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Digital signatures guarantee the authenticity and transferability of messages and are widely used in
modern communication. The security of currently used classical digital signature schemes, however, relies
on computational assumptions. In contrast, quantum digital signature (QDS) schemes offer information-theoretic
security guaranteed by the laws of quantum mechanics. We present two QDS protocols which have the same
experimental requirements as quantum key distribution, which is already commercially available. We also give
a security proof for the presented QDS schemes against coherent forging attacks.
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I. INTRODUCTION

Digital signatures are commonly used to guarantee the
identity of a sender and the authenticity of a message, for
example, in electronic commerce and e-mail. Importantly, dig-
ital signatures also guarantee that messages are transferable,
so a forwarded message will also be accepted as valid. These
cryptographic tasks differ from ensuring that a message is
kept secret. Rivest, one of the inventors of the Rivest-Shamir-
Adleman (RSA) algorithm for public key cryptography, wrote
in 1990 that “the notion of a digital signature may prove to be
one of the most fundamental and useful inventions of modern
cryptography” [1]. Currently used classical digital signature
schemes employ public key encryption, where security relies
on conjectured but unproven computational hardness of
cryptographic functions. In contrast, quantum digital signature
schemes [2–6], which are quantum versions of Lamport’s
one-time signature scheme [7], offer information-theoretic
security relying on the laws of quantum mechanics.

We mainly consider the simplest nontrivial setting for
digital signatures, with three parties, which is sufficient to
illustrate how our protocols work. Alice signs the message,
Bob first receives the message and needs to authenticate it, and
Charlie receives the forwarded message from Bob and verifies
that the initial source was indeed Alice. The desired protocol
needs to be secure against cheating, provided that at most
one of the three parties is dishonest. We require security both
against message forging by Bob and against repudiation by
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Alice.1 In our setting, successful repudiation by Alice means
that a message is accepted by Bob but would be rejected when
forwarded to Charlie, that is, the message is not transferable.2

In our quantum digital signature (QDS) protocols, it is easier
to forge a message when claiming it to be forwarded, and in
forging scenarios we therefore assume that Bob is trying to
forge a forwarded message.

QDS schemes have two stages, the distribution stage and
the messaging stage. In the latter stage, a message is actually
sent and signed. While details vary, different schemes share
common features. During the distribution stage Alice sends
a quantum signature, a sequence of quantum states, to Bob
and Charlie. In order to prevent repudiation, they can either
compare their states [2] or symmetrize them [3–6]. Bob and
Charlie then either store the quantum signature or measure it
and store the outcomes. In the messaging stage, which could
occur much later, Alice wants to sign a message. During
the messaging stage, Alice sends the classical description
of the quantum signature, and Bob and Charlie confirm that
this is compatible with their stored information. Importantly,
the participants must be able to decide on the validity and

1These are the most significant forms of cheating. Our protocols
can be extended to the many-party setting and to deal with general
cheating attacks in that context, but since this complicates the
protocols and security analysis somewhat we postpone full discussion
for future work.

2Repudiation by Alice means that she can successfully deny having
sent a message that she actually did send. Preventing repudiation is
closely related to, but not in general equivalent to, ensuring message
transferrability, i.e., ensuring that forwarded messages are accepted
as valid. For example, a poorly designed protocol can fail to ensure
transferability even if Alice is honest. In our scenario with one
sender and two receivers, nonrepudiation and message transferrability
become identical if a majority decision is used to resolve disputes.
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transferrability of the message without further communication
with other participants.

The first QDS protocol, proposed by Gottesman and
Chuang [2], requires processing of the quantum signatures—a
general SWAP test and long-term quantum memory—which
is currently unfeasible experimentally. In Ref. [3], an optical
multiport replaced the SWAP test. Long-term quantum memory
was, however, still required. To remedy this, we suggested a
protocol [5] where the signature states are measured directly
in the distribution stage. This protocol guaranteed security
against collective attacks but still employed a multiport to
ensure nonrepudiation. When implemented [6], however, the
multiport caused substantial losses. Aligning the multiport
becomes increasingly difficult when the distance between
recipients increases. Here we therefore propose two schemes
for quantum digital signatures which require neither quantum
memory nor a multiport. They require only the same compo-
nents as quantum key distribution (QKD), enabling existing
QKD “hardware” to be used also for QDS. This significantly
extends and enhances the use of QKD systems.

The two protocols are denoted P1 and P2. There are many
possible variations on these protocols, e.g., using different
quantum states for the quantum signatures (such as phase-
encoded coherent states) or different types of measurements
(unambiguous quantum state discrimination, minimum-error
measurements, etc.). Here, we will focus on protocols em-
ploying BB84 states, as they are well studied in the context
of QKD, and this choice allows for the first proof of security
against coherent forging attacks.

P1 is inspired by the protocol in Refs. [5,6], while P2 only
uses quantum-mechanical features to produce secret shared
classical keys using QKD. After this, P2 continues with a
classical scheme, with information-theoretic security relying
on the security of the shared secret keys. This means that
the functionality of information-theoretically secure digital
signatures follows directly from point-to-point QKD. To our
knowledge, there are few information-theoretically secure
classical digital signature schemes based on secret shared keys,
and all of them require extra assumptions such as the existence
of a trusted third party [8,9] or the existence of authenticated
broadcast channels [10]. Using P2, the functionality of digital
signatures is implied by sharing secret keys alone. Since P1
uses the same “quantum hardware” as the generation of secret
keys by QKD, for use in P2, it is an open question whether P1
or P2 is most resource efficient, in particular when generalizing
to more than three parties.

