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I. INTRODUCTION

The quantum theory of nature, formalized in the first
few decades of the 20th century, contains elements that
are fundamentally different from those required in the
classical physics description of nature. One of the most
prominent features in quantum physics is the existence
of quantum correlations between different quantum sys-
tems. In a classical world, if a system in a pure state
can be divided into two subsystems, then the sum of
the information of the subsystems makes up the com-
plete information of the whole system. This is no longer
true in the quantum formalism. In particular, there ex-
ists quantum states consisting of two (or more) physical
systems for which complete information of the whole is
available, even when the subsystems are completely ran-
dom. Erwin Schrödinger [1] coined the term “quantum
entanglement” [2] to describe this quantum feature.
About three decades ago, with the spectacular dis-

coveries of quantum communication and computational
schemes [2–6], it has been realized that apart from its
fundamental importance, entanglement can be used as
a resource to efficiently achieve certain information pro-
cessing tasks which cannot be performed by using unen-
tangled states. Several of these phenomena and protocols
have already been realized in the laboratories by using
different physical substrates (see e.g. [7–12]).
However, a thin but steady stream of developments

keep being reported which challenge the belief that entan-
glement is the only form of quantum correlation in shared
quantum systems. For example, Knill and Laflamme [13]
discovered the protocol of deterministic quantum compu-
tation with one quantum bit where the natural bipartite
split of the system is unentangled, even though the phe-
nomenon demonstrated is nonclassical, under a plausible
assumption. This naturally leads to the quest for quan-
tum correlations beyond entanglement in the same split.
Distinguishability of quantum states lies at the heart of

physics [14–19]. And herein we get another whiff of evi-
dence in the same direction, viz. quantum correlation be-
yond entanglement. For a single-party quantum system,
a set of mutually orthogonal states can always be dis-
criminated with certainty. For quantum systems of two
(or more) parties, there is a practical and useful restric-
tion on the set of allowed operations to consider only local
quantum operations supplemented by classical communi-

cation, which has been acronymized as “LOCC” [2]. In
this case, even orthogonal states may not be distinguish-
able. It may seem that the reason behind such indistin-
guishability is that entangled states cannot be created
by LOCC. In sharp disagreement to such intuition, Ben-
nett et al. [20] (see also [21, 22]) presented a set of pure
states of two quantum spin-1 particles, that despite being
product and orthogonal, cannot be locally distinguished,
i.e., distinguished by LOCC-based measurement strate-
gies. On the other hand, it was demonstrated that two
pure quantum states can always be locally distinguished
if they are orthogonal, irrespective of their entanglement
content, and irrespective of the number of parties and
their dimensions [23] (see also [24–26]). It was moreover
exposed that local indistinguishability of certain ensem-
bles of quantum states can be increased by decreasing its
average entanglement [27]. These results indicate that
the physical quantity or quantities responsible for the
nonclassical behavior of local indistinguishability of or-
thogonal states is clearly of a different nature than entan-
glement. Indeed, the seminal paper of Bennett et al. [20]
was titled “Quantum nonlocality without entanglement”.
Such a correlation quantity beyond entanglement can be
the property of equal or unequal mixtures of the ensem-
bles discussed above1.

Peres and Wootters [32] provided a plausible reason-
ing that one would require to utilize non-LOCC mea-
surement strategies to optimally distinguish between el-
ements of a two-party quantum ensemble, where the el-
ements are identically prepared pure qubits at the two
locations (parties). Such an ensemble is therefore built
of “parallel” states2. See also [33] in this regard. Fur-
thermore, it was discovered by Gisin and Popescu [34]
that “antiparallel” states3 can contain more information
about the spin-direction than the parallel ones. Cf. [35–
37].

In another direction, a non-maximally entangled state
was found to provide the best resolution for frequency
measurements in presence of decoherence [38]. Further-
more, it was discovered that a non-maximally entangled
state furnishes the highest violation of a certain Bell in-
equality [39]. It was also observed that maximally entan-
gled states do not have a special status when considering
asymptotic local transformations between two-party en-
tangled quantum states [40].

These developments are some of the potential ones that

1 This review considers the question of defining quantum correla-
tion beyond entanglement for quantum states. One may however
go further and ask whether it is possible to measure this “non-
locality” in multiparty quantum ensembles. See [28, 29], and
compare with [30, 31].

2 Parallel states are product states of the form | ↑n̂〉⊗ | ↑n̂〉, where
| ↑n̂〉 can, e.g., be the spin-up state in the n̂-direction of a quan-
tum spin-up system.

3 Antiparallel states are product states of the form | ↑n̂〉 ⊗ | ↓n̂〉,
where | ↑n̂〉 and | ↓n̂〉 can, e.g., be the spin-up and spin-down
states in the n̂-direction of a quantum spin- 1

2
system.
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FIG. 1: About fishes, large and little. In any catch of fishes,
the mesh would net large fishes and let out the little ones
with the water. Likewise, the net for non-separable states
lets out some quantum correlated states along with states that
are deemed as having only “classical” correlations. “Little”
fishes are by no means unimportant, as any fisherperson would
swear. And, for example, one remembers that in the 1940s
and later, a theater group evolved in India that was named
“Little Theatre”: they certainly weren’t staging insignificant
pieces. [The sketch is by Mahasweta Pandit.]

have led researchers to address the question whether en-
tanglement is the only way to quantify quantum corre-
lations present in a shared quantum state, and whether
there are resources independent of entanglement that can
be used to implement quantum protocols with nonclassi-
cal efficiencies. It turns out that the non-separability
sieve can indeed be seen as leaving out some states
that are quantum correlated in a different way. See
figure 1. One can fine-grain the sieve, via several ap-
proaches, and conceptualize disparate measures of quan-
tum correlations beyond the entanglement-separability
paradigm [41–45]. Reviewing such quantum correlation
measures and the ensuing implications is the main objec-
tive of this survey.

One of the first among such approaches was discovered
around 2000, when Ollivier and Zurek [46, 47] and Hen-
derson and Vedral [48] proposed a measure of quantum
correlations, known as quantum discord (QD), by quan-
tizing concepts from classical information theory [49].
Around the same time, several other measures were intro-
duced including quantum work deficit [50–53], quantum
deficit [54, 55], measurement-induced nonlocality [56],
etc. Interestingly, there appeared in this way, quan-
tum states of two or more parties that are not entan-
gled, and yet quantum correlated. The non-vanishing of
quantum discord for separable states may be contrasted
with the fact that there exists an entanglement measure
called distillable entanglement [57, 58], which is vanish-
ing for certain entangled states, viz. the bound entangled

states4 [60].
Sec. II reviews definitions of quantum correlation be-

yond entanglement and some general properties. This
is followed by strategies for detection and the computa-
tional complexities of these measures which we briefly
review in Secs. III and IV respectively. Some attention
is given to the class of states having vanishing QD in
Sec. V. Understanding this set is useful for classifying
the set of bipartite quantum states according to these
quantum correlation measures.
Quantum information processing tasks in which QD or

discord-like measures are expected to be important are
discussed in Sec. VI. QD can be an interesting tool to
detect cooperative phenomena like quantum phase tran-
sition and disorder-induced-order in quantum spin sys-
tems. This is discussed in Sec. VII. The relation of QD
with open quantum system is taken up in Sec. VIII.

In Secs. II to VIII, investigations are restricted, in the
main, to bipartite states. We move on to discuss QD for
multipartite states in the succeeding sections. The con-
straints on the sharability of quantum correlations be-
tween different parts of a multiparty quantum system
has been referred to as the monogamy of quantum corre-
lations. Different aspects of this concept are considered
in Secs. IX, X and XI. Definitions of a few multiparty
quantum correlation measures are considered in Sec. XII.
Some miscellaneous items are collected in Sec. XIII. A
short conclusion is presented in Sec. XIV.

II. MEASURES OF QUANTUM

CORRELATIONS

Quantification of quantum correlation (QC) present in
any quantum state is one of the primary tasks related
to the understanding and efficient utilization of the state
for various quantum information processing schemes. In
this review, we are mainly interested in QC measures
which are different from the ones conceptualized within
the entanglement-separability paradigm. Quantum dis-
cord (QD) is a prominent example of such a measure.
In this section, we first provide definitions of these QC
measures in three categories: A. Measurement-based QD
(Subsec. II A), B. Distance-based QD (Subsec. II B) and
C. Other QC measures (quantum discord-like measures)
(Subsec. II C).

A. Measurement-based quantum discord

There are several ways that lead to the concept of QD
of a bipartite quantum system. These can be classified

4 There exists a physical quantity called shared purity that can
be zero for certain entangled states and non-zero for certain sep-
arable states [59].
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into two broad categories of which one is based on mea-
surement in any one of the subsystems, which we will
discuss now. The other category consists of the distance-
based measures which is discussed in the succeeding sub-
section.

1. Quantum discord

Consider two classical random variables X and Y, for
which the joint probability distribution of getting out-
come X = x and Y = y is px,y. A measure of mutual
interdependence of any of the variables on the other one
is the classical mutual information [49] between the vari-
ables, which can be written as

I(X : Y ) = H(X) +H(Y )−H(X,Y ), (1)

where H(X) and H(Y ) are the Shannon entropies5 of the
marginal distributions px,. and p.,y, with dots indicating
variables that have been summed over and H(X,Y ) is
the Shannon entropy of the joint distribution px,y. The
same quantity in Eq. (1) can be expressed as

I(X : Y ) = H(X)−H(X|Y ), (3)

where the conditional entropy, H(X|Y ), is defined as

H(X|Y ) =
∑

y∈Y
pyH(X|Y = y) = H(X,Y )−H(Y ). (4)

A sleight-of-hand equivalence of these two definitions of
mutual information can also be observed from Venn dia-
gram representations of the entropic quantities.
These definitions of classical mutual information can

be taken over to the quantum domain [46–48]. It was
proposed that the quantum version of the first definition,
the quantum mutual information, can be obtained by
replacing Shannon entropies by von Neumann entropies6

[3] in Eq. (1). For a bipartite quantum state ρAB , shared
between two parties, A and B, usually referred to as Alice
and Bob, possibly situated in two distant locations, the
quantum mutual information is defined as

IAB = S(ρA) + S(ρB)− S(ρAB), (5)

where ρi = trj(ρAB) ({i, j} ∈ {A,B}, i 6= j) are local
density matrices of ρAB . One may similarly try to quan-
tize the concept of conditional entropy, which would then

5 Let A be a classical random variable, which takes the value a
with probability pa. The Shannon entropy of A is then given by

H(A) = −
∑

a

pa log2 pa. (2)

6 The von Neumann entropy [61] of a density matrix σ is given by
S(σ) = −tr(σ log2 σ), which reduces to −∑i λilog2λi, where λi
are the eigenvalues of σ.

lead us to a quantization of classical mutual information,
as defined via Eq. (3). However, replacing Shannon en-
tropy to von Neumann [3] in Eq. (4) leads to a quantity
which can be positive as well as negative [62–65]. The
quantum conditional entropy of ρAB was argued to be
given by

SA|B = min
{ΠB

k
}∈MB

∑

k

pkS(ρA|k), (6)

where the minimization is taken over all quantum mea-
surements, {ΠBk }, performed on the system B, andMB

forms the set of all such measurements. Here, {pk, ρA|k}
is the post-measurement ensemble that is formed at Al-

ice’s side, where ρA|k = trB(I
A
m ⊗ ΠBk ρABI

A
m ⊗ ΠB†k )/pk,

with pk = trAB(I
A
m⊗ΠBk ρABIAm⊗ΠB†k ), and with I

A
m being

the identity operator on the Hilbert space of Alice’s sub-
system7 with dimension m. Therefore, the second form
of the classical mutual information, as given in Eq. (3),
when quantized in the way mentioned above, gives us the
quantity

JA|B = S(ρA)− SA|B . (7)

It can be shown that in general, IAB ≥ JA|B . However,
the inequality can be strict, and indeed it was noticed
that they are unequal for almost all two-party quantum
states [66]. Moreover, IAB and JA|B are argued to quan-
tify total correlations [67] and classical correlations [48]
respectively of a bipartite state ρAB . Therefore, for a
given two-party quantum state, ρAB , the difference be-
tween these two quantities, given in Eqs. (5) and (7) was
proposed to be a measure of QC and was called as quan-
tum discord (QD) [46, 47], given by

D←(ρAB) = IAB − JA|B . (8)

The notation “←” in the superscript of QD denotes that
the measurement has been performed in the subsystem
‘B’ while D→ denotes QD for the measurement in the
first subsystem, i.e. in ‘A’. Unless defined otherwise,
we will henceforth consider the quantum discord D←,
and denote it for convenience8 as D. The definition of
QD also provides a justification for considering a max-
imization in the definition of JA|B , since to obtain the
amount of QC present in the state, one must pump out
all the classical correlations from the total correlations,
assuming that total correlations contain only classical
and quantum correlations, and that the constituents are
additive. Although we will predominantly be dealing
with the case when the measurement in the definition

7 Throughout the review, we consider bipartite states on Cm⊗Cn,
except when considering continuous variable systems.

8 Since we are using 2 as the base of the logarithm, in the definition
of the von Neumann entropy, the unit of QD will be “bits”.
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is a projective-valued (PV) one, positive-operator val-
ued measurements9 (POVMs) have also been considered
for defining QD. Indeed, POVMs are already present in
the definition of classical correlation, JA|B in Ref. [48].
In general, a definition of QD that utilizes POVMs is
useful in relating the quantity to other information-
theoretic quantities like accessible (classical) informa-
tion [49] through the Holevo bound [16] and the entan-
glement of formation (see Appendix XVA1) through the
Koashi-Winter relations [68]. Performing a POVM, how-
ever, may render a physical system open and, therefore,
has to be cautiously used while providing thermodynamic
interpretation of QD and related quantitites [50–52, 69–
73]. It is interesting to note here that projective mea-
surements are shown to be optimal among all POVMs
for rank-2 bipartite quantum states [74]. On the other
hand, there exist states already for two-qubits, for which
projective measurements are not optimal [74–78]. See
also Ref. [79].
Let us begin here by enumerating some properties of

QD, which come to the mind rather immediately, or
which are used more frequently later in the review.

a) D(ρAB) ≥ 0, since IAB ≥ JA|B .

b) QD is not symmetric, i.e., in general, D←(ρAB) 6=
D→(ρAB). This is clearly visible, as conditional
entropy is not symmetric for all states. They, of
course, coincide for states which are symmetric un-
der interchange of the two parties (cf. [80]).

c) QD is invariant under local unitary transforma-
tions, i.e., D(ρAB) = D[(UA⊗UB)ρAB(UA⊗UB)†],
for arbitrary unitaries UA and UB on the subsys-
tems A and B. One of the important characteris-
tics of von Neumann entropy is that it is invariant
under unitary transformations, and hence IAB is
invariant under local unitaries. Consider now the
effect of a local unitary transformation UA ⊗ UB ,
acting upon the state ρAB , on the quantum con-
ditional entropy. Suppose that the minimum in
Eq. (6) is reached in the measurement {Π̃Bk }, for
the state ρAB . For the local unitarily trans-
formed state (UA⊗UB)ρAB(UA⊗UB)†, a measure-
ment {ΠBk } leads to the ensemble {p′k, ρ′A|k}, where
ρ′A|k = UAtrB(I

A
m ⊗ Π′Bk ρAB I

A
m ⊗ Π′B†k )U †A/p

′
k,

p′k = trA[UAtrB(I
A
m ⊗ Π′Bk ρAB I

A
m ⊗ Π′B†k )U†A],

Π′Bk = U†BΠ
B
k UB . Thereby, the optimization of the

local unitarily transformed state is reached in the

9 A positive operator valued measure (POVM) [3] is a set of gener-
alized measurement operators {Ai}, which are positive semidef-
inite, and acts on a quantum state ρ in the following way:

ρ→ ρi = AiρA†i /pi, with pi = tr(AiρA†i ), (9)

where
∑

i A
†
iAi = I, and pi is the probability of obtaining the

post-measurement state ρi.

measurement {Π̃′Bk = U†BΠ̃
B
k UB}, and leads to the

same value of the quantum conditional entropy as
of ρAB .

d) QD is zero if and only if their exists a local mea-
surement on B that does not disturb the quantum
system [47, 66, 81].

e) For a bipartite pure state, QD reduces to entan-
glement, i.e., von Neumann entropy of the local
density matrices.

f) QD is upper bounded by the von Neumann
entropy of the measured subsystem10 B i.e.
D←(ρAB) ≤ S(ρB) [86, 87], while JA|B ≤
min{S(ρA), S(ρB)} [88].

While QD and entanglement coincide for pure states,
by considering mixed states, it can be shown that QD
is different than entanglement. Specifically, it is non-
vanishing for some separable states. An example which
illustrates this is the class of Werner state [89], given by

ρW =
1− p
4

I2 ⊗ I2 + p|ψ−〉〈ψ−| (10)

with |ψ−〉 = 1√
2
(|01〉−|10〉) being the singlet state. Here

In denotes the identity operator on the n-dimensional
complex Hilbert space. It is separable when p ≤ 1

3 .
However, D(ρW ) > 0 in the entire range of p except at
p = 0 [47, 90] (see figure 2).

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

 D

FIG. 2: Quantum discord for the Werner states ρW = 1−p

4
I2⊗

I2 + p|ψ−〉〈ψ−|. The red dashed line corresponds to p = 1/3
below which the state is unentangled. [Adapted from Ref. [47]
with permission. Copyright 2001 American Physical Society.]

10 The Authors in Ref. [82] have given a necessary and sufficient
condition for saturation of this upper bound of QD, by using the
conditions for equality of the Araki-Lieb inequality [83–85].
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2. Gaussian quantum discord

The concept of QD has been extended to continuous-
variable systems, specifically to the case of two-mode
Gaussian states [91–102]. When the measurement in-
volved in QD is restricted only to the set of Gaussian
measurements [103, 104], it is called Gaussian QD, which
is an upper bound of QD of continuous-variable systems.
Note that these measurements can be implemented by
linear optics and homodyne detection.

Gaussian QD was first evaluated for squeezed ther-
mal states [103, 104] and then further extended to ar-
bitrary two-mode Gaussian states [104]. It has been
shown [103, 104] that almost all two-mode Gaussian
states have non-zero Gaussian QD. Moreover, squeezed
thermal states are entangled if DGauss(ρAB) > 1. How-
ever, if DGauss(ρAB) ≤ 1, conclusive identification of en-
tangled state is as yet not possible.

Quantum correlation in continuous variable systems
beyond Gaussian states has also been investigated. For
a particular type of non-Gaussian two-mode Werner
states [105], which is obtained by mixing a two-mode
squeezed state with the vacuum, QD has been com-
puted analytically. See also [106]. Giorda et al. [107]
asked whether non-Gaussian measurements can be opti-
mal for obtaining QD for Gaussian states. To address
this query, two-mode squeezed thermal states and mixed
thermal states have been studied by considering a range
of experimentally feasible non-Gaussian measurements.
It is observed that Gaussian measurements always pro-
vide the optimal value of Gaussian QD [107]. More-
over, there are numerical evidences which also reveal
that QD for Gaussian states require only Gaussian mea-
surements [107, 108]. Pirandola et al. [109] connected
the Gaussian QD with the result that the minimum von
Neumann entropy at the output of a bosonic Gaussian
channel is achieved by Gaussian input states [110, 111]
(see also [112]). The Authors showed that the solution
of the minimization problem for the bosonic Gaussian
channel implies the optimality of QD by using Gaussian
measurements for a large family of Gaussian states. It
is important to note that several experiments have been
performed and proposals for the same given to detect and
measure Gaussian QD [113–116].

