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Quantum diffusion in liquid water from ring polymer molecular dynamics
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We have used the ring polymer molecular-dynamics method to study the translational and
orientational motions in an extended simple point charge model of liquid water under ambient
conditions. We find, in agreement with previous studies, that quantum-mechanical effects increase
the self-diffusion coefficient D and decrease the relaxation times around the principal axes of the
water molecule by a factor of around 1.5. These results are consistent with a simple Stokes-Einstein
picture of the molecular motion and suggest that the main effect of the quantum fluctuations is to
decrease the viscosity of the liquid by about a third. We then go on to consider the system-size
scaling of the calculated self-diffusion coefficient and show that an appropriate extrapolation to the
limit of infinite system size increases D by a further factor of around 1.3 over the value obtained
from a simulation of a system containing 216 water molecules. These findings are discussed in light
of the widespread use of classical molecular-dynamics simulations of this sort of size to model the
dynamics of aqueous systems. © 2005 American Institute of Physics. [DOIL: 10.1063/1.2074967]

I. INTRODUCTION

The anomalous properties of liquid water and its role in
chemistry and biology have made it a subject of intense re-
search for many decades. On the computational side, the ear-
liest atomistic simulations of the ambient liquid using a
simple empirical potential were performed almost 40 years
ago.' Since then, many improved potentials have been devel-
oped and shown to provide better agreement with experiment
when used in classical molecular-dynamics and Monte Carlo
simulations,%8 and these simulations have been extended to
study the properties of liquid water in a much wider variety
of regimes.g’12 The first quantum-mechanical simulations of
the static equilibrium properties of the liquid were performed
in the mid-1980s, when the path-integral Monte Carlo
(PIMC) method was used to assess the effect of quantum-
mechanical fluctuations on the liquid structure.'>'* However,
it is only comparatively recently that the role of quantum-
mechanical effects in the dynamics of the liquid have been
investigated. 15-20

The first people to consider these effects were Lobaugh
and Voth,15 who used the centroid molecular-dynamics
(CMD) method to study the dynamics of a flexible simple
point-charge (SPC/F) model of ambient water. This was fol-
lowed shortly afterwards by a study in which the less sophis-
ticated Feynman-Hibbs effective potential approach was
used to calculate the self-diffusion coefficients of light and
heavy water over a rather wide temperature range.16 Several
CMD studies of the orientational and translational motions in
a rigid-body (TIP4P?) water model have since appeared,”’18
and two very recent studies have considered the dynamics of
a flexible water model using the Feynman-Kleinert linearized
path-integral (FK-LPI) approach.'*?

The general conclusion of these papers is that quantum-
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mechanical fluctuations tend to increase the diffusion in the
ambient liquid, the calculated increase in the self-diffusion
coefficient over that obtained in a purely classical simulation
varying from a factor of 1.4-2.0 depending on the interaction
potential and the approximate quantum dynamical method
employed.ls_20 This increase in the diffusion coefficient is
consistent with the decrease in the structure of the liquid
owing to quantum-mechanical effects that was observed in
the earlier PIMC calculations.'>* Quantum-mechanical fluc-
tuations evidently disrupt the hydrogen-bonding network in
ambient water leading to a less structured liquid through
which the water molecules diffuse more rapidly.

In the present paper, we report a further study of
quantum-mechanical effects in the dynamics of liquid water
using the recently developed ring-polymer molecular-
dynamics (RPMD) method.”’ This is a simple approxi-
mate quantum dynamical technique that generalizes the exact
path-integral molecular-dynamics (PIMD) method for calcu-
lating the static equilibrium properties of quantum-
mechanical systems.26 So far, it has been applied to the cal-
culation of chemical reaction rates,zz’25 and to the diffusion
in” and the inelastic neutron scattering from®* a strongly
quantum-mechanical liquid (parahydrogen). In particular, it
has been found to give a self-diffusion coefficient for liquid
parahydrogen that agrees very well with experimental mea-
surements when extrapolated to the limit of infinite system
size.” Since liquid water at 298 K is considerably less quan-
tum mechanical than liquid parahydrogen at 14 K, and since
the RPMD approximation becomes exact in the classical
limit,*' one would expect this approximation to give quite a
satisfactory description of the dynamics of ambient water.

The outline of the paper is as follows. Section II reviews
the theory of the RPMD method®' ™ and describes how this
method can be used to study both the translational and ori-
entational motions in liquid water. Particular emphasis is
given to certain moment (or sum rule) constraints that are
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satisfied by the exact Kubo-transformed”’ orientational cor-
relation functions of a molecular liquid and which can be
used to assess the accuracy of the RPMD approximation. The
section ends by presenting the details of our calculations on
an extended simple point-charge (SPC/E) model® of liquid
water, including a discussion of why we chose to use this
particular effective potential model. Our computed RPMD
velocity autocorrelation functions and orientational correla-
tion functions of the liquid at 298 K and a density of
0.998 g cm™ are then presented and discussed in light of
earlier work in Sec. III. Section IV summarizes what we
have accomplished in the present study and suggests some
interesting directions for future research.

