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Abstract

Quantum Dimensions and Quantum Galois Theory

by

Xiangyu Jiao

The quantum dimensions of modules for vertex operator algebras are defined and their

properties are discussed systematically. The quantum dimensions of the Heisenberg

vertex operator algebra modules, the Virasoro vertex operator algebra modules and

the lattice vertex operator algebra modules are computed. A criterion for simple

current modules of a rational vertex operator algebra is given. The possible values

of the quantum dimensions are obtained for rational vertex operator algebras. A full

Galois theory for rational vertex operator algebras is established using the quantum

dimensions.
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Chapter 1

Introduction

The interactions between mathematics and physics have been playing more

and more prominent role in the current development of mathematics. The theory of

vertex operator algebra has been one of the most active and fruitful areas of modern

mathematics in the last twenty years. It provides an algebraic approach to 2 dimensional

conformal field theory in physics and is also deeply related to many important areas

of mathematics such as infinite dimensional Lie algebras, group theory, automorphic

forms, index theory, orbifold theory and mirror symmetry.

One of the most important concept in both mathematics and physics is the di-

mension of a space or an object, which plays an important and essential role in the study

of almost any branch of mathematics and especially provides lots of useful information

in the representation theory. The main theme of this thesis is to give a systematic study

of the “dimension” of a module over a vertex operator algebra. More precisely, we study

how to define quantum dimensions, how to compute quantum dimensions and the pos-
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sible values of quantum dimensions. The concept of quantum dimensions goes back to

the physical literature [FMS] and the most discussions on quantum dimensions focus on

the rational vertex operator algebras associated to the affine Kac-Moody algebras [FZ],

[DL] and Virasoro algebras [DMZ], [W]. The mathematical work on quantum dimen-

sions has been limited to the conformal nets approach to conformal field theory [KLM]

where the quantum dimensions are called the statistical dimensions or the square root

of index [J], [PP].

Our own motivation for studying quantum dimensions comes from trying to

understand the Galois theory for vertex operator algebras [DM1], [DLM1], [HMT],

originated from orbifold theory [FLM], [DVVV], [DLM5]. For a vertex operator algebra

V and a finite automorphism group G of V, the fixed points V G is also a vertex operator

algebra. It has already been established in [DM1] and [HMT] that there is a one to one

correspondence between the subgroups of G and the vertex operator subalgebras of V

containing V G. To get a complete Galois theory for V G ⊂ V, one needs a notion of

“dimension” [V : V G] of V over V G such that [V : V G] = o(G). Various efforts were

tried without success until we turned our attention to the quantum dimensions. So as

an application of the quantum dimensions we exhibit the Galois theory for a vertex

operator algebra V together with a finite automorphism group G.

Let V = ⊕n∈ZVn be a vertex operator algebra and M = ⊕n≥0Mλ+n a V -

module. The quantum dimension qdimV M of M over V is essentially the relative

dimension dimM
dimV . Unfortunately, both dimM and dimV are infinite. One has to use

limits to approach dimM
dimV . The original definition of qdimV M involves the q-characters
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of V and M. The q-character of M is a formal power series

chqM = qλ−c/24
∞∑
n=0

(dimMλ+n)qn,

where c is the central charge of V . It is proved in [Z] that the formal power series

chqM converges to a holomorphic function in the upper half plane in variable τ where

q = e2πiτ under certain conditions. It is well known that qdimV M can be defined as

the limit of
chqM
chq V

as q goes to 1 from the left. The advantage of this definition is that

one can use the modular transformation property of the q-characters [Z] and Verlinde

formula [V], [H] to compute the quantum dimensions and investigate their properties.

In fact, we are following this approach closely in the present paper. The disadvantage

of this definition is that it needs the convergence of the q-characters, which requires

both rationality and C2-cofiniteness of V. So this definition does not apply to irrational

vertex operator algebras in general.

We propose two more definitions of quantum dimension, which work for any

vertex operator algebra. The first one is given by the the limit of relative dimen-

sion limn→∞
dimMλ+n

dimVn
and the other is limn→∞

∑n
m=0 dimMλ+m∑n
m=0 dimVm

. It is proved that if

limn→∞
dimMλ+n

dimVn
exits then all the limits exist and are equal. The later definition

of quantum dimension tells us the real meaning of the quantum dimension. We firmly

believe that these three definitions are equivalent although we could not prove the as-

sertion in this paper. We also suspect that for a simple vertex operator algebra, the

quantum dimension of any irreducible module exists.

The quantum dimensions for rational and C2-cofinite vertex operator algebras
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have two main properties: (a) The quantum dimension of tensor product of two modules

is the product of quantum dimensions; (b) An irreducible module is a simple current if

and only if the quantum dimension is 1. The first property which is true for the tensor

product of vector spaces is important in many aspects. This implies that the quantum

dimensions satisfy a certain system of equations of degree 2 with integral coefficients

and helps to compute the quantum dimensions. The second property enables us to

determine the simple currents when the quantum dimensions are easily calculated. For

example, for a framed vertex operator algebra [DGH], this can be easily done using the

quantum dimensions for the rational vertex operator algebra L(1
2 , 0) associated to the

Virasoro algebra with the central charge 1
2 .

It is worthy to mention that the minimal weight λmin of the irreducible modules

plays an essential role in computing the quantum dimensions using the S-matrix. For

most rational vertex operator algebras including those associated to the unitary minimal

series for the Virasoro algebra, λmin = 0 is the weight of vertex operator algebra V. The

formula of the quantum dimensions in terms of S matrix is more or less standard. For an

arbitrary vertex operator algebra such as those associated to the non-unitary minimal

series for the Virasoro algebra, λmin can be negative. We obtain a similar formula for

the quantum dimensions using the irreducible module whose weight is λmin instead of

V. We also give two examples of non-unitary vertex operator algebras to illustrate this.

Finding the possible values of the quantum dimensions for a rational and C2-

cofinite vertex operator algebra is another task in this paper. With the help of Perron-

Frobenius Theorem on eigenvalues and some graph theory we show that the quantum
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dimension of an irreducible module can only take values in {2 cos(π/n)|n ≥ 3} ∪ [2,∞)

which are the square roots of the possible values of the index of subfactors of type II [J].

The connection between quantum dimensions and index of subfactors is exciting but

not surprising. There have been three approaches (algebraic, analytic and geometric)

to two dimensional conformal field theory [BPZ], [MS] in mathematics. The basic tool

in algebraic approach is the vertex operator algebra and the analytic approach uses the

conformal nets [GL], [Wa]. Although the connection among different approaches has

not been understood fully, constructing a conformal net from a rational vertex operator

algebra and a rational vertex operator algebra from a conformal net is highly desirable.

The connection between quantum dimension and index gives further evidence for the

equivalence of algebraic and analytic approaches to two dimensional conformal field

theory.

Motivated by the representation theories of both finite groups and finite di-

mensional associative algebras, the notion of global dimension for a vertex operator

algebra is proposed using the quantum dimensions of irreducible modules. Although

we have not done much in the present paper on global dimension, the application of

global dimension in classification of irreducible modules for orbifold and coset vertex

operator algebras is visible. The main challenge is how to find an alternating definition

without using the quantum dimensions of irreducible modules. One could classify the

irreducible modules using the global dimension and the quantum dimensions of known

irreducible modules. This will be very useful in studying the orbifold theory as in the

case of conformal nets [X].
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The thesis is organized as follows. We give the basics including the defini-

tion of twisted modules and important concepts such as rationality, regularity and C2-

cofiniteness [Z], [DLM2] in Chapter 2. The quantum dimensions are defined in Chapter

3 with examples. Chapter 4 is devoted to the study of the properties of quantum

dimensions. In particular, the connection between quantum dimension and modular

invariance [Z], tensor product of modules [H] and Verlinde formula [V] is investigated

in great depth. A characterization of simple currents in terms of quantum dimensions

is given. We present results on possible values of the quantum dimensions in Chapter

5. In the last Chapter we give a full Galois theory for a simple vertex operator algebra

with a finite automorphism group.
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Chapter 2

Preliminary

In this chapter, we recall the basic definitions on vertex operator algebras

including various notions of twisted modules for a vertex operator algebra following

[DLM2]. We also define the terms rationality, regularity, and C2-cofiniteness from [Z]

and [DLM2]. Besides, we discuss the modular invariance property of the trace functions

for a rational vertex operator algebra [Z]. This property will play an essential role in

the study of quantum dimensions.