3. Symmetric quantum discord

The original QD [47, 48] in Eq. (8) is not symmet-
ric under the exchange of A and B [80]. However, by
performing von Neumann measurements {ΠAi ⊗ ΠBj } on
the entire system, a symmetric version of QD [117] can
be defined. Before presenting the definition of the sym-
metric version of QD, it is useful to rewrite the original
QD in the following way. Note first that the quantum
mutual information of a bipartite quantum state can be

expressed in the following way:

I(ρAB) = S(ρAB ||ρA ⊗ ρB), (11)

where ρA and ρB are local density matrices of ρAB . The
relative entropy between the two quantum states σ and
ξ is given by

S(σ||ξ) = tr(σ log σ − σ log ξ). (12)

Clearly, it is not a symmetric function of its arguments,
and therefore does not conform to the usual notion of a
distance. However, time and again, this “non-standard”
distance turns up in different formulae and notions in
many areas including in quantum information. Further-
more, one can see that for rank-1 PV measurements,
JA|B(ρAB) = max{ΠB

k
}∈MB S(φB(ρAB)||ρA ⊗ φB(ρB)).

A symmetric version of QD can now be defined as

Dsym(ρAB) = min
{ΠA

i ⊗ΠB
j }

[S(ρAB ||ρA ⊗ ρB)−

S(φAB(ρAB)||φA(ρA)⊗ φB(ρB))]. (13)

Here

φAB(ρAB) =
∑

i,j

(ΠAi ⊗ΠBj )ρAB(Π
A
i ⊗ΠBj ),

φB(ρAB) =
∑

k

I
A
m ⊗ΠBk ρABI

A
m ⊗ΠBk ,

φα(ρα) =
∑

k

ΠαkραΠ
α
k , α = A,B. (14)

One can rewrite Eq. (13) in terms of quantum mutual
information I as [118]

Dmutualsym (ρAB) = min
{ΠA

i ⊗ΠB
j }

[I(ρAB)−I(φAB(ρAB))]. (15)

It expresses the minimal amount of correlations which are
lost due to the measurements [120]. A similar interpreta-
tion is possible for the original QD, but for measurement
performed only on one party [119, 120]. The symmet-
ric version of QD has also been considered for the case
when POVMs are used for the measurements at the two
parties [121, 122]. Dsym is equivalent to what has been
termed as measurement-induced disturbance (MID) [55],
if instead of considering the minimization, the measure-
ment is performed in the eigenvectors of the reduced den-
sity matrices of each part. Since MID does not consist
of any optimization over the local measurements, it usu-
ally returns an overestimation of the amount of nonclas-
sical correlations compared to the symmetrized version
of QD [123]. An analytical formula of the symmetric
version of QD has been discussed in Ref. [124] for the
Bell-diagonal (BD) states, given by

ρAB =
1

4



I2 ⊗ I2 +
∑

i=x,y,z

Tiiσ
i ⊗ σi



 , (16)
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where Tii are reals with −1 ≤ Tii ≤ 1 ∀i. The Tii’s
must also satisfy the additional condition coming from
the constraint that the state is positive semidefinite. σi,
i = x, y, z, are the Pauli spin-1/2 operators. The Authors
in Ref. [125] presented an experimental implementation
of a witness operator for the symmetric version of QD in
a composite system.
The symmetric version of QD can also be expressed as

Dfsym(ρAB) = min
{ΠA

i ⊗ΠB
j }

[S(ρAB ||φAB(ρAB))−

S(ρA||φA(ρA))− S(ρB ||φB(ρB))]. (17)

We will discuss the extensions of some of these forms to
the multiparty domain. One of these extensions will give
rise to the concept of global QD, discussed in Sec. XIIA.
Note that Eq. (17) can be seen as the difference be-
tween two terms, one of which is S(ρAB ||φAB(ρAB)),
that can be interpreted as the “global distance” of the
state ρAB from the resultant state after local measure-
ments have been carried out. This global distance can
be seen as the quantum correlations in ρAB except that
there can be local contributions to this distance in the
form of S(ρA||φA(ρA)) and S(ρB ||φB(ρB)), and the sum
of these two expressions forms the second term, which is
subtracted from the global distance to obtain the sym-
metric version of QD.
Another symmetrized version of QD is the “two-way

quantum discord”, defined as [126]

D↔(ρAB) = max{D←(ρAB),D→(ρAB)}. (18)

Other versions of symmetric QD are discussed in
Refs. [127, 128].

B. Distance-based quantum discord

We have until now tried to conceptualize QD by quan-
tizing certain concepts in classical information theory.
Since such definitions of QD involve optimization over
sets of local measurements, the computation of which is
in general a challenging task. Moreover, while dealing
with the theory of entanglement, we have realized that
the quantifications of entanglement originating from dif-
ferent concepts lead to new insights in quantum informa-
tion.
In this subsection, we are going to discuss the distance-

based formulations of QD. The minimization involved
in this definition, can often be performed explicitly and
hence it becomes a convenient tool for analyzing QC asso-
ciated with the system. In general, the distance between
two quantum states can be defined in several ways [129].
Here, we consider two broad directions by which distance
measures are defined, namely, the relative entropy and
the norm distance.
In the preceding subsection, we have seen that the orig-

inal information-theoretic version of QD can be written
as the difference between two relative entropy distances.

The relative entropy-based QD that is considered in this
subsection is a qualitatively different one, and is akin
to the relative entropy of entanglement11 and geometric
measures of entanglement. The idea here is to consider
a set of states that are devoid of quantum correlations in
some sense. Quantum correlation of a given state is then
defined as the minimal distance of the state from that
set.

1. Relative entropy-based discord

The concept of entanglement has led to the realiza-
tion that there is a class of states, the separable states12,
which are “useless” for certain tasks and have zero entan-
glement. This in turn has been used to quantify entan-
glement by measuring the shortest distance of entangled
state to the set of separable states [130–132]. In simi-
lar vein, one is led to the set of “quantum-classical”(q-c)
states having the form

χq-c
AB =

∑

i

piρi ⊗ |φi〉〈φi| (20)

with pi ≥ 0,
∑

i pi = 1, 〈φi|φj〉 = δij , and ρi’s belonging
to the subsystem A. Clearly, for the q-c state, there
exists a von Neumann measurement on the subsystem B
that does not perturb the state. They form the class of
“useless” states for tasks where D← is predicted to be a
resource. The relative entropy-based QD with distance
being considered from the q-c states (with the set of q-c
states being denoted below as “q-c”), for a state ρAB is
given by [133]

Dq-c
rel(ρAB) = min

χq-c
AB
∈q-c

S(ρAB ||χq-c
AB). (21)

Note that the role of A and B will be exchanged for
“classical-quantum” (c-q) states, which are of the form

χc-q
AB =

∑

i

pi|φi〉〈φi| ⊗ ρi, (22)

with the same conditions stated above, except that ρi’s
belong to the subsystem B. These are exactly the set of
“useless” states for tasks for which D→ is considered to
be useful. One can now define a Dc-q

rel using the c-q states.

11 See Appendix XVA4 for a definition of the relative entropy of
entanglement.

12 A separable state is of the form

ηAB =
∑

i

piη
i
A ⊗ ηiB , (19)

where ηij is a density matrix of the jth site and pi ≥ 0 with
∑

i pi = 1. These are exactly those states that can be prepared
by LOCC between the sites.
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We will now briefly discuss the relative entropy-based
QD where the distance is taken from the bipartite
“classical-classical” (c-c) states χc-c

AB , given by

χc-c
AB =

∑

i

pi|φi〉〈φi| ⊗ |ψi〉〈ψi|, (23)

with 〈φi|φj〉 = δij and 〈ψi|ψj〉 = δij . Mathematically,
the measure can be expressed as

Drel(ρAB) = min
χc-c
AB
∈C

S(ρAB ||χc-c
AB). (24)

Here C denotes the set of all c-c states.
It is important to mention here that the set of q-c, c-q

and c-c states are all subsets of the set of separable states,
which form a convex set, while the formers do not.
One may now define a classical correlation based on

relative entropy distance of the state ρAB , as

Jq-c
rel (ρAB) = S(χq-c

ρAB
||Πχq-c

ρAB
), (25)

where χq-c
ρAB

and Πχq-c
ρAB

are respectively the closest q-c

state of ρAB and the closest product state13 of χq-c
ρAB

,
with respect to the relative entropy distance. Interest-
ingly, it was found that I − (Dq-c

rel + Jq-c
rel ) = −L where

L = S(ΠρAB
||Πχq-c

ρAB
) [133] and I is the quantum mutual

information given in Eq. (11). Here ΠρAB
is the closest

product state of ρAB . A similar relation among the same
quantities, but by using a linearized variant of relative
entropy has also been addressed in Ref. [134]. Note here
that the above concept of relative entropy-based QD can
also be extended to the multipartite domain [133]. See
Sec. XIIB.

2. Geometric quantum discord

In this subsection, we consider the quantification of
quantum correlation again by using a distance to the set
of q-c, c-q, or c-c states, but here the distance is de-
fined via a norm on the relevant space of quantum states.
Such quantifications are generally referred to as geomet-
ric quantum discord (GQD).
Let us begin with the definition of GQD of a bipartite

state ρAB , as proposed by Dakić et al. [66], based on the
Hilbert-Schmidt distance14. It is given by

DG(ρAB) = min
χq-c
AB
∈q-c
||ρAB − χq-c

AB ||2, (26)

13 A product state of two parties is of the form η̃A ⊗ η̃′B .
14 The Hilbert-Schmidt norm and the trace norm are special cases

of the Schatten p-norm, which, for an arbitrary operator X, is
defined as

||X||p =
[

tr
(

(X†X)
p
2
)

] 1
p
.

The Hilbert-Schmidt norm and the trace norm are obtained for
p = 2 and p = 1 respectively.

where the minimization is performed over the set of all
quantum states with vanishing D←. See Eq. (20). One
of the utilities of the above definition lies in the fact that
for a general two-qubit quantum state, one can show that
Eq. (26) has the closed analytical form given by

DG(ρAB) =
1

4

∑

i

∑

j

(||xi||2 + ||Tij ||2 − kmax), (27)

where ρAB is expressed using one- and two-point classical
correlators as

ρAB =
1

4

(
I2 ⊗ I2 +

∑

i

xiσ
i ⊗ I2 +

∑

i

yiI2 ⊗ σi

+
∑

ij

Tijσ
i ⊗ σj

)
, (28)

with Tij = tr(ρAB σi ⊗ σj) being the two-point classical
correlators forming a 3 × 3 correlation matrix T , while
xi = tr(ρAB σi ⊗ I2) and yi = tr(ρAB I2 ⊗ σi), i, j ∈
{x, y, z}. kmax is the largest eigenvalue of the matrix
K = TTT + xxT , where x is a column vector of the
magnetizations xi. Using this, one can show that for two-
qubits, the states with maximal DG are the singlet state
and states connected to it by local unitaries. Among
separable states, the states exhibiting maximum GQD
are given by

σi1i2i3 =
1

4

(

I2 ⊗ I2 +
1

3

3∑

k=1

(−1)ikσk ⊗ σk
)

, ik = ±1.

(29)

Further generalizations in this direction have been car-
ried out by Luo and Fu [119]. An arbitrary bipartite
quantum state ρAB on C

m ⊗ C
n can be expressed as

ρAB =
∑

ij

cij Xi ⊗ Yj , (30)

where {Xi, i = 1, 2, . . . ,m2} and {Yj , j = 1, 2, . . . , n2}
are sets of Hermitian operators, forming orthonormal
bases in the space of Hermitian operators on C

m and
C
n respectively, with the inner product and so does the

operator Xi ⊗ Yj on C
m ⊗ C

n. By using Eq. (30), an-
other form of GQD in terms of state parameters can be
obtained and is given in the following theorem:
Theorem 1 [119]: The analytical form of GQD for an
arbitrary bipartite state ρAB on C

m⊗Cn can be expressed
as

DG(ρAB) = tr(C̃C̃T )−max
A

tr(AC̃C̃TAT ), (31)

where C̃ = (cij), cij = tr(ρAB Xi ⊗ Yj), and the max-
imization is performed over A = (akl), with akl =

tr(|k〉〈k| X†l ). Here k = 1, 2, . . . ,m, l = 1, 2, . . . ,m2 and
{|k〉} is an orthonormal basis in C

m.
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From the above form of DG(ρAB), one obtains a lower
bound on DG(ρAB), namely

DG(ρAB) ≥ tr(C̃C̃T )−
m∑

i=1

λi =

m2
∑

i=m+1

λi, (32)

where λi’s are the eigenvalues of C̃C̃
T in a non-increasing

order.
Motivated by the original definition of QD (see

Eq. (8)), a “modified” GQD can be defined as [119]

D̃G(ρAB) = min
{ΠB

k
}
||ρAB − φB(ρAB)||2, (33)

where the minimization is performed over the set of pro-
jective measurements {ΠBk } performed by B and the def-
inition of φB(ρAB) is given in Eq. (14), and it turns

out that DG(ρAB) = D̃G(ρAB). Instead of the Hilbert-
Schmidt distance, the above concept of the modified
GQD has also been generalized by considering the trace
norm distance [135–138].
In subsequent years, several attempts have been made

to obtain tighter lower bounds of the above expression
of GQD given in Eq. (27) [139–156]. In particular, Has-
san et al. [146] showed that the lower bound on GQD
obtained in Eq. (32), can further be improved to

DG(ρAB) ≥
2

m2n
(||~x′||2 + 2

n
||T ′||2 −

m−1∑

j=1

ηj),

(34)

where ηj , j = 1, 2, . . . ,m2 − 1 are the eigenvalues of the

matrix (~x′~x′
T
+ 2T ′T ′T

n ), arranged in non-increasing order.
Here x′i = tr(ρABLi⊗ In) and T

′
ij = tr(ρABLi⊗L′j) with

Li and L′j being the generators of SU(m) and SU(n)
respectively. The lower bound in Eq. (34) is tighter
than that in Eq. (32) and this can be illustrated by two
examples, viz. ρAB(p) = p|e1〉〈e1| + 1

9 (1 − p)I3 ⊗ I3,
and ρ′AB(p) = (1 − p)|e1〉〈e1| + p|e2〉〈e2|, for any p,
where |e1〉 = 1√

6
(|22〉 + |33〉 + |21〉 + |12〉 + |13〉 + |31〉),

|e2〉 = 1
2 (|11〉 + |22〉 +

√
2 |33〉) with 0 ≤ p ≤ 1 (see fig-

ures 1 and 2 in Ref. [146]). Additionally, the lower bound
obtained in Eq. (34) becomes exact for a C

2⊗Cn system.
Furthermore, GQD for an arbitrary state ρAB on

C
2 ⊗ C

n has also been derived by Vinjanampathy et
al. [147] and Luo et al. [148]. Moreover, in Ref. [149],
a tight measurement-based upper bound of GQD where
the distance is calculated from the c-c states has been
found for two-qubit quantum states by considering the
Hilbert-Schmidt distance. In addition to this, nonclassi-
cal correlations of some well known bipartite bound en-
tangled states (on C

2 ⊗ C
4,C3 ⊗ C

3 and C
4 ⊗ C

4) have
been calculated by using GQD [21, 150, 157–159]. A re-
lation between QD and GQD for two-qubit systems has
further been proposed in Ref. [143]. Moreover, in subse-
quent works, a relation between negativity (for defintion,

see Appendix XVA3) and GQD has also been conjec-
tured [160–162].
The original definition of QD involved one-sided mea-

surements. Subsequently, certain symmetric versions of
QD, involving measurements on both sides were defined.
See Sec. IIA 3. Within the span of distance-based mea-
sures of QD, Drel in Eq. (24) is such a symmetric version
of QD. A symmetric version of GQD involving two-sided
measurements was defined in Refs. [141, 149, 151] as

DsymG (ρAB) = min ||ρAB − φAB(ρAB)||2, (35)

where φAB(ρAB) is given in Eq. (14) and the minimiza-
tion is carried out over the set of all two-sided indepen-
dent local measurements. A lower bound, similar to the
one in Eq. (32), can also be obtained in this case.

Down the avenue, several works were reported where
questions have been raised regarding the validity of the
above formulation of GQD [163–165]. In case of conven-
tional QD, as expressed in Eq. (8), it is known that the
value of QD can be increased by applying some local op-
erations on the part on which measurement has to be
performed, although it can not be increased by perform-
ing any operations on the unmeasured part. In contrast,
it was shown [163, 164, 166] that GQD in Eq. (26) is
not monotonic when the operations are performed even
on the unmeasured subsystem of ρAB . In particular, if
one considers the map on the unmeasured part say A, as
τ : X → σ ⊗ X, i.e. adding an ancilla at A, then the
Hilbert-Schmidt norm of the state, after this action, is
given by

||X||2 → ||X||2
√

tr(σ2), (36)

using the property of the norm under tensor product. In
other words, the value of GQD becomes a function of the
purity of the local ancilla upon addition of an ancillary
system.
In this regard, a possible remedy has also been sug-

gested in Ref. [163]. Specifically, the definition in Eq. (26)
can be modified as

DmodG (ρAB) = max
ΛA

DG(ΛAρAB), (37)

where the maximization is taken over all quantum chan-
nels acting on part A. However, such introduction of an-
other maximization makes the computation of the result-
ing quantity difficult. It was also pointed out that the in-
herent non-monotonicity present in the GQD, in principle
can still lead to unwanted results [165–168]. It has been
found that highly mixed states containing non-zero and
even near-maximal quantum correlation as measured by
QD may have negligible GQD. This is at least partly due
to the fact that the Hilbert-Schmidt distance is highly
sensitive to the purity of the state in its argument. At-
tempts have also been made to define GQD by using
other distance measures such as the trace norm [165], Bu-
res distance [169, 170], Hellinger distance [137, 171], etc.
See also [172]. In this regard, Bai et al. [173] have shown
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that for a class of symmetric two-qubit “X-states”15,
GQD using the trace norm [176] serves as a lower bound
for the same using the Hilbert-Schmidt distance. See also
Ref. [177].

C. Other quantum correlation measures

Apart from QD, several other measures of quantum
correlation beyond entanglement have been introduced.
Below, we briefly discuss some of them, specifically, quan-
tum work deficit (WD) [50–52], quantum deficit [54], and
measurement-induced non-locality (MIN) [56].
It is important to mention that there are further mea-

sures that have been put forward in the last fifteen
years or so. These include the ones that have been
proposed [134, 178–184] based on Rényi and Tsallis en-
tropies [185–191]. Further examples include Refs. [59,
192–205].