Il. THEORY
A. Ring-polymer molecular dynamics

The exact quantum-mechanical self-diffusion coefficient
of liquid water is given by a Green-Kubo relation in terms of
the time integral of a Kubo-transformed velocity autocorre-
lation function,28

= %Jm Coy(t)dt, (1)

0

where
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with B=1/(kgT). The sum in Eq. (2) is over the N molecules
in the liquid, v,(¢) is the Heisenberg-evolved center-of-mass
velocity operator of molecule i at time ¢, and the angular
brackets denote an average over the equilibrium distribution
of the liquid at temperature 7.

The RPMD approximation to ¢,.,(¢) is simply
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is an n-bead path-integral approximation to the canonical
partition function of the liquid.zg’30 Here B,=pB/n, and
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where m; is the mass of atom j, w,=1/(8,%), and r(o)E J( )
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The classical equations of motion generated by this ring-
polymer Hamiltonian are used to evolve the integration vari-
ables in Eq. (3) forward in time,
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and the molecular center-of-mass velocity v;(¢) is obtained
from an average over the beads of the ring polymers in mol-
ecule i at time #:

E E p (1) (8)
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As we have stressed throughout our recent papers,ZF25

this RPMD model simply provides a convenient way to com-
bine quantum statistical effects with classical molecular dy-
namics, without retaining any real-time quantum phase infor-
mation. The expression for ¢,.,(¢) in Eq. (3) is therefore not
exact. However, there are good reasons to believe that it will
provide a satisfactory approximation to the Kubo-
transformed velocity autocorrelation function of liquid water.
In particular, Eq. (3) reduces correctly to a purely classical
velocity autocorrelation function in the classical (n=1 bead)
limit,”" and it coincides with the exact quantum-mechanical
(Kubo-transformed) velocity autocorrelation function in the
limit as r— 0 (with a leading error’! of order %24).

B. Orientational correlation functions

A more challenging test for the RPMD approximation is
provided by the calculation of orientational correlation func-
tions of the form®*™

B N
a(n) = é\/ fo dkz (P &= iNn) - &(n)]), )

where €;(7) is the Heisenberg-evolved operator for the orien-
tation of one of the three principal inertial axes of molecule
i in the liquid at time ¢. This calculation is more difficult for
two reasons. First, the accuracy of the RPMD approximation
is known to degrade for correlation functions involving non-
linear operators,”**** and é,(7) is a highly nonlinear function
of the coordinate operators r]-(t). Second, the orientational
motion of water molecules is predominantly a hydrogen-
atom motion and therefore inherently more quantum me-
chanical than the molecular center-of-mass motion that de-
termines &,.,(¢).
When /=1, Eq. (9) reduces to

&G =— f d)\z (8= iNR) - &,(1)), (10)

the RPMD approximation to which is simply

Downloaded 24 Jun 2008 to 131.215.225.137. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



154504-3 Quantum diffusion in liquid water
3N n
ci(r) = (Zﬂ'ﬁ)gN”Z f f ]1—{ ]!_[l dp(k)dr(k)
Xe Ban({p(k}{r(k)})ﬁz e(0) - ¢;(1), (11)

i=1

where e;(7) involves a ring-polymer average over unit vectors
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and they are therefore highly nonlinear functions of the ring-
polymer coordinates. 6
When [=2, Eq. (9) becomes
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where M;(¢) is the 3 X 3 matrix

n
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and the “tr” denotes a matrix trace.

The generalization to higher values of / proceeds along
the same lines by expanding the Legendre polynomial P(x)
and writing each term as a Kubo-averaged autocorrelation
function between a tensor operator at imaginary time —i\f
and the same operator at real time . However, both the equa-
tions and the objects that are correlated within the RPMD
approximation become increasingly complicated as [/ in-
creases, the most complicated object that arises for a given [
being a three-dimensional Cartesian tensor of rank /. Because
of this, and because it suffices to make the points we want to
make, we shall stop in the present study at /=2.

C. Moment (sum rule) constraints

It follows from the general properties of the RPMD ap-
proximation that Egs. (11) and (16) will give the exact Kubo-
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transformed orientational correlation functions in the limit as
1—0, in this case with a leading error’’ of order %22 How-
ever, because of the nonlinearity of the correlated operators
in Egs. (10) and (15), it is not at all clear a priori that the
approximation will be reliable at longer times.”"**** A theo-
retical test of the accuracy of the RPMD approximations to
¢,(1) and ¢,(r) would therefore be very desirable.