2.1 Basics

Definition 2.1.1. A vertex operator algebra is a Z-graded vector space:

V =
⊕
n∈Z

Vn; for v ∈ Vn, n = wt v; (2.1.1)
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such that dimVn <∞ for all n ∈ Z and Vn = 0 if n is sufficiently small; equipped with

a linear map

V → (EndV )[[z, z−1]] (2.1.2)

v 7→ Y (v, z) =
∑
n∈Z

vnz
−n−1 (vn ∈ EndV )

and with two distinguished vectors 1 ∈ V0, ω ∈ V2 satisfying the following conditions for

u, v ∈ V :

unv = 0 for n sufficiently large; (2.1.3)

Y (1, z) = 1; (2.1.4)

Y (v, z)1 ∈ V [[z]] and lim
z→0

Y (v, z)1 = v; (2.1.5)

and there exists a nonnegative integer n depending on u, v such that

(z1 − z2)n[Y (u, z1), Y (v, z2)] = 0; (2.1.6)

[L(m), L(n)] = (m− n)L(m+ n) +
1

12
(m3 −m)δm+n,0cV (2.1.7)

for m,n ∈ Z, where cV ∈ C (the central charge) and where

L(n) = ωn+1 for n ∈ Z, i.e., Y (ω, z) =
∑
n∈Z

L(n)z−n−2 (2.1.8)

and

L(0)v = nv = (wt v)v for v ∈ Vn (n ∈ Z); (2.1.9)

d

dz
Y (v, z) = [L(−1), Y (u, z)] = Y (L(−1)v, z). (2.1.10)

This completes the definition. We denote the vertex operator algebra just defined by

(V, Y,1, ω) (or briefly, by V ). The series Y (v, z) are called vertex operators.

8



A vertex operator algebra V = ⊕n∈ZVn (as defined in [FLM]) is said to be of

CFT type if Vn = 0 for negative n and V0 = C1.

An automorphism g of the vertex operator algebra V is a linear automorphism

of V preserving 1 and ω such that the actions of g and Y (v, z) on V are compatible in

the sense that gY (v, z)g−1 = Y (gv, z) for v ∈ V. Then gVn ⊂ Vn for n ∈ Z. The group

of all automorphisms of the vertex operator algebra V is denoted by Aut(V ).

Let V be a vertex operator algebra and g an automorphism of V with finite

order T . Decompose V into eigenspaces of g :

V =
⊕

r∈Z/TZ

V r,

where V r = {v ∈ V |gv = e−2πir/T v}. We use r to denote both an integer between 0

and T − 1 and its residue class mod T in this situation. Let W{z} denote the space of

W -valued formal series in arbitrary complex powers of z for a vector space W.

Definition 2.1.2. A weak g-twisted V -module M is a vector space equipped with a

linear map

YM : V → (EndM){z}

v 7→ YM (v, z) =
∑
n∈Q

vnz
−n−1 (vn ∈ EndM),

which satisfies the following: for all 0 ≤ r ≤ T − 1, u ∈ V r, v ∈ V, w ∈M ,

YM (u, z) =
∑

n∈ r
T

+Z

unz
−n−1,

ulw = 0 for l� 0,

YM (1, z) = IdM ,
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z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1)YM (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM (v, z2)YM (u, z1)

= z−1
2

(
z1 − z0

z2

)−r/T
δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2),

where δ(z) =
∑

n∈Z z
n (elementary properties of the δ-function can be found in [FLM])

and all binomial expressions (here and below) are to be expanded in nonnegative integral

powers of the second variable.

Definition 2.1.3. A g-twisted V -module is a weak g-twisted V -module M which carries

a C-grading induced by the spectrum of L(0) where L(0) is the component operator of

YM (ω, z) =
∑

n∈Z L(n)z−n−2. That is, we have

M =
⊕
λ∈C

Mλ,

where Mλ = {w ∈ M |L(0)w = λw}. Moreover we require that dimMλ is finite and for

fixed λ, M n
T

+λ = 0 for all small enough integers n.

In this situation, if w ∈ Mλ, we refer to λ as the weight of w and write

λ = wtw. The totality of g-twisted V -modules defines a full subcategory of the category

of g-twisted weak V -modules.

Denote the set of nonnegative integers by Z+. An important and related class

of g-twisted modules is the following.

Definition 2.1.4. An admissible g-twisted V -module is a weak g-twisted V -module M

that carries a 1
T Z+-grading

M =
⊕

n∈ 1
T
Z+

M(n),

10



which satisfies the following

vmM(n) ⊆M(n+ wtv −m− 1)

for homogeneous v ∈ V, m ∈ 1
T Z.

Remark 2.1.5. If g = IdV we have the notions of weak, ordinary and admissible

V -modules [DLM2].

Definition 2.1.6. Let V be a vertex operator algebra and (M i, YM i) (i = 1, 2, 3) be

three V -modules. An intertwining operator for V of type

 M3

M1 M2

 is a linear map

Y : M1 ⊗M2 →M3{z}, or equivalently,

Y : M1 → (Hom(M2,M3)){z}

v 7→ Y(v, z) =
∑
n∈C

vnz
n (vn ∈ Hom(M2,M3))

such that for a ∈ V, v ∈M1, u ∈M2, the following conditions are satisfied:

(1) For fixed n ∈ C, vn+ku = 0 for sufficiently large integer k,

(2) (The Jacobi identity)

z−1
0 δ

(
z1 − z2

z0

)
YM3(a, z1)Y(v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
Y(v, z2)YM2(a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y(YM1(a, z0)v, z2),

(3) (L(-1)-derivative property)

d

dz
Y(v, z) = Y(L(−1)v, z).
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The intertwining operator of type

 M3

M1 M2

 forms a vector space. We use

IV

 M3

M1 M2

 to denote this space.

If M =
⊕

n∈ 1
T
Z+
M(n) is an admissible g-twisted V -module, the contragredient

module M ′ of M is defined as follows:

M ′ =
⊕

n∈ 1
T
Z+

M(n)∗,

where M(n)∗ = HomC(M(n),C). The vertex operator YM ′(a, z) is defined for a ∈ V via

〈YM ′(a, z)f, u〉 = 〈f, YM (ezL(1)(−z−2)L(0)a, z−1)u〉,

where 〈f, w〉 = f(w) is the natural paring M ′ ×M → C. One can prove (cf. [FHL],

[Xu]) the following:

Lemma 2.1.7. (M ′, YM ′) is an admissible g−1-twisted V -module.

We can also define the contragredient module M ′ for a g-twisted V -module

M. In this case, M ′ is a g−1-twisted V -module. Moreover, M is irreducible if and only

if M ′ is irreducible.

Definition 2.1.8. A vertex operator algebra V is called g-rational, if the admissible

g-twisted module category is semisimple. V is called rational if V is 1-rational.

The following lemma about g-rational vertex operator algebras is well-known

[DLM3].
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Lemma 2.1.9. If V is g-rational and M is an irreducible admissible g-twisted V -

module, then

(1) M is a g-twisted V -module and there exists a number λ ∈ C such that

M = ⊕n∈ 1
T
Z+
Mλ+n where Mλ 6= 0. λ is called the conformal weight of M ;

(2) There are only finitely many irreducible admissible g-twisted V -modules up

to isomorphism.

Besides rationality, there is another important concept called C2-cofiniteness

[Z].

Definition 2.1.10. We say that a vertex operator algebra V is C2-cofinite if V/C2(V )

is finite dimensional, where C2(V ) = 〈v−2u|v, u ∈ V 〉.

For a simple vertex operator algebra V which has finitely many irreducible

modules, we always denote M0,M1, · · · , Md all the inequivalent irreducible V -modules

with M0 ∼= V . Let λi denote the conformal weight of M i. The following theorem is

proved in [DLM5].

Theorem 2.1.11. Let V be a rational and C2-cofinite vertex operator algebra, then

λi ∈ Q, ∀i = 0, · · · , d.

Definition 2.1.12. A vertex operator algebra V is called regular if every weak V -module

is a direct sum of irreducible V -modules.

Remark 2.1.13. It is proved in [ABD] that if V is of CFT type, then regularity is

equivalent to rationality and C2-cofiniteness. Also V is regular if and only if the weak

module category is semisimple [DY].

13



Let V be a vertex operator algebra. In [DLM4] a series of associative algebras

An(V ) were introduced for nonnegative integers n. In the case n = 0, A0(V ) = A(V )

is the Zhu’s algebra as defined in [Z]. We briefly review An(V ) here. For homogeneous

u, v ∈ V, we define

u ◦n v = ReszY (u, z)v
(1 + z)wtu+n

z2n+2
,

u ∗n v =

n∑
m=0

(−1)m

m+ n

n

ReszY (u, z)
(1 + z)wtu+n

zn+m+1
v.

Extend ◦n and ∗n linearly to obtain bilinear products on V. We let On(V ) be the linear

span of all u ◦n v and L(−1)u+ L(0)u. We have (see [DLM4], [Z]):

Theorem 2.1.14. Let V be a vertex operator algebra and M = ⊕∞n=0M(n) be an

admissible V -module. Set An(V ) = V/On(V ). Then

(1) For any n ∈ Z+, An(V ) is an associative algebra with respect to ∗n;

(2) For 0 ≤ m ≤ n, M(m) is an An(V )-module;

(3) If V is rational, for any n ∈ Z+, An(V ) is a finite dimensional semisimple

associative algebra;

(4) Let V be a simple rational vertex operator algebra and assume M1, · · · ,Md

be the inequivalent irreducible V -modules, then An(V ) ∼= ⊕di=0 ⊕m≤n EndM i(m).