Just as for QKD, for QDS schemes one assumes that
between each pair of the parties, Alice, Bob and Charlie, there
exists an authenticated classical channel, guaranteeing that
classical messages cannot be tampered with. Such channels
are resource inexpensive [11]. Moreover, for both QKD and
QDS it is essential that participants can be sufficiently sure
that if a quantum state is sent, then (approximately) that same
quantum state is also received, without an eavesdropper or
forger having learned (too much) about it. How to achieve
this is well established for QKD, and we expect that similar
techniques can be used for QDS. We further comment on
this in the discussion at the end. However, for the moment,
we will for P1 make the stronger assumption (which existing
QDS protocols also make) that there are authenticated ideal

quantum channels between the participants. This guarantees
that the quantum state any participant sends is received by the
intended recipient. Nevertheless, we formulate our protocol
with nonideal channels in mind, and also note that analysis of
previous QDS experiments [4,6] has considered imperfections
in scenarios with only individual forging attacks.

II. PROTOCOL P1

A main difference between P1 and the protocols in
Refs. [5,6] is that a multiport is not needed. Instead, security
against repudiation is guaranteed by Bob and Charlie exchang-
ing some of their signature elements, leading to a significantly
simpler experimental implementation. In the basic version of
P1, the exchange is done before measuring the signature states
and in a modified version P1′, described in Appendix A, after
measuring them. We will use the same four quantum states as
the BB84 protocol for quantum key distribution [12], given by

|0〉, |1〉, |+〉 = 1√
2

(|0〉 + |1〉), and |−〉 = 1√
2

(|0〉 − |1〉).
(1)

As discussed above, we assume that between each pair of
the parties, Alice, Bob, and Charlie, there exists authenticated
classical and quantum channels.

Distribution stage
(1) For each possible future one-bit message k = 0,1,

Alice generates two copies of sequences of BB84 states,
QSk = ⊗L

l=1 ρk
l , where ρk

l is a randomly chosen BB84 state,∣∣ψk
l

〉 = ∣∣bk
l

〉
, and bk

l ∈ {−,0, + ,1}, and L is a suitably chosen
integer. The state QSk and the sequence of signs PKk =
(bk

1, . . . b
k
L) are called the quantum signature and the private

key, respectively, for message k. The individual state ρk
l we

call the lth quantum signature element state for message k.
(2) Alice sends one copy of QSk to Bob and one to Charlie

for each possible message k = 0 and k = 1.
(3) Bob (Charlie), for each element l of QSk for k = 0,1,

randomly chooses to either forward the signature element to
Charlie (Bob) or keep it and directly measure it as described
under 4 below. In either case, the position l is recorded. We
should note here that it is not important that Bob and Charlie
exchange states at the same time. The protocol is secure even
if the signature element exchanges are not synchronized. This
is a significant improvement over multiport-based schemes
where near-perfect synchronization was essential.3

(4) Bob (Charlie) measures the states he kept and the states
that Charlie (Bob) sent him, randomly choosing either the
{|0〉 , |1〉} basis or the {|−〉 , |+〉} basis. In this way, for each
signature element Bob or Charlie measures, each of them
unambiguously excludes one of the four possible states. For
example, if Bob obtains the measurement result “|1〉,” this

3Exchanging parts of the signature in practical implementations
leads to losses increasing with the distance between the recipients.
However, the multiport used in, e.g., Ref. [5] also incurs other
substantial losses. In addition to losses in multiport beam splitters
and other optical elements, a more serious issue is the increasingly
difficult synchronization between Bob and Charlie, since even a slight
time shift significantly decreases visibility.
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means that Alice cannot have sent the state |0〉. Bob and
Charlie record what state they excluded, for each element l

and message k. This type of quantum measurement is called
quantum state elimination [6,13,14]. The sequence of excluded
states will later be used to authenticate or verify a message.
We call this an eliminated signature.

(5) If either Bob or Charlie receives, from the other party,
fewer than L(1/2 − r) or more than L(1/2 + r) signature
elements per possible message, then they abort. That is, in
the ideal case with no transmission losses,4 Bob expects on
average L/2 signature elements from Charlie and aborts if he
receives too few or too many by setting a threshold r . If all par-
ticipants are honest, then the probability for abort depends on
the “coin” that Bob (Charlie) tosses to decide whether to keep
or forward a qubit. Since the choice is done independently,
with equal probabilities for each instance, it follows that this
probability decays exponentially as L increases.

At this point, for some positions l in the quantum signature,
Bob (Charlie) has measured both copies of signature elements
which Alice sent; for some he has measured the signature
element copy sent directly to him by Alice; for some the copy
originally sent to Charlie (Bob); and for some positions he
has measured no copy at all. Each of these possibilities occurs
for on average L/4 positions. Bob, for each signature element
position, has therefore ruled out one, two, or none of the four
possible states and similarly for Charlie. These records form
Bob’s and Charlie’s eliminated signatures.

Messaging stage
(1) To send a signed one-bit message m, Alice sends

(m,PKm) to the desired recipient (say, Bob).
(2) Bob checks whether (m,PKm) matches his stored

eliminated signature by counting how many elements of
Alice’s private key he actually ruled out in the distribution
stage. If there are fewer than saL mismatches, where sa is a
small authentication threshold (zero in the ideal case), Bob
accepts the message.

(3) To forward the message to Charlie, Bob forwards to
Charlie the pair (m,PKm) he received from Alice.

(4) Charlie tests for mismatches similarly to Bob, but in
order to protect against repudiation by Alice, the threshold
differs. Charlie accepts the forwarded message if there are
fewer than svL mismatches, where sv is the verification
threshold, with 0 � sa < sv < 1.

Security analysis

Digital signature schemes should be secure against both
repudiation and forging. Security against repudiation guar-
antees that Alice cannot make Bob and Charlie disagree on
the validity (and, consequently, the content) of her message
(except with very small probability). Security against forging
means that any recipient will with high probability reject
any message which was not originally sent by Alice herself.

4For simplicity, we assume no transmission losses during this stage.
Nevertheless, also for an imperfect realization it should be possible to
modify protocol parameters to ensure security, following approaches
in Refs. [4,15,16].

The security analysis is outlined below, with more details in
Appendix B.

