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Quantum digital signatures

basic properties

• combine the concepts of public-key cryptography
and one-time signatures with the fundamental
properties of quantum mechanics

• used for signing classical messages (a single bit in
this scheme)

• analogical to Lamport one-time signature, using
quantum one-way function instead of classical one

• employing quantum states as public keys

• quantum nature of the scheme provides various
cheating possibilities
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Lamport one-time signatures

Signing of a single bit

• choose private keys k0 for bit b = 0 and k1 for b = 1

• compute public keys fi under an appropriate
one-way function f

fi = f(ki), i = 0 or 1

• publish public-key pairs (0, f0) and (1, f1)

• Signing of a bit b: reveal private key (b, kb)

• Verification: check that kb maps to fb
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Quantum one-way functions

• a classical bit string on input

• quantum state as output, thus public keys are
quantum states

• an attacker cannot acquire the complete information
about public keys, due to Holevo’s theorem

• a number of public keys in circulation has to be
limited
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Quantum one-way functions - continued

• input – all classical bit strings k of length L

• to each k a quantum state |fk〉 of n qubits is
assigned

• L can be much larger than n

• the mapping k 7→ |fk〉 is impossible to invert

• by Holevo’s theorem, we can extract only n classical
bits from n-qubit state

• if we have T copies of |fk〉, we can learn only Tn
bits of information about k and when L− Tn� 1,
the chance to guess k remains small
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Swap test for equality

• we need to have a test for equality, i.e. to find out,
given two outputs |fk〉 and |fk′〉, if k = k′

• this is carried out by so-called swap test circuit
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• if |fk〉 = |fk′〉 then the result will be always |0〉

• if |fk〉 6= |fk′〉, the result will be |0〉 with probability
(1 + δ2)/2 and |1〉 with probability (1− δ2)/2, in
case the states satisfy the condition |〈fk|fk′〉| ≤ δ

• if the states are the same, they always pass the test,
while if they are different, they sometimes fail
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Verifying an output of f

• given k, how to check that a state |φ〉 = |fk〉

• we can perform the inverse operation to computing
of the mapping |k〉|0(n)〉 7→ |k〉|fk〉 and then
measure the second register: if |φ〉 6= |fk〉, we will
see a nonzero result with probability 1− |〈φ|fk〉|2

• it is again probabilistic
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Specification of keys and parameters

• the signatory Alice prepares her private keys – pairs
{ki

0, k
i
1} of L - bit strings, 1 ≤ i ≤M .

• M keys are used for signing a single bit

• the public keys |fki
0
〉, |fki

1
〉 are computed under an

appropriate quantum one-way function f

• T < L/n copies of each public key are available

• all participants will now how to implement the
mapping k 7→ |fk〉 and also choose the tresholds c1
and c2, for acceptance and rejection of the
signature. The treshold c1 reflects the noise of a
channel (0 in the absence of noise) The gap c2 − c1

determines Alice’s chances of cheating.
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Signing and verification

A single bit-message is sent by Alice this way:

1. Alice send the message (b, k1
b , k

2
b , . . . , k

M
b ) over an

insecure classical channel.

2. Each recipient verifies that revealed public keys ki
b

are mapped into |fki
b
〉 and recipient R counts the

number of incorrect keys. Let this number be sR.

3. Recipent R accepts the message as valid and
transferable (1-ACC) if sR ≤ c1M , rejects it (REJ)
if sR ≥ c2M and accepts it without further
transferability (0-ACC) if c1M < sR < c2M .

4. Discard all used and used keys.

• REJ – we cannot safely say anything about the

authenticity of the message.

• 1-ACC and 0-ACC – imply the validity of the message

but they differ in the following sense. The result 1-ACC

means that the recipient is sure that any other recipient

will also conclude the message is valid, whereas with the

result 0-ACC the other recipient can conclude it as

invalid.
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Security - forgery

• The forger Eve is able to acquire at most only Tn
bits (Holevo’s theorem) of information about each
of public keys (if she has access to all T copies).
Thus, she lacks at least L− Tn bits of information
and can guess correctly on about G = 2M

2L−T n keys.

If Eve did not guess a key correctly, she can claim
that incorrect k′ is valid and the probability that
the receiver’s measurement test will support this
claim is no more than δ2.

• Each recipient finds out that at least
(1− δ2)(M −G) of public keys will fail → we choose
c2, so that (1− δ2)(M −G) > c2M .
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Security - repudiation

• i.e. Alice wants to disagree Bob and Charlie about
validity of a message

• we can use a trusted key distribution center with
authenticated links to all recipients – it performs
swap tests on public keys supplied by Alice and
distribute public keys

• Alice can cheat by preparing the state
|φ〉B |ψ〉C + |ψ〉B |φ〉C , which always passes swap
test, but public keys go randomly to Bob and
Charlie and she cannot control which of them gets
the valid key

• it is unlikely that Bob and Charlie will get definite
but differing result (1-ACC, REJ), the gap c1M and
c2M protects them
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Extensions

• key distribution without a trusted key distribution
center

• distributed swap tests between the recipients can be
used instead

• signing a multiple-bit message

• larger number of results (s-ACC) - levels of
transferability