Such a test can be constructed by noting that, since
P/(1)=1 for all [, the standard orientational correlation func-
tions

N
6= 5 (P&(0)- 6(0)) (18)
i=1

all tend to one in the short-time limit. This implies a con-

straint on &() by virtue of its relationship to ¢,(¢). If C/(w) is
the Fourier transform of &(z),

Cilw) = f e IE (r)dt, (19)
and Cj(w) is that of ¢/(¢), one has®"%
fw
o) = 2 ). (20)

and so by inverting the Fourier transform one obtains
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If ¢;(r) were calculated exactly, the double integral on the
right-hand side of this equation would give ¢;(0)=1, but this
is not guaranteed to be the case when ¢(r) is calculated using
an approximate quantum dynamical method such as RPMD.
Equation (21) therefore provides a useful moment (or sum
rule) test of the accuracy of the calculation. An interesting
aspect of this test is that, while ¢,(0) is purely real, the right-
hand side of Eq. (21) will in general be complex when it is
combined with an approximation to ¢,(¢). In principle, the
equation therefore provides two separate tests of an approxi-
mate Kubo-transformed quantum correlation function. How-
ever, it is clear that the imaginary part of the right-hand side
will be identically zero if ¢;(¢) is a real and even function of
t. Since this is the case in RPMD, one of the two constraints
in Eq. (21) is satisfied exactly, and the other provides a nu-
merical test of the accuracy of the calculation.

Note also from Eq. (20) that, since C,(0)=5,(0), the mo-
lecular orientational relaxation times

_Bﬁw) dze iz (1). (21)

1 o] o0
T = Ef Cl(t)dt = Re f Cl(t)dt (22)
—o0 0
can be calculated equivalently as
1 oo _ ] B
7= Ef ¢(ndt = f c/(r)dt, (23)
—o0 0

where we have again used the fact that ¢;(r) is a real and even
function of £.*!
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TABLE I. Parameters in the SPC/E water potential.

r(OH) (A) 1.0

Z/ (HOH) (deg) 109.47
107%A (kJ A2 mol™) 2.633
1073B (kJ A® mol™") 2617
Qo(le) -0.8476
Ox(lel) 0.4238

D. Computational details

The above ring-polymer molecular-dynamics equations
and the classical molecular-dynamics limit were used to
simulate liquid water at a temperature of 298 K and a density
of 0.998 g cm™3. All calculations were repeated with system
sizes of 216, 343, and 512 water molecules. For the purposes
of this study, the RPMD method was implemented in the
DL_POLY molecular-dynamics simulation package.37

Interactions between molecular pairs were described us-
ing the extended simple point-charge (SPC/E) model®

2 2 0O i B

V= -, 24
R Re TG Rig .

keikfej

which includes a Coulomb contribution from the fixed partial
charges on the atom centers and a Lennard-Jones interaction
between the oxygen atoms. The potential-energy parameters
are reported in Table I. Although this effective pair potential
provides a very simple model for the interaction between
water molecules, we expect it to be realistic enough for our
present purposes, which are simply to assess the magnitude
of quantum-mechanical effects in the dynamics of the room-
temperature liquid.

The reason why we chose to use this potential rather
than one of the (many other) empirical water potentials that
are now available is that it has been widely used in the past
in classical molecular-dynamics simulations. In particular, it
has been shown to give a self-diffusion coefficient in good
agreement with the experimental value of 0.23 A2/ps in clas-
sical molecular-dynamics simulations of a system of 216 wa-
ter molecules at 298 K.>* One of the key questions we shall
investigate is by how much this value changes when quan-
tum statistical effects are included using RPMD and the re-
sulting diffusion coefficient is extrapolated to the limit of
infinite system size.

The remaining details of our simulations were as fol-
lows. Cubic periodic boundary conditions were applied using
the minimum image convention.”® Short-range interactions
were truncated at an atom-atom distance of 9 A, and electro-
static interactions beyond this distance were included using
Ewald summation.*® Individual simulations were performed
by equilibrating the system for 200 ps and then calculating
the velocity autocorrelation function [Eq. (3)] and the orien-
tational correlations functions [Egs. (11) and (16)] for 10 ps
by averaging over 80 consecutive 20 ps trajectories with a
time step of 2 fs. The temperature was controlled by resam-
pling the atomic momenta from the Maxwell distribution at
inverse temperature 3, between each trajectory. Five such
simulations were performed for each system size, yielding an
average value for (and a standard error in) the center-of-mass
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diffusion coefficient and the orientational relaxation times.
The starting configurations for the simulations were obtained
from uncorrelated steps in an equilibrated, classical SPC/E
water calculation.