1. Quantum work deficit

Quantum work deficit (WD) [50] was introduced to
quantify quantum correlation by exploring the connec-
tion between thermodynamics and information [69–72,
206]. It is defined as the information, or work, that can-
not be extracted from a bipartite quantum state when the
two parties are in distant locations, as compared to the
case when the same are together. Just as in any thermo-
dynamical consideration for extracting work, one must be
careful in setting up the stage with respect to the allowed
operations for the work extraction. The set of allowed
operations for work extraction for the bipartite quantum
state when the two parties are at the same location is
termed as “closed operations (CO)”. The same set in
the distant laboratories paradigm is called “closed local
operations and classical communication (CLOCC)” [50–
53, 207–210]. Here, closed operations are formed by (i)
global unitary operations, and (ii) dephasing operation
on the bipartite state by a projective measurement on
the entire Hilbert space of the two-party system. On
the other hand, CLOCC is constituted of (i) local uni-
tary operations, (ii) dephasing by local measurements
on either subsystem, and (iii) communicating the de-
phased subsystem to the other one, by using a noiseless
quantum channel. For a bipartite quantum state ρAB on
C
m⊗C

n, it was shown that the works extractable by CO
and CLOCC are respectively ICO and ICLOCC , given by

ICO(ρAB) = log2 d− S(ρAB), (38)

15 A bipartite state is called an X-state [174, 175] if in the com-
putational basis, it has non-zero entries only in its diagonal and
anti-diagonal positions, so that the state looks like the letter
“X”.

ICLOCC(ρAB) = log2 d− min
{ΠB

i }
S(ρ′AB), (39)

where ρ′AB =
∑

i I
A
m⊗ΠBi ρAB I

A
m⊗ΠBi is the locally de-

phased state, assuming that CLOCC involved dephasing
on C

n, and d = mn. Here, the minimization is performed
over all projective measurements on the system at B. We
have ignored here a multiplicative term, viz. kBT , in the
definitions of work, where T represents the temperature
of the heat bath involved, and kB is the Boltzmann con-
stant. The difference between ICO and ICLOCC is defined
as the “one-way work deficit”, given by

WD←(ρAB) = ICO(ρAB)− ICLOCC(ρAB). (40)

Note that like in the definition QD in Eq. (8), “ ← ”
in the superscript indicates the subsystem B as the de-
phased party. Moreover, WD also reduces to von Neu-
mann entropy of the local density matrices for pure bi-
partite states. WD is similar to QD for states whose
marginal states are maximally mixed [211]. See also [212]
in this regard.

If the dephasing process in CLOCC does not include
any communication between the subsystems and both the
parties completely dephase their subsystems by closed lo-
cal operations, the corresponding work deficit is called
zero-way work deficit. On the other hand, if the de-
phasing protocol in CLOCC followed by the two parties
involves several communication rounds between them,
the corresponding quantity is known as the two-way
work deficit. Note that the relative entropy-based QD
turns out to be zero-way work deficit when the dis-
tance is taken from the set of c-c states, whereas one-
way work deficit is equal to relative entropy-based QD
when the distance is considered from c-q or q-c states,
whichever is relevant [52, 213]. The definitions of ex-
tractable work are related to the concept of Maxwell’s
demon [69–72, 206, 214–218]. Indeed, for each bit of in-
formation obtained, an amount of work equal to kBT can
be performed. This however does not violate the second
law of thermodynamics, as an equal amount of work is
needed to erase the memory corresponding to the infor-
mation. For this and further discussions on this issue,
see [50–53, 73, 77, 207–210, 219–223].

2. Quantum deficit

Another measure of quantum correlation, introduced
by Rajagopal and Rendell, has been called quantum
deficit [54, 224]. It is defined as the closeness of a
given quantum state to its decohered classical counter-
part. More precisely, for a bipartite quantum state ρAB ,
it is given as the relative entropy distance between ρAB
and its decohered density operator ρdAB :

R(ρAB) = S(ρAB ||ρdAB). (41)
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The quantum deficit uses the decohered density matrix

ρdAB =
∑

a,b

pab|a〉〈a| ⊗ |b〉〈b|, (42)

where {|a〉} and {|b〉} are eigenbases of the reduced den-
sity matrices ρA and ρB respectively of ρAB . Here,
pab = 〈a| ⊗ 〈b|ρAB |a〉 ⊗ |b〉 are the diagonal elements
of ρAB . Let λi be the eigenvalues of ρAB . Eq. (41) then
reduces to

R(ρAB) =
∑

i

λi log2 λi −
∑

a,b

pab log2 pab. (43)

It is important to observe that no optimization is required
for the evaluation of quantum deficit. Also, unlike QD
and one-way WD, this measure is symmetric with respect
to the subsystems.

3. Measurement-induced nonlocality

“Measurement-induced nonlocality (MIN)” is another
measure of quantum correlation that is defined by using
a distance to a set of states deemed as “classical” [56].
It is to be noted that the “nonlocality” in the name does
not have any direct relation with the Einstein-Podolsky-
Rosen argument [225] or the Bell’s theorem [226, 227].
For a bipartite quantum state ρAB , we first consider arbi-
trary projective measurements {ΠBk } on the partyB, that
keeps the reduced density matrix ρB invariant if we for-
get the measurement outcome, i.e.

∑

k Π
B
k ρBΠ

B
k = ρB .

The MIN is then defined as the highest Hilbert-Schmidt
distance between the pre- and post-measured states:

MN (ρAB) = max
{ΠB

k
}
||ρAB − φB(ρAB)||2. (44)

The optimization over the {ΠBk } is required only when
the spectrum of ρB is degenerate and the definition of
φB(ρAB) is given in Eq. (14). For the non-degenerate
case, the only allowed measurement is on the eigenba-
sis of ρB . An analytical formula of MIN for arbitrary-
dimensional pure states has been found, and for |ψAB〉 =∑

i

√
µi|iA〉|iB〉, the MIN is given by

MN (|ψAB〉) = 1−
∑

i

µ2
i , (45)

where
√
µi are the Schmidt coefficients. Moreover, for

mixed states on C
m ⊗ C

n, there exists a tight upper

bound of MIN, namely MN (ρAB) ≤
∑m2−m
i=1 λi where

{λi, i = 1, 2, . . . ,m2 − 1} are the eigenvalues of TTT in
non-increasing order, with T being the correlation ma-
trix. Comparing the symmetric version of GQD as de-
fined in Eq. (35), with MIN, one notices that they are
complementary.

III. COMPUTABILITY OF QUANTUM

DISCORD

For a general quantum state, calculation of QD in-
volves an optimization over measurements, which makes
it difficult to obtain a closed analytical expression. In
particular, for calculating SA|B in Eq. (6), the minimum
has to be taken over a certain set of measurements on the
subsystem with B. This set can, for example, be the set
of all PV measurements or all generalized measurements
described by POVMs. As shown in Refs. [79, 228], the
number of elements in the extremal POVM need not be
more than the square of the dimension of the system, and
hence for states on C

2⊗C
2, the optimization in the clas-

sical correlation does not need consideration of POVMs
whose elements number more than four [229]. Moreover,

it was argued that on C
m⊗C

m, at most m(m+1)
2 POVM

elements are required for the optimization [230], imply-
ing that in C

2⊗C
2, a 3-element POVM is sufficient. It is

evident that for an arbitrary bipartite quantum state in
arbitrary dimension, the optimized measurement setting
over the set of PV measurements or POVMs for classical
correlation is generally hard to perform, both analytically
as well as numerically.

In this direction, Huang [231] showed that the time
required to compute QD grows exponentially with the
increase of the dimension of the Hilbert space, implying
that computation of QD is NP-complete [3].

In finite dimensions, a closed formula of QD is known
only for specific classes of states. However, an analytic
expression of the Gaussian QD can be obtained for con-
tinuous variable systems, as seen in Sec. IIA 2. Further-
more, as discussed in Sec. II B 2, GQD can be evaluated
analytically for arbitrary two-qubit systems [232].

A. Qubit systems

In the two-qubit scenario, POVMs with rank-1 ele-
ments are sufficient to optimize the QD [229]. A com-
pact form of QD for arbitrary rank-2 states on C

2⊗C
2 is

obtained in Ref. [229], after performing the optimization
over all POVMs where Koashi-Winter relation [68] has
been used. We will discuss the latter in Sec. X. It was
shown [233] that a PV measurement is optimal for QD in
this case while it is conjectured that 3-element POVM is
required to obtain QD for states with rank more than 2.
Let us for a while focus our attention on X-states. The
reason for such a choice is partly because for such states,
there has been some progress towards numerical and an-
alytical tractability of a closed form of QD [234, 235].
Another reason is that X-states often appear in physi-
cal systems of interest. In particular, for a Hamiltonian,
H, having Z2-symmetry on ⊗iC2

i , the two-qubit reduced
density matrix, ρAB , of the ground state, ρ, boils down
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to a X-state. The argument runs as follows:

[H,⊗iσzi ] = 0 =⇒ [ρ,⊗iσzi ] = 0 =⇒ [ρAB , σ
z
A ⊗ σzB ] = 0

=⇒ ρAB =






a 0 0 e
0 b f 0
0 f∗ c 0
e∗ 0 0 d




 , (46)

where a, b, c, d are real and non-negative with a+ b+ c+
d = 1. The positivity of ρAB is ensured by |e|2 ≤ ad and
|f |2 ≤ bc. In general, e and f may be complex numbers,
although they can be made real and non-negative by local
unitary transformations. Hence, without loss of general-
ity, one can take e, f ≥ 0. To perform the optimization
involved in Eq. (6), if we restrict ourselves to PV mea-
surements, we can parametrize the measurement basis
{Πk = |k′〉〈k′|} by two angles 0 ≤ θ ≤ π and 0 ≤ φ < 2π:

|0′〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉,

|1′〉 = sin
θ

2
|0〉 − eiφ cos θ

2
|1〉. (47)

The original definition of QD in Eq. (8) can be rewritten
as the difference between the conditional entropy of the
post- and pre-measured quantum states ρ′AB and ρAB ,
respectively and is given by

D(ρAB) = SA|B − S′A|B , (48)

where SA|B is the conditional entropy of the post-
measured state, given in Eq. (6) while S′A|B = S(ρAB)−
S(ρB) is the pre-measured conditional entropy which can
be exactly obtained in closed form. It can be seen that
SA|B = min{ΠB

k
}[S(ρ

′
AB) − S(ρ′B)], ρ′AB =

∑

k pkρA|k ⊗
ΠBk , where ρ

′
B is a reduced density matrix of the aver-

age post-measured state ρ′AB , and {pk, ρA|k⊗ΠBk } is the
post-measured ensemble. Therefore,

SA|B = min
θ,φ

[Λ+ log2 Λ+ + Λ− log2 Λ− −
4∑

i=1

λi log2 λi],

(49)

where the eigenvalues of ρ′B are Λ± = (1 ± (a − b + c −
d) cos θ)/2 and the same of ρ′AB are given by

λ1,2 = {1 + (a− b+ c− d) cos θ
±[(a+ b− c− d+ (a− b− c+ d) cos θ)2

+4(e2 + f2 + 2ef cos 2φ) sin2 θ]1/2}/4,
λ3,4 = {1− (a− b+ c− d) cos θ

±[(a+ b− c− d− (a− b− c+ d) cos θ)2

+4(e2 + f2 + 2ef cos 2φ) sin2 θ]1/2}/4. (50)

To obtain SA|B , we need to minimize the quantity over
the parameters θ and φ. The concavity of Shannon
entropy ensures that minimization over φ happens at
cos 2φ = 1, although the extremum points over θ has

not be exactly located analytically. Assuming that the
optimal measurement basis is either the eigenstates of
σz or those of σx has been found to provide a close esti-
mate. See Refs. [236–241] in this regard. For the states
satisfying the above assumption, we have

D(ρAB) ?
= min{D{σx}(ρAB),D{σz}(ρAB)}, (51)

where D{σα}(ρAB) is the QD with the measurement ba-
sis being the eigenbasis of σα with α = x, z. Here, the
measurement in QD has been restricted to PV ones. The
question-mark is kept on the equality to indicate that the
relation is not true in general. For a subset of X-states,
namely for Bell-diagonal states (for which a = d, b = c),
Eq. (51) is valid [90, 242]. Even for symmetric X-states
(i.e., with b = c) [236], Eq. (51) is not always valid. It
was proven that optimal measurement for QD is {σz}, if
(|e| + |f |)2 ≤ (a − b)(d − c), while the optimal measure-

ment will be {σx} when |
√
ad−

√
bc| ≤ |e|+ |f | [26, 243].

Let us mention here that for the two-parameter family of
X-states within the specific regions mentioned in the pre-
vious sentence, QD (that contains an optimization over
all POVMs) is obtained from a POVM with 3 elements,
confirming the conjecture of Ref. [229].

Beyond X-states, recent studies in this direction reveal
that for a large majority of two-qubit states, an optimal
measurement is among the eigenstates of σx, σy, and σz,
and very small errors persist for the states which do not
minimize on the aforementioned sets [235, 244, 245]. Mo-
tivated by these observations and the error analysis for
the X-states, QD has been considered for different re-
stricted classes of measurements, and the general term,
“constrained QD”, has been used to identify them [246].
The differences of the original QD and such constrained
QDs have been investigated for Haar uniformly gener-
ated bipartite two-qubit as well as two-qutrit states with
different ranks, including some positive partial transpose
(PPT16) bound entangled states [60]. In particular, for
theX-states, the maximal absolute error is 0.0029. It was
found that the error decreases very rapidly with increase
of size of the restricted measurement set. These restricted
classes of projectors were chosen in several ways over the
space of projection measurements. Moreover, it was also
shown that for the quantum transverse XY spin chain of
finite length, constrained QD exactly matches with the
actual QD and hence can detect the quantum phase tran-
sition (QPT) in that system resulting the same scaling
exponent [246]. Similar analysis has also been carried
out for quantum WD for the same restricted classes of
measurements.

16 A bipartite quantum state will be called PPT [247, 248] if it
remains positive under partial transposition.
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B. Higher dimensional systems

Due to the optimization involved in computing QD,
most of the studies therein are limited to C

2 ⊗ C
2 or

C
2 ⊗C

n systems, where measurements are considered in
the qubit part, and only PV measurements are allowed,
so that a relatively easy parametrization is possible, as
discussed in the preceding subsection. This is no more
true for higher dimensional systems. For example, to
study QD of two spin-1 systems, one requires six param-
eters to completely specify a general PV measurement.
In general, for a spin-s system, n(n−1)−1 parameters are
required to define the complete set of PV measurements,
where n = 2s + 1. If the system possesses some special
type of symmetry like parity symmetry, the number of
free parameters can get reduced. For example, for two-
qutrit states with Sz-parity symmetry [249], it is enough
to consider the class of bases given by

|1~r〉 = cosβ(e−iφ0 cosα|1〉+ eiφ0 sinα| − 1〉)− sinβ e−iγ |0〉,
|0~r〉 = sinβ(e−iφ0 cosα|1〉+ eiφ0 sinα| − 1〉) + cosβ e−iγ |0〉,
|-1~r〉 = −e−iφ0 sinα|1〉+ eiφ0 cosα| − 1〉, (52)

where ~r = (α, β, γ) and tanφ0 = tan γ tan (π4 − α).
Interestingly, for bound entangled states in C

3 ⊗ C
3

given in Refs. [157, 250], it was observed that the er-
ror between the actual QD, obtained by considering ar-
bitrary PV measurements in C

3, and the QD by using
standard spin measurement bases corresponding to Sx,
Sy, and Sz is very low, thereby indicating the importance
of constrained QD.

IV. WITNESSING QUANTUM DISCORD

In entanglement theory, witness operators [248, 251,
252] play an important role in detecting entangled states,
especially in the laboratory. Its immense importance lies,
at least partly, on the fact that it is a tool to find out
whether a state is entangled or not without state tomog-
raphy [253–256] and by performing a lower number of
local measurements than in other methods.

The concept of witness operators is based on the Hahn-
Banach theorem. The Hahn-Banach theorem [257] in
functional analysis guarantees the existence of a linear
functional, f : B→ R, from a Banach space B to the set
of real numbers R, such that for any convex and compact
subspaceM⊂ B and for any x ∈ B but x /∈M, one has

f(M) = 0, f(x) 6= 0. (53)

Since the state space in quantum mechanics does form a
Banach space and the set of separable states, S, is convex
and compact [258], the existence of an operator which can
distinguish an entangled state from the set of separable
states is guaranteed by the Hahn-Banach theorem. More

precisely,

∀ρ /∈ S, ∃ W s.t. tr(Wρ) < 0

while tr(Wσ) ≥ 0 ∀σ ∈ S, (54)

where W is a Hermitian operator, and is referred to as
an entanglement witness (EW). It is important to note
here that given an entangled state, finding an optimal
witness operator is still a challenging task (see [251, 259–
261]). Let us also mention here that the Bell inequalities
[226, 227] can also be thought as witnesses of quantum
entanglement, albeit non-optimal.
In a similar spirit, one may wish to find a witness op-

erator which can distinguish the set of zero discord states
from a discordant state. From the definition of an EW
operator, in Eq. (54), one may be tempted to replace
σ by a zero discord state. However, the set of states
with vanishing discord do not form a compact set and
neither it is convex, and hence a direct use of the Hahn-
Banach theorem in this case is not possible. In this re-
gard, it was shown [262, 263] that to detect discord-like
nonclassical correlation, a non-linear witness operator,
W : B (Cm ⊗ C

n) → R, can be defined17, such that for
any c-c state, χ

Wχ ≥ 0 and Wρ < 0, (55)

where ρ is any non-c-c state, and

W ρ̃ = c− tr(ρ̃A1)tr(ρ̃A2) . . . tr(ρ̃Am), (56)

for an arbitrary quantum state ρ̃, with c ≥ 0
and A1, A2, . . . , Am being positive Hermitian operators.
Moreover, the following theorem can be proven.
Theorem 2 [262]: A linear witness map cannot detect
nonclassical correlation of a separable state.
Proof: SupposeWlinear is a linear witness operator which
can detect c-c states i.e. tr(χWlinear) ≥ 0. Therefore,
tr(
∑

k pkχkWlinear) ≥ 0, where {pk, χk} is any ensemble
of c-c states. Now an arbitrary bipartite separable state
σAB , can always be written as a convex combination of
product states [89], and hence convex combination of c-c
states. This implies tr(σABWlinear) ≥ 0. �

The proof of Theorem 2 considers “nonclassical” corre-
lation as that in non-c-c state. However, the proof also
goes through if one considers the same as that in non-q-c
or non-c-q states. It is worth mentioning that non-linear
entanglement witness operators have also been investi-
gated [264–266], and it was shown that non-linearities
help to make the detection process more efficient.
The constant c and the positive operators Ai in Eq.