Security against repudiation: Alice initially sends (possibly
different) strings of BB84 states to Bob and Charlie. More
generally, she could send any states, including entangled states.
Bob and Charlie randomly choose to keep or forward each
of the signature elements. From Alice’s perspective, at the
end of the distribution stage, the reduced density matrices for
Bob’s and Charlie’s quantum states are identical, irrespective
of what states she sent them. Intuitively (see Appendix B for
a proof), she thus has little chance of making Bob accept and
Charlie reject the same declaration. Moreover, Alice gains
nothing by sending different quantum signatures to Bob and
Charlie. Her best strategy is to send a declaration with L(sv −
sa)/2 mismatches with the quantum signature she sent. Her
probability for repudiation is then

p(rep) � exp[−(sv − sa)2L/2] (2)

which, since sa < sv , decays exponentially as the length L of
the signature increases. Note that setting a nonzero sa will be
necessary if the quantum channels are not ideal.

Security against forging: In order to successfully forge,
Bob needs to guess, causing fewer than Lsv mismatches, the
part of the signature that Alice sent to Charlie and which
Charlie kept. In so-called individual forging attacks, Bob
makes measurements on individual signature elements. Bob,
in order to make the best possible guess, should then perform
minimum-error measurements on his elements. One can show
(Appendix B, Ref. [17]) that for each element, the minimum
probability for Bob to declare a mismatch is 1/8, leading to a
bound

p(forge) � exp[−2(1/8 − svL/K)2K] (3)

on the forging probability, where K = L(1/2 − r) is the
number of elements that Charlie kept. This probability decays
exponentially with the length L of the signature provided that
sv < 1/8(K/L) = 1/16(1 − 2r). In fact, the bound in Eq. (3)
is the best a forger can achieve with any strategy, including
coherent attacks. To show this, we follow the arguments of
[15] for the security of a relativistic quantum bit commitment
protocol [18]. The central result we employ shows that no
coherent measurement strategy can beat a local strategy in
correctly declaring the state of an individual signature key
element, even if one postselects on any measurement outcomes
for all other elements. We can then show that the individual
strategies for forging are optimal: see AppendixB for details.
Note that this proof applies specifically to the BB84 versions
of the protocols considered here and, for example, does
not generalize to versions considered previously using B92
states.

III. PROTOCOL P2

The second protocol, P2, achieves the functionality of
QDS by using only (long) shared keys and untrusted classical
channels. Shared keys can, of course, be achieved using a
secure classical channel. Alternatively, QKD can be used for
generating shared keys, with information-theoretic security. If
QKD is thought of as key expansion, this requires only short
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preshared keys, effectively independent of future message
size.

For QKD, we must also assume that untrusted quan-
tum channels are available. In short, protocol P2 may be
based on point-to-point QKD, which is under development
in many research groups and even commercially available
[19–23].

Distribution stage
(1) For each possible future message k = 0,1, Alice gen-

erates two different secret keys (called signatures) consisting
of sequences of classical bits. We call an individual bit the lth

signature element for message k.
(2) For each possible message k = 0,1, Alice sends one

secret key to Bob and the other to Charlie via secure classical
channels.

(3) For each signature element and for k = 0,1, Bob
(Charlie) randomly chooses to either keep it or send it to
Charlie (Bob) via a secure classical channel.

(4) If either Bob or Charlie receives fewer than L(1/2 −
r) or more than L(1/2 + r) signature elements per possible
message from the other party, then the protocol is aborted.

Messaging stage
(1) To send a signed one-bit message m, Alice sends

(m,PKBm,PKCm) to the desired recipient (say, Bob). That is,
Alice declares both private keys corresponding to the message
m in order to sign.

(2) Bob checks whether the declaration (m,PKBm,PKCm)
matches his key and the parts of the key that Charlie sent him.
If it does, then he accepts the message. For classical keys,
we can assume that if all parties are honest then there are no
mismatches, and therefore we can set sa = 0.

(3) To forward the message to Charlie, Bob forwards to
Charlie the declaration (m,PKBm,PKCm) he received from
Alice. Charlie tests for mismatches similarly to Bob but accepts
the forwarded message if the following two conditions are
met. (i) There is no mismatch between the declaration and the
part of PKBm which Charlie obtained from Bob and (ii) there
are fewer than svL mismatches between the declaration and
Charlie’s PKCm, where the verification threshold for security
against repudiation satisfies 1/2 > sv > 0.

Security against repudiation: Alice needs to make Bob
accept the message while Charlie rejects. This means that
Alice’s declaration cannot have any mismatch with Bob’s key
and, necessarily, at least svL mismatches with Charlie’s key.
The probability for repudiation then satisfies

p(rep) � (1/2)svL, (4)

where the RHS decays exponentially with increasing signature
length L (more details in Appendix C).

Security against forging: Bob needs to guess, with fewer
than Lsv mismatches, the K � L(1/2 − r) elements of Char-
lie’s key that he did not receive (i.e., provided no abort
occurred). The probability for each correct guess is 1/2, and
the forging probability therefore satisfies

p(forge) � exp

[
−4

(
1/4 − sv

1 − 2r

)2

L(1 − 2r)

]
. (5)

Provided that sv < 1/4 − r/2, this decays exponentially with
increasing L (more details in Appendix C).

IV. DISCUSSION

We have here proposed and examined QDS schemes suit-
able for implementation with current technology, in particular,
with the same requirements as for QKD systems. In previous
schemes [5,6], while the very demanding requirement for
quantum memory was removed, transferrability was guar-
anteed using a multiport. The multiport leads to high losses
and greater experimental complexity, severely restricting the
distance between Bob and Charlie. To obtain a truly feasible
QDS scheme we here suggested two (main) QDS protocols
that do not require a multiport. Protocol P1, other than the
multiport, requires similar resources as protocols in Refs. [5,6].
Importantly, the simplifications we have introduced also allow
a security proof of QDS against coherent forging attacks. For
protocol P2, we suggest that QKD is used to obtain classical
secret keys shared pairwise between all parties. The long
shared keys are then shown to enable the functionality of
(Q)DS. P2 differs because it is an information-theoretic-secure
classical digital signature scheme relying only on secret shared
keys, without further assumptions such as a trusted third party
or authenticated broadcast channels [8–10]. This illustrates
how novel classical protocols can arise inspired by quantum
information science.