The equations of motion in Egs. (6) and (7) were inte-
grated with the velocity Verlet method,” using the SHAKE
(Ref. 40) and RATTLE (Ref. 41) algorithms to preserve the
internal geometry of each ring-polymer bead of each water
molecule. In the RPMD simulations (with n beads), the con-
tributions to the momentum evolution were split between the
forces arising from the physical potential and the interbead
harmonic potential [see Egs. (5) and (6)]. The evolution of
the interbead term was performed using n multiple time-step
cycles.42 As expected from the earlier PIMC and CMD
calculations,''® we found that n=6 ring-polymer beads
sufficed to converge the results at 298 K. The classical re-
sults were obtained using the same computer code but with
just n=1 ring-polymer bead. Since most of the computa-
tional effort was spent in evaluating the forces arising from
the SPC/E potential, the RPMD calculations were found to
be just over six times more expensive than the classical cal-
culations.

lll. RESULTS AND DISCUSSION
A. Orientational motion

We shall begin the discussion of our results with the
orientational dynamics of liquid water embodied in the
single-molecule correlation functions ¢7(r) [Eq. (10)] and
cy(t) [Eq. (15)], where n=x,y, or z indicates one of the
principal inertial axes of the water molecule. These correla-
tion functions were calculated for all three principal axes
using both classical molecular dynamics and RPMD. The
results for the z axis, which coincides with the dipole mo-
ment axis of the molecule, are plotted in Fig. 1. The com-
puted correlation functions for the x (the remaining in-plane)
and y (out-of-plane) axes were found to be very similar to
those shown in this figure.

The orientational correlation functions in Fig. 1 share the
same basic features and both can be interpreted in terms of
the motion of a single water molecule surrounded by its lig-
uid environment.*® At very short times (<30 fs), rapid
decorrelation occurs as the molecule rotates freely between
collisions with its neighbors. This trend is broken by the
glitch in the correlation functions at #=50 fs, the signature
of librational rebound in a molecular liquid with a cagelike
structure. Finally, at longer times, the orientational motion
enters a diffusive regime in which the solvent cage breaks up
and the correlation functions decay exponentially to zero.

Comparison of the classical and RPMD results in the
figure reveals at least two interesting quantum effects. First,
in Fig. 1(a), we note that the RPMD correlation function
¢5(r) differs from the classical result of unity at time zero.
This can be interpreted as arising from quantum dispersion in
the orientational coordinates. From Eq. (12), it is clear that
when one ring-polymer bead is employed (n=1), the vectors
e; that appear in Eq. (11) have unit length and give rise to the
classical result. However, when n>1, Eq. (12) corresponds
to an average of unit vectors which are not perfectly aligned,
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FIG. 1. Kubo-transformed orientational correlation functions for SPC/E wa-
ter at the 7=298 K, p=0.998 g cm™ state point, obtained from the classical
and RPMD simulations of a system of 512 water molecules.

resulting in vectors e; with less than unit length. In Fig. 1(b),
we see that the deviation of the quantum result from unity at
time zero becomes more pronounced for the higher-order
orientational correlation function &(7). Note that this is a
genuine quantum-mechanical effect and not simply an arti-
fact of the RPMD approximation; unlike CMD,IS’”’18 RPMD
is exact for all coordinate-dependent Kubo-transformed cor-
relation functions in the limit as 7—0.'

The second difference between the classical and RPMD
results in Fig. 1 is that the RPMD method predicts a more
rapid exponential decay of the correlation functions in the
diffusive regime. Quantum zero-point energy and tunneling
disrupt the hydrogen-bonding network in classical liquid wa-
ter and enable the molecules to more rapidly lose memory of
their original orientation. We shall see below that this simple
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TABLE II. Calculated relaxation times (in ps) for the principal axes of the
water molecule. The z axis is coincident with the dipole moment axis of the
water molecule; the x axis is also in the plane of the molecule. The index /
indicates the order of the orientational correlation function from which the
relaxation time is calculated. The numbers in parentheses are the standard
errors in the last digit from five statistically independent calculations. The
results in this table were obtained from a simulation of 512 water molecules,
but the orientational correlation functions and relaxation times were not
found to exhibit any significant system-size dependence.

l 7 Classical 7/ RPMD 77/ RPMD/Classical
1 x 4.30(3) 2.79(3) 0.65
1 y 2.76(2) 1.80(2) 0.65
1 z 4.40(3) 2.94(3) 0.67
2 x 1.90(1) 1.19(1) 0.63
2 y 1.11(1) 0.68(1) 0.61
2 z 1.48(1) 0.93(1) 0.63

molecular picture qualitatively explains virtually all of the
quantum-mechanical effects we have found in our calcula-
tions.