(56) can be determined from the nonclassical state ρ.
The Hermitian operators A1, A2, . . . , Am are constructed
by taking the projections of the eigenvectors of ρ [262]
and c = supρ̃ tr(ρ̃A1)tr(ρ̃A2) . . . tr(ρ̃Am), where ρ̃ is any

17 B(·) denotes the set of bounded linear operators on its argument.
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quantum state which has a bi-orthogonal product eigen-
basis. For example, consider the mixed state

σ̃AB =
1

2

(

|00〉〈00|+ |1+〉〈1 + |
)

, (57)

where |+〉 =
(
|0〉+|1〉

)
/
√
2. The above state is a c-q state

having non-zero QD if subsystem B performs the mea-
surement. To successfully detect the state, it was found
that one can assume A1 = |00〉〈00| and A2 = |1+〉〈1 + |,
and c = 0.182. The above choice of course leads to
Wσ̃AB < 0, while Wχq-c ≥ 0 ∀ q-c states χq-c. One
should note here that the witness operator proposed here
can be implemented when multiple copies of the state
are not available [260, 267]. Another non-linear witness
operator has been proposed by Maziero et al. [268], to
identify two-qubit states having non-vanishing QD. The
states for which the witness is provided is given in Eq.
(28), with all off-diagonal elements of the correlation ma-
trix, Tij (i 6= j), being zero. It was shown that for these
two-qubit states, the proposed form of the witness oper-
ator is given by18

WρAB =

3∑

i=1

4∑

j=i+1

|〈Ôi〉ρ〈Ôj〉ρ|, (58)

where Ôi = σi ⊗ σi for i = 1, 2, 3 and Ô4 =
∑

i xiσ
i ⊗

I2 +
∑3
i=1 yiI2 ⊗ σi, with

∑

i x
2
i =

∑

i y
2
i = 1 and

〈Ôi〉ρ = tr(ρABÔi). It was shown that WρAB = 0 for
states having either (i) all Tii are vanishing or (ii) all
the xi = 0 = yi ∀i and all Tii except any one are van-
ishing. This implies that such states are c-c states. For
the Bell-diagonal states, for which the magnetizations xi
and yi are vanishing, the witness operator WρAB turns
out to be necessary and sufficient to detect the states
with non-vanishing QD [268]. Moreover, it was proposed
[269] that the witness operator can be implemented by
the technique of nuclear magnetic resonance (NMR).
For arbitrary bipartite states on C

2 ⊗ C
n, another

method to identify states with positive QD, based on
the PPT criterion [247, 248] was proposed [270]. In par-
ticular, it was shown that all c-q states belong to a new
subclass of PPT states, which was called strong PPT
(SPPT) states19 i.e., D→(ρAB) = 0 =⇒ the state is
SPPT on C

2 ⊗ C
n.

In Ref. [272, 273], unlike the witness operator described
in Eq. (58), a single observable of QD witness was intro-
duced which turns out to be invariant under local unitary

18 For convenience of notation, we will interchangeably use 1, 2, 3
for x, y, z.

19 An arbitrary bipartite C2 ⊗ Cn-dimensional quantum state

ρAB = X
†
X with X =

(

X1 SX1
0 X2

)

is SPPT iff there is a canon-

ical conjugate Y =
(

X1 S†X1
0 X2

)

, such that ρ
TA
AB

= Y
†
Y. Here

X1, X2 and S are n× n dimensional matrices [271].

(LU) operations. Such witness operator can detect an ar-
bitrary bipartite quantum state ρAB of arbitrary dimen-
sions (i.e., Cm ⊗ C

n) having positive QD, provided four
copies of the state are available. The witness operator in
this case is given by [272]

W = u1 − u3 −
2

m
(u2 − u4), (59)

where

u1 = V A14V
A
23V

B
12V

B
34 , u2 = V A14V

B
12V

B
34 , (60)

u3 = V A12V
A
34V

B
12V

B
34 , u4 = V A12V

B
12V

B
34 .

Here V A,Bij =
∑

k,l |kl〉〈lk|ij is the swap operator on the

ith and the jth copies of the subsystem A or B. It
was shown that tr(Wρ⊗4AB) = 0 =⇒ D→(ρAB) = 0
in C

m ⊗ C
n. When m = 2, the above theorem becomes

necessary and sufficient. The treatment also provides a
lower bound on GQD. Moreover, for two-qubit states,
quantum circuit of the above witness operator by using
local measurements have also been proposed.
In addition to this, other attempts have been made

to detect the nonclassical correlations in a quantum
state, as quantified by distance-based measures, with-
out full-state tomography. In Ref. [153], Jin et al. re-
ported that the exact GQD for an arbitrary unknown
two-qubit state can be obtained by performing certain
projective measurements, and was shown to be advan-
tageous in comparison to tomography. In particular, it
was shown that the method proposed requires measure-
ments of three parameters which are three moments of
the matrix K = TTT + xxT (see Sec. II B 2), while in
quantum state estimation [274], 15 parameters have to
be obtained. However, the former scheme needs more
copies (not more than six [153]) of states in each round
compared to the latter one. In the two-qubit case, it was
found that a quantity, proposed to be related to GQD,
can be estimated by six or seven measurements on four
copies of ρAB [152]. For further studies in the direction
of discriminating quantum states with non-zero QD from
those with vanishing values of the same, see [275, 276].

V. VOLUME OF STATES WITH VANISHING

QUANTUM DISCORD

With respect to the entanglement-separability prob-
lem, and for definiteness, considering the bipartite case,
the entire state space can be divided into two sets, viz.
those consisting of entangled and separable states. An
important question in this regard is about the “relative
volume” of these two sets [258]. A similar question can be
asked in the context of QD. Specifically, in this section,
we will be discussing about the volume of set of states
having vanishing QD.
Before discussing the division of the space of den-

sity operators into segments with zero and non-zero QD
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FIG. 3: Classification of quantum states of separated systems
with respect to their entanglement and QD. Clearly, separa-
ble states contain the classically correlated states i.e. zero-
discord states. Depending on the definition of QD utilized,
the “classically correlated” states can be q-c, c-q or c-c states.

states, we notice that in a complex Hilbert space, separa-
ble pure states20 have vanishing volume in the subspace
of all pure states. QD coincides with entanglement in
case of pure states and hence “almost all”21 pure states
have non-vanishing QD. Therefore the question about
volume of zero QD states remains non-trivial only for
mixed states.
The Authors in Refs. [258, 279] showed that the volume

of separable states is non-zero. The result was indepen-
dent of the dimension of the Hilbert spaces involved and
the number of subsystems. This result initiated a series of
research works, among which is the work by Szarek [280],
where the radius of the separable ball was estimated for
an arbitrary number of subsystems. An earlier result by
Braunstein et al. [281] showed that such estimates on the
radius have implications for experiments using NMR.
We now try to see whether the set of all states hav-

ing vanishing QD, which is a proper subset of the set of
separable states, also has a non-zero volume. For a given
state ρAB , D(ρAB) = 0 iff the state is q-c. Ferraro et
al. [282] proved that

D(ρAB) = 0 =⇒ [ρAB , IA ⊗ ρB ] = 0. (62)

Note that this is equivalent to [ρAB , IA ⊗ ρB ] 6= 0 =⇒
D(ρAB) > 0. The set of states with zero QD is surely
a subset of the set which satisfies the equation on the

20 An N -party separable pure state is defined as

|ψ〉12...N = |χA1 〉 ⊗ |χA2 〉 . . .⊗ |χAl
〉, (61)

where 2 ≤ l ≤ N , ∪jAj = {1, 2, . . . , N} and Ai ∩ Aj = ∅ ∀i, j.
Note that such states can be fully separable (l = N), bi-separable
(l = 2), etc.

21 The phrase “almost all” is used to indicate that a certain prop-
erty holds for all members of a space except for a set of measure
zero [277, 278].

right-hand-side of (62). It was proven [282] that the big-
ger set has measure zero. Furthermore, an arbitrarily
small perturbation on a zero-discord state leads to a state
having strictly positive QD. This is in sharp contrast to
the situation of states having vanishing entanglement.
Indeed, while there are separable states of non-full rank
that can be made entangled by a small perturbation, full-
rank separable states are submerged in the interior of the
separable states and do not become entangled if the per-
turbation is sufficiently weak. For a schematic diagram,
see figure 3.
Instead of focusing on the volume of zero QD states,

we can try to understand methods for knowing whether
a state has zero QD. A method for this purpose was pro-
vided in Ref. [66], which works for bipartite states of arbi-
trary dimensions. To obtain this method, we consider the
singular value decomposition UC̃WT = [c1, c2, . . . , cL] of
a bipartite state ρAB on C

m⊗Cn written out in Eq. (30).
Here, U and W are m2×m2 and n2×n2 orthogonal ma-
trices, and diag[c1, c2, . . . , cL] is anm

2×n2 matrix. In the

new basis, ρAB takes the form ρAB =
∑L
k=1 ckSk ⊗ Fk,

where L = rank(C̃). A necessary and sufficient condition
for vanishing QD (D←) is then the mutual commuta-
tivity of the Fk (k = 1, 2, . . . , L). It was also underlined
in [66] that this necessary and sufficient condition is more
efficient than state tomography. Another necessary and
sufficient criterion for zero QD of a bipartite quantum
state was obtained in [283] based on whether the corre-
sponding density matrix can be written in a block form
with the blocks being normal and mutually commuting.
See also [284].
The geometric pictures of the sets of states with zero

and non-zero QD [285, 286] and GQD [241, 242, 285, 287,
288] have also been investigated, especially for two-qubit
states. Note that mixing of two positive-discord states
can lead to a zero-discord state, as also mixing two zero-
discord states can lead to a positive-discord state.
The proposals that relate the vanishing of QD between

a system and its environment with the complete positiv-
ity of the corresponding evolution of the system will be
considered in Sec. VIII.

VI. ARE QUANTUM CORRELATED STATES

WITHOUT ENTANGLEMENT USEFUL?

The early development of quantum information theory,
especially in quantum communication [289–291], strongly
suggests that entanglement shared between two or more
parties is an important resource necessary for achieving
efficiencies that cannot be reached by states without en-
tanglement. However, about a decade ago, a prominent
divergence from this line of thought has begun to emerge
and researchers have started to ask: Is quantum entan-
glement the only correlation-like resource for performing
tasks with nonclassical efficiencies? In this section, we are
going to address this question. At the outset, let us men-
tion that there exists, for example, the Bennett-Brassard
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FIG. 4: Schematic diagram of the DQC1 circuit, comprised
of a single-qubit system in a mixed state of polarization α,
together with a N-qubit bath in which each of the qubit is in
a maximally mixed state I2. In order to compute the normal-
ized trace of an arbitrary unitary operator, the single-qubit
system is subjected to a Hadamard gate, which is followed
by a controlled unitary UN on the qubits those belong to the
N -party bath. N is represented as n in the figure. [Reprinted
from Ref. [320] with permission. Copyright 2008 American
Physical Society].

1984 quantum key distribution protocol [292], that deals
with only product states, at least in the ideal case, that is
secure against even quantum adversaries, provided we do
not require device-independent security [293–297]. Let us
also remember that there exists the Bernstein-Vazirani
algorithm [298–300] of quantum computation that again
uses product states at all stages of the protocol. However,
the Bernstein-Vazirani algorithm requires a controlled-
unitary operation that acts on a large number of qubits,
which has product states as input and output. It is pos-
sible that the implementation of this unitary by breaking
it up into single- and two-qubit unitaries [301] will gener-
ate states having QC in the intermediate steps. We will
see that a similar situation appears in the deterministic
quantum computation with a single qubit (DQC1) [13]
protocol. Below we consider some QIP tasks in which, it
is claimed that the states required in the process possess
non-zero amount of QD, while they do not have any or a
significant amount of entanglement. We warn the poten-
tial readers that some parts of this section are currently
contested in the community. The protocols that we are
going to discuss about are deterministic quantum com-
putation with a single qubit, remote state preparation,
and local broadcasting, with emphasis on whether the
resource involved can be identified as QD.

Apart from the above mentioned schemes, QD has
been claimed to be useful for several other QIP tasks.
These include, e.g. the quantum state merging proto-
col [63, 302, 303], identification of unitaries and quantum
channels [304, 305], and quantum metrology [306, 307].
See also [307–312]. QD is also asserted to be use-
ful in studying biological systems like photosynthesis in
the light-harvesting pigment-protein complexes [313–316]
and tunnelling through enzyme-catalysed reactions [317].
For further claims on the usefulness of QD in QIP tasks,
see [307–312]. Cf. [281].

A. Deterministic quantum computation with single

qubit

Let us first briefly illustrate the task and circuit of
DQC1 [13]. We then discuss the QC in different parti-
tions of the set-up, and ask whether the efficiency of the
protocol is related to the QC.

The task of the DQC1 algorithm, as proposed by Knill
and Laflamme [13], is to assess the normalized trace22

of a unitary matrix which cannot be solved efficiently by
any known classical algorithms [81, 318–320]. The set-up
consists of N + 1 qubits, and the initial state is

ρinN+1 =
(1

2
I2 + α|0〉〈0| − α|1〉〈1|

)

1
⊗ I2N /2

N , (63)

with α ≥ 0. As schematically depicted in figure 4,
the first qubit (called as “system”) is subjected to a
Hadamard gate23 and is followed by a unitary operation
on the entire set-up. The collection of N qubits other
than the system is referred to as the “bath”. The uni-
tary on the entire set-up is a controlled-UN , where UN is
a unitary operator on the bath. Hence, the initial state
ρinN+1 would lead to the final state given by

ρfN+1 =
1

2N+1
(I2N+1 + α|0〉1〈1|1 ⊗ U†N

+ α|1〉1〈0|1 ⊗ UN ). (64)

It is interesting to study the behavior of QC of the final
state to understand whether the nonclassical efficiencies
of the algorithm are related to QC. To find out the trace
of UN , one can now calculate the expectation values of
the observables σx and σy of the system. These are given
by

〈σx〉1 = tr(σxρf1 ) =
α

2N
Re [tr(UN )],

〈σy〉1 = tr(σyρf1 ) =
α

2N
Im [tr(UN )], (65)

where ρf1 = 1
2 I2+

1
2N+1

(
α|0〉〈1| tr(U†N )+α|1〉〈0| tr(UN )

)
,

as obtained from Eq. (64) by tracing out the N -qubit
bath.

There is no known classical algorithm which can com-
pute the trace of an arbitrary unitary operator in an effi-
cient way [81, 318–320]. The circuit of DQC1 involves a
controlled unitary gate which can be realized by several
single- and two-qubit gates with polynomial resources.
At this point, it is probably natural to expect that en-
tanglement generated in the state is the key resource for

22 The normalized trace of a matrix M on Cm is defined as
1
m
tr(M).

23 The Hadamard gate is defined as the unitary operator that trans-
forms |0〉 → |+〉 and |1〉 → |−〉, where |0〉 and |1〉 are eigenvectors
of σz and |+〉 and |−〉 are eigenvectors of σx.
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success of the process24. Surprisingly, it was found that
the final state is separable in the system-bath biparti-
tion for any UN and for all α > 0. This can be seen
by putting UN =

∑

j e
iφj |ej〉〈ej | in Eq. (64), which gives

the final state of the form ρfN+1 = 1
2N+1

∑

j(|ψj〉〈ψj | +
|ψ′j〉〈ψ′j |) ⊗ |ej〉〈ej |, where {|ej〉} is an eigenbasis of the

unitary UN , φj are real, |ψj〉 = cos θ |0〉 + eiφj sin θ |1〉,
and |ψ′j〉 = sin θ |0〉+ eiφj cos θ |1〉, with sin 2θ = α.

The above example seems to imply that there are quan-
tum algorithms involving mixed states where the compu-
tational advantage over classical protocols does not de-
pend on entanglement, and hence there exists a possi-
bility of different quantum properties of the multipartite
state, independent of entanglement, which behave as re-
sources. To explore such a prospect, Datta et al. [320]
computed QD in the splitting between the system qubit
and the bath. As we have discussed in Sec. III, the main
difficulty in computing QD lies in the fact that it is not
easy to find the optimal measurement basis involved. To
overcome the difficulty, a random unitary operator was
generated, uniformly with respect to the Haar measure
over the space of unitary operators on the Hilbert space
of the system, and it was shown that the choice of the
basis plays an insignificant role in the evaluation of QD
across the system-bath bipartition. Hence, the result can
be obtained by using a measurement basis chosen from
the x-y plane. By choosing the optimal measurement
basis as the eigenbasis of σx, for large N , QD can be
approximated as

DDQC1 = 2− h
(
1− α
2

)

− log2

(

1 +
√

1− α2
)

−(1−
√

1− α2) log2 e, (66)

where h(α) is the Shannon binary entropy, defined as

h(α) = −α log2 α− (1− α) log2(1− α). (67)

Note that the measurement involved in the definition is
carried out on the Hilbert space of the system. Moreover,
DDQC1 is independent of N , and to obtain Eq. (66), one
assumes that for a typical unitary UN , real and imaginary
parts of tr(UN ) are small. Therefore, for any α ≥ 0, QC,
in the form of QD, is present in the system-bath biparti-
tion (see figure 1 in Ref. [320]). The results indicate that
the efficiencies in DQC1 may have a connection with QD,
thereby providing an avenue towards establishing QD as
resource.
This work leads to several theoretical [324–328] (see

also [168, 169]) and experimental studies [168, 170, 329–
332] (see also [169]) that explored the possibility of iden-
tifying QD as a resource in DQC1.

24 It was shown that a large amount of entanglement does not en-
sure increase of speed-up in an algorithm [321]. The question
however is whether entanglement or other QC are a necessary
ingredient (see e.g. [300, 322, 323]).

The main criticism of the above result is that im-
plementation of the controlled-unitary operation, which
would typically be simulated by several single-and two-
qubit quantum gates [301], may generate entanglement as
well as QD in the intermediate steps of the process [333].
Another counter-argument [66] was found by using a con-
dition on the final state to possess non-vanishing QD.
First notice that Eq. (64) can alternatively be re-written
as

ρfN+1 =
1

2N+1

(
I2 ⊗ I2N +

1

2
σx1 ⊗ (UN + U †N )

+
1

2i
σy1 ⊗ (UN − U †N )

)
.(68)

By using the necessary and sufficient condition of QD dis-
cussed in Sec. III, it was shown that QD vanishes across

the system-bath bipartition of the state ρfN+1 in Eq. (68)

iff U †N = k UN [66]. Such unitaries exist, as seen by choos-
ing UN = eiφA where A2 = I2N . Moreover, it is believed
that the trace of this unitary operator cannot be simu-
lated by a classical algorithm with polynomial resources.
Therefore, this example opens up a debate on the results
in [320] about the identification of QD as a resource in
DQC1 (cf. [334, 335]).
Recently, it was also shown that the trace of any uni-

tary operator and the complexity of the DQC1 circuit
are connected to the notion of “entangling power” [336].

B. Remote state preparation

Remote state preparation (RSP) [337–339] (see
also [34–36], and see Refs. [340–350] for experimental
developments) is a quantum communication scheme, re-
lated to the quantum teleportation protocol [291], for
sending a partially unknown qubit. Like in teleportation,
the RSP scheme also requires a shared state between a
sender, Alice, and a receiver, Bob. Suppose Alice wants
to send |Φ〉 = 1√

2
(|0〉 + eiφ|1〉), 0 ≤ φ < 2π to Bob, and

they share a singlet state. The set {|0〉+ eiφ|1〉 : 0 ≤ φ <
2π} is referred to as the equatorial qubit. Bob knows
that the sent qubit is equatorial. Alice knows further:
She knows even the value of the φ of the equatorial qubit
that she intends to send to Bob. Notwithstanding her
knowledge of φ, since φ is a real number in [0, 2π), to
send it via a classical communication channel, say phone
call, Alice will need an infinite amount of communica-
tion, if the shared entangled state is not used. In case
the entangled state is used, a measurement by Alice in
the {|Φ〉, |Φ⊥〉} basis25 - this is why Alice needs to know
φ - and one bit of classical communication from Alice to
Bob can help Bob to get his part of the singlet state in
the input state |Φ〉.