We now briefly address the question of how one could relax
the assumption of quantum authenticated channels, while still
preventing man-in-the-middle attacks and other eavesdropping
attacks. It is likely that one could use procedures analogous to
the parameter estimation (PE) phase of QKD protocols. Here
Alice and Bob sacrifice a random selection of quantum states in
order to establish how correlated their measurement outcomes
are. Based on the level of correlations in the announced bits,
they can deduce that the remaining (unannounced) bits are
similarly correlated, using the quantum de Finetti theorem
[24,25]. The protocol is aborted if the level of correlations
is insufficient. A similar approach could be used in QDS:
Alice and each of the recipients could in the distribution
stage sacrifice parts of the quantum signatures. The level of
correlations could be used to infer the level of correlations
between Alice’s private key and the classical measurement
outcomes the recipients obtain in the distribution stage, in
analogy with PE. Again, a suitable threshold (related to the
signature length L or, more precisely, the desired security
level) on the correlations should be imposed, and the protocol
should be aborted if it is violated. We note that in QDS, since
the participants need not—and should not—have identical
signatures, other types of classical postprocessing used in
QKD, such as information reconciliation, may not be required.
We leave a full rigorous investigation of this for future work.

Many other open questions still remain. For instance, a
composable security analysis for both protocols is still an open
issue. It is also important to examine exactly how to generalize
the presented protocols for more than three parties or for
signing longer messages. For instance, one needs to allow for
coalitions of malevolent participants. Finally, entanglement-
based protocols which may lead to device-independent QDS
can also be envisaged.
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APPENDIX A: MODIFIED PROTOCOL P1′

Here we outline a modified version of P1 which we call
P1′. While the security analysis of P1′ is essentially identical
to that of P1, P1′ uses different resources. In particular, the
assumption of an authenticated quantum channel between
Bob and Charlie is replaced by the assumption of a secure
classical channel between Bob and Charlie (which could be,
for instance, achieved by using QKD and an authenticated
classical channel). The changes in the protocol are the
following:

(i) When Bob (Charlie) receives the quantum signature
from Alice, he immediately measures all qubits he receives,
using the same measurement as in P1 to exclude one of the
possible states. We refer to this as an unambiguous state
elimination (USE) measurement.

(ii) Subsequently, Bob (Charlie) for each element of the
signature randomly decides to (i) either keep the outcome in
classical memory or (ii) send the outcome via a classical secure
channel to Charlie (Bob). In the latter case, they will not use
the classical record of the outcome in the subsequent protocol
(if they are honest – this is to make things fully symmetric
from Alice’s point of view).

If Bob and Charlie are honest, they end up with precisely
the same set of outcomes as they would in protocol P1.
The security analysis with respect to repudiation is therefore
identical for P1 and P1′. If Bob is dishonest, then the security
of P1′ is guaranteed by that half of signature elements which
Alice sent to Charlie, for which Charlie kept the outcomes.
The security analysis for forging is therefore also identical for
protocols P1 and P1′.

APPENDIX B: SECURITY OF PROTOCOL P1

The notion of security for QDS differs from that for QKD.
For QDS, one needs to separately consider the probability for
repudiation (when Alice is malevolent) and forging (when Bob
is malevolent). For a protocol to be secure, one requires that
both of these probabilities should decay exponentially with
the length of the signature L. This implies that any desired
level of security ε can be achieved, while inducing only a
logarithmic overhead, by choosing L to be O[log(1/ε)]. Then
one can choose the parameters of the protocol sa and sv so as
to minimize the maximum overall probability for malevolent
behavior. Typically, this happens when repudiation and forging

probabilities are equal if security against repudiation and
forging are considered equally important. Here we will first
show that the probability of repudiation decreases exponen-
tially with L and then show the corresponding result for the
forging probability. In this paper we assume that quantum
authenticated channels are used during the distribution of
quantum signatures. Given this assumption, any level of
security can be efficiently achieved, irrespective of the level
of losses. We note that, however, if one wishes to remove this
assumption, then, similarly to QKD protocols, there will be
limits on the allowable losses, above which a QDS protocol is
no longer secure.

1. Security against repudiation

During the distribution stage, Alice sends L qubits to Bob
and L qubits to Charlie for each possible message. To specify
which qubit we refer to, we say that qubit bi is the i th qubit
sent to Bob, while ci the i th qubit sent to Charlie. Note that
during the distribution stage Bob and Charlie exchange qubits
and that the labels above refer to which person Alice initially
sent the qubit to.

At the end of the distribution stage, Bob and Charlie have
measured all the 2L qubits using USE measurements. Since
we assume that there is an authenticated quantum channel
between Bob and Charlie, Alice cannot tamper with the states
forwarded from Bob to Charlie and vice versa. From her
point of view, each qubit is equally likely to end up being
measured by either Bob or Charlie. For each of the 2L qubits,
either Bob or Charlie has ruled out one possible state (of four
BB84 states). If Alice tries to repudiate a message, she sends
a declaration which she wants Bob to accept and Charlie to
reject. For each qubit the declaration either is compatible (a
match, which we denote as 1) or is not compatible (a mismatch,
which we denote as 0) with the classically stored information
of what states have been ruled out. We therefore have a
sequence of binary outcomes r = (b1, . . . ,bL,c1, . . . ,cL),
where b and c take values {0,1} and b,c refer to the which
party the qubit was initially sent while the subscript denotes
the position in the signature the qubit had. There are 22L

different sequences r but not all of them can be achieved by
Alice (e.g., if the state ruled out for bm and cm differs, it is not
possible that both bm and cm give a mismatch).