The rate of orientational diffusion can be numerically
characterized by the relaxation times 7; in Eq. (23). We re-
port the first- and second-order orientational relaxation times
for all three principal axes of the water molecule in Table II.
Each 7/ was calculated by integrating the corresponding
¢/(r) after analytically fitting its exponential tail. The num-
bers shown in the table were obtained from our largest simu-
lation (of 512 water molecules), but the relaxation times ob-
tained from the smaller simulations were found to be very
similar.

Table II shows that the quantum effects included in
RPMD consistently reduce the orientational relaxation times
to approximately 2/3 of their classical values. This reduction
is insensitive to the moment of inertia around the chosen
principal molecular axis, because the dominant contribution
to the relaxation time is from the exponential tail of the
orientational correlation function; inertial free rotation oc-
curs only at very short times (<30 fs).

For the thermodynamic state point we have considered,
the experimental value of 75 inferred from the NMR mea-
surements is 2.5 ps.43 The SPC/E potential is known to un-
derestimate this result,4 even in the classical treatment of the
dynamics for which it was paurametrized,3 and we see from
Table II that the addition of quantum effects only makes the
comparison with experiment worse. However, previous the-
oretical work that utilized a different model potential has
also found a quantum/classical ratio of approximately 2/3
for the orientational relaxation times,'’ suggesting that this
result is relatively independent of the choice of potential.

It is also of interest to consider the spectra of our orien-
tational correlation functions,

M) = *C)(w), (25)

where C 7(w) is the Fourier transform of ¢/(7) [see Eq. (19)].
Figure 2 shows these spectra calculated using both the clas-
sical molecular-dynamics and the RPMD methods for the
case where the principal axis is in the direction of the dipole
moment of the water molecule (7=z). We note that this form
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FIG. 2. Spectral functions I;(w) obtained from the orientational correlation
functions in Fig. 1.

of the classical spectrum includes the so-called harmonic de-
tailed balance correction factor.**™ We also note that (o)
can be related to the infrared dipole absorption spectrum of
the liquid, upon neglecting interaction-induced moments and
collective contributions to the spectrum.33

The dominant feature of the spectra in Fig. 2 is a broad
absorption band centered around 600 cm™'. This band, which
arises from the glitch in the correlation functions at ¢
=50 fs in Fig. 1, is associated with the librational motions of
the molecules in the liquid. Quantum effects cause a slight
redshift of both the I5(w) and F5(w) absorption bands, reflect-
ing the anharmonicity of the intermolecular potential. Like
the shortening of the quantum orientational relaxation times,
this redshift suggests that the hydrogen-bonding network of
the quantum liquid is less rigid than that of the classical
liquid. The spectra in Fig. 2 are similar to those obtained
using the CMD method in Ref. 17, with the exception that
the RPMD method predicts quantum effects to decrease
(rather than increase) the intensity of the I5(w) absorption
band.

B. Sum-rule tests

It is clear from the above results that the RPMD method
predicts substantial quantum effects in the orientational dy-
namics of liquid water. But how does one know that this
description is correct? Comparison of the calculated RPMD
results with experiment is not a useful indicator, because the
SPC/E water potential was parametrized on the basis of clas-
sical simulations.” However, the sum rules in Eq. (21) pro-
vide a purely theoretical test of the RPMD orientational cor-
relation functions that should be satisfied regardless of the
inadequacies of the interaction potential.

Table III reports the results of these sum-rule tests for
the first- and second-order RPMD orientational correlation
functions for all three principal axes of the water molecule.
In addition, the third column of the table shows the moments
of inertia around the principal axes and the fourth gives the
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TABLE III. Results of the orientational correlation function sum rule test in
Eq. (21). I, is the moment of inertia around axis 7. ¢/(0) is the value of the
Kubo-transformed orientational correlation function at time zero, which is
given exactly by the RPMD method. The value of ¢;/(0) obtained by Fourier
inversion of the RPMD approximation to ¢/(¢) is given in the final column;
the exact sum rule is ¢;(0)=1. The statistical errors in ¢;(0) and ¢}'(0) were
found to be significantly smaller than the =1% errors in the relaxation times
reported in Table II; the standard errors in ¢(0) and ¢]'(0) from our five
statistically independent calculations were never larger than 5% 107,

1 7 1,(amu A?) ) c/(0)
1 X 0.59 0.985 1.000
1 y 1.93 0.972 1.001
1 z 1.33 0.975 1.001
2 X 0.59 0.956 1.001
2 y 1.93 0.920 1.000
2 z 1.33 0.928 1.001

values of the Kubo-transformed orientational correlation
functions at time zero. As we have already noted in connec-
tion with the 7=z results in Fig. 1, the RPMD values for
¢/(t) are exact when =0 and so it is correct that these values
in Table IIT deviate from unity. We further note that the
amount of deviation is correlated with the moments of inertia
around the principal axes, because the orientation of a par-
ticular axis exhibits greater quantum dispersion when the
remaining two axes have lower moments of inertia.