2.2 Modular Invariance of Trace Functions

We now turn our discussion to the modular-invariance property in vertex op-

erator algebra theory. The most basic function is the formal character of a g-twisted

14



V -module M = ⊕n∈ 1
T
Z+
Mλ+n. We define the formal character of M as

chqM = trM qL(0)−c/24 = qλ−c/24
∑

n∈ 1
T
Z+

(dimMλ+n)qn,

where λ is the conformal weight of M . It is proved in [Z] and [DLM5] that chqM

converges to a holomorphic function on the domain |q| < 1 if V is C2-cofinite. We

sometimes also use ZM (τ) to denote the holomorphic function chqM. Here and below

τ is in the complex upper half-plane H and q = e2πiτ .

For any homogeneous element v ∈ V we define a trace function associated to

v as follows:

ZM (v, τ) = trM o(v)qL(0)−c/24 = qλ−c/24
∑

n∈ 1
T
Z+

trMλ+n
o(v)qn,

where o(v) = v(wtv − 1) is the degree zero operator of v.

There is a natural action of Aut(V ) on twisted modules [DLM5]. Let g, h be

two automorphisms of V with g of finite order. If (M,Yg) is a weak g-twisted V -module,

there is a weak hgh−1-twisted V -module (h ◦M,Yhgh−1), where h ◦M ∼= M as vector

spaces and

Yhgh−1(v, z) = Yg(h
−1v, z)

for v ∈ V. This defines a left action of Aut(V ) on weak twisted V -modules and on

isomorphism classes of weak twisted V -modules. Symbolically, we write

h ◦ (M,Yg) = (h ◦M,Yhgh−1) = h ◦M,

where we sometimes abuse notation slightly by identifying (M,Yg) with the isomorphism

class that it defines.

15



If g, h commute, obviously h acts on the g-twisted modules as above. We set

M (g) to be the equivalence classes of irreducible g-twisted V -modules and M (g, h) =

{M ∈ M (g)|h ◦M ∼= M}. Then for any M ∈ M (g, h), there is a g-twisted V -module

isomorphism

ϕ(h) : h ◦M →M.

The linear map ϕ(h) is unique up to a nonzero scalar. We set

ZM (g, h, τ) = trM ϕ(h)qL(0)−c/24 = qλ−c/24
∑

n∈ 1
T
Z+

trMλ+n ϕ(h)qn.

Since ϕ(h) is unique up to a nonzero scalar, ZM (g, h, τ) is also defined up to a nonzero

scalar. The choice of the scalar does not interfere with any of the results in this thesis.

For a homogeneous element v ∈ V and any commuting pair (g, h) we define

TM (v, g, h, τ) = qλ−c/24
∑

n∈ 1
T
Z+

trMλ+n o(v)ϕ(h)qn,

where M ∈M (g, h). It is easy to see when v = 1, TM (1, g, h, τ) = ZM (g, h, τ).

Zhu has introduced a second vertex operator algebra (V, Y [ ],1, ω̃) associated

to V in [Z]. Here ω̃ = ω − c/24 and

Y [v, z] = Y (v, ez − 1)ez·wtv =
∑
n∈Z

v[n]zn−1

for homogeneous v. We also write

Y [ω̃, z] =
∑
n∈Z

L[n]z−n−2.

We must take care to distinguish between the notion of conformal weight in the

original vertex operator algebra and in the second vertex operator algebra (Y, Y [ ],1, ω̃).
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If v ∈ V is homogeneous in the second vertex operator algebra, we denote its weight by

wt[v]. For such v we define an action of the modular group Γ on TM in a familiar way,

namely

TM |γ(v, g, h, τ) = (cτ + d)−wt[v]TM (v, g, h, γτ),

where γτ is the Möbius transformation, that is

γ : τ 7→ aτ + b

cτ + d
, γ =

 a b

c d

 ∈ Γ = SL(2,Z). (2.2.1)

Let P (G) denote the commuting pairs of elements in a group G. We let γ ∈ Γ act on

the right of P (G) via

(g, h)γ = (gahc, gbhd).

The following theorem is proved in [Z], [DLM5].

Theorem 2.2.1. Assume (g, h) ∈ P (Aut(V )) such that the orders of g and h are finite.

Let γ =

 a b

c d

 ∈ Γ. Also assume that V is gahc-rational and C2-cofinite. If M i is

an irreducible h-stable g-twisted V -module, then

TM i |γ(v, g, h, τ) =
∑

Nj∈M (gahc,gbhd)

γi,j(g, h)TNj (v, (g, h)γ, τ),

where γi,j(g, h) are some complex numbers independent of the choice of v ∈ V .

Remark 2.2.2. In the case g = h = 1, and γ = S =

 0 −1

1 0

 we have:

ZM i(v,−
1

τ
) = τwt[v]

d∑
j=0

Si,jZMj (v, τ). (2.2.2)

The matrix S = (Si,j) is called S-matrix which is independent of the choice of v.
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Chapter 3

Quantum Dimensions

In this chapter, we define the quantum dimension for an ordinary V -module M

and give some examples. We propose two alternative definitions of quantum dimensions

which we firmly believe that they give us equivalent definitions. Global dimension is

also studied in this chapter.

3.1 Definition

Definition 3.1.1. Let V be a vertex operator algebra and M a V -module such that

ZV (τ) and ZM (τ) exist. The quantum dimension of M over V is defined as

qdimV M = lim
y→0

ZM (iy)

ZV (iy)
, (3.1.1)

where y is real and positive.

Remark 3.1.2. Sometimes we use an alternating definition which involves the q-

18



characters:

qdimV M = lim
q→1−

chqM

chq V
. (3.1.2)

This is because we know as τ = iy → 0, q = e2πiτ = e−2πy → 1−. This definition of

quantum dimension seems well known in the literature.

Remark 3.1.3. Quantum dimension is formally defined. Intuitively, for an arbitrary

vertex operator algebra V and any V -module M , qdimV M might not exist. But we will

prove that for rational and C2-cofinite vertex operator algebras, quantum dimensions do

exist.

Remark 3.1.4. If qdimV M exists, then it is nonnegative.

Remark 3.1.5. If qdimV M exists, then

qdimV M = qdimV M
′. (3.1.3)

In the definition of quantum dimensions one needs the convergence of both

chq V and chqM. But there is no theorem which guarantees the convergence of these

formal q-characters for an arbitrary vertex operator algebra. It is natural to seek other

equivalent definition of quantum dimensions without using the convergence of formal

characters.

Proposition 3.1.6. Let V = ⊕∞n=0Vn be a vertex operator algebra, and M=⊕∞n=0M(n)

be an admissible V -module with dimM(n) <∞, ∀n ≥ 0. If limn→∞
dimM(n)

dimVn
= d exists,

then

(1) limn→∞
∑n
i=0 dimM(i)∑n
i=0 dimVi

= d,
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(2) limq→1−
chqM
chq V

= d.

Proof: For simplicity, we denote dimM(n) by an and dimVn by bn. We first deal with

the case that d 6= ∞. Then limn→∞
an
bn

= d implies for any ε > 0, | anbn − d |< ε, for

n ≥ N, where N is a sufficiently large integer. Thus we have

| an − bnd |< εbn.

For (1) we consider the following estimation:∣∣∣∣∑m
n=0 an∑m
n=0 bn

− d
∣∣∣∣ =

∣∣∣∣∑m
n=0 an −

∑m
n=0 bnd∑m

n=0 bn

∣∣∣∣
=

∣∣∣∣∑m
n=0(an − bnd)∑m

n=0 bn

∣∣∣∣
≤

∣∣∣∣∣
∑N

n=0(an − bnd)∑m
n=0 bn

∣∣∣∣∣+

∣∣∣∣∑m
n=N+1(an − bnd)∑m

n=0 bn

∣∣∣∣
≤

∣∣∣∣∣
∑N

n=0(an − bnd)∑m
n=0 bn

∣∣∣∣∣+

∣∣∣∣∑m
n=N+1 εbn∑m
n=0 bn

∣∣∣∣
≤

∣∣∣∣∣
∑N

n=0(an − bnd)∑m
n=0 bn

∣∣∣∣∣+ ε.

For the first term above, we know that limm→∞
∑m

n=0 bn = ∞, and the top term∑N
n=0(an − bnd) is a fixed number. So we can take m > N1, for some big enough

number N1, and we get ∣∣∣∣∣
∑N

n=0(an − bnd)∑m
n=0 bn

∣∣∣∣∣ < ε.

So for m > max{N,N1},
∣∣∣∑m

n=0 an∑m
n=0 bn

− d
∣∣∣ < 2ε, i.e.

lim
n→∞

∑n
i=0 dimM(i)∑n
i=0 dimVi

= d.