25 Here, |Φ⊥〉 = 1√
2
(|0〉 − eiφ|1〉).
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One can generalize this protocol to the case when Alice
and Bob share an arbitrary state ρAB , and Alice’s aim
is to send a qubit, with Bloch vector ~s, which is perpen-

dicular to a given unit vector ~β. Alice knows ~s, but Bob

just has the knowledge of ~β. After performing a local
generalized measurement at her side, Alice sends a bit of
classical communication to Bob. The task of Bob is to
perform a suitable quantum operation such that the fi-
delity between the output and input states, averaged over
the unit circle on the Bloch sphere made by all the vec-

tors in the plane perpendicular to ~β and passing through
the center of the sphere is maximized.
There have been claims that there may be separable

states whose RSP fidelity is higher than that of certain
entangled states, leading to the possibility of identifying
QD as a resource in RSP [66] (cf. [351–355]). The claims
however have been countered [356] (cf. [164, 355]). In
particular, it has been shown that the fidelity of RSP,
when carefully defined, gives a higher value for any en-
tangled state than all unentangled ones.

C. Connection with local broadcasting

Quantum mechanical postulates prohibit copying of an
unknown pure quantum state, and even two nonorthogo-
nal pure states, by a single machine, a result known as the
no-cloning theorem [357, 358]. In a general setting, an en-
semble of mixed quantum states {pi, ρi} is provided and
the question is whether it is possible to find a quantum
operation Λ such that trSΛ(ρ

i
S⊗σE) = trEΛ(ρ

i
S⊗σE) =

ρi where Λ is independent of i. Such an operation, called
broadcasting of states, exists if and only if the states {ρi}
in the ensemble {pi, ρi} are mutually commuting [359].
The above procedure of broadcasting has been general-
ized by Piani et al. [121] for shared bipartite states, and
named as local broadcasting. A bipartite state ρAB is lo-
cally broadcastable (LB), if there exists local operations
ΛAA′ and ΛBB′ such that

trABΛAA′ ⊗ ΛBB′(ρAB ⊗ σA′ ⊗ σ′B′)

= trA′B′ΛAA′ ⊗ ΛBB′(ρAB ⊗ σA′ ⊗ σ′B′)

= ρAB .

Note that in LB, no classical communication is allowed.
Communication of quantum states is certainly not al-
lowed. It is also worth mentioning that entangled states
are not LB [360–368]. The question is whether separable
states having non-zero QD are suitable for LB. In this re-
gard, the following theorem [121] states that this is not
the case.
Theorem 3 [121]: A state ρAB is LB if and only if it is
a classical-classical state.
The above theorem gives an operational interpretation
of c-c states (for other variations of the LB theorem, see
Refs. [369–371]).

The no-cloning and no-broadcasting theorems tell us
about which states cannot be cloned and broadcast by

global quantum engines, and it is known that such states
are useful in quantum technologies [372]. It may similarly
be hoped that the results on no local-cloning and no local-
broadcasting by local quantum engines will be useful for
applications in quantum process (see [373] in this regard).

VII. QUANTUM DISCORD IN QUANTUM

SPIN SYSTEMS

Quantum correlations, in both entanglement as well
as discord-like avatars, have turned out to be impor-
tant for understanding QIP schemes that are more ef-
ficient than their classical analogs [2, 42]. In order to
achieve such tasks, one requires to identify certain real-
izable physical systems - substrates - in which they can
be implemented in the laboratory. Interacting spin mod-
els [374, 375], which can naturally be found in solid-state
systems [376, 377], are one of the potential candidates
for such realizations. With currently available technol-
ogy, it is also possible to realize such systems in optical
lattices [10, 378–382], trapped ions [8, 11, 383], super-
conducting qubits [384–386], NMR [387], etc. Therefore,
along with its fundamental importance, investigating QC
in these spin models is also important from the perspec-
tive of applications.
Over the years, it was shown that a change in the

behavior of correlations can indicate occurrence of cer-
tain co-operative phenomena. In particular, at zero
temperature, certain variations in the correlation func-
tions or their derivatives can infer rich phenomena like
quantum phase transitions (QPT) [388]. In a pair of
seminal papers, Osterloh et al. [389], and Osborne and
Nielsen [390] showed that the first derivative, with re-
spect to the control parameter, of nearest-neighbor bipar-
tite entanglement, as quantified by concurrence (see Ap-
pendix XVA2, for a definition), of the zero-temperature
state in the one-dimensional (1D) quantum transverse
Ising model can capture the signature of QPT present in
this model. Furthermore, it was demonstrated that there
are quantum many-body systems in which “localizable
entanglement length” diverges while the classical correla-
tion length remains finite [391, 392]. QPTs are tradition-
ally uncovered by the divergence of “length” of classical
correlation functions [393]. It has also been realized that
it is useful to understand the role of entanglement in clas-
sical simulation of quantum many-body systems [394–
396]. These have led to a significant amount of effort be-
ing given to the analysis of the behavior of entanglement,
mainly bipartite, of zero-temperature states in isotropic
Heisenberg rings [397–399] and in various other quantum
many-body systems [42, 378, 400] (see also [401–413])
which include both ordered as well as disordered quan-
tum spin- 12 models with nearest-neighbor, next-nearest-
neighbor as well as long range interactions [414–420].
Similar studies have also been carried out in higher-
dimensional many-body systems [378, 400]. In 2003, Vi-
dal et al. [421] went beyond bipartite entanglement and



19

investigated the behavior of entanglement entropy be-
tween two disjoint blocks of a spin chain (block entan-
glement), which was later extended to several other sys-
tems [400]. It was found that block entanglement tends
to follow an “area law” in gapped systems [422].

Apart from the zero-temperature states, bipartite as
well as multipartite entanglement have also been used
to investigate thermal equilibrium states in different spin
models either by analytical or numerical techniques. It
has in particular been found that entanglement can some-
times be nonmonotonic with the increase of tempera-
ture [397, 423–428], which is in contrast to the fragile
nature of entanglement in the presence of environment.
In all the above works, tools from quantum informa-

tion theory have been employed to understand, mainly,
equilibrium co-operative phenomena present in quantum
many-body systems. However, realizing QIP tasks in
these systems normally demand investigation of trends
of entanglement with time, both bipartite as well as
multipartite, in the time-evolved state. Such studies
have led to an important area in quantum computation,
called one-way quantum computer [429, 430] which has
been extensively investigated, both theoretically and ex-
perimentally. Moreover, statistical mechanical proper-
ties like the question of ergodicity of bipartite entan-
glement was investigated in XY and XY Z spin sys-
tems [211, 424, 426, 431–436]. The dynamics of entan-
glement has further been explored in Refs. [437–441] for
different types of quenches. See also [442, 443]. The dy-
namical behavior of block entropy after a sudden quench
was considered by Calabrese and Cardy [444] in the trans-
verse Ising chain and then later investigated in various
other models [422].

As argued in this review, QC are not limited to entan-
glement. It is interesting to check whether the behavior
of QC beyond entanglement can also identify the key phe-
nomena of these systems. In this section, we outline the
works in this direction.

A. Models

Let us first briefly review the quantum spin systems in
which QD has been investigated in recent years. Interact-
ing systems of localized spins provide a paradigm where
QD is capable of detecting natural phenomena like QPT,
ground state factorization, ergodicity, etc. So far, most
of the studies of QD in critical systems are limited to 1D
spin systems. Similar to entanglement, non-analyticity of
the derivative of QD near the critical point can indicate
the QPT in the system.
The Hamiltonian of a 1D nearest-neighbor “XY Z spin

model” with transverse magnetic field can be written as

H = J
∑

〈i,j〉
[(1 + γ)Sxi S

x
j + (1− γ)Syi Syj +∆Szi S

z
j ]

+hz
∑

i

Szi , (69)

where 〈·, ·〉 denotes the sum over nearest-neighbor spins
and Sαi (α = x, y, z) are spin operators of appropriate
dimension at the ith site of the system. J and γ are re-
spectively the exchange coupling and the anisotropy pa-
rameter in the x-y plane. ∆ and hz are the coupling con-
stant and the strength of external magnetic field in the
z-direction, respectively. Here, J and hz have the unit of
energy while ∆ and γ are dimensionless. When J > 0 the
model is antiferromagnetic, while J < 0 corresponds to a
ferromagnetic system. We assume 1 ≤ i, j ≤ N . On top
of that, periodic boundary condition requires SN+1 = S1.
The thermodynamic limit can be obtained by taking the
N →∞ limit.
For spin- 12 systems, Sαi (α = x, y, z) are proportional

to the Pauli spin matrices. Though the Hamiltonian,
even for the spin- 12 case, is not solvable in general, it
can be diagonalized exactly in certain special cases in
1D. When ∆ = 0 and γ 6= 0, the model reduces to the
“transverse XY spin model”, whose eigenenergies and
eigenvectors can be obtained exactly by using succes-
sive Jordan-Wigner, Fourier and Bogoliubov transforma-
tions [445–448]. Similar method can also be employed to
find the entire spectrum of the above Hamiltonian with
γ = ∆ = 0, known as the “XX model”. The case when
hz = 0 and ∆ 6= 0, known as the “XXZ model” without
magnetic field can also be diagonalized analytically by
using thermodynamic Bethe ansatz [449].

B. Statics

If the Hamiltonian does not have any explicit time de-
pendence, and we are interested with static states of the
system such as the ground or thermal states, we refer
to the analysis as the “static” case. If the system is at
zero temperature, its properties, including any change of
phase, are completely driven by quantum fluctuations.
However, at any finite temperature, this is not the case.
In particular, a thermal state is a mixture of the ground
state as well as all the excited states, with appropriate
probabilities which are fixed by the temperature, and
hence the properties of a thermal equilibrium state is
driven by the interplay between quantum and thermal
fluctuations. When the system reaches high enough tem-
perature, only the thermal fluctuations dominate. Below
we briefly discuss the properties of ground and thermal
states by using QD in some of the well studied spin mod-
els.

1. Spin- 1
2
systems

Let us first concentrate on the Hamiltonian in Eq. (69)
for the spin- 12 case. To study QD between the ith and

(i + r)th sites of a state, we first need to calculate the
two-site reduced density matrix, ρi,i+r, by tracing out all
the sites except i, i+ r from the ground or thermal state
of the system. Let us also assume the periodic boundary



20

condition which implies that all reduced density matrices
are the same. As discussed in Sec. III, systems having
Z2-symmetry, enjoy some simplifications and the two-site
reduced density matrix of such Hamiltonians can then be
written as

ρi,i+r =
1

4

[

I4+〈σz〉(σzi ⊗ I2 + I2 ⊗ σzi+r)

+
∑

α=x,y,z

〈σαi σαi+r〉σαi σαi+r
]

, (70)

where 〈σµ〉 = tr(σµρi), with ρi being the single site re-
duced density matrix, denotes the magnetization of the
system and 〈σµi σνi+r〉 = tr(σµσνρi,i+r) are the elements
of the correlation tensor, as defined after Eq. (28), with
µ, ν = {x, y, z}. The above state is the “symmetric X”
state (i.e., the state in Eq. (46) with b = c). If the
ground state is degenerate, one may consider the equal
mixture of all the degenerate ground states which can be
called the symmetry-unbroken ground state or the zero-
temperature thermal state, and is given by

ρeq = lim
β→∞

e−βH

Z
, (71)

where Z = tr
[
exp (−βH)

]
is the partition function and

β = 1/kBT with kB being Boltzmann constant and T be-
ing the absolute temperature. Such mixtures retain the
form of the reduced two party state as in Eq. (70). In
particular, the magnetizations in the x- and y-directions
still vanish. The same properties can be retained in
certain symmetric pure superpositions of the degenerate
ground states. On the other hand, when one considers
the symmetry-broken state, the magnetizations in the x-
and y-direction remain non-zero.
XXZ chain (γ = 0 and hz = 0): It is known that

the XXZ model undergoes QPTs at ∆ = ±1 [449].
For J > 0, when the system crosses ∆ = −1 from
∆ < −1, a ferromagnetic-to-XY (spin flopping) tran-
sition occurs, while at ∆ = 1, the system undergoes an
XY -to-antiferromagnetic transition. It is known that the
former is an infinite-order QPT, whereas the latter is a
first-order one. The ∆ = −1 transition is detected by
the discontinuity in the derivative of QD, while it is the
discontinuity of QD that itself detects the transition at
∆ = 1 [450–452]. Recently, Huang [453] provided an an-
alytical expression of QD between two distant neighbors
of the system. In case of entanglement, the transitions at
∆ = −1 and +1 are detected respectively by the change
of entanglement from vanishing to non-vanishing and by
its being maximal [454, 455]. QD, however, can detect
the QPT at ∆ = −1 until some finite temperature with
kBT ≤ 3 [456]. Such study has also been carried out for
the XXZ chain with an external magnetic field and has
been shown that QD is a faithful critical point detector
also for this system at zero as well as finite temperatures
[457].

Transverse field Ising and XY chains: In Eq.
(69), if we consider ∆ = 0, γ 6= 0, the Hamiltonian then

FIG. 5: Quantum discord in the transverse Ising model.
Behavior of the second derivative of QD is plotted against
g (= hz/J in our notation) in the transverse Ising model. In
the figure, quantum discord is denoted by Q, while it is D
in our notation. Also the system size is L here while it is N
in the text. The vertical axes are in bits while the horizon-
tal ones are dimensionless. [Reprinted from Ref. [451] with
permission. Copyright 2009 American Physical Society.]

describes a system, which is known as the XY model.
By setting γ = 1, it further reduces to the transverse
Ising model. Dillenschneider [450] was among the first
to study QD in the transverse Ising model to identify
the QPT present in this model26 at hz/J = 1. It was
shown that the next-nearest-neighbor QD (but not the
nearest-neighbor QD) has its maximum value near the
critical point, where the monogamy bound for concur-
rence squared is conjectured to be saturated [390]. How-
ever, unlike quantum entanglement, both the nearest-
neighbor and next-nearest-neighbor QD are maximal in
the region close to the QPT, but not exactly at the quan-
tum critical point. It was shown that although nearest
and next-nearest-neighbor QD are continuous, the first
derivative of the QD of nearest-neighbor spins shows an
inflexion, while, interestingly, the first derivative of the
latter has divergence at hz/J = 1 [451]. It was also
pointed out in the same work that the second derivative
of QD of the nearest-neighbor sites has quadratic loga-
rithmic divergence, and the corresponding scaling analy-
sis has also been performed (see figure 5).
The Ising QPT at hz/J = 1 in the anisotropic XY

model is marked by a divergence in the derivative of the
nearest-neighbor QD with respect to the external field
[425]. For the symmetry-broken state, this divergence is
present in the entire Ising universality class (0 < γ ≤
1), while for the thermal ground state, it holds for all
γ except γ = 1 [458]. At γ = 1, as discussed above,

26 The Ising transition point at hz/J = 1 separates the antiferro-
magnetic (AFM, J > 0) or ferromagnetic (FM, J < 0) phase
from the paramagnetic (PM) one, while the anisotropy transi-
tion separates the AFM or FM order along the x-direction from
the same along the y-direction.
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instead of the first derivative, the second derivative of the
nearest-neighbor QD diverges [451]. It is worthwhile to
mention here that in the case of entanglement, the Ising
QPT is always characterized by a divergence of the first
derivative of bipartite entanglement for the entire Ising
universality class (γ ∈ (0, 1]) including the Ising model
(γ = 1). This is expected because the Ising transition is
seen for the entire Ising universality class which includes
the Ising model. The reason behind the different behavior
of QD seen for the Ising QPT in the Ising model is still
not clear.
Apart from the quantum criticalities, viz. the Ising

and the anisotropy transitions, it has been revealed that
in the XY model, there exists a point in which entan-
glement, both bipartite as well as multipartite, vanishes,
with the corresponding point being known as the factor-

ization point, given by hz = hfz = J
√

1− γ2 [459]. The
factorization point and its neighborhood refer to a re-
gion where entanglement is low, which is an important
information for possible implementation of QIP in this
system.
Up to now, we were discussing about the role of bipar-

tite QD in physical phenomena of quantum many-body
systems. We will now discuss whether discord length,
i.e. the behavior of QD between two sites, with increas-
ing lattice distance between the sites, has significance in
physical phenomena of these systems. Note that entan-
glement vanishes for pairs which are farther than next-
nearest-neighbors in the transverse field XY model, and
this is independent of whether the system is at the fac-
torization point. Interestingly this is not the case for
QD. Specifically, in Ref. [425], the Authors showed that
just like nearest-neighbor QD, QD between farther neigh-
bors can still characterize QPTs. In Refs. [453, 460, 461],
five regions in the parameter space of XY model have
been identified where scaling of two-site QD with the dis-
tance between the sites are different. They are hz/J >

1, hz/J = 1,
√

1− γ2 < hz/J < 1, hz/J =
√

1− γ2 and

0 < hz/J <
√

1− γ2.
At the factorization point, hfz = J

√

1− γ2, the ground
state is doubly degenerate [459]. If we take the thermal
state in the T → 0 limit, the two-site QD becomes scale-
invariant, i.e. the QD between the ith and (i+r)th spins,
denoted by Dr, remains constant for any r, which leads
to violation of monogamy for QD [462, 463]. We will
discuss the issue of monogamy of quantum correlations
in Sec. IX. However, the situation changes if one takes
the symmetry-broken ground state. Tomasello et al. [458]
showed that if one considers a symmetry-broken state, as
obtained by a negligible perturbation of longitudinal field
(hx), all the two-site QDs, Dr, vanish at the factorization
point for all system sizes. Moreover, it was numerically
found that in the symmetry-broken phase, close to the
factorization point, the two-site QD between the ith and
(i+ r)th sites scales as

Dr ∼ (hz − hfz )2 ×
(1− γ
1 + γ

)r

. (72)
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FIG. 6: Scaling of nearest-neighbor QD (denoted by Q1 in
the figure) is analyzed close to the factorization point for
γ = 0.7. The system size is L here while it is N in the

text. It is observed that Q
(L)
1 , which is the value of Q1 for

a system of size L, converges in the thermodynamic limit

as e−αL(h − h
(L)
f ), α ≈ 1. Here h replaces hz/J , and

h
(L)
f is the value of h at the factorization point for a sys-

tem of size L. The quantity plotted in the vertical axis is
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−
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. Due

to the extremely fast convergence to the asymptotic value, dif-
ferences with the thermodynamic limit are comparable with
density matrix renormalization group [464, 465] accuracy, al-
ready at L ∼ 20. Inset: Raw data of Q1 as a function of
h. The cyan line is for L = 30 for which, up to numerical
precision, the system behaves as being at the thermodynamic
limit. The vertical axes are in bits, while the horizontal ones
are dimensionless. [Reprinted from Ref. [458] with permis-
sion. Copyright 2011 IOP Publishing.]

The scaling of the symmetry-broken QD near the factor-
izing point is plotted in figure 6, which is consistent with
the results obtained in Ref. [466].

The temperature-dependence of nearest-neighbor QD
of the XY model have been studied in Refs. [425, 457,
467, 468]. Like entanglement [397], non-monotonicity of
QD with the increase of temperature have also been re-
ported [425]. It was shown that the nearest-neighbor QD
is a better indicator of the Ising transition (hz/J = 1)
than the two-site entanglement at finite temperature. On
the other hand, at low temperatures the anisotropy tran-
sition (γ = 0) can be correctly detected both by entan-
glement and QD. With the increase of temperature, QD
turns out to be a better physical quantity to identify the
Ising transition point than pairwise entanglement [457].