The final column in Table III reports the values of the
standard orientational correlation functions at time zero,
¢/(0), obtained from the RPMD method using Eq. (21). An
exact Kubo-transformed quantum correlation function would
yield the result ¢/(0)=1. In all six cases considered in the
table, one sees that the RPMD approximation passes this test
with an error of at most 0.1%. It is particularly encouraging
that the results for the second-order orientational correlation
functions (which involve cross terms as well as autocorre-
lated contributions) remain excellent. We stress that because
the real part of ¢;(0) includes contributions from &/(¢) at all
times [via Eq. (21)], this is a genuine test of the real-time
orientational dynamics obtained from the RPMD approxima-
tion.

The success of these sum-rule tests is particularly inter-
esting because the RPMD method is known to fare poorly in
strongly quantum-mechanical situations for correlation func-
tions that involve nonlinear functions of coordinate opera-
tors. A recent example is provided by the inelastic neutron
scattering from liquid parahydrogen at 14 K. Although it
does well for low-momentum transfers where the correlated
density operators are approximately linear functions of the
coordinates, moment tests analogous to those in Table III
have shown that the direct RPMD approximation to the self-
part of the Kubo-transformed intermediate scattering func-
tion becomes quite inaccurate in the impulsive (high-
momentum transfer) regime.**

The interesting question, therefore, is why the present
moments of the Kubo-transformed orientational correlation
functions of liquid water are obtained as accurately as they
are (to within 0.1%). This is certainly not because the orien-
tational correlation functions ¢{(¢) and &7(¢) are well suited
to calculation by RPMD, since it is clear from the discussion
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FIG. 3. Kubo-transformed velocity autocorrelation functions for SPC/E wa-
ter at the 7=298 K, p=0.998 g cm™ state point, obtained from the classical
and RPMD simulations of a system of 512 water molecules.

in Sec. I B (and Ref. 36) that they are not. It must therefore
be associated with the fact that liquid water at 298 K is far
less quantum mechanical than liquid parahydrogen at 14 K.
The RPMD approximation becomes exact in the classical
(high-temperature) limit even for correlation functions in-
volving nonlinear Operators,21 and ambient water is evidently
close enough to this limit for the approximation to work very
well indeed.

C. Translational motion

Having thus verified that the RPMD method is capable
of providing a reasonable description of quantum-
mechanical effects in the dynamics of liquid water, let us
now move on to consider the translational motion in the
liquid embodied in the center-of-mass velocity autocorrela-
tion function in Eq. (2).

The RPMD approximation to this Kubo-transformed au-
tocorrelation function is compared with the purely classical
(n=1 bead) approximation in Fig. 3, again for a system of
512 water molecules. One sees from this figure that, for this
less quantum-mechanical property, the differences between
the RPMD and classical results are considerably smaller than
they were for the orientational correlation functions in Fig. 1.
However, one also sees that there is a systematic difference
that arises from the quantum statistical effects included in
RPMD: the classical velocity autocorrelation function is
smaller than the RPMD velocity autocorrelation function at
all times. This is consistent with the results of an earlier
study that used the CMD method and a different intermo-
lecular potential.17

The clear implication of this systematic difference is that
the self-diffusion coefficient D obtained from the RPMD
simulation will be larger than that obtained from the classical
simulation [see Eq. (1)]. That this is the case is demonstrated
in Table IV, which lists the diffusion coefficients obtained in
the two simulations as a function of the system size (from
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TABLE 1V. Calculated self-diffusion coefficients for SPC/E water (in
A2/ps). N is the number of water molecules in the simulation. L is the side
length of the cubic simulation box. The numbers in parentheses after the
tabulated diffusion coefficients are the standard errors in the last digit from
our five statistically independent calculations. The values in the last row
were obtained from the linear regressions in Fig. 4.

N L (A) Classical D RPMD D RPMD/Classical
216 18.64 0.242(3) 0.343(2) 1.42
343 21.74 0.250(2) 0.358(2) 1.43
512 24.85 0.254(1) 0.365(2) 1.44

sl e 0.29(1) 0.43(1) 1.48

216 to 512 water molecules). It can be seen from this table
that the RPMD diffusion coefficient is larger than the classi-
cal diffusion coefficient by a factor of between 1.4 and 1.5. It
is also clear that, unlike the orientational relaxation times
reported in Table II, the self-diffusion coefficients calculated
using the two methods increase quite significantly with an
increase in the system size.