20



(2) is proved in a similar way:∣∣∣∣∑∞n=0 anq
n∑∞

n=0 bnq
n
− d
∣∣∣∣ =

∣∣∣∣∑∞n=0(an − bnd)qn∑∞
n=0 bnq

n

∣∣∣∣
=

∣∣∣∣∣
∑N

n=0(an − bnd)qn∑∞
n=0 bnq

n
+

∑∞
n=N+1(an − bnd)qn∑∞

n=0 bnq
n

∣∣∣∣∣
≤

∣∣∣∣∣
∑N

n=0(an − bnd)qn∑∞
n=0 bnq

n

∣∣∣∣∣+
∞∑

n=N+1

∣∣∣∣(an − bnd)qn∑∞
n=0 bnq

n

∣∣∣∣
≤

∣∣∣∣∣
∑N

n=0(an − bnd)qn∑∞
n=0 bnq

n

∣∣∣∣∣+
∞∑

n=N+1

∣∣∣∣ (εbn)qn∑∞
n=0 bnq

n

∣∣∣∣
≤

∣∣∣∣∣
∑N

n=0(an − bnd)qn∑∞
n=0 bnq

n

∣∣∣∣∣+ ε.

Obviously, limq→1−

∣∣∣∑N
n=0(an−bnd)qn∑∞

n=0 bnq
n

∣∣∣ = 0. Thus when q is close to 1, the first term above

is very small and so is
∣∣∣∑∞n=0 anq

n∑∞
n=0 bnq

n − d
∣∣∣ . This shows that limq→1−

chqM
chq V

= d.

If d =∞, it is evident that limn→∞
∑n
i=0 dimM(i)∑n
i=0 dimVi

=∞ and limq→1−
chqM
chq V

=∞.

The proof is complete. �

Remark 3.1.7. We believe that for a simple vertex operator algebra V and an irre-

ducible V -module M , if one of the three limits limn→∞
dimM(n)

dimVn
, limn→∞

∑n
i=0 dimM(i)∑n
i=0 dimVi

and limq→1−
chqM
chq V

exists and is finite, then the other limits also exist and all limits

are equal. But we cannot establish this result in the paper. There are counterex-

amples in pure analysis: If an, bn are nonnegative real numbers for n ≥ 0 such that

limn→∞
∑n
m=0 bm∑n
m=0 am

exists and is finite, but limn→∞
bn
an

=∞. So the equality of these three

limits has some deep reason (which we do not know) from the theory of vertex operator

algebra.

If V is a vertex operator algebra with only finitely many inequivalent irre-

ducible modules, say M0, · · · ,Md, we give the definition of global dimension.
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Definition 3.1.8. The global dimension of V is defined as

glob(V ) =
d∑
i=0

(qdimV M
i)2.

Remark 3.1.9. In the index theory of conformal nets, the so called µ-index which is

similar to the global dimension defined above plays an important role in orbifold theory.

We expect that we can use global dimensions to get some significant results in vertex

operator algebra theory. Same global dimension is also defined in the setting of fusion

category [ENO].

Here is a result on the global dimension for a rational vertex operator algebra

using An(V ).

Proposition 3.1.10. Let V be a rational vertex operator algebra and M i = ⊕n≥0M
i(n)

be the irreducible modules with M i(0) 6= 0 for all i. We assume that limn→∞
dimM i(n)

dimVi

exists and is finite for all i. Then

glob(V ) = lim
n→∞

dimAn(V )/An−1(V )

(dimVn)2
.

Proof: It follows from [DLM4] that An(V ) ∼= ⊕di=0 ⊕m≤n EndM i(m). Then

An(V )/An−1(V ) ∼=
d⊕
i=0

EndM i(n).

Using Proposition 3.1.6 and the definition of global dimension gives the result immedi-

ately. �

22



3.2 Examples

We use the definition to compute the quantum dimensions of modules for the

Heisenberg vertex operator algebras M(1) and the Virasoro vertex operator algebras

associated to the Virasoro Lie algebra with central charge 1.

Example 3.2.1. Let M(1) be the Heisenberg vertex operator algebra constructed from

the vector space H of dimension d and with a nondegenerate symmetric bilinear form.

It is well known that every irreducible M(1)-module is of the form M(1, λ), λ ∈ H with

q-character

chqM(1, λ) =
q

(λ,λ)
2
− d

24∏
n≥1(1− qn)d

.

Using the alternating definition in Remark 3.1.2 we have

qdimM(1)M(1, λ) = lim
q→1−

q
(λ,λ)

2∏
n≥1(1−qn)d

1∏
n≥1(1−qn)d

= 1.

Example 3.2.2. Let c and h be two complex numbers and let L(c, h) be the lowest

weight irreducible module for the Virasoro algebra with central charge c and lowest

weight h. Then L(c, 0) has a natural vertex operator algebra structure [FZ]. We are

interested in the vertex operator algebra L(1, 0) and its irreducible modules. We know

from [KR] that

chq L(1, h) =


q
n2

4 −q
(n+2)2

4

η(q) if h = n2

4 , n ∈ Z,

qh

η(q) otherwise,

where

η(q) = q1/24
∞∏
n=1

(1− qn).
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Then if h 6= n2

4 for any integer n,

qdimL(1,0) L(1, h) = lim
q→1−

qh∏
n≥1(1−qn)

1∏
n>1(1−qn)

= lim
q→1−

qh

1− q
=∞.

Similarly for h = m2

4 for some integer m,

qdimL(1,0) L(1,
m2

4
) = lim

q→1−

q
m2

4 − q
(m+2)2

4

1− q

= lim
q→1−

q
m2

4 (1− qm+1)

1− q

= lim
q→1−

q
m2

4 (1 + q + · · ·+ qm)

=m+ 1.
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Chapter 4

Quantum Dimensions and the Verlinde

Formula

Computing quantum dimensions directly by using the definition is not easy.

However, the definition of quantum dimensions involves the q-characters. This motivates

us to use the modular invariant property of the trace functions [Z] to do the computation.

It turns out that the Verlinde formula [V], [H] plays an important role.

4.1 Verlinde Formula

The Verlinde conjecture [V] in conformal field theory states that the action of

the modular transformation τ → −1/τ on the space of characters of a rational conformal

field theory diagonalizes the fusion rules. In this section, we quote some results from

[H] about the Verlinde conjecture of rational vertex operator algebras.

Let V be a rational and C2-cofinite simple vertex operator algebra, and let
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M0,M1, · · · , Md be as before. We use Nk
i,j to denote dim IV

 Mk

M i M j

 , where

IV

 Mk

M i M j

 is the space of intertwining operators of type

 Mk

M i M j

 . Nk
i,j are

called the fusion rules. As usual, we use M i′ to denote (M i)′, the contragredient module

of M i.

The following theorem which plays an essential role in this section is proved

in [H].

Theorem 4.1.1. Let V be a rational and C2-cofinite simple vertex operator algebra of

CFT type and assume V ∼= V ′. Let S = (Si,j)
d
i,j=0 be the S-matrix as defined in (2.2.2).

Then

(1) (S−1)i,j = Si,j′ = Si′,j , and Si′,j′ = Si,j ;

(2) S is symmetric and S2 = (δi,j′);

(3) Nk
i,j =

∑d
s=0

Sj,sSi,sS
−1
s,k

S0,s
;

(4) The S-matrix diagonalizes the fusion matrix N(i) = (Nk
i,j)

d
j,k=0 with di-

agonal entries
Si,s
S0,s

, for i, s = 0, · · · , d. More explicitly, S−1N(i)S = diag(
Si,s
S0,s

)ds=0. In

particular, S0,s 6= 0 for s = 0, · · · , d.

4.2 Properties of Quantum Dimensions

We prove that the quantum dimensions of modules exist and are related to

the S-matrix under certain assumptions in this section. Using the Verlinde Formula we
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obtain an expression of the global dimension. We also show that quantum dimensions

are multiplicative under tensor product, and give a criterion for a simple module to be

a simple current (see Definition 4.2.10).

Lemma 4.2.1. Let V be a simple, rational and C2-cofinite vertex operator algebra of

CFT type. Let M0, M1, · · · , Md be as before with the corresponding conformal weights

λi > 0 for 0 < i ≤ d. Then 0 < qdimV M
i <∞ for any 0 ≤ i ≤ d.

Proof. Since V is rational and C2-cofinite, we can use the modular transformation rule

given in (2.2.2). By definition, we have

qdimV M
i = lim

y→0

ZM i(iy)

ZV (iy)

= lim
τ→i∞

ZM i(− 1
τ )

ZV (− 1
τ )

= lim
τ→i∞

∑d
j=0 Si,jZMj (τ)∑d
j=0 S0,jZMj (τ)

= lim
q→0+

∑d
j=0 Si,j chqM

j∑d
j=0 S0,j chqM j

=
Si,0
S0,0

.

(4.2.1)

The last equality is true because the conformal weight λi > 0 except λ0, which implies

limq→0+ chqM
j = 0 for 0 < j ≤ d. By Theorem 4.1.1 we know that Si,0 6= 0 for 0 ≤ i ≤ d.

So qdimV M
i exists for all 0 ≤ i ≤ d. By Remark 3.1.4 we conclude 0 < qdimV M

i <∞.

�

Remark 4.2.2. The computation given in (4.2.1) indicates the quantum dimension

of a V -module, in some sense, only depends on the S-matrix. From Remark 2.2.2 we
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know that the S-matrix does not depend on the element v we choose. Therefore we can

actually define qdimV M in the following way:

qdimV M = lim
y→0

ZM (v, iy)

ZV (v, iy)

for any homogeneous v ∈ V with o(v)|V0 6= 0.