Dhar et al. [469] studied long range QD between the
non-interacting end spins of an open quantum XY spin
chain, with the end spins weakly coupled to the bulk of
the chain. It was shown that when the end couplings
are adiabatically varied below a certain threshold, QD
between the end spins remains frozen. The interval of
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the freezing can detect the anisotropy transition in the
chain.
Other models: The behavior of QD has recently been

investigated in an alternating fieldXY model [427] where
the external magnetic field is not uniform for all the sites
but has an alternating nature. Interestingly, with the
introduction of variations of local transverse fields, it was
found that apart from the AFM/FM to PM transition,
the system undergoes a dimer to AFM/FM transition.
Both the transitions are shown to be detected by the
divergence of first derivatives of the nearest-neighbor QD.
The effect of thermal fluctuation on QD has also been
studied in this system and nonmonotonic behavior of QD
with respect to temperature is found in the AFM/FM
and PM phases while the dimer phase does not show any
non-monotonic behavior.
Patterns of QD in several other 1D quantum spin sys-

tems have been carried out. The systems include XY
spin chain [470] with three-spin interaction [471, 472] and
with Dzyaloshinskii-Moriya (DM) interaction [473–476],
XY Z model with inhomogeneous interaction [477], sym-
metric spin trimer and a tetramer [478], Dicke model,
and the Lipkin-Meshkov-Glick model [479].
QD has also been studied in the the quenched disor-

dered quantum XY model [467] where the coupling con-
stant is chosen randomly from a Gaussian distribution.
The disorder is assumed to be quenched which imply that
the time scale of the dynamics of the system is much
shorter than the equilibration time of the disorder. Al-
though disorder may intuitively seem to suppress physi-
cal quantities of the system, it turns out that QD can be
enhanced with the introduction of disorder - an instance
of the “order-from-disorder” phenomena [463, 467, 480–
489]. The disorder-induced enhancement is observed
both at zero and finite temperatures. Moreover, it was
shown that in some parameter regimes, thermal fluctu-
ation interfere constructively to generate a more pro-
nounced order-from-disorder in QD. It was also shown
that the long-range behavior of QD can be improved by
introducing disorder in the XY spin chain [463]. How-
ever, the scale invariant behavior of QD at the factoriza-
tion point of the ordered system is absent in its quenched
disordered counterpart.

2. Spin-1 systems

As already discussed in Sec. III, computation of QD
of higher-dimensional states, is difficult and hence most
of the studies on the behavior of QD in spin models are
limited to systems consisting of spin- 12 particles. How-
ever, there are some methods (see Sec. III B) which can
be employed to deal with two-qutrit states, originating
say, from spin-1 systems. QD in the ground state of
the spin-1 XXZ chain and a spin-1 bilinear quadratic
chain has been studied [490]. For optimizing over the
projective measurements, generation of random unitary
matrices is employed as an initial step [491, 492]. The

Hamiltonian of the spin-1 XXZ model can be obtained
from Eq. (69) by setting γ = hz = 0 and by taking the
Si’s as spin-1 operators. The model is known to have sev-
eral quantum critical points with respect to the strength
of the zz-interaction ∆ as we walk from low to high ∆:
(i) ∆ = ∆c1 ≡ −1 : FM → XY phase as in the spin- 12
XXZ chain; (ii) ∆ = ∆c2 ≈ 0 : XY → Haldane; (iii)
∆ = ∆c3 ≈ 1.185 : Haldane → Néel phase [493–495].
The first and third transitions are respectively 1st and
2nd order while the second one is a Kosterlitz-Thouless
(KT) transition of infinite order. The behavior of QD
against ∆ within −1 < ∆ < 1.5 is shown in figure 7 [490].
While QD seemingly fails to capture the infinite order
KT transition (and the situation is the same with other
QC measures), it can accurately detect the second order
Haldane-Néel phase transition. The QD indeed shows an
inflection point at ∆c3 ≈ 1.185 which results in a kink in
the derivative of QD. Moreover, the model has a SU(2)
symmetry point at ∆ = 1 which can also be observed
from the sudden change of QD, happening due to the
change of the optimal measurement basis.

FIG. 7: Quantum discord detects a Haldane - Néel transition.
The figure shows QD versus the zz-interaction strength in the
1D spin-1 XXZ model. In the figure, QD and zz-interaction
strength are respectively denoted by δ and ∆, while these are
denoted by D and ∆/J in the text, respectively. Different
phases, transition points, and the SU(2) symmetry point are
shown. The vertical axes are in bits, while the horizontal ones
are dimensionless. [Reprinted from Ref. [490] with permission.
Copyright 2016 American Physical Society.]

Another model considered in Ref. [490] is a 1D spin-1
bilinear biquadratic model. The Hamiltonian in this case
is given by

HBB =
∑

〈i,j〉

[

cos θ(Si · Sj) + sin θ(Si · Sj)2
]

, (73)

where θ ∈ [0, 2π) is an angle that modulates the cou-
pling strength of the nearest-neighbor spins. By tuning
θ, the system undergoes four different kinds of QPTs - a
KT transition at θc1 = 0.25π from Haldane to trimerized
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phase, a first order transition at θc2 = 0.5π from trimer-
ized to ferromagnetic, and another first order transition
at θc3 = 1.25π from ferromagnetic to dimerized phase,
and finally a second order transition at θc4 = 1.75π from
trimerized to Haldane phase. There is difference in opin-
ions about other transitions which have been suggested
for this model. Like the XXZ spin-1 chain, this model
also has a special SU(3) symmetry point at θ = 0.25π. In
this case, QD has been computed for system of up to 12
spins with open boundary conditions. Despite the small
system size, QD can actually detect the critical points
at θc2 and θc3. However, it is failed to identify the KT
transition and the second order transition from dimer-
ized to Haldane phase. Moreover, like the XXZ model,
a sudden change in QD occurs, due to a drastic change of
measurement basis, at the SU(3) symmetry points. For
further attempts to calculate QD and related measures
for two-qutrit spin systems with different magnetic fields,
see Refs. [496–498].
Another spin-1 Hamiltonian where QD has been stud-

ied is given by [499]

HUF =
∑

〈i,j〉
Sxi S

x
j + Syi S

y
j ++Szi S

z
j + U

∑

i

(Szi )
2, (74)

where U is the strength of the uniaxial field which is the
same for all lattice sites. The ground state of the Hamil-
tonian is known to have three phases, namely, a Néel
AFM phase (U < −0.315), a Haldane phase (−0.315 ≤
U ≤ 0.968) and a “large-D” phase (U > 0.968) [500–
502]. Note that U is a dimensionless quantity. These
three phases have been studied by the block entropy and
entanglement spectrum [440, 503–506]. In Ref. [499], QD
of the reduced density matrix of the two central spins of
the zero-temperature state of the Hamiltonian in Eq. (74)
with open boundary condition has been analyzed by us-
ing density matrix renormalization group. The quanti-
ties calculated here are symmetric QD (see Sec. II A 3
and global QD (see Sec. XIIA). Taking into account the
symmetry of the Hamiltonian, it was argued that the
optimization over measurements, required for estimat-
ing the global QD, can be made efficient by reducing the
number of parameters over which the optimization is per-
formed [249, 507]. See the discussion in Sec. III B in this
regard. See also [508, 509].

Figure 8 depicts the variation of the symmetric QD,
Dsym) with U . The Néel AFM-Haldane phase transition,
a second order QPT, is signalled by a discontinuity of the
first derivative of symmetric QD of the zero-temperature
state and scaling analysis predicts the transition point
to be at U = −0.3156, which is consistent with result
obtained in Ref. [504] from the analysis of entanglement
in this system. However, the Haldane - large-D transition
at U = 0.968 [505] is known to be Gaussian, a third-
order transition, and is hard to detect. By performing the
second derivative of the symmetric QD, this transition is
predicted to be at U = 0.994, and the critical exponent is
found to be 1.6. Both the results are in good agreement
with previous calculations [505] with 20000 spins. It was

FIG. 8: (Left panel) Néel AFM - Haldane transition by us-
ing symmetric QD between nearest-neighbor sites, and (right
panel) its derivative for the reduced state of the two central
spins of an open-ended chain, described by the Hamiltonian
in Eq. (74) of lengths 8 (red), 16 (green), 32 (blue), 64 (gray),
128 (black), and 256 (orange) going from bottom to top. The
symmetric QD in the vertical axis is denoted by D2 in the
figure while it is Dsym in the text. The vertical axes are in
bits while the horizontal ones are dimensionless. [Reprinted
from Ref. [499] with permission. Copyright 2015 American
Physical Society.]

argued that the results obtained by using symmetric QD
are with at most 256 spins, and hence can be improved
substantially by considering larger system sizes.

C. Dynamics

Let us now move on to discuss the behavior of QD in
the time-evolved state of different systems. The consid-
erations are often for time-dependent Hamiltonians, and
the initial state that is usually considered is the canon-
ical equilibrium state at the initial time27, denoted by
ρeq(t = 0). For example, the dynamics of entanglement
has been studied after a sudden quench in the transverse
field of a 1D quantum XY model [424, 431, 443]. The
transverse field is given by

hz(t) = a (constant) for t ≤ 0,

= b ( 6= a) for t > 0. (75)

In this case, evaluation of the time-evolved state does not
require a time-ordered integral, since the Hamiltonian af-
ter t = 0 becomes time-independent. Putting b = 0 [424]
and the initial temperature → 0, the behavior of entan-
glement, as quantified by logarithmic negativity [516], L
(for definition, see Appendix XVA3), has been inves-
tigated with respect to the initial field and time. For
fixed (relatively) short times, entanglement shows sev-
eral collapses and revivals with the increase of the initial
transverse field - dynamical phase transitions. Such re-
vivals cannot be seen for larger times. It was found that

27 For the behavior of entanglement in the time-evolved state in the
system described by the time-independent quantum transverse
XY model, with the evolution starting off from a non-thermal
state, see Refs. [442, 510–515].
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the behavior of nearest-neighbor QD can predict such
collapse and revival of entanglement [517] (see also Ref.
[518]). Specifically, it was observed that at the vicinity of
collapse, if QD is increasing i.e. if the slope of QD with
respect to a is positive, then entanglement will revive for
a certain larger value of the initial field. Mathematically,

ã
∂D(ρi,i+1(t))

∂ã

∣
∣
∣
ãc
> 0⇒ L > 0 for some |ã| > |ãc|,

(76)
where ã = a/J and ãc is the value of the transverse
field where L vanishes for any fixed time t̃ = t/J . At
t > 0, instead of switching off the magnetic field, one
can also quench the system by fixing the magnetic field
to some other constant value, b, where b 6= a. The ef-
fect of such quench in QD has recently been investigated
[468]. In the XY Hamiltonian, given in Eq. (69) with
∆ = 0, if the transverse field at the ith site is replaced
by h1(t) + (−1)ih2(t) where h1(t) and h2(t) respectively
possess a non-zero value and then both are switched off
at a latter time, it was shown that QD also undergoes
several revivals and collapses with the system parame-
ters h1(t)/J and h2(t)/J for relatively short times [427].
However, the nature and count of the revivals and col-
lapses depend on the initial values of the alternating
fields. In the XXZ models, the dynamics of QD has
also been investigated after a sudden quench in the zz-
interaction strength [519]. Similar to the Ising and XY
models, QD is found to be oscillating initially and finally
saturating to a constant value.

Instead of taking a step-function-like quench, given
in Eq. (75), the quench can also be taken as a linear
ramp [520–525] driven across the quantum critical point.
The ramp-like quench through the Ising transition point
at a finite and steady rate is considered previously in
Refs. [520, 522, 524] and can be written as

hz(t) = t/τ, (77)

where τ is related to the characteristic time-scale for the
rate of quenching and t is varied from −∞ to ∞. In
the 1D transverse XY model with a linear quench in the
magnetic field, QD vanishes for both the limits τ → −∞
and ∞, but has a peak at an intermediate value of the
inverse quenching rate τ [526, 527]. It was found that
both entanglement as well as QD behave similarly and
exhibit a power-law scaling with the slow variation of τ .
QD has also been studied with quenching of the field in
the transverse Ising model with three-spin interactions
[527].

We now consider the situation when the evolution time
is large enough, so that statistical-mechanical questions
like ergodicity can be asked. A physical quantity is said
to be ergodic if the time-average of the quantity is equal
to its ensemble-average. More precisely, a physical quan-
tity A is said to be ergodic if the following two values
match. One of these is the value of A in the time-evolved
state at large time, where the evolution starts off from
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FIG. 9: Ergodicity of quantum discord of 1D alternating
transverse field XY model. The Hamiltonian in this case is
the usual 1D transverse-field XY model, with the transverse
field being of the form h1(t) + (−1)ih2(t) at site i. Left
panel: The red solid line represents the trends of QD for the
canonical equilibrium state of the Hamiltonian at large time
against J/kBT . The blue dashed and black double-dashed
lines correspond to QD of the time-evolved states of the
same Hamiltonian at large time, where the initial states are
chosen to be the thermal equilibrium states of the initial-time
Hamiltonian with h1(t = 0)/J = 0.0, h2(t = 0)/J = 0.15
and h1(t = 0)/J = 2.5, h2(t = 0)/J = 1.0 respectively. Here
γ = 0.8, the temperature of the initial state is given by
J/kBT = 100, and the transverse fields h1(t) and h2(t) are
switched off for t > 0. QD of the evolved state matches
with that of the thermal state for some temperature in the
case of the blue dashed line, implying an ergodic nature
of QD, while in the other case (black double-dashed line),
a nonergodicity of QD is obtained. The vertical axis is
in bits while the horizontal axis is dimensionless. Right
panel: Map of ergodic regions on the (h1

J
, h2

J
) plane of

the same Hamiltonian. The white regions are ergodic, as
quantified by the ergodicity score, given by ηD(h1

J
, h2

J
) =

max
{

0,D∞
(

T, h1(0)
J

, h2(0)
J

)

− maxT ′ Deq

(

T ′, h1(∞)
J

, h2(∞)
J

)

}

,

where D∞ and Deq denote the quantum discords of the time-
evolved and the canonical equilibrium states respectively at
large time. A nonzero ergodicity score implies nonergodicity
of QD. The temperature of the canonical state, from which
the evolution starts off, is given by J/kBT = 100. The
anisotropy γ and the nature of the driving field remain the
same as in the left panel. Both the axes in the right panel
are dimensionless. [Adapted from Ref. [427] with permission.
Copyright 2016 American Physical Society.]

the canonical equilibrium state28 at the initial time with
a temperature T . The other is the value of A in the
equilibrium state of the large-time Hamiltonian at some
temperature T ′ [211, 426, 427, 431, 432, 435, 436, 446–
448, 468, 528–530]. The difference of these two quantities
has been denoted by ηA and called the ergodicity score,
where a maximization over T ′ has already been carried
out [436]. Often, T ′ is constrained to be within an or-
der of magnitude of T [211, 426]. Sometimes the states
being compared have been required to lie on the same

28 There is of course a quenching in some physical parameter, e.g.
in the magnetic field, at the initial or some intermediate time
before the “large” time.
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energy surface [431]. In Ref. [446], it was shown that the
transverse magnetization of the transverse XY model is
nonergodic. The case of quantum correlations was taken
up in Refs. [211, 426, 427, 431, 436, 468]. In particu-
lar, for the transverse XY model with the transverse
field being given by Eq. (75), it was shown that while
bipartite entanglement is always ergodic (within the nu-
merical accuracy used), QD can be ergodic as well as
nonergodic [436]. It was further found [468] that for the
same model, if a and b are chosen in such a way that the
system is quenched from the antiferromagnetic to deep
inside the paramagnetic phase, QD is enhanced, while it
gets faded out during the paramagnetic to antiferromag-
netic quench. Moreover, a quench within same phase was
found to cause enhancement of QD. In Ref. [426], the Au-
thors extended the results of the XY model to the XY Z
model with the time-dependent magnetic field in the z-
direction as given in Eq. (75), in 1D, ladder (quasi-two),
and 2D lattices. It was shown that tuning the interaction
strength can initiate a nonergodic to ergodic transition
of QD. For the 1D alternating field XY model, QD can
also exhibit ergodic-nonergodic transitions with the vari-
ations of the system parameters (see figure 9) [427].

D. Geometric quantum discord in many-body

systems

After the success of QD in describing cooperative quan-
tum phenomena, in following years it was seen that geo-
metric formulations of QD can also characterize the prop-
erties of various interacting systems [249, 531–537]. In
particular, in Ref. [531], the XXZ model with an exter-
nal field and the XXX model with DM interaction were
considered, and the dependencies of GQD on the system
parameters were studied. Similar work in this direction
has also been reported by Cai et al. [533] where the DM
interaction has been included along with an XXZ inter-
action. In addition to this, the Authors of Ref. [532] em-
ployed the quantum renormalization group method in the
XXZ and the anisotropic XY models, and showed with
several iterations of the renormalization that QD as well
as GQD can faithfully detect the phase transition points
present in the systems. Ground state properties of a
1D Heisenberg system with next-nearest-neighbor inter-
action has been characterized by using GQD in Ref. [535],
and was shown, for 4-site and 6-site systems, that there
exists a one-to-one connection between the energy spec-
trum and GQD. In the cyclic XX chain with uniform
transverse magnetic field [536], it has been shown that
at T = 0, GQD possesses a non-zero value for all pair-
separations, r = |i − j|, if the external field, hz, lies be-
low a certain critical value, hcz, and decaying only as r−1

for large r. On the other hand, it remains non-zero for
all temperatures, decaying as T−2r for sufficiently high
T . The topological quantum phase transition observed in
the ground state of Kitaev’s 1D p-wave spinless quantum
wire model has also been detected by using GQD [538].

In particular, it has been reported that the derivative of
GQD is nonanalytic at the critical point, in both zero
and finite temperature cases. GQD has also been stud-
ied in the atom-cavity system modeled by the Jaynes-
Cummings (JC) model [539], and found that it persists in
the atom versus cavity partition while entanglement van-
ishes [540, 541] (cf. [542, 543]). See also [544–546] in this
regard. Several other studies have been conducted along
these lines, which have shown that the study of GQD
can provide important insight into cooperative physical
phenomena [540, 541, 547, 548].

VIII. QUANTUM DISCORD AND OPEN

QUANTUM SYSTEMS

Until now, we have either considered the ideal scenario
of an isolated system, i.e. a system that is not affected
by the environment and the properties of the system only
depend on its own parameters, or a system at which one
looks only at a given instant of time without considering
how it arrived to that instant. The general situation is
however far richer, and naturally leads one to consider the
dynamics of open quantum systems [549–553]. Literature
on QD in open quantum systems include Refs. [554–587].
An open system consists of a system S, and an en-

vironment E. The Hilbert space of the composite sys-
tem, S +E, is the tensor product space C

m ⊗C
n, where

m = dim(S) and n = dim(E). Typically, the environ-
ment is considered to be very large compared to the sys-
tem, and it is not always possible to have access to the
entire environment. The physical state of the composite
system is denoted by the density matrix ρSE , whereas
the system state can be obtained by tracing out the en-
vironment i.e. ρS = trEρSE .
In general, the composite system S + E can be de-

scribed by the Hamiltonian

HSE = HS ⊗ IE + IS ⊗HE +Hint, (78)

where HS(E) is the Hamiltonian of the system (environ-
ment) and Hint denotes the Hamiltonian describing the
interaction between the system and the environment. Be-
low we briefly discuss the formalism to study the evolu-
tion of ρS in presence of the environment E.