For any fixed sequence of outcomes r , there is some
probability prep(r) that Alice repudiates. This depends on
which elements end up in Bob’s and which end up in Charlie’s
possession, which is not determined by Alice. By sending
the overall quantum signature ρbc to Bob and Charlie, Alice
generates a probability distribution on different outcomes r .
We will denote the probability of getting outcome r if Alice
sends the overall state ρbc as pρbc (r). It follows that the overall
repudiation probability given that Alice sends a total state ρbc is

pρbc

rep =
∑

r

pρbc (r) × prep(r). (B1)

We can see that the probability of repudiation is bounded
by maxr prep(r). In what follows, we show that maxr prep(r)
decays exponentially as the length of the signature L increases.

Now we separately consider the subset initially sent to
Bob and the subset initially sent to Charlie. Let p̄B

0 (r) be
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the average number of mismatches divided by L, for Bob’s
subset of signature elements in the outcome sequence r ,
and similarly p̄C

0 (r) for Charlie’s subset. That is, for r =
(b1, . . . ,bL,c1, . . . ,cL), we have p̄B

0 (r) = 1 − 1/L
∑

k bk and
p̄C

0 (r) = 1 − 1/L
∑

k ck .
After randomly exchanging subsystems, the expected pro-

portion of mismatches for both Bob and Charlie per signature
element is the same and is given by

pB ′
0 = pC ′

0 = 1/2
(
p̄B

0 + p̄C
0

) = p, (B2)

where we have suppressed the r dependence for clarity. We can
now see using the Hoeffding inequality [26], that if pB ′

0 > sa ,
then the probability of Bob accepting is bounded by

p(Bob accepting) = P (p − XB � p − sa)

� exp[−2(p − sa)2L] (B3)

and the probability of Charlie rejecting, provided that p < sv ,
is

p(Charlie rejecting) = P (XC − p � sv − p)

� exp[−2(sv − p)2L]. (B4)

Here XB and XC are the actual proportions of mismatches
obtained by Bob and Charlie respectively. We note that

prep � min{p(Bob accepting),p(Charlie rejecting)}. (B5)

It follows that the optimum choice for Alice to maximize
the probability for repudiation is to aim for p = (sa + sv)/2,
leading to the best repudiation probability

pρbc

rep � exp[−(sv − sa)2L/2] (B6)

which, given that sa < sv , decays exponentially as the length
L of the signature increases. Note that in the main paper,
we have for clarity used the simpler notation p(rep) instead
of p

ρbc
rep .

2. Security against forging

The proof follows the following structure. First we derive
the best measurement that minimizes the probability of a
mismatch between the forger’s declaration and the honest
recipient’s measurement for a single element of the signature.
Using this we give a bound on the forging probability if one
restricts Bob to measuring each quantum signature element
individually. Then we prove that performing a coherent attack,
and then conditioning on any sequence of outcomes, cannot
increase the success probability for avoiding mismatch for
the N th element. We prove that this requirement implies that
no coherent attack can perform better than the individual
attack described earlier. In this proof we follow closely the
security analysis of Croke and Kent [15] for the security of
the relativistic bit commitment scheme by Kent [18]. The
underlying mathematical problem from the forger’s point of
view is very similar. Our analysis holds in the case that the
protocol is performed using the BB84 states, and we will
comment on this at the end.

a. Individual attacks

Lemma 1. Suppose Alice selects a single BB84 state |ψA〉,
chosen uniformly at random, prepares two copies of it, and

gives one to Bob and one to Charlie. Charlie makes a USE
measurement, ruling out one of the three states that Alice did
not send, |ψC〉. Then whatever measurement Bob performs
on his copy, the probability p of Bob declaring a single state
|ψB〉, which happens to be the one that Charlie ruled out (so
|ψB〉 = |ψC〉), is at least p � Cmin = 1/8.

An optimal strategy that realizes this bound is to measure
either in the {|0〉 , |1〉} or in the {|+〉 , |−〉} basis, or to perform
any POVM � whose elements are weighted combinations of
these projective measurements, with measurement operators
� = {q |0〉 〈0| ,(1 − q) |+〉 〈+| ,q |1〉 〈1| ,(1 − q) |−〉 〈−|}.

Proof. Finding the minimum probability that Bob’s guess
is not ruled out by Charlie is a minimum-cost problem. If Bob
could always guess what state Alice sent, then he would never
generate a mismatch. However, not all mistakes Bob makes
will be detected by Charlie with equal probability. If Alice
sends the state |0〉, then it is more likely that Charlie will rule
out the state |1〉 than either of the states |+〉 , |−〉, so the “cost”
for Bob making the declaration |1〉 is greater. The relevant cost
matrix is then given by

C =

⎛
⎜⎝

0 1/4 1/2 1/4
1/4 0 1/4 1/2
1/2 1/4 0 1/4
1/4 1/2 1/4 0

⎞
⎟⎠ , (B7)

where the states appear in the order (|0〉 , |+〉 , |1〉 , |−〉), and
the rows correspond to the state that Alice sent and the columns
to the state Bob declares.

One can see that an optimal measurement that Bob can per-
form is to measure either in the {|0〉 , |1〉} or in the {|+〉 , |−〉}
basis, either by directly checking that the Holevo-Helstrom
conditions hold [27] or by using the results of Ref. [17] for
minimum-cost measurements of symmetric states. One should
note, however, that any convex combination of the above
projective measurements results in a POVM that gives the same
(i.e., the minimum) cost. The minimum cost is Cmin = 1/8, as
one can see by evaluating the expression

C =
∑
i,j

1

4
Ci,j Tr(�jρi), (B8)

where ρi are the BB84 states and �j are the elements of the
POVM used (which are projections if we are using a projective
measurement). Intuitively, when Bob chooses to measure in the
basis which includes the state Alice sent, which happens with
probability 1/2, he obtains the correct answer, and thus in this
case he never generates a mismatch. When Bob chooses the
wrong basis, which happens with probability 1/2, he causes
a mismatch with probability 1/4. The overall probability that
Bob causes a mismatch is therefore 1/8. �

The above Lemma means that the probability that Bob
generates a mismatch for a single element is at least Cmin,
which can be achieved by the above measurement. Thus, in
individual attacks, Bob’s probability of not being detected for
a single element is (1 − Cmin). Here it is worth noting that with
similar arguments one can compute Cmax = 3/8 which is the
maximum probability of mismatch that one can achieve.