Remark 4.2.3. Lemma 4.2.1 can be generalized as follows. Assume V is a simple,

rational and C2-cofinite vertex operator algebra with V ∼= V ′. Let M i be as before. Also

assume λk = λmin = mini{λi} and λj > λk ∀j 6= k. (It is not clear if the assumption

that there is a unique k such that λk = λmin is always satisfied for rational vertex

operator algebras.) Then qdimV M
i =

Si,k
S0,k

. The same consideration also applies to

several other results including Propositions 4.2.4, 4.2.16, and Theorem 5.10. below with

suitable modifications.

By using Verlinde Formula, we get the following result about global dimensions.

Proposition 4.2.4. Let V be as in Lemma 4.2.1, the global dimension of V is given by

glob(V ) =
1

S2
0,0

.

Proof. By Lemma 4.2.1,

glob(V ) =
d∑
i=0

(Si,0
S0,0

)2
=

d∑
i=0

S2
i,0

S2
0,0

=

∑d
i=0 S

2
i,0

S2
0,0

.

By Theorem 4.1.1 (1) and (2),
∑d

i=0 S
2
i,0 = 1 and the result follows. �

Next, we turn our discussion to the quantum dimension of tensor product of

two modules.
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Definition 4.2.5. Let V be a vertex operator algebra, and M1, M2 be two V -modules.

A module (W, I), where I ∈ IV

 W

M1 M2

 , is called a tensor product of M1 and

M2 if for any V -module M and Y ∈ IV

 M

M1 M2

, there is a unique V -module

homomorphism f : W → M , such that Y = f ◦ I. As usual, we denote (W, I) by

M1 �M2.

Remark 4.2.6. It is well known that for a rational vertex operator algebra V, let

M0, · · · ,Md be all irreducible V -modules, then M i �M j exists and

M i �M j =
d∑

k=0

Nk
i,jM

k,

where Nk
i,j are the fusion rules.

Moreover, if V is also C2-cofinite, then the tensor product is commutative and

associative and Nk
i,j = N j′

i,k′ (see [HL1]-[HL4], [Li2]).

Remark 4.2.7. It is easy to show that V �M = M for any V -module M .

Proposition 4.2.8. Let V and {M0,M1, . . . ,Md} be as in Lemma 4.2.1, and also

assume V ∼= V ′, then

qdimV (M i �M j) = qdimV M
i · qdimV M

j .

Proof. Due to Lemma 4.2.1 and Remark 4.2.6, it suffices to show

d∑
k=0

Nk
i,j

Sk,0
S0,0

=
Si,0
S0,0

Sj,0
S0,0

.
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Using Theorem 4.1.1 gives

d∑
k=0

Nk
i,j

Sk,0
S0,0

=
d∑

k,s=0

Si,sSj,sS
−1
s,k

S0,s

Sk,0
S0,0

=
1

S0,0

d∑
s=0

(
Si,sSj,s
S0,s

d∑
k=0

(
S−1
s,kSk,0

))

=
1

S0,0

d∑
s=0

(Si,sSj,s
S0,s

δs,0
)

=
1

S0,0

Si,0Sj,0
S0,0

=
Si,0
S0,0

Sj,0
S0,0

.

The proof is complete. �

Remark 4.2.9. Under the assumptions of Remark 4.2.3, one can easily prove that

quantum dimensions are also multiplicative under tensor product using the Verlinde

formula.

We now turn our attention to the quantum dimensions of simple currents.

Definition 4.2.10. Let V be a simple vertex operator algebra, a simple V -module M is

called a simple current if for any irreducible V -module W , M �W exists and is also a

simple V -module.

It is clear from the definition that the simple current is an analogue of 1-

dimensional module for groups. Our goal is to establish that M is a simple current if

and only if qdimV M = 1.

Remark 4.2.11. By Remark 4.2.7, if V is a simple vertex operator algebra, then V

itself is a simple current.
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Lemma 4.2.12. Let V be a rational and C2-cofinite simple vertex operator algebra, and

M , N be two admissible V -modules. Then M �N 6= 0.

Proof. As V is rational and C2-cofinite, by Remark 4.2.6, we know the tensor product

of any two V -modules exists. Thus we can consider

(
M �N

)
�N ′ = M �

(
N �N ′

)
⊇M � V = M 6= 0,

which implies M �N 6= 0. �

Lemma 4.2.13. Let V be a rational and C2-cofinite simple vertex operator algebra of

CFT type with V ∼= V ′, and let M0, M1, · · · , Md be as before with the corresponding

conformal weights λi > 0, 0 < i ≤ d. For any irreducible V -module M ,

qdimV M ≥ 1.

Proof. Let M i be an irreducible V -module with minimal quantum dimension. By

Lemma 4.2.1, obviously qdimV M
i > 0 and qdimV M > 0. Then using Proposition

4.2.8, we get

qdimV M
i · qdimV M = qdimV

(
M i �M

)
> 0.

M i was chosen to be of minimal quantum dimension, therefore

qdimV M
i · qdimV M ≥ qdimV M

i > 0.

Thus qdimV M ≥ 1. �

Lemma 4.2.14. Let V be a rational and C2-cofinite simple vertex operator algebra of

CFT type with V ∼= V ′, and let M0, M1, · · · , Md be as before with the corresponding

conformal weights λi > 0, 0 < i < d. If M is a simple current of V , then qdimV M = 1.
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Proof. Let M be a simple current of V . Immediately we have M �M ′ = V . Then by

Remark 3.1.5 and Proposition 4.2.8 we have

1 = qdimV V = qdimV (M �M ′) = qdimV M · qdimV M
′ = (qdimV M)2.

This implies qdimV M = 1. �

Lemma 4.2.15. Let V be a rational and C2-cofinite simple vertex operator algebra,

and M0 ∼= V,M1, · · · ,Md be as before. Fix an irreducible V -module M s, then for any

0 ≤ i ≤ d, we have

M i ⊆M s �M j

for some 0 ≤ j ≤ d.

Proof. Again, the rationality and C2-cofiniteness guarantee that tensor products are

well defined and associative. So

M i ⊆ (M s �M s′)�M i = M s � (M s′ �M i),

where M s′ is the dual of M s. Note that M s′ �M i = ⊕dj=0N
j
s′,iM

j . Thus

M i ⊆
d⊕
j=0

N j
s′,iM

s �M j .

Since M i is simple, M i ⊆M s �M j for some j. �

Proposition 4.2.16. Let V be a rational and C2-cofinite simple vertex operator algebra

of CFT type with V ∼= V ′, and let M0, M1, · · · , Md be as before with the corresponding

conformal weights λi > 0, 0 < i ≤ d, then a V -module M is a simple current if and

only if qdimV M = 1.
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Proof. By Lemma 4.2.14 any simple current module has quantum dimension 1. Now

assume M is a V -module such that qdimV M = 1. Obviously, Lemma 4.2.13 shows that

M is simple. Lemma 4.2.15 claims that

d⊕
i=0

M i ⊆
d⊕
i=0

M �M i.

This implies

qdimV (
d⊕
i=0

M i) ≤ qdimV

d⊕
i=0

M �M i.

Since qdimV M = 1, computing the quantum dimensions on both sides of the

above equation gives

qdimV (
d⊕
i=0

M i) =
d∑
i=0

1 · qdimV M
i =

d∑
i=0

qdimV M �M
i = qdimV (

d⊕
i=0

M �M i).

We obtain ⊕di=0M
i = ⊕di=0M �M

i.

By Lemma 4.2.12, one can conclude that for any M i, i = 0, . . . , d, there exists

some j = 0, . . . , d, such that M �M i = M j , i.e. M is a simple current. �

4.3 Examples

Now, by using the properties above we can compute more examples about

quantum dimensions.

Example 4.3.1. Let g be a finite dimensional simple Lie algebra with Cartan subalgebra

h, and ĝ be the corresponding affine Lie algebra. Fix a positive integer k. For any

λ ∈ h∗, we denote the corresponding irreducible highest weight module for ĝ with

highest weight λ by Lg(k, λ). It is proved in [DL], [FZ], [Li1] that Lg(k, 0) is a rational
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simple vertex operator algebra and all irreducible Lg(k, 0)-modules are classified as

{Lg(k, λ)|〈λ, θ〉 ≤ k, λ ∈ h∗ is a dominant integral weight}, where θ is the longest root

of g, and (θ, θ) = 2.

The quantum dimensions of the irreducible Lg(k, 0)-modules can be computed

using Lemma 4.2.1 and the modular transformation property of affine characters [K].

The formula is given in [C]:

qdimLg(k,0) Lg(k, λ) =
∏
α>0

〈λ+ ρ, α〉q
〈ρ, α〉q

,

where ρ is the Weyl vector, α belongs to the set of positive roots and nq = qn−q−n
q−q−1 ,

where q = eiπ/(k+ȟ) and ȟ is the dual coxeter number of g. In the operator algebra

framework, the statistic dimension of Lg(k, λ) is given by the same formula when g is

of type A in [Wa].