A. Dynamical maps

The system-environment state, which can together
form an isolated system, is considered to be in a joint
initial state ρSE(0). Since the dynamics of an isolated
quantum system is predicted by the Schrödinger equa-
tion, the time evolved state reads

ρSE(t) = USE(t) ρSE(0) U
†
SE(t), (79)

where USE(t) is the unitary operator acting both on the
system and the environment.
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The evolved state ρS(t), at time t, can now be ex-
pressed as

ρS(t) = trE [ρSE(t)] = trE [USE(t)ρSE(0)USE(t)
†], (80)

which is obtained by tracing out the environment part
from the joint state ρSE . If the initial density matrix is of
the form ρSE(0) = ρS ⊗ |0〉〈0|E , then the final state can
be expressed as ρS(t) =

∑

i〈i|USE |0〉 ρS(0) 〈0|USE |i〉E
with {|i〉} being an orthonormal basis of the environment.
It leads to the introduction of a linear map Φt, given
by [588–594]

ρS(t) = ΦSt (ρS) =
∑

i

Ki ρS(0) K†i , (81)

where the Kraus operators Ki satisfy
∑

iK
†
iKi = I

S
m with

I
S
m being the identity operator of the Hilbert space C

m.
The dynamical map providing the evolution of the sys-
tem due to the interaction with environment satisfies cer-
tain properties like linearity, hermiticity, positivity, and
trace preservation and on top of that they are completely
positive29 (CP). The complete positivity of the system is
guaranteed by the assumption of an uncorrelated product
initial state of the system and environment. The pres-
ence of classical correlation as well as QC may lead to
non-complete positivity of the system [595–600]. Specif-
ically, further investigations in this direction reveal that
initially entangled system-bath states can lead to non-
CP maps [595, 601–603]. In subsequent years, it was
found that there exists nonclassical correlations other
than entanglement which, when existing between system
and environment, can also result in non-CP dynamical
maps [604].
In recent works [604–610], efforts have been made to

describe properties of the initial system-environment duo
that can assure CP-ness of the reduced dynamics. In
particular, it was proven that a dynamical map is CP if
the initial system-environment state is a c-c state [605],
which, of course, have vanishing QD. However, this does
not necessarily imply that a non-zero QD in the initial
system-environment state will lead to non-CP dynami-
cal map of the system. Indeed, Brodutch et al. [607]
constructed a separable state with non-vanishing QD,
that when considered as a initial state of the system-
environment pair, can be written in the Kraus represen-
tation from (Eq. (81)), so that the dynamical map of
the system is CP. Buscemi [608] followed this up by con-
structing an example of a class of maps which are CP,
and for which it is possible for the system-environment
states to be entangled.

29 A map ΦS acting on density matrices on Cm is said to be com-
pletely positive if any possible extension, ΦS

t ⊗ IEn , of ΦS to a
bigger Hilbert space Cm ⊗ Cn is also positive.

Kraus operators

BF E0 =
√

1 − p/2 I, E1 =
√

p/2σ1

PF E0 =
√

1 − p/2 I, E1 =
√

p/2σ3

BPF E0 =
√

1 − p/2 I, E1 =
√

p/2σ2

GAD E0 =
√
p

(

1 0

0
√

1 − γ

)

, E2 =
√

1 − p

( √
1 − γ 0

0 1

)

E1 =
√
p

(

0
√
γ

0 0

)

, E3 =
√

1 − p

(

0 0
√
γ 0

)

TABLE I: Kraus operators for some well-known quantum
channels: bit flip (BF), phase flip (PF), bit-phase flip (BPF),
and generalized amplitude damping (GAD), where p and γ
are decoherence parameters, with 0 ≤ p, γ ≤ 1.

B. Prototypical open systems

Studying the patterns of QD under environmental ef-
fects is the main objective in this part of the review. An
open quantum system can be modeled in different ways
which may represent situations such as decoherence un-
der dissipative environment, repeated quantum interac-
tions, spin-boson models, etc.
We start the discussion with the dynamics of QD be-

tween subparts of a system under Markovian as well as
non-Markovian noisy channels. When the system passes
through a channel, channel acts as an environment. In
this scenario, it may be natural to assume that the sys-
tem and the given channel are in a product state, and
hence Kraus representation is valid here. In Table I, we
tabulate the Kraus operators for some well-known chan-
nels which will be relevant in this review.

1. Correlation dynamics under decoherence

QC in a system, in general, decreases while interact-
ing with the environment. The fragile nature of QC with
time is one of the main obstacles in the implementation
of quantum information tasks. For example, entangle-
ment disappears completely after a finite time, for many
dynamical maps, a phenomenon referred to as sudden
death of entanglement [554–562, 567, 582, 583]. On the
contrary, QD, typically, asymptotically decays with time
[236, 269, 282, 547, 611–637]. Moreover, there exists some
special cases, when QD of the evolved state remains con-
stant over a finite interval of time - a phenomenon known
as freezing of QD. The dynamics of QD can also be such
that it shows a kink in its profile which causes a finite dis-
continuity in its derivative, a phenomenon known as sud-
den change of QD. We briefly discuss below both these
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FIG. 10: Freezing of quantum discord. Dynamics of mu-
tual information (green dotted line), classical correlation (red
dashed line), and QD (blue solid line) as functions of γt un-
der the conditions T11(0) = 1, T22(0) = −T33 and T33 = 0.6.
In the inset, the eigenvalues λ+

Ψ (blue solid line), λ−Ψ (green
dash-dotted line), λ+

Φ (red dashed line), and λ−Φ (violet dot-
ted line) are plotted as functions of γt for the same parameter
values. In the figure, “CD” and “QD” represent regimes of
“classical decoherence” and “quantum decoherence” respec-
tively. “e.u.” stands for “entropic units”. The horizontal
axes are dimensionless. The vertical axis of the inset is also
dimensionless. [Reprinted from Ref. [616] with permission.
Copyright 2010 American Physical Society.]

phenomena, and the conditions on the states and chan-
nels leading to these events.

a. Freezing of quantum discord

In 2010, Mazzola et al. [616] discovered that for certain
Bell-diagonal states30, QD does not decay for a finite
time interval in presence of a noisy environment. More
precisely, when the input state is subjected to local PF
channels, given in Table I, the time evolved state is given
by

ρAB(t) = λψ+(t)|ψ+〉〈ψ+|+ λφ+(t)|φ+〉〈φ+|+
λφ−(t)|φ−〉〈φ−|+ λψ−(t)|ψ−〉〈ψ−|, (82)

which is of the form 1
4 (I4 +

∑

i Tiiσi ⊗ σi). Here,

λψ±(t) =
1

4
[1± T11(t)∓ T22(t) + T33(t)],

λφ±(t) =
1

4
[1± T11(t)± T22(t)− T33(t)], (83)

where T11(t) = T11(0)(1 − p)2, T22(t) = T22(0)(1 − p)2,
T33(t) = T33(0) ≡ T33. The channel parameter, p, of the

30 For Bell-diagonal states, see Eq. (16).

PF channel (see Table I) is related to the elapsed time
by the relation p = 1 − exp(−γt), where γ is referred to
as the phase damping rate. Now under the conditions
T11(0) = ±1, T22(0) = ∓T33, |T33| < 1, the mixture of
four Bell states is a mixture of two Bell states. Using that
as the initial state sent through the local phase damping
channel, the QD for t < t′ = − 1

2γ ln(|T33|) is given by

D(ρAB(t)) =
2∑

j=1

1 + (−1)jT33
2

log2[1 + (−1)jT33]. (84)

This is independent of time and we remember that it
is valid only for t < t′. This is known as freezing of
QD (see figure 10). Figure 10 shows another interesting
feature - QD is constant and classical correlation JA|B ,
decays for t < t′ while QD decays and classical correla-
tion does not change with time for t > t′. Moreover, this
behavior of QD has been observed experimentally using
photonic [617] and NMR two-qubit states [269, 632].

A necessary and sufficient condition for obtaining the
freezing phenomenon of QD with the Bell-diagonal state
as the input to local PF channels is provided in Ref. [638],
and given in the following theorem.
Theorem 4 [638]: The Bell-diagonal states given in
Eq. (16) can exhibit freezing of QD under local PF chan-
nels if and only if λi’s either satisfy

λ1λ4 = λ2λ3, (λ1 − λ4)(λ2 − λ3) > 0 (85)

or,

λ1λ2 = λ3λ4, (λ1 − λ2)(λ4 − λ3) > 0. (86)

It was also shown that there exists a form of non-
Markovian dynamics under which QD remains invariant
for all time [630]. Importantly, multiple intervals of re-
curring frozen QD [639–641] can also be observed when
the dynamics is considered in non-Markovian regime. In
another work [640], the initial Bell-diagonal state passes
through local channels, where each channel modeled by
an interaction of the corresponding qubit with a classi-
cal field. It was found that both entanglement and QD
show collapse and revival, and that QD exhibits multiple
freezing intervals (see figure 11). For an experimental
demonstration, see Ref. [642]. It was noticed that when
QD is frozen, classical correlation is oscillating and vice
versa (cf. [643]) and was also argued that revival of QC
is related to the non-Markovian nature of the evolution.

For certain channels like BF, PF, BPF, a necessary and
sufficient condition for freezing of QD was provided [245]
for bipartite as well as multipartite states under local
noisy channels. In this regard, “canonical initial (CI)
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FIG. 11: Dynamics of quantum discord D (blue solid line),
classical correlation J (red dashed line) and total correlation I
(green dotted line) for an initial Bell-diagonal state of the form
ρAB(0) = λ1(0)|ψ+〉〈ψ+| + λ2(0)|ψ−〉〈ψ−| + λ3(0)|φ+〉〈φ+| +
λ4(0)|φ−〉〈φ−| with λ1(0) = 0.9, λ2(0) = 0.1 and λ3(0) =
λ4(0) = 0, passing through local channels, with each channel
being modeled by an interaction between the corresponding
qubit and a classical field. The interaction strength is given
by g~. The vertical axis is in bits while the horizontal axis
is dimensionless. [Reprinted from Ref. [640] with permission.
Copyright 2012 American Physical Society.]

states” of the form31

ρAB =
1

4

[

I2 ⊗ I2 +

3∑

i=1

Tiiσ
i
A ⊗ σiB

+
(
x1σ

1
A ⊗ I2 + y1I2 ⊗ σ1

B

) ]

(87)

have considered to investigate the freezing phenomenon
of QD. As discussed in Sec. III, for most two-qubit states
among CI states, optimization of QD occurs in the eigen-
bases of σ1, σ2, or σ3, and such states are called special
CI (SCI) states. A necessary and sufficient criteria for
freezing of QD for the two-qubit SCI states as inputs to
local BF channels is given below.
Theorem 5 [245]: A necessary and sufficient condition
for freezing of QD of the output of a local BF channel
where the input is a two-qubit SCI state, over a finite

31 An arbitrary two-qubit state, given in Eq. (28), reduces to

ρAB =
1

4

[

I2 ⊗ I2 +
3
∑

i=1

Tiiσ
i
A ⊗ σi

B

+
3
∑

i=1

(

xiσ
i
A ⊗ I2 +

3
∑

i=1

yiI2 ⊗ σi
B

)]

,

up to local unitary transformations. Since the magnetizations
other than x1 and y1 decay under the bit-flip channel, it is ex-
pected that they do not contribute to the freezing phenomenon
involving the same channel, and hence they are set to zero in
Eq. (87).
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FIG. 12: Dynamics of quantum discord for two-qubit SCI
states under local BF channels for |T11| = 0.6 and T 2

33 + y21 =
1. Note that a CI state reduces to a BD state under the
assumption, y1 = x1 = 0. The red solid line represents the
BD state with |T22| = 0.6 and |T33| = 1. The vertical axis is
in bits, while the horizontal one is dimensionless. [Adapted
from Ref. [245] with permission. Copyright 2015 American
Physical Society.]

interval of time is given by any of the following sets of
equations:







(i) (T22/T33) = −(x1/y1) = −T11,
(ii) T 2

33 + y21 ≤ 1,

(iii) F
(√

T 2
33 + y21

)

< F (T11) + F (y1)− F (x1);
(88)







(i) (T33/T22) = −(x1/y1) = −T11,
(ii) T 2

22 + y21 ≤ 1,

(iii) F
(√

T 2
22 + y21

)

< F (T11) + F (y1)− F (x1).
(89)

Here F (y) = 2
(
h( 1+y2 )− 1

)
and p = γ for the BF chan-

nel. Figure 12 exhibits the dynamics of QD for certain
SCI states including BD states. The “freezing terminal”
(pf ), representing the time at which the freezing behavior
of quantum correlation in the decohering state vanishes,
can be much larger for some CI states compared to the
Bell-diagonal states. Moreover, a complementarity rela-
tion between the frozen value of the QD and the freezing
terminal has been proposed. Importantly, it is possible
to define a freezing index, quantifying the goodness of
freezing for states having very slow decay rate of QC,
that can also capture the QPT in the quantum XY spin
model [245].
The trace norm and Hilbert-Schmidt-norm GQD under

the effect of Markovian channels also exhibit freezing. See
figure 13. The conditions on correlators Tij , leading to
the freezing of QD for the BF, PF, and BPF channels
have been provided for BD states as initial states [631].
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A necessary and sufficient condition for freezing of
GQD has been provided for X-states as input under local
dephasing noise [644]. Local filtering can remove the sys-
tem’s ability to have a frozen QD in evolution [645, 646].
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FIG. 13: Freezing behavior of trace norm GQD with the BD
state given in Eq. (16) as the initial state with T11 = 1,
T22 = −0.1 and T33 = 0.1 under the local PF channel. Here
DG represents the trace norm GQD. Inset: Absolute values of
the correlators as functions of p. Here |C′1| = −|T11|(1 − p)2,
|C′2| = −|T22|(1 − p)2, and |C′3| = |T33|. [Reprinted from
Ref. [631] with permission. Copyright 2015 American Physi-
cal Society.]

The freezing behavior of global QD of a multiparty
version of the BD state, given by

ρ =
1

2N

(

I
⊗N +

3∑

i=1

Tii(σ
i)⊗N

)

, (90)

has been discussed in Ref. [647] under local PF chan-
nels. It has been found that a variety of discord-like
QC measures, under certain conditions, and with Bell-
diagonal state as initial state, exhibit freezing [648]. In
recent years, Cianciaruso et al. [649] demonstrated the
freezing phenomenon of Bures distance-based GQD for a
specific class of BD states, each party of which is inde-
pendently interacting with a non-dissipative decohering
environment. The conditions for choosing a set of initial
states to freeze QD, have also been investigated for other
environmental conditions [650–652].

b. Sudden change phenomenon

We have seen that for certain classes of quantum states,
despite the environmental effects, QD can remain fixed
over a finite interval of time. Interestingly, the decay pro-
file of QD may experience a sudden change, so that the
derivative of QD has a finite discontinuity [612]. Such

behavior of QD can be seen when an initial state is cho-
sen to be a Bell-diagonal state, which is sent through a
local PF channel. The conditions on the correlators of
the initially prepared Bell-diagonal state for it to expe-
rience sudden change has also been provided [612]. This
phenomenon has been realized using the polarization de-
grees of freedom of two photons [617] and also in NMR
experiments [269, 653]. Considering a pure state as the
initial state, for certain interactions with the bath, QD
undergoes several sudden changes32 [236, 654]. It was ar-
gued that abrupt change of QD occurs due to the change
of optimal basis, required to compute classical correla-
tion [625]. For a different variant of QD measure, namely,
trace norm GQD, it has also been reported that when a
Bell-diagonal state is sent through a local PF and or a lo-
cal GAD channel, trace norm GQD changes twice while
the associated classical correlation encounter only one
sudden change in the decay process, as also observed in
NMR experiments [631, 632].

2. System coupled with a spin-chain environment

The system-reservoir dynamics that we have consid-
ered up to now only deals with the map which de-
scribes the final state of the system after interaction.
We will now consider a scenario where the bath con-
sists of a collection of quantum spin-1/2 particles in-
teracting according to some Hamiltonian, which repre-
sents a quantum spin model having quantum critical
points. One may now study how QC between parts
of the system gets affected by certain phenomena like
QPT in the spin model environment, when we put on a
system-environment coupling. Suppose that the initial
state of the system-environment duo is unentangled i.e.,
ρSE(0) = ρS(0)⊗ρE(0). The Hamiltonian of the reservoir
can, for example, be the XY spin chain, given in Eq. (69)
with ∆ = 0. The total Hamiltonian in this case is given
by H = HI+HE , where HI =

1
2J(S

z
A + SzB)

∑

i σ
z
i is the

Hamiltonian for the interaction, and HE is the quantum
XY spin model. A and B are the parts of the system,
SzA and SzB are spin-operators of the system and J is pro-
portional to the system-environment coupling strength.
Suppose the system is initially prepared in a Werner state
given in Eq. (10) and the total state ρSE evolves via H.
The behavior of QD over finite time has been investi-
gated in this case and it was observed that near the crit-
ical point of the spin model, QD gets minimized [655].
Interestingly, when the initial state does not possess any
entanglement i.e. when p ∈ [0, 1/3], entanglement, being
zero, fails to detect any QPT of the environment, while
QD can characterize it. In Ref. [656], for some special
choice of initial state with vanishing QD and the trans-

32 It is not yet clear whether pure inputs will be able to provide a
frozen QD after passing through a noisy channel.
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verse Ising model as environment, it has been reported
that at the Ising transition point, QD rapidly increases
from zero to a finite steady value, while it oscillates in
the paramagnetic region, and in the ferromagnetic case, it
saturates to a very low value. There are several other spin
models like three-site interaction in spin chain, DM in-
teraction in XY chain, isotropic Heisenberg chain, long-
range Lipkin-Meshkov-Glick model, etc., that have been
considered as environments, and their effects on QD of
a pure as well as mixed state as initial states have been
investigated [657–663].
External control, sometimes, is useful to extend the

coherence of the system [664–666]. The role of a bang-
bang pulse (a train of instantaneous pulses) on the quan-
tum correlation of two non-interacting qubits coupled to
independent reservoirs is investigated in Ref. [667]. In
another scenario, the effect of quantum zeno and anti-
zeno effects on two non-interacting qubits coupled to a
common bosonic reservoir was considered in Ref. [668].

Later, Luo et al. investigated a slightly different
system-bath scenario, called the two spin-star model,
where two central qubits, initially prepared in an X-
state, are coupled to their own spin baths that are of
XY type [669]. There is no interaction between the two
central qubits. Both spin baths are modeled by the ferro-
magnetic 1D transverseXY spin chain. The Hamiltonian
for the entire setup is given by H = HS+HE+HI where

HS = τzA + τzB ,

HE = −J
2

∑

k=A′,B′

N∑

l=1

(

(1 + γ)σxl,kσ
x
l+1,k

+ (1− γ)σyl,kσ
y
l+1,k + 2λσzl,k

)

,

HI = Jδ

N∑

l=1

(τzA ⊗ σzl,A′ + τzB ⊗ σzl,B′), (91)

where τz = |e〉〈e| + |g〉〈g| with |e〉 and |g〉 being the
excited and the ground states of each qubit of the cen-
tral two-qubit system. Here, A and B denote the qubits
of the system while A′ and B′ represent the spin-baths
which are taken to be periodic XY models coupled with
respective qubits of the system. At the initial time t = 0,
the state of the central two-qubits is taken to be a Bell-
diagonal state, described in Eq. (16) with Tii ∈ [−1, 1].
Since the XY model can be solved analytically, an exact
expression for the reduced density matrix of the central
two-qubit system can be obtained at any finite time t,
and then QD of the same can be obtained with a mea-
surement on qubit B. It was shown that a freezing phe-
nomenon followed by a sudden transition can be observed
for an appropriate choice of the initial state parameters.
In particular, lowering the value of T33, results in increas-
ing the freezing time, but with a pay-off in the value of
QD, which gets decreased when T33 is lowered. It was
also argued that the sudden transition is closely related
to the QPT of the XY model. Next, the Authors investi-
gated the effect of a bang-bang pulse [664] (see also [665–

667]) applied on the system to suppress the decoherence.
As expected, the bang-bang pulse is shown to be useful
to enhance the freezing time (related to what has been
termed as “freezing terminal” [245]) and thereby delays
the sudden change in time.