In order to succeed in forging, Bob needs to correctly
declare the part of the signature that Alice sent to Charlie
and which Charlie kept. More specifically, he has to avoid

042304-6



QUANTUM DIGITAL SIGNATURES WITH QUANTUM-KEY- . . . PHYSICAL REVIEW A 91, 042304 (2015)

mismatches with Charlie’s classical signature only for these
signature elements. Taking the worst-case scenario, we assume
that Bob knows which bits Charlie keeps before Bob forwards
any signature elements to Charlie. In this case, for all the
elements which Charlie does not keep, Bob can, instead of
forwarding the quantum signature element that Alice sent him,
send to Charlie a state that will certainly match the declaration
that Bob will make later. Therefore, for Bob to succeed in
forging he must make fewer than svL mistakes for the (on
average) L/2 elements that Charlie received directly from
Alice and did not forward to Bob. Taking again the worst-case
scenario, we assume that Charlie kept the fewest possible
elements, K = L(1/2 − r), where r is the abort threshold.
Bob can use his own copies of these K elements to make his
best guess of a declaration that will be accepted by Charlie,
and he is free to perform any measurement that will maximize
his probability of forging not being detected.

For now, we will restrict attention to individual attacks.
As we showed in Lemma 1, the probability of mismatch in
a single element is at least Cmin. Bob generates mismatches
only for the K elements he needs to guess, while the threshold
sv of accepted mismatches concerns the full signature length
L. Therefore the effective fraction of mismatches that his
guess needs to keep below is svL/K . For the protocol to
be secure we need Cmin > svL/K ≈ 2sv . Then the probabil-
ity P (forge|individual attack) of “individual forging” decays
exponentially. Using the Hoeffding inequalities [26] for the
K = L(1/2 − r) elements we obtain the expression

P (forge| individual attack) � exp[−2(Cmin − svL/K)2K].

(B9)

Theorem 1. The probability that Bob generates a signature
that causes fewer than sv mismatches, if he is only allowed
to perform individual measurements, is bounded above by
exp[−2(Cmin − svL/K)2K], where K = L(1/2 − r).

The same bound also holds for individual adaptive mea-
surements, as the individual states are uncorrelated. This we
will show below, as a step of the security proof concerning
arbitrary coherent attack strategies.

b. Coherent attacks

In the following Lemma we prove that the probability
of making a guess that results in a mismatch for (any) N th

element cannot decrease, even if Bob applies a joint (coherent)
strategy and also postselects (conditions) on any sequence
of outcomes of the previous (N − 1) elements. For this, we
follow the technique used in the proof by Croke and Kent
in [15]. One should note that the following proof applies
specifically to the protocol P1 and relies on the particular
structure of the BB84 states. Therefore, one cannot immedi-
ately generalize this type of proof to other QDS protocols,
for instance, the ones which use phase-encoded coherent
states.

Lemma 2. Suppose Alice generates two copies of a
sequence of i.i.d. BB84 states |ψAi

〉Ni=1, randomly chosen
from the uniform distribution, and gives one copy to Bob
and one to Charlie. Charlie makes a USE measurement on
each element in his sequence, ruling out one BB84 state
|ψCj

〉Nj=1 for each element. Bob follows a strategy S and

makes a (possibly) coherent measurement on his sequence
in order to make a guess |ψBk

〉Nk=1 for each state. Let pg =
pA1,...,AN−1;C1,...,CN−1;B1,...,BN−1 be the probability that Bob’s
guess for the N th state that Alice sent (|ψAN

〉) is the state
that Charlie ruled out (|ψCN

〉), conditional on Alice sending
the sequence of states |eA1〉, . . . ,|eAN−1〉, Charlie ruling out
the states |eC1〉, . . . ,|eCN−1〉 and Bob having guessed the states
|eB1〉, . . . ,|eBN−1〉. Then pg � Cmin = 1/8 for any strategy S

and any {A1, . . . ,AN−1; C1, . . . ,CN−1; B1, . . . ,BN−1} consis-
tent with S.

Proof. Suppose some collective strategy S violates
this bound for some values {A1, . . . ,AN−1,C1, . . . ,CN−1,

B1, . . . ,BN−1}. Bob could then proceed in the following way
in order to measure a single unknown BB84 state |ψAN

〉 of a
sequence. Essentially, Bob’s strategy below would amount to
using the coherent strategy on N qubits, consisting of N − 1
“dummy qubits” prepared by himself and one half of a pair
of maximally entangled qubits. If the outcomes at a certain
stage in this procedure are as desired, Bob would proceed to
“teleport in” the single unknown BB84 state into the N th place
in the qubit sequence, thereby effectively measuring it.

(1) Bob prepares an entangled singlet state of two qubits.
(2) Bob prepares (N − 1) BB84 states |eA1〉, . . . ,|eAN−1〉

and imagines that Charlie has (supposedly) ruled out the states
|eC1〉, . . . ,|eCN−1〉 which are consistent with the states that Alice
(supposedly) sent. We note that Alice and Charlie do not in
reality send these states or carry out these measurements.
Instead, Bob does everything, in order to use his collective
strategy to avoid mismatch for the N th state, which Alice really
did send.

(3) Bob applies strategy S (ignoring the knowledge of
the actual states |eA1〉, . . . ,|eAN−1〉 and the excluded states
|eC1〉, . . . ,|eCN−1〉) to the (N − 1) BB84 states and one of the
entangled qubits.

(4) For the first (N − 1) states, Bob checks the guesses
produced by S.

(5) If the results do not agree with |eB1〉, . . . ,|eBN−1〉, Bob
returns to step 1 with a new singlet and (N − 1) new BB84
states. If they do agree, he proceeds to step 6.