Example 4.3.2. Let VL be the lattice vertex operator algebra associated to an positive

definite even lattice L. It is proved in [D], [DLM5] that VL is rational and C2-cofinite,

and {VL+µi |i ∈ L◦/L} gives a complete list of all irreducible VL-modules, where L◦ is

the dual lattice of L. By [DL], every irreducible VL-module is a simple current. Thus

qdimVL VL+µi = 1

by Proposition 4.2.16.

This implies a well known property on the theta functions of lattices. Note that

chq VL+µi =
θL+µi

(q)

η(q)d
where θL+µi(q) =

∑
α∈L+µi

q(α,α)/2 and η(q) = q1/24
∏
n≥1(1− qn)
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and d is the rank of L. Then

lim
q→1

θL+µi(q)

θL(q)
= lim

q→1

chq VL+µi

chq VL
= 1.

Example 4.3.3. We now consider the vertex operator algebra L(1
2 , 0) associated to the

Virasoro algebra with central charge 1
2 . This is a rational and C2-cofinite vertex operator

algebra with only three irreducible modules L(1
2 , 0), L(1

2 ,
1
2), and L(1

2 ,
1
16) (see [DLM5],

[DMZ], [W]). We use two different methods to compute the quantum dimensions of the

modules.

(1) We first compute the quantum dimensions by using the S-matrix (see

Lemma 4.2.1). For short we use Z0(τ), Z 1
2
(τ), Z 1

16
(τ) to denote ZL( 1

2
,0)(τ), ZL( 1

2
, 1
2

)(τ),

and ZL( 1
2
, 1
16

)(τ) respectively. The modular transformation rules below is given in [Ka]:

Z0(−1

τ
) =

1

2
Z0(τ) +

1

2
Z 1

2
(τ) +

√
2

2
Z 1

16
(τ),

Z 1
2
(−1

τ
) =

1

2
Z0(τ) +

1

2
Z 1

2
(τ)−

√
2

2
Z 1

16
(τ),

Z 1
16

(−1

τ
) =

√
2

2
Z0(τ)−

√
2

2
Z 1

2
(τ).

By Lemma 4.2.1, we get

qdimL( 1
2
, 0) L(

1

2
, 0) = 1,

qdimL( 1
2
, 0) L(

1

2
,

1

2
) =

1/2

1/2
= 1,

qdimL( 1
2
, 0) L(

1

2
,

1

16
) =

√
2/2

1/2
=
√

2.

(4.3.1)

(2) We can also compute the quantum dimensions by using Proposition 4.2.8.
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The fusion rules for these modules are well known (see [DMZ], [W]):

(1) L(
1

2
, 0) is the identity;

(2) L(
1

2
,
1

2
)× L(

1

2
,
1

2
) = L(

1

2
, 0);

(3) L(
1

2
,
1

2
)× L(

1

2
,

1

16
) = L(

1

2
,

1

16
);

(4) L(
1

2
,

1

16
)× L(

1

2
,

1

16
) = L(

1

2
, 0) + L(

1

2
,
1

2
).

(4.3.2)

Obviously, L(1
2 , 0) and L(1

2 ,
1
2) are simple currents, so we have

qdimL( 1
2
,0) L(

1

2
, 0) = qdimL( 1

2
,0) L(

1

2
,
1

2
) = 1. (4.3.3)

Using equations (4.3.2) (4.3.3) and Proposition 4.2.8 we have

[
qdimL( 1

2
, 0) L(

1

2
,

1

16
)
]2

= 1 + 1 = 2.

That implies

qdimL( 1
2
, 0) L(

1

2
,

1

16
) =
√

2.

Example 4.3.4. Let L(c, h) be the irreducible Virasoro algebra module as in Example

3.2.2. It is proved in [W] that the vertex operator algebra L(c, 0) is rational if and only

if c = cp,q = 1 − 6(p−q)2
pq , where p, q ∈ {2, 3, 4, · · · }, and p, q are relatively prime. All

irreducible L(cp,q, 0)-modules are classified as L(cp,q, hm,n) for 0 < m < p, 0 < n < q,

where hm,n = (np−mq)2−(p−q)2
4pq . The fusion rules are also determined in [W].

Let χp,qm,n(τ) denotes the character of L(cp,q, hm,n). The S-modular transforma-

tion of these characters has the following form [CIZ1], [CIZ2], [IZ]:

χp,qm,n(−1/τ) =
∑
m′,n′

Sm
′,n′

m,n χp,qm′,n′(τ),
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where

Sm
′,n′

m,n =

√
8

pq
(−1)m

′n+n′m+1 sin(
πmm′q

p
) sin(

πnn′p

q
). (4.3.4)

The case p = q−1 gives the unitary discrete series, which has been extensively

studied in physics and conformal nets theory. Using Lemma 4.2.1 and formula 4.3.4

one can easily compute the quantum dimensions of irreducible modules for the unitary

discrete series. For the nonunitary case, λmin = 1−(p−q)2
4pq 6= 0 (see [DM3]). In this case,

one needs to find m,n such that |mq − np| = 1. We only discuss two special cases

(p, q) = (2, 5) and (3, 5) here. The quantum dimensions of their irreducible modules are

computed using the S matrix and Remark 4.2.3.

1) The case (p, q) = (2, 5) : cp,q = −22
5 and L(c2,5, 0) has 2 irreducible mod-

ules L(c2,5, h1,n), n = 1, 2. Here h1,1 = 0, and h1,2 = −1
5 = λmin. A straightforward

calculation gives

S1,2
1,1 =

√
4

5
sin(

4π

5
), S1,2

1,2 = −
√

4

5
sin(

8π

5
).

Thus

qdimL(c2,5,0) L(c2,5, h1,1) = 1,

and

qdimL(c2,5,0) L(c2,5, h1,2) =
S1,2

1,2

S1,2
1,1

= −

√
4
5 sin(8π

5 )√
4
5 sin(4π

5 )
= 2 cos

π

5
.

2) The case (p, q) = (3, 5) : cp,q = −3
5 and L(c3,5, 0) has 4 irreducible modules

L(c3,5, h1,n), n = 1, 2, 3, 4. Here h1,1 = 0, h1,2 = − 1
20 = λmin, h1,3 = 1

5 and h1,4 = 3
4 . By
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using (4.3.4), it is easy to get

S1,2
1,1 =

√
8

15
sin(

5π

3
) sin(

6π

5
);

S1,2
1,2 = −

√
8

15
sin(

5π

3
) sin(

12π

5
);

S1,2
1,3 =

√
8

15
sin(

5π

3
) sin(

18π

5
);

S1,2
1,4 = −

√
8

15
sin(

5π

3
) sin(

24π

5
).

This implies

qdimL(c3,5,0) L(c3,5, h1,1) = qdimL(c3,5,0) L(c3,5, h1,4) = 1;

qdimL(c3,5,0) L(c3,5, h1,2) =
S1,2

1,2

S1,2
1,1

= 2 cos(
π

5
);

qdimL(c3,5,0) L(c3,5, h1,3) =
S1,2

1,3

S1,2
1,1

= 2 cos(
π

5
).

In the following example, the vertex operator algebra V is neither rational nor

C2-cofinite. But the quantum dimensions of its modules are still multiplicative under

tensor product.

Example 4.3.5. Recall L(1, 0) and L(1, h) from Example 3.2.2. The fusion rules for

irreducible L(1, 0)-modules are given in [M] and [DJ]. Assume m,n ∈ Z+ and m ≥ n,

then

L(1,m2)� L(1, n2) =

m+n⊕
k=m−n

L(1, k2).
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By Example 3.2.2, we have

qdimL(1,0)(L(1,m2)� L(1, n2))

= qdimL(1,0)(
m+n⊕

k=m−n
L(1, k2))

=
m+n∑

k=m−n
(2k + 1)

=(2m+ 1)(2n+ 1)

= qdimL(1,0) L(1,m2) · qdimL(1,0) L(1, n2).

From the fusion rules, the only simple current among L(1,m2) is L(1, 0), which has

quantum dimension 1.

By Example 4.3.5, it seems that even for vertex operator algebras that are not

rational, Propositions 4.2.8 and 4.2.16 are still true. But the proofs of these propositions

require that V is rational and C2-cofinite as the modularity of trace functions are used.

This gives us a good reason to believe that there might be an alternating definition for

quantum dimensions which does not involve the trace functions. We believe that the

other two limits given in Remark 3.1.6 are in the right direction.
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Chapter 5

Possible Values of Quantum Dimensions

In last chapter, we prove that quantum dimensions share many properties with

classical dimensions. It is well known that the possible values for dimensions of vector

spaces are nonnegative integers. Thus it is natural for us to seek the possible values

of the quantum dimensions. In this chapter we will give a result on possible values of

quantum dimensions using the graph theory and Perron-Frobenius Theorem. It turns

out that the values of quantum dimensions are closely related to the possible values of

the index of subfactors [J].

Definition 5.1. Let A be an n× n matrix over R, and λ1, ..., λn be all the eigenvalues

of A. Then its spectral radius ρ(A) is defined as:

ρ(A) = max
i

(|λi|).

Next result is part of Perron-Frobenius Theorem (cf. [BH]).

