating beyond
∆φwell, and are therefore inconsistent in this case. Intuitively, one may think that the
violation of slow roll induces the suppression of the noise amplitude in the Langevin
equation (1.6) so that ∆φwell should in fact be replaced with φsr1. The situation is then
similar to the one sketched in Fig. 4, and from Eqs. (4.2) and (B.2), one has

µ2 ∼ φ2
sr1

v0M2
Pl

=
1

v0

(

φ0

MPl

)
2p
p−2

. (B.16)

Since the condition under which this case is defined is φ0/MPl < v
p−2
2p

0 , one has µ2 < 1,
and PBHs are not overproduced in this case.

B.3 Case 1 < p < 2

In this case, slow roll is valid in the range

φsr1 ≪ φ ≪ φsr2 . (B.17)

Note that this condition implies that φsr1 ≪ φsr2, which is the case only if φ0 ≫ MPl.
One then has φsr2 ≫ φ0, so this range extends beyond the vacuum-dominated regime,
and the interval of interest is in fact

φsr1 ≪ φ ≪ φ0 . (B.18)

Two sub-cases need to be distinguished.

B.3.1 Case 1 < p < 2 and φ0/MPl < v
p−2

2p

0

In this case, Eqs. (B.2), (B.3), (B.4) and (B.7) give rise to

φPζ |cl>1 < ∆φwell < φsr1 < φ0 < φsr2 . (B.19)

This means that in the region of interest given by Eq. (B.18), the classical approximation
is valid and predicts that PBHs are not overproduced.

B.3.2 Case 1 < p < 2 and φ0/MPl > v
p−2

2p

0

In this case, Eqs. (B.2), (B.3), (B.4) and (B.7) give rise to

φsr1 < ∆φwell < φPζ |cl>1 < φ0 < φsr2 . (B.20)

The situation is therefore similar to the case p > 2 and φ0 > MPl described in Sec. B.2.1,
and quantum diffusion does not sufficiently suppress PBH production.
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B.4 Case 0 < p < 1

If one takes p < 1, contrary to the previous cases, the condition for the classical power
spectrum to be larger than one is φ > φPζ |cl>1, where φPζ |cl>1 is given by Eq. (B.7).
Furthermore, in this case, the slow-roll conditions read φ ≫ φsr1 and φ ≫ φsr2, and which
of these conditions is the strictest depends on whether φ0 is sub- or super-Planckian.

B.4.1 Case 0 < p < 1 and φ0 < MPl

In this case the slow-roll condition reads

φ ≫ φsr1 . (B.21)

Since p < 1, φ0 < MPl implies that φ0/MPl < v
p−2
2p

0 and from Eqs. (B.2), (B.4) and (B.7),
one has

∆φwell < φsr1 < φPζ |cl>1 . (B.22)

In this case, stochastic effects cannot play an important role in the slow-roll region of
the potential, where the power spectrum is smaller than one provided φ < φPζ |cl>1.

B.4.2 Case 0 < p < 1 and φ0 > MPl

In this case the slow-roll condition reads

φ ≫ φsr2 , (B.23)

and two sub-cases need to be distinguished.

Case 0 < p < 1 and
φ0

MPl

> v
p−2

2p

0

From Eqs. (B.3), (B.4) and (B.7), one has

φPζ |cl>1 < φsr2 < ∆φwell . (B.24)

In the classical region of the potential, φ > ∆φwell, the power spectrum is much larger
than one and PBHs are overproduced. In the stochastic region of the potential, φsr2 <
φ < ∆φwell, assuming φsr2 ≪ ∆φwell, µ

2 is given by Eq. (B.5), which is much larger than
one for φ0 > MPl and p < 2. Therefore PBHs are also too abundant in this part of the
potential, and this case is observationally excluded.

Case 0 < p < 1 and 1 < φ0

MPl

< v
p−2

2p

0

From Eqs. (B.3), (B.4) and (B.7), one has

∆φwell < φsr2 < φPζ |cl>1 . (B.25)

This case is similar to the one where 0 < p < 1 and φ0 < MPl, and stochastic effects do
not play an important role in the slow-roll region of the potential.
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B.5 Case p = 1

Finally, let us consider the case p = 1. The slow-roll approximation is valid throughout
the entire vacuum-dominated region of the potential provided

φ0 ≫ MPl. (B.26)

This case is however more subtle than the previous ones, since from Eq. (5.9), one has

ηclass ≡ 0 . (B.27)

This means that the first stochastic correction in the classical expansion presented in
Sec. 3 vanishes. This does not imply that quantum diffusion never plays a role since
higher-order terms can still spoil the classical result, but this suggests that our classicality
criterion fails in this case to identify where stochastic effects become important.

This is why no clear conclusion can be drawn in this case. In practice, one should ex-
tend the classical expansion of Sec. 3 to next-to-next-to-next to leading order (NNNLO)
at least to determine what the first stochastic correction is and under which condition
the classical approximation holds, and investigate numerically the cases where it does
not. We leave these considerations for future work.
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