The reason for this system-size dependence of D is well
established. As was first shown by Diinweg and Kremer, "
and has recently been reiterated by Yeh and Hummer,* the
leading system-size dependence of the calculated diffusion
coefficient will be given by the hydrodynamic relation

kgT
6mnL

D(L) =D(®) - & (26)
where 7 is the shear viscosity, L the length of the simulation
cell, and ¢ a numerical coefficient that depends on the geom-
etry of the simulation® (with &=2.837297 for a cubic
cell®™h.

As Yeh and Hummer have emphasized,49 the vast major-
ity (>80%) of the correction for finite-size effects in Eq.
(26) comes from the fact that the average momentum of the
atoms in the simulation must be set equal to zero to satisfy
Newton’s third law. This clearly restricts the motion of the
atoms in a small simulation cell more so than in a large one,
leading to an increase in the calculated diffusion coefficient
with increasing system size. A point we made in our recent
study of liquid parahydrogen23 is that there is no reason why
the same argument, nor indeed the entire hydrodynamic ar-
gument that leads to the more precise result in Eq. (26),**
should not also apply to an exact quantum-mechanical (or an
approximate RPMD) simulation. The calculated RPMD self-
diffusion coefficient of liquid parahydrogen does, in fact, sat-
isfy Eq. (26) extremely well.”

Figure 4 shows that the equation is also satisfied to
within the statistical accuracy of the present classical and
RPMD simulations of SPC/E water. This figure plots the
diffusion coefficients in Table IV as a function of L™'. One
sees that both (classical and RPMD) simulations obey Eq.
(26) with a shear viscosity 7 that is approximately indepen-
dent of the system size. That this is also true of purely clas-
sical molecular-dynamics simulations of TIP3P water’ was
demonstrated in the recent paper by Yeh and Hummer.* The
shear viscosities obtained from the slopes in Fig. 4 are
0.38 gm~'s7! in the RPMD calculations and 0.64 g m~' s~
in the classical limit. For comparison with these values, the
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FIG. 4. System-size scaling of the classical and RPMD self-diffusion coef-
ficients for SPC/E water at the T7=298 K, p=0.998 g cm™ state point, show-
ing the extrapolation to infinite system size.

experimental shear viscosity of ambient water is™
0.89 gm~'s7!, and a classical molecular-dynamics simula-
tion of TIP3P water gives49 7=0.31 gm~'s7!. The values of
D() obtained from the present classical and RPMD simula-
tions of SPC/E water are listed in the final row of Table IV.

D. Discussion

The results for the orientational and translational mo-
tions in liquid water we have just presented have a natural
physical interpretation. Within a simple Stokes-Einstein
model, one would expect the self-diffusion coefficient of a
molecular liquid to be inversely proportional to, and the ori-
entational relaxation times directly proportional to, the liquid
viscosity.53 According to the slopes of the lines in Fig. 4, and
the hydrodynamic explanation for these slopes in Eq. (26),
the quantum-mechanical effects included in RPMD decrease
the viscosity of ambient SPC/E water from the value ob-
tained in the classical limit by a factor of around 2/3. This is
consistent with the decrease in the orientational relaxation
times in Table II by approximately the same factor and the
increase in the diffusion coefficients in Table IV by a factor
of around 3/2.

The upshot is therefore simply that quantum fluctuations
disrupt the hydrogen bonding in SPC/E water and make it
approximately one-third less viscous than it is in the classical
limit. This reduction in the viscosity speeds up both the ori-
entational and the translational motions of the molecules in
the liquid. The results of several earlier studies in which
quantum effects have been included using other empirical
potential models can also be explained in the same way. The
precise amount by which the self-diffusion coefficient in-
creases on including quantum effects depends on the interac-
tion potential and the approximate dynamical method em-
ployed, but it has never been found to be smaller than a
factor of 1.4 (Ref. 15) or larger than a factor of 2.0%

J. Chem. Phys. 123, 154504 (2005)

As has recently been shown in classical molecular-
dynamics simulations of TIP3P water,49 and as we have con-
firmed here in the present simulations of the SPC/E model,
there is also a significant additional increase in the self-
diffusion coefficient over that obtained in a small simulation
when one extrapolates to the limit of an infinite system size
(see Fig. 4). When combined with the reduction in the vis-
cosity owing to quantum fluctuations, this results in a quan-
tum diffusion coefficient for the infinite liquid that is sub-
stantially larger than that obtained in a typical classical
molecular-dynamics simulation. For example, one sees from
Table IV that the RPMD estimate of the self-diffusion coef-
ficient of ambient SPC/E water is 0.43 A2/ps, whereas a
classical simulation of a system of 216 molecules gives a
value of 0.24 A2/ ps. In this case, roughly half of the increase
in the self-diffusion coefficient comes from quantum effects
and the remainder from the extrapolation to infinite system
size.