Theorem 5.2. Let A = (aij) be an n × n positive matrix: aij > 0, for 1 ≤ i, j ≤ n.
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Then the following statements hold:

(1) There is a positive real number r, such that r is an eigenvalue of A and

any other eigenvalue λ (possibly complex) is strictly smaller than r in absolute value,

|λ| < r, i.e. ρ(A) = r;

(2) There exists an eigenvector v = (v1, · · · , vn) of A with eigenvalue r such

that all components of v are positive;

(3) There are no other positive (moreover non-negative) eigenvectors except

positive multiples of v, i.e. all other eigenvectors must have at least one negative or

non-real component.

Remark 5.3. In the case that A is non-negative, one can use positive matrices to

approach A. So for a non-negative matrix A, if it has a positive eigenvector v with

positive eigenvalue r, then r = ρ(A).

Remark 5.4. Let V be a simple vertex operator algebra as in Lemma 4.2.1 and M i for

i = 0, · · · , d be the irreducible V -modules as before. Theorem 4.1.1 and Lemma 4.2.1

assert that qdimV M
i is a positive eigenvalue of N(i) with eigenvector

v = (
S0,0

S0,0
,
S0,1

S0,0
, · · · ,

S0,d

S0,0
)T ,

whose entries are all positive (since each component is a quantum dimension). By

Remark 5.3, one knows that qdimV M
i is exactly the spectral radius of N(i), i.e.

qdimV (M i) = ρ(N(i)).

The following lemmas are devoted to proving the main result of this chapter.
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Lemma 5.5. Let V be a vertex operator algebra as in Lemma 4.2.1, and N(i) = (Nk
i,j)j,k

be the fusion matrix. Then N(i)T = N(i′).

Proof. Theorem 4.1.1 asserts

Nk
i,j =

d∑
s=0

Sj,sSi,sS
−1
s,k

S0,s

=

d∑
s′=0

Sj′,s′Si′,s′S
−1
s′,k′

S0,s′

=
d∑
s=0

Sj′,sSi′,sS
−1
s,k′

S0,s

= Nk′
i′,j′ = N j

i′,k.

The proof is complete. �

Since the fusion algebra is commutative, the following corollary is now obvious.

Corollary 5.6. The fusion matrix N(i) is normal, i.e. N(i)TN(i) = N(i)N(i)T .

Lemma 5.7. The matrix

 0 N(i)

N(i)T 0

 is a symmetric matrix whose spectral ra-

dius equals to qdimV M
i.

Proof. It is clear that N̄(i) =

 0 N(i)

N(i)T 0

 is a symmetric matrix. The matri-

ces N(i) and N(i)T = N(i′) have the same spectral radius qdimV M
i with the same

eigenvector v (Remark 5.4). Thus the vector

 v

v

 is an eigenvector of N̄(i) with

eigenvalue qdimV M
i. Again by Remark 5.3, ρ(N̄(i)) = qdimV M

i. �

In graph theory, the adjacency matrix of a finite graph G on n vertices is the

n× n matrix where the non-diagonal entry aij is the number of edges from vertex i to
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vertex j, and the diagonal entry aii is the number of loops from vertex i to itself. Thus

any symmetric matrix with all entries non-negative integers is the adjacency matrix of

a certain finite graph.

Definition 5.8. Let G be a graph and M be its adjacency matrix. The spectral norm

of G is defined as the spectral radius of its adjacency matrix M, which is denoted by

‖ G ‖ .

Remark 5.9. If Gi, i = 1, · · · , k, are all the connected subgraphs of G, then

max
i
‖ Gi ‖=‖ G ‖ .

Theorem 5.10. Let V be a simple vertex operator algebra and {M0, · · · , Md} the

inequivalent irreducible V -modules as in Lemma 4.2.1. Then for any 0 ≤ i ≤ d,

qdimV M
i ∈ {2 cos(π/n)|n ≥ 3} ∪ {a | 2 ≤ a <∞, a is algebraic}.

Proof. Since qdimV M
i is the eigenvalue of the fusion matrix N(i) whose entries are all

nonnegative integers, it is an algebraic number.

By Lemma 5.7, we know that the matrix

N̄(i) =

 0 N(i)

N(i)T 0


is symmetric with all entries nonnegative integers. Thus N̄(i) is the adjacency matrix

of a certain graph, say, Gi, whose norm is actually the quantum dimension of M i.

If ‖ Gi ‖≥ 2, we are done. If ‖ Gi ‖< 2, it follows from [S] and [LS] that each

connected subgraph of Gi is of ADE type. The spectral norms of ADE type graphs

are of the form 2 cos(π/n) with n ≥ 3. �

43



Remark 5.11. The possible values for the index of subfactors given in [J] are

{4 cos2(π/n)|n ≥ 3} ∪ [4,∞).

So the possible values for quantum dimensions given in the previous theorem are exactly

the square root of index of subfactors but restricted to algebraic numbers.

Remark 5.12. The possible values that are less than 2 can be realized. Take g = sl2(C),

and let λ be the fundamental weight. Consider different levels k ∈ Z+. By Example 4.3.1,

one easily sees that

qdimLg(k,0) Lg(k, λ) = 2 cos(
π

k + 2
), k ≥ 1.

But we do not know which number that is greater than or equal to 2 can be realized as

a quantum dimension. According to [ENO], the quantum dimensions for rational and

C2-cofinite vertex operator algebras are cyclotomic integers.
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Chapter 6

Quantum Galois Theory

In this chapter, we study the Galois theory for vertex operator algebras. In the

classical Galois theory, we need the degree [E : F ] of a field E over a subfield F, which

is defined as dimF E. To have a complete Galois theory for vertex operator algebras,

we also need to define the degree of a vertex operator algebra V over a vertex operator

subalgebra U. We define the degree [V : U ] to be the quantum dimension qdimU V. In

fact, exhibiting a quantum Galois theory is one of the main motivations for us to study

the quantum dimensions.

6.1 Previous Work

Quantum Galois theory was introduced by [DLM1], [DM1] and [HMT] when

they studied the orbifold theory in vertex operator algebras. Let V be a simple vertex

operator algebra and G be a finite subgroup of Aut(V ). Then V G is also a simple vertex

operator algebra (see [DLM1]).
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The following two theorems are the main results of their work.

Theorem 6.1.1. Let V be a simple vertex operator algebra, G be a compact subgroup

of Aut(V ), and G act continuously on V . Then as a (G,V G)-module,

V = ⊕χ∈Irr(G)(Wχ ⊗ Vχ),

where

(1) Vχ 6= 0, ∀χ ∈ Irr(G),

(2) Vχ is an irreducible V G-module, ∀χ ∈ Irr(G),

(3) Vχ ∼= Vλ as V G-modules if and only if χ = λ.

Theorem 6.1.2. Let V be as in the previous theorem, and G be a finite subgroup of

Aut(V ), then the map H → V H gives a bijection between subgroups of G and vertex

operator subalgebras of V containing V G.

Theorem 6.1.1 is established in [DLM1]. If G is solvable, this result has been

obtained previously in [DM1]. Theorem 6.1.2 is given in [DM1] and [HMT]. The one to

one correspondence between V H and H are compatible with the classical Galois theory.

6.2 Quantum Galois Theory

It is well known in the classical Galois theory that if G is a finite automorphism

group of a field E then [E : EG] = o(G). The next result is a vertex operator algebra

analogue of this result.
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Theorem 6.2.1. Let V be a rational and C2-cofinite simple vertex operator algebra.

Also assume that V is g-rational and the conformal weight of any irreducible g-twisted

V -module is positive except for V itself for all g ∈ G. Then [V : V G] exists and equals

to o(G).

Proof. It is well known that o(G) =
∑

χ∈Irr(G)(dimWχ)2. Theorem 6.1.1 indicates that

if qdimV G Vχ exists for all χ ∈ Irr(G), [V : V G] exists and

[V : V G] =
∑

χ∈Irr(G)

dimWχ · qdimV G Vχ.

The theorem holds if qdimV G Vχ = χ(1) = dimWχ.

By the orthogonality of characters of representations of a finite group, we notice

that chq(Vχ) = 1
o(G)

∑
g∈G ZV (1, g, q)χ(g). By Theorem 2.2.1 we have

qdimV G Vχ = lim
q→1−

∑
g∈G ZV (1, g, q)χ(g)∑
g∈G ZV (1, g, q)

= lim
τ→i∞

∑
g∈G ZV (1, g, − 1

τ )χ(g)∑
g∈G ZV (1, g, − 1

τ )

= lim
τ→i∞

∑
g∈G,Ni∈M (g) S0,i(1, g)ZNi(g, 1, τ)χ(g)∑
g∈G,Ni∈M (g) S0,i(1, g)ZNi(g, 1, τ)

= lim
q→0+

∑
g∈G,Ni∈M (g) S0,i(1, g)ZNi(g, 1, q)χ(g)∑
g∈G,Ni∈M (g) S0,i(1, g)ZNi(g, 1, q)

.