(6) Bob applies a teleportation operation on the unknown
BB84 state |ψAN

〉 and the other qubit of the singlet pair and
obtains the unitary correction U = XaZb. Bob examines the
output of the strategy S, to see what guess it implies for the
N th element. Bob applies the corrections XaZb to the classical
recorded outcomes. By assumption, the adjusted guess is the
state excluded by Charlie with probability pg < 1/8 = Cmin.

This process is bound to proceed to step 6 eventually. The
state |ψAN

〉 is left isolated until step 6 is reached, and no
assumption is made about what state |ψCN

〉 Charlie rules out
for the N th element. Bob therefore has a strategy that produces
a guess for a single state |ψAN

〉 that happens to be the state that
Charlie ruled out (thus causing a mismatch), with probability
p < 1/8 = Cmin, contradicting Lemma 1. �

Following the same proof one can also prove that no
conditional probability can give mismatch probability greater
than Cmax = 3/8, which is also achieved by an individual
strategy. Then, by taking convex combinations of the opti-
mal (maximum-achieving and minimum-achieving) individual
measurements one can show that all the probabilities for
match or mismatch that one can achieve with conditional
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measurements, can also be achieved by individual measure-
ments. For the proof to work, it is crucial that the teleportation
correction operations applied to any of the possible states Alice
could have sent results in another possible state. This is the
case for the BB84 states, but notably it is not the case for two
nonorthogonal states.

Using this lemma we can now prove that no coherent
strategy can improve Bob’s forging probability over the
optimal individual attack. The proof is summarized as follows.
First we introduce a modification of the verification procedure
and show that the forging probability using adaptive local mea-
surements in the modified protocol upper bounds the forging
probability of any coherent strategy in the original protocol.
Following this, we show that local adaptive measurements,
in the modified protocol, cannot improve Bob’s cheating
probability over individual independent measurements. To
close the loop, we show that, for individual independent
measurements, the cheating probabilities of the original and
modified protocol are the same.

In the modification of the verification procedure, Bob
selects an order on the qubits (it could be also specified by
the protocol), performs local measurements, and declares the
states to Charlie sequentially and finds out for each state
whether the declaration was a match or a mismatch. This
allows Bob to modify his local measurements depending on
the sequence of previous outcomes, and depending on whether
these resulted in matches or mismatches. Without the loss of
generality we will assume that Bob will measure his qubits
(i.e., the corresponding ancilla states) in the natural order of
the indices.

Let V denote the a forging strategy, using coherent strate-
gies, on the original protocol. The overall forging probability
can always be written as

p(forge) =
∑
σ∈A

p(σ ), (B10)

where σ = (x1, . . . ,xL) is any string of matches/mismatches
(say, the variable xi ∈ {0,1} denotes whether the i th declared
element matches “0” or mismatches “1” the excluded element
of Charlie) and A is the set of all strings σ that have fewer than
svL 1’s (mismatches).

Then, for the strategy V , each probability pV (σ ) of the
individual event σ = (x1, . . . ,xL) can be written using the
chain rule as

pV (σ ) = pV (x1, . . . ,xL)

= pV (x1)pV (x2|x1)pV (x3|x2,x1) · · ·
pV (xL|xL−1, . . . x1). (B11)

By Lemma 2 and the comment thereafter regarding the
maximal probability of causing a mismatch, we have that

Cmax � pV (xk = 1|xk,xk−1, . . . x2,x1)

� Cmin,∀k, ∀(xk,xk−1, . . . x2,x1), (B12)

where both Cmin and Cmax can be achieved by local mea-
surement strategies. This implies that for each sequence
of prior outcomes (xk,xk−1, . . . ,x2,x1), there exists a local
strategy/measurement Mk,xk−1,...x2,x1 acting only on qubit k,
which is a convex combination of the strategies maximizing a

mismatch and a match such that

pMk,xk−1,...x2 ,x1
(xk) = pV (xk|xk,xk−1, . . . x2,x1). (B13)

This proves that for every coherent strategy in the original
protocol, there exists an adaptive local strategy in the modified
protocol which recovers the probability distribution over
matches/mismatches of the coherent strategy. Hence we have:

P (forge|coherent attack, original protocol)

� P (forge|adaptive local attack, modified protocol).

(B14)

Next, we show that the best adaptive local strategy in
the modified protocol is the optimal individual (nonadaptive)
strategy. To see this, first note that at the kth step of the
verification procedure, since all the measurements made so
far have been local, the remainder of the L − k qubits have not
been perturbed. This implies that the probability of obtaining
a match on the next, the (L − k)th qubit, does not depend
on the previous k measurement outcomes (or declarations of
match/mismatch), since the qubit states are not correlated (and
neither are the verification measurements of Charlie). This
intuitively shows that the optimal strategy are local optimal
measurements, but for completeness, we prove this formally.
First we give a trivial claim: Given L′ signature states and
some threshold k, the probability P (Xmatch � k) of getting
at least k matches is higher than or equal to the probability
P (Xmatch � k + 1) of getting at least k + 1 matches, that
is, P (Xmatch � k) � P (Xmatch � k + 1). This is trivial as the
event Xmatch � k is contained in the event Xmatch � k + 1. In
the remainder we will use k to denote the forging threshold of
matches so k = 	L − svL
. Suppose Bob is at some stage
l of the (modified) verification procedure. There are two
possibilities: Either he obtained the k required matches for
cheating or he did not. If he obtained the matches, then the
remainder of declarations does not change his (unit) forging
probability, and any strategy (in particular, the optimal local
(nonadaptive) strategy) is optimal. Alternatively, he still needs
to obtain k′ � k matches on the remainder of L − l qubits. His
forging probability, at that point, is given by

p(forge) = p(xl = 0)P (Xmatch � k′ − 1)

+p(xl = 1)P (Xmatch � k′). (B15)

That is, either he gets the lth qubit correctly, after which he
needs only k′ − 1 matches, or he does not, and still requires
k′ matches for the remaining qubits. Since P (Xmatch � k′ −
1) � P (Xmatch � k′), the expression above is optimized by
maximizing p(xl = 0), which occurs with the optimal local
measurement (and is independent of any previous outcomes).
Since this argument holds for all l, this means that the local
(nonadaptive) strategy is optimal, i.e.,