Since the vast majority of the (very many) computational
studies of liquid water that have appeared over the last four
decades have been based on the classical molecular dynam-
ics of a (typically rather small) periodic system, the implica-
tions of this result are quite profound. The experimental self-
diffusion coefficient of ambient water* (0.23 A2/ ps) is one
of the key quantities that has been (and is still being®) used to
assess the quality of water interaction potentials. According
to classical molecular-dynamics simulations of a system of
216 water molecules at 298 K, the SPC/E potential repro-
duces this quantity rather well.>* However, it can be seen
from the results in Fig. 4 and Table IV that when quantum-
mechanical and finite-size effects are taken into account this
potential overestimates the experimental diffusion coefficient
by a factor of nearly 2.

The present results are also relevant to those of a very
recent ab initio molecular-dynamics study of liquid water at
315 K.> This study employed the Becke-Lee:—Yang-P21rr56’57
(BLYP) density functional in a number of independent simu-
lations of systems of 64 and 128 water molecules. The re-
sulting self-diffusion coefficient was found to be
0.04+0.02 A%/ps—nearly an order of magnitude smaller
than the experimental value of 0.35 A2/ps at 315 K.*® Inso-
far as we can tell from the present results, quantum-
mechanical effects in the nuclear motion and finite-size ef-
fects are unlikely to be the only causes of such a large
discrepancy. However, it is clear that if these effects were
included in the ab initio molecular-dynamics simulations
they would each make quite a significant contribution to the
calculated self-diffusion coefficient and bring it closer to the
experimental result.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a detailed study of the
translational and orientational motions in ambient SPC/E wa-
ter using the recently developed ring-polymer molecular-
dynamics (RPMD) method.” ™ We have calculated orienta-
tional relaxation times and self-diffusion coefficients that are
consistent with those found in a number of earlier approxi-
mate quantum-mechanical studies.” ™ In addition, we have
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presented some sum-rule tests which suggest that the RPMD
approximation provides a reliable description of the quantum
effects in the ambient liquid, and we have investigated the
system-size dependence of our computed results.

Our main conclusion is that quantum effects in the
nuclear motion and finite-size effects in the translational dif-
fusion are too large to be neglected in simulations of liquid
water. In particular, we have shown that these effects com-
bine to increase the self-diffusion coefficient of ambient
SPC/E water by a factor of nearly 2 over the value obtained
from a classical molecular-dynamics simulation of 216 water
molecules. It is clear that classical molecular-dynamics simu-
lations of systems of this sort of size do not therefore provide
a very reliable way to assess the accuracy of water interac-
tion potentials.

Since the SPC/E potential gives a rather poor description
of the dynamics of liquid water when quantum fluctuations
and finite-size effects are taken into account, one wonders
whether any of the (many) other water interaction potentials
that have been proposed over the years will fare any better.
We suspect on the basis of the present results that at least one
of the proposed (effective) interaction potentials will. Wa-
tanabe and Klein (WK) have developed a potential that ac-
counts correctly for mean-field self-polarization and so gives
a good description of the static dielectric properties of the
ambient liquid.4 However, according to classical molecular-
dynamics simulations of a system of 216 water molecules,
this potential gives a self-diffusion coefficient that is ap-
proximately half of the experimental value and a NMR re-
laxation time that is too large by a factor of ~3/ 2.4 We
anticipate on the basis of our present results for SPC/E water
that combining quantum-mechanical and finite-size effects
with the WK potential will rectify both of these deficiencies
and lead to much better agreement with experiment.

It will be interesting in future work to see whether or not
this is the case, and also to apply the RPMD method to a
flexible water model so as to assess the importance of
quantum-mechanical effects in the higher-frequency intramo-
lecular vibrations (for example, by comparing the classical
and RPMD simulations of the liquid water infrared absorp-
tion spectrum). A key point here is that the coupling between
the intramolecular and intermolecular motions has recently
been shown to lead to quite a significant quantum effect on
the structure of liquid water in Car-Parrinello PIMD simula-
tions of H,O and D20.59 This coupling may well lead to a
quantum effect in the liquid dynamics that goes beyond what
we have seen in the present rigid-body simulations. It will
also be interesting to see what effect the quantum fluctua-
tions included in RPMD have on the hydration dynamics of
simple ions and polar molecules.
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