By the assumption, we know that

lim
q→0+

qc/24ZV (1, 1, q) 6= 0

and

lim
q→0+

qc/24ZNi(g, 1, q) = 0
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for any other Ni. This implies that

qdimV G Vχ = χ(1) = dimWχ,

and the theorem follows. �

Remark 6.2.2. In Theorem 6.2.1, under certain conditions, we proved for a finite

group G < Aut(V ), qdimV G Vχ = χ(1). It seems that this result is still true for a

compact group G < Aut(V ) as assumed in [DLM1]. Here are some examples.

Example 6.2.3. Let VL be the lattice vertex operator algebra associated to a positive

definite even lattice L of rank d with a nondegenerate bilinear form ( , ). Set h = L⊗ZR

and let M(1) be the rank d Heisenberg vertex operator algebra associated to h. Then

VL ∼= M(1)
⊗

(⊕α∈LCeα) as linear spaces. Recall that L◦ is the dual lattice of L. Then

L⊗ZR/L◦ ∼= Tn is a compact Lie group acting continuously on VL in the following way:

for any β ∈ h,

e2πiβ(0) : VL → VL

a⊗ eα 7→ e2πi(β,α)a⊗ eα.

Since β(0) is a derivation of VL, e
2πiβ(0) is an automorphism of VL such that e2πiβ(0) = 1

if β ∈ L◦. As a result the torus Tn is a compact subgroup of Aut(VL). It is easy to see

that (VL)T
n

= M(1). By Theorem 6.1.1 we have a decomposition of VL:

VL =
⊕
α∈L

M(1, α)⊗ Ceα,

where M(1, α) is an M(1)-module with weight α, and Ceα is an irreducible Tn-module.

We have already known from Example 3.2.1 that qdimM(1)M(1, α) = 1. That is,

qdimM(1)M(1, α) = dimCeα.
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Example 6.2.4. Let V = VL be the lattice vertex operator algebra associated with

the root lattice L = Zα of type A1 where (α, α) = 2. It is well known that SO(3) is a

subgroup of Aut(V ) and we have the following decomposition [DG]:

V =
⊕
m≥0

W2m ⊗ L(1,m2),

where L(1,m2) is the highest weight module for the Virasoro vertex operator algebra

L(1, 0) with highest weight m2, and W2m is the irreducible 2m+ 1 dimensional highest

weight module for SO(3) with highest weight m. In particular, V SO(3) = L(1, 0). By

Example 4.3.5, one gets

dimW2m = qdimL(1,0) L(1,m2) = 2m+ 1.

Motivated by these two examples, we make the following conjecture:

Conjecture 6.2.5. Let V = (V, Y, 1, ω) be a rational and C2-cofinite simple vertex

operator algebra, and G be a subgroup of Aut(V ). Assume that G is a finite-dimensional

compact Lie group which acts on V continuously. Then the decomposition

V =
∑

χ∈Irr(G)

Wχ ⊗ Vχ

has the following property:

dimWχ = qdimV G Vχ.

6.3 Galois Extensions

We now turn our attention to the Galois extensions in the theory of vertex

operator algebra. We first introduce some definitions.
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Definition 6.3.1. Let U be a vertex operator subalgebra of V with the same Virasoro

element. V is called a Galois extension of U if there exists a finite group G < Aut(V )

such that U = V G, and qdimU V ≤ o(G).

For any vertex operator algebra extension V ⊃ U we can define the Galois

group Gal(V/U) = {g ∈ Aut(V ) | g|U = Id} as in classical field theory. The following

two theorems are our main results about Galois extensions.

Theorem 6.3.2. Let V be a simple vertex operator algebra, and G < Aut(V ) a finite

group. Then

Gal(V/V G) = G.

Proof. Obviously G ⊂ Gal(V/V G). We now prove the containment Gal(V/V G) ⊂ G

with the help of Hopf algebra.

Let C[G] be the group algebra associated to G. Then C[G] is a cocommutative

Hopf algebra with comultiplication ∆, counit ε and antipode S :

∆ : C[G]→ C[G]⊗ C[G], ∆(g) = g ⊗ g, for g ∈ G,

ε : C[G]→ C, ε(g) = 1, for g ∈ G,

S : C[G] → C[G], S(g) = g−1, for g ∈ G.

Recall that an element g ∈ C[G] with ∆(g) = g ⊗ g and ε(g) = 1 is called a group-like

element. It is well known that the set of group-like elements of C[G] is exactly G itself.

So it is enough to show that any g ∈ Gal(V/V G) is a group-like element in C[G].

Since g|
V G

= Id, g : V → V gives a V G-module homomorphism. Thus gWχ ⊆
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Wχ, for any χ ∈ Irr(G), where Wχ is the same as in Theorem 6.1.1. That implies

g ∈
⊕

χ∈Irr(G)

End(Wχ).

Together with the fact that C[G] ∼= ⊕χ∈Irr(G)End(Wχ), g can be viewed as an element in

C[G]. We write g =
∑

h∈G λhh, λh ∈ C. As g|
V G

= Id =
∑

h∈G λhh|V G =
∑

h∈G λhId,

we get
∑

h∈G λh = 1, i.e. ε(g) = 1.

Now in order to show ∆(g) = g⊗g, it suffices to show that for any χ, γ ∈ Irr(G),

g(a⊗ b) = ga⊗ gb, where a ∈Wχ and b ∈Wγ . Let Wχ, Wγ be two G-submodules in V.

It is proved in [DM2] that there is a G-module isomorphism for sufficiently small n:

ψn : Wχ ⊗Wγ → 〈
∞∑
m=n

umv|u ∈Wχ, v ∈Wγ〉,

u⊗ v 7→
∞∑
m=n

umv.

Since g is an automorphism of V , g(
∑∞

m=n umv) =
∑∞

m=n(gu)mgv = ψn(gu⊗ gv)). We

get g(u⊗ v) = gu⊗ gv. Thus g is a group-like element and the proof is complete. �

Theorem 6.3.3. Let V be a simple vertex operator algebra as in Theorem 6.2.1, and G a

finite automorphism group of V. Then H 7→ V H gives a one-to-one correspondence from

the subgroups of G and the vertex operator subalgebras of V containing V G satisfying

the following:

(1) For any subgroup H of G, [V : V H ] = o(H) and [V H : V G] = [G : H],

(2) H C G if and only if V H is a Galois extension of V G. In this case

Gal(V H/V G) ∼= G/H.
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Proof. The one to one correspondence is given in Theorem 6.1.2. By Theorem 6.2.1

with G replaced by H we easily see that

[V : V H ] =
∑

χ∈Irr(H)

dim(Wχ) · χ(1) =
∑

χ∈Irr(H)

χ(1)2 = o(H).

Also, [V H : V G] = [V : V G]/[V : V H ] = [G : H] and this proves (1).

For (2), we first notice that gV H = V gHg−1
for g ∈ G. If H C G, G/H acts

naturally on V H . So G/H is a subgroup of Gal(V H/V G). It is clear that V G = (V H)G/H .

Then by Theorem 6.3.2, Gal(V H/V G) ∼= G/H. Together with the fact [V H : V G] =

[G : H], we conclude that V H is a Galois extension of V G.

Now we assume V H is a Galois extension of V G. For short we set G′ =

Gal(V H/V G). By Part (1) and the definition of Galois extension we know that (V H)G
′

=

V G and

[G : H] = [V H : V G] = [V H : (V H)G
′
] ≤ o(G′). (6.3.1)

By Theorem 6.1.1, we have two decompositions

V =
⊕

χ∈Irr(G)

Wχ ⊗ Vχ,

V H =
⊕

χ∈Irr(G)

Rχ ⊗ Vχ, (6.3.2)

where Rχ ⊆Wχ is a subspace, and each Rχ is an irreducible G′-module. We also know

every irreducible G′-module occurs in V H by Theorem 6.1.1.
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By Theorem 6.2.1 and equation (6.3.2), we have

[V H : V G] =
∑

χ∈Irr(G)

dimRχ · qdimV G Vχ

=
∑

χ∈Irr(G)

dimRχ · dimWχ

≥
∑

χ∈Irr(G)

(dimRχ)2

=o(G′).

Together with equation (6.3.1), we have that for any χ ∈ Irr(G) with Rχ 6= 0, dimRχ =

qdimV G Vχ, i.e. either Rχ = 0 or Rχ = Wχ, therefore for any g ∈ G, gV H = V gHg−1 ⊂

V H . By Theorem 6.1.2, H 6 gHg−1, which implies H = gHg−1. The proof is complete.

�

Remark 6.3.4. Let E ⊃ F be two fields. In classical Galois theory, the following two

definitions for Galois extension are equivalent:

(1) E is called a Galois extension of F if F = EG for some G, where G is a

finite subgroup of Aut(E),

(2) E is called a Galois extension of F if dimF E = Gal(E : F ).

We believe that the same is true for vertex operator algebra. But we cannot

prove it in this paper. However, if V is a rational vertex operator algebra satisfying the

assumptions given in Theorem 6.2.1, these two definitions are equivalent. Since V H in

Theorem 6.3.3 does not satisfy the assumptions of Theorem 6.2.1 (these assumptions

should hold according to conjectures in orbifold theory but have not been established),

we need to use both (1) and (2) in the definition of Galois extension for vertex operator
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algebra to have a good Galois theory.
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