P (forge|adaptive local attack, modified protocol)

� P (forge|individual attack, modified protocol). (B16)

However, since the optimal individual strategy does not use
the declarations Charlie provides in the modified verification
protocol, this implies that the forging probability using
nonadaptive measurements in the original protocol, and in the
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modified protocol, are equal:

P (forge|individual attack, modified protocol)

= P (forge|individual attack, original protocol), (B17)

and since coherent attacks contain individual attacks, we have

P (forge|coherent attack, original protocol)

= P (forge|individual attack, original protocol). (B18)

Combining this result with Theorem 1, we have proven the
following main theorem:

Theorem 2. The probability that Bob, by measuring his
sequence of states, generates a signature declaration with fewer
than sv mismatches is bounded by p(forge) � exp[−2(Cmin −
svL/K)2K], where K = L(1/2 − r). That is, the forging prob-
ability of the presented QDS protocol decays exponentially
with the signature length L for all possible attacks.

c. Further remarks

We had previously stressed that the presented proof of
security against general (coherent) forging attacks crucially
depends on the choice of BB84 states for the signature
elements. In particular, step 6 of Lemma 2 fails in the general
case. The results of Lemma 2 can be extended to any set
of states S for which there exists a teleportation procedure
with correction operators which leave the set S invariant. This
will imply that the correction operators simply permute the
input set, which allows for Bob to “correct” the classical
outcome of his postselected strategy which would violate
the individual measurement bound. In particular, Lemma 2
does not hold for the so-called B92 states {|0〉,|+〉}. One
can construct a counterexample with just two copies of B92
states (see the example in Ref. [17]). Alice sends one of the
four states {|00〉,|0+〉,| + 0〉,| + +〉}. Let Bob measure in the
basis

|φ++〉 = 1/
√

2(|01〉 + |10〉), (B19)

|φ+0〉 = 1/
√

2(|0−〉 + |1+〉), (B20)

|φ0+〉 = 1/
√

2(|+1〉 + |−0〉), (B21)

|φ00〉 = 1/
√

2(|+−〉 + |−+〉), (B22)

and make the relevant declaration to get a probability distribu-
tion pM (x1,x2) on matches and mismatches. This measurement
by construction guarantees that he never gets both elements
wrong (e.g., if he obtains φ++, it means that Alice did not
send the state φ00, so he obtains at most one mismatch). Now
conditioning on the first qubit to be a mismatch, he obtains
pM (x2 = 0|x1 = 1) = 1. This is clearly better than the optimal
local strategy, which can never succeed with unit probability,
1 = pM (x2 = 0|x1 = 1) > plocal(x2 = 0).

When the states used for QDS are not suitable for the
type of security proof we presented here, following Ref. [15]
one could suggest an alternative proof based on maximum
confidence measurements (MCM) [28]. The basic idea here
would be to produce a bound by considering MCM’s, and
further conditioning on these always producing a conclusive
outcome. Due to this postselection the obtained bound is not

tight but can be applied to a larger variety of quantum states.
However, this approach still cannot be applied to linearly
independent states (such as the B92 states or phase-encoded
coherent states), as in this case it yields a trivial bound of
pforge = 1.

APPENDIX C: SECURITY OF PROTOCOL P2

We will first show for protocol P2 that the probability for
repudiation decreases exponentially with the length L and then
do the same for the forging probability.

1. Security against repudiation

In order to repudiate, Alice must make Bob accept the
message while Charlie rejects it. Since Bob has to accept the
message, Alice’s declaration must agree with all the elements
of PKBm. On the other hand, for Charlie to reject the message,
he needs to detect at least svL mistakes. These should all come
from PKCm. Coming back to the requirement that Bob has
to accept the message, we see that none of the elements that
Bob receives from Charlie should include a mismatch. Since
Charlie sends each bit of his PKCm to Bob with probability
1/2, then if there are R mismatches in PKCm, the probability
for Bob to see no mismatches is (1/2)R . It is also clear that the
best strategy for Alice is to send exactly R = svL mismatches
to Charlie, and this leads to Alice’s optimum repudiation
probability

p(rep) � (1/2)svL (C1)

which decays exponentially as the length of the signature L

increases.

2. Security against forging

Bob, in order to forge, must give a declaration that has fewer
than svL mismatches. Note that this protocol is essentially
classical, so if Alice sends a bit that does not agree with
her future declaration, then the recipient detects the mismatch
deterministically. If Charlie sends more than L(1/2 + r) bits of
his private key to Bob, then the protocol is aborted by step 4 of
the distribution stage. We assume the worst-case scenario (for
the honest participants, Charlie and Alice) that Charlie has sent
exactly L(1/2 + r) elements of his private key to Bob. This
means that Bob must guess the remaining K = L(1/2 − r)
bits in PKCm, making fewer than svL mistakes. The expected
probability of error for a single guess is 1/2. The empirical
mean number of wrong guesses X̄ needs to be less than svL/K

(in other words, Bob should make fewer than svL mistakes
among the K elements he is required to guess). This, using
Hoeffding’s inequalities [26], implies that the probability to
forge is bounded by

p(forge) = p(1/2 − X̄ � 1/2 − svL/K)

� exp[−2(1/2 − svL/K)2K]

= exp

[
−4

(
1/4 − sv

1 − 2r

)2

L(1 − 2r)

]
, (C2)

which, provided that sv < 1/4 − r/2, decays exponentially
as L increases. Since typically r will be chosen to be
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small, this condition agrees with the intuitive picture. A
forger will on average guess half of the elements cor-
rectly, so he would typically make O(L/4) mistakes.
Therefore, choosing sv smaller than 1/4 guarantees the
security.

Finally, it is important to note that, unlike in protocol P1
and its variants, in protocol P2 Alice sends different signatures
to Bob and Charlie. If Alice was to send the same signature
to Bob and Charlie, and they are aware of this, then forging
would be possible.
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