Quantum discord has also been calculated in vari-
ous other prototypical models including spin-bosonic sys-
tems [670–673], detuned harmonic oscillators in a com-
mon heat bath [674], dissipative cascaded systems [675],
qubits in a dissipative cavity [676], impurity qubits in
BEC reservoir [677], continuous variable systems [678–
683], etc.

Experimentally, in an explicit open system scenario,
QD has been investigated in various substrates e.g. pho-
tons [617, 684–687], ions [688], NMR systems [689], open
solid systems [690], etc.

Just like the usual quantum discord, the behavior
of Gaussian QD has also been explored for various
system-bath models like resonant harmonic oscillators
coupled to a common environment [678, 691], non-
resonant harmonic oscillators under weak and strong dis-
sipation [692], two-mode Gaussian systems in a ther-
mal environment [679, 681], two-mode squeezed thermal
state in contact with local thermal reservoirs [693], bipar-
tite Gaussian states in independent noisy channels [694],
double-cavity opto-mechanical system [695], etc. Exper-
imentally, the behavior of Gaussian QD has been inves-
tigated in Refs. [696–701].

C. Geometric quantum discord in open systems:

Further issues

Investigations similar to those for QD in open quan-
tum systems, as discussed above, have also been car-
ried out using one-norm and two-norm GQDs. It was
discovered that QD and GQD do not necessarily imply
the same ordering for arbitrary two-qubit X-states [702].
That is, for a pair of such states, say ρAB and ρ′AB ,
D(ρAB) ≤ D(ρ′AB) does not guarantee DG(ρAB) ≤
DG(ρ′AB). Such examples have been seen to be present
in situations where ρAB and ρ′AB are respectively the ini-
tial and final states of a system-bath duo, with the bath
being either Markovian or non-Markovian [618, 703, 704].

As is the case for QD, it has been shown that there are
instances for which GQD provides better understanding
of the dynamics of the system than that by entanglement,
when the system is subjected to environmental perturba-
tion [288, 705–709]. Starting with a pure state, ways of
protecting GQD, as measured by the Hellinger distance
or the Bures distance, of the evolved state under non-
Markovian structured bosonic reservoir have also been
found [709].
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IX. MONOGAMY OF QUANTUM

CORRELATIONS

When a quantum state is shared between many par-
ties, the amount of classical correlation between all pairs
of parties can be maximal. Consider for example, a sys-
tem composed of N spin- 12 particles, in a state which
is the equal mixture of all spin-up and all spin-down,
in the z-direction. All two-particle states are then
1
2 (|↑z↑z〉 〈↑z↑z|+ |↓z↓z〉 〈↓z↓z|), which is certainly maxi-
mally classically correlated, independent of the value of
N (> 2). In particular, for three-party system shared
between Alice (A), Bob (B) and Charu (C), Alice can
simultaneously be maximally classically correlated with
Bob and Charu33. However, in a similar scenario, QC
cannot be freely shared.
Let us again consider a tripartite scenario, where three

parties, A, B, and C share a quantum state ρABC , it
can happen that Alice and Bob share a singlet and Al-
ice and Charu share another singlet, so that Alice-Bob
as well as the Alice-Charu pair share a maximally quan-
tum correlated state. We are assuming here that the
measure of quantum correlation being used is maximal
in C

2 ⊗ C
2 for the singlet state. This is true, for exam-

ple for entanglement of formation [57, 710–713], quan-
tum discord [47, 48], and quantum work deficit [50, 51].
Moreover, the system shared by Alice, Bob, and Charu
is assumed to be in C

4 ⊗ C
2 ⊗ C

2. However, if A, B
and C share a system in C

m ⊗ C
m ⊗ C

m, a maximally
quantum correlated state between A and B will imply,
for all quantum correlated measures (satisfying a cer-
tain set of intuitively reasonable axioms), that A and
B share a pure state. This in turn implies that the Alice-
Bob pair must be as a product with the state of Charu,
so that Alice cannot have any correlation, classical or
quantum, with Charu [68, 289, 335, 403, 714–718]. This
property of bipartite quantum correlation in the mul-
tiparty scenario has been termed as the monogamy of
quantum correlation. As we see, it is a “qualitative”
version of the monogamy. This qualitative version can
and has been quantified in a seminal paper by Coffman,
Kundu, and Wootters [403]. Unless stated otherwise, we
will henceforth deal with monogamy only for states in
C
m ⊗ C

m ⊗ C
m for some specific or arbitrary m.

There are several ways to quantify monogamy, and we
will follow the one in Ref. [403]. For further discussions
on this matter, see [718, 719]. Following Ref. [403] (see
also [720–723]), for a given bipartite QC measure Q,
we call an arbitrary N -party quantum state ρ12...N , as
“monogamous” if it satisfies the inequality

Q1:rest ≥
N∑

j=2

Q1:j , (92)

33 Charu can be the name of a woman or man in parts of South
Asia.

where Q1:rest ≡ Q(ρ1:2...N ) in the 1:rest bipartition and
Q1:j ≡ Q(ρ1j) denotes the QC between the parties 1
and j. Here “rest” comprises of all the other parties ex-
cept the first one. If Q satisfies the above relation for
all states, then Q is called a monogamous QC measure.
Relation (92) is known as the monogamy inequality for
a bipartite QC measure Q. It is clear that in the re-
lation (92), the party “1” has been given a special sta-
tus since it reveals the sharability constraints of QC of
party “1” with other constituent parties of the multipar-
tite state. We call the party “1” as the “nodal” observer.
In this review, we discuss all the results on monogamy
using the party “1” as the nodal observer, unless stated
otherwise.
It is now useful to define a quantity, known as

monogamy score [403, 721–723] for any bipartite mea-
sure Q and any multiparty state, given by

δQ = Q1:rest −
N∑

j=2

Q1:j . (93)

Since there exists certain bipartite QC measures [2, 42]
which are computable, at least numerically, it is possible
to compute δQ for those measures, leading to computable
multiparty QC measures for multipartite mixed states
which is otherwise rare. Non-negativity of δQ implies
that the state is monogamous and vice-versa and Q is
said to be monogamous iff δQ ≥ 0 for all states for a
fixed dimension.
There are several bipartite QC measures which sat-

isfy the monogamy inequality, while there are plenty
of measures that do not. Squared concurrence [710,
711], squared negativity [248, 516], squared entangle-
ment of formation [57, 710, 712, 713], squashed entangle-
ment [724] and one-way distillable entanglement [57, 725]
satisfy relation (92) for three-qubit states [403, 715, 726,
727]. Concurrence and entanglement of formation violate
the monogamy relation even for pure three-qubit states
[716, 727–729]. See also Refs. [730–737] in this regard.
It is interesting to ask whether QC measures beyond

entanglement satisfy or violate the monogamy relation.
It was found that although squared QD, (D←)2, sat-
isfy monogamy for three-qubit pure states [717], there
exists a class of three-qubit pure states for which QD
violates monogamy relations, i.e. for those states34,
δD < 0 [716, 721]. The behavior of QD monogamy score
can be useful in different quantum information protocols
which we will discuss in Sec. XI. Since there are some
measures which satisfy monogamy while there are some
which violate the same, it is interesting to find properties
related to monogamy that are true for all QC measures.
In this respect, Streltsov et al. [738] raised the fol-

lowing question: Does there exist any measure of QC

34 States with negative monogamy score for QD exist, irrespective
of the party in which the measurement is carried out.
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which is non-zero for separable states, but still satisfy
the monogamy relation for all states? The answer was
found to be negative. Specifically, the following result
was obtained.
Theorem 6 [738]: Suppose a bipartite QC measure, Q,
possesses the following property: Q is (i) non-negative,
(ii) local unitarily invariant and (iii) non-increasing un-
der addition of a pure ancillary system. For it to satisfy
monogamy, Q must be zero for all separable states.
Proof: Let ρAB =

∑

i pi|ψi〉〈ψi|A ⊗ |φi〉〈φi|B be an ar-
bitrary separable state which can always be written as a
convex combination of rank-1 projectors [89]. A special
extension of ρAB in a tripartite state is given by

ρABC =
∑

i

pi|ψi〉〈ψi|A ⊗ |φi〉〈φi|B ⊗ |i〉〈i|C , (94)

where 〈i|j〉C = δij . It is local unitarily equivalent in the
BC part with another state σABC , given by

σABC =
∑

i

pi|ψi〉〈ψi|A ⊗ |0〉〈0|B ⊗ |i〉〈i|C . (95)

Now by using conditions (ii) and (iii), we haveQ(σAC) ≥
Q(σA:BC) = Q(ρA:BC). Since Q satisfies monogamy re-
lation, we have

Q(σAC) ≥ Q(ρAB) +Q(ρAC). (96)

From Eqs. (94) and (95), one can find that σAC = ρAC ,
which implies Q(ρAB) = 0 (by using condition (i)). Since
ρAB is an arbitrary separable state, Q vanishes and hence
the proof. �

It was also shown that the QC measures, which are
non-monogamous for a certain state, can be made monog-
amous for that state by a proper choice of a monoton-
ically increasing function of that measure [739]. More
precisely, we have the following theorem.
Theorem 7 [739]: If a bipartite QC measure Q is non-
monogamous, for an N-partite quantum state ρ12...N in

arbitrary finite dimensions, i.e., Q1:rest <
∑N
i=2Q1i,

then there always exists a non-decreasing function f :
R→ R such that

f(Q)1:rest >
N∑

i=2

f(Q)1i, (97)

provided that Q is monotonically non-increasing under
discarding systems and under tracing out of subsystems,
invariance happens only for states satisfying monogamy.
Proof: Since Q is non-increasing under discarding of sub-
systems and is non-monogamous, Q1:rest

︸ ︷︷ ︸

x̃

> Q1i
︸︷︷︸

ỹi

≥ 0 ∀i

and Q1:rest <
∑

iQ1i. It implies that

lim
m→∞

(
ỹi
x̃

)m

= 0 ∀i. (98)

Thus for every ǫi > 0, however small, one must have
positive integers ni(ǫi), i = 2, . . . , N , such that

(
ỹi
x̃

)m

< ǫi ∀m ≥ ni(ǫi). (99)

FIG. 14: Percentages of Haar uniformly generated states sat-
isfying the monogamy relations for quantum discord and work
deficit. The number of parties is denoted as “n” in the dia-
gram. The monogamy scores for D←,D→,WD←, and WD→
are respectively denoted in the diagram by δ←D , δ

→
D , δ

←
∆ , and

δ→∆ . [Reprinted from Ref. [735] with permission. Copyright
2015 American Physical Society.]

Choose ǫi <
1

N−1 ∀i and suppose n = max{n(ǫi)}, then
for any integer m ≥ n, one gets

N∑

i=2

(
ỹi
x̃

)m

<
N∑

i=2

ǫi < 1⇒ x̃m ≥
N∑

i=2

(ỹi)
m. (100)

Hence the proof. �

Note that if a QC measure is monotonically non-
increasing under LOCC, its positive powers are also non-
increasing under LOCC.

The monogamy property of QC measures also changes
from non-monogamous to monogamous when the num-
ber of parties are increased [735]. Figure 14 depicts the
percentages of states which satisfy the monogamy rela-
tions of QD and WD for a fixed number of parties up to
five. The states are generated Haar uniformly. The figure
clearly indicates the increase in the percentage of monog-
amous states as one moves from three-qubit to five-qubit
quantum states [735].

The monogamy property of GQD has also been ex-
plored in the following years. Streltsov et al. [738] has
shown that for a general tripartite pure quantum state,
|ψABC〉, GQD is monogamous, i.e. DG(|ψA:BC〉) ≥
DG(ρAB)+DG(ρAC), where ρAB and ρAC are the reduced
density matrices of |ψABC〉. A possible extension of the
monogamy relation for GQD in case of mixed quantum
states has recently been reported by Daoud et al. [740],
where the Authors considered two families of generalized
three-qubit X-states. Furthermore, Cheng et al. [741]
have proven a monogamy relation of GQD for a tripar-
tite mixed quantum state ρABC which reads as

DG(ρAB) +DG(ρAC) ≤
1

2
. (101)
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X. CONNECTING ENTANGLEMENT WITH

QUANTUM DISCORD-LIKE MEASURES

In this section, we will discuss about relations of QD
and QD-like measures with entanglement measures. It
turns out that such relations can be used to establish
connections between discord monogamy score and bipar-
tite as well as multipartite entanglement measures for
multipartite states.

A. Links to entanglement of formation

As we have already noted, if any two parties, A and B,
of a tripartite system in C

m ⊗C
m ⊗C

m in a pure state,
possess maximal QC, then the state is nearly always of
the form |ψABC〉 = |ψ′AB〉 ⊗ |ψ′′C〉, thereby implying no
correlation of party C with A as well as B. In particular,
there is no classical correlation, e.g. quantified by JA|C
between A and C. One may now ask the extent to which
JA|C can increase for a non-maximal QC between A and
B. Koashi and Winter [68] derive the following useful
result.
Theorem 8 [68]: For an arbitrary tripartite state ρABC ,

EAB + JA|C ≤ SA, (102)

where EAB is the EOF of the reduced state ρAB while
JA|C denotes the classical correlation of ρAC (introduced
in Sec. XVA1) with measurement being performed in C.
SA is the von Neumann entropy of the reduced density
matrix ρA. Here, the equality holds only when the shared
state is pure.
Proof: Let us first consider an arbitrary pure state
|ψABC〉 such that trC(|ψABC〉〈ψABC |) = ρAB and sim-
ilarly for ρAC . Let us also assume that ρAB =
∑

i pi|ψiAB〉〈ψiAB | where |ψiAB〉’s form the minimum pure
state decomposition required for EOF of ρAB . Let us de-
note the measurement at C that realizes this optimal
ensemble by acting n the state |ψABC〉 as {Mi}. Tracing
out B, the same measurement on C leads to the ensem-
ble on the A’s part as {pi, trB(|ψiAB〉〈ψiAB |)} [742], and
hence from Eq. (7), we obtain

JA|C ≥ S(ρA)−
∑

i

piS
(
trB(|ψiAB〉〈ψiAB |)

)

= S(ρA)− E(ρAB). (103)

On the other hand, suppose that the optimum mea-
surement performed on C and required for obtaining
JA|C is {M̃i}. It results in the output ensemble at A

as {p̃i, ρ̃A|i = trBC(|ψ̃iABC〉〈ψ̃iABC |)}. Thus

JA|C = S(ρA)−
∑

i

p̃iS(ρ̃A|i)

≤ S(ρA)− E(ρAB), (104)

where the inequality arises from the fact that second
term of JA|C is higher than or equal to the EOF of

ρAB for all measurements35. From (103) and (104),
we have JA|C + E(ρAB) = S(ρA) for pure tripartite
states. Now an arbitrary state, ρABC , can be puri-
fied to form a pure four-party state |ψABCD〉, such that
ρABC = trD(|ψABCD〉〈ψABCD|). Using the above rela-
tion for pure states and by taking CD as a single party,
one gets JA|CD+E(ρAB) = S(ρA). Note now that JA|CD
is non-increasing under discarding the subsystem36, i.e.
JA|CD ≥ JA|C . Combining the above results, we obtain
Eq. (102) for arbitrary tripartite states. �

For a tripartite state, ρABC , a relation between QD
of the reduced state ρAB and the classical correlation of
ρBC can be obtained by using Eq. (102) and is given
by [82]

D(ρAB) + JC|B ≤ S(ρB), (105)

where the equality holds for pure states. It is important
to note here that the definition of quantum discord used
in the Koashi-Winter result in Theorem 8 involves an op-
timization over POVMs, and not merely over PV mea-
surements. This will remain true whenever the Koashi-
Winter result is used.
For a tripartite quantum state ρABC , we have [335]

D(ρAB) + D(ρAC)
= S(ρA)− JA|B + S(ρA)− JA|C +∆

≥ E(ρAB) + E(ρAC) + ∆, (106)

where ∆ = S(ρB)+S(ρC)−S(ρAB)−S(ρAC), and where
the inequality in (102) has been used. Strong subaddi-
tivity of von Neumann entropy gives ∆ ≤ 0 and hence
no definite relation can be established between the EOFs
and the QDs in (106). However, for a pure state |ψABC〉,
∆ = 0 since S(ρB) = S(ρAC) and S(ρC) = S(ρAB).
Thus for a tripartite pure state, one has “conservation
law” given by

D(ρAB) +D(ρAC) = E(ρAB) + E(ρAC). (107)

B. Relating with multipartite entanglement

We now establish a connection between two multi-
party QC quantifiers, namely, discord monogamy score
and a genuine multiparty entanglement measure, known
as generalized geometric measure (GGM) [743–745] (see

35 For rank-1 {M̃i}, it is clear that the output state in the A part
is pure and hence,

∑

i p̃iS(ρ̃A|i) =
∑

i p̃iS
(

trB(|ψ̃i
AB〉〈ψ̃i

AB |)
)

≥
E(ρAB). If the measurement is not of rank-1, M̃i =

∑

j M̃ij , for

some rank-1 {M̃ij} with p̃ij = tr
(

(IA ⊗ M̃C
ij )ρAC

)

and ρ̃A|ij =

trC(IA ⊗ M̃C
ij ρACIA ⊗ M̃C

ij )/pij . Now one can also show that

p̃i =
∑

j p̃ij and p̃iρA|i =
∑

j p̃ijρA|ij . Thus from the concavity

of von Neumann entropy,
∑

i p̃iS(ρA|i) ≥ ∑

ij pijS(ρA|ij) ≥
E(ρAB).

36 See Appendix XVI for the proof.
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also [746–748], see Appendix XVB for definition).
Theorem 9 [723]: For all three-qubit pure states,
|ψABC〉, whose GGM are same as that of the generalized
GHZ (gGHZ) state37, |gGHZ3〉, the discord monogamy
score of |ψABC〉 is bounded above by the modulus of the
discord monogamy score of the gGHZ state, i.e.

− δD(|gGHZ3〉) ≤ δD(|ψABC〉) ≤ δD(|gGHZ3〉), (109)

provided the maximum eigenvalue in GGM of the arbi-
trary state is obtained from the nodal : rest bipartition.
Proof: Without loss of generality, let us fix the party A
as the nodal observer. For an arbitrary three-qubit pure
state |ψABC〉, δD is given by

δD(|ψABC〉) = S(ρA)−D(ρAB)−D(ρAC), (110)

and the same for |gGHZ3〉 is given by

δD(|gGHZ3〉) = h(α), (111)

where h(α) is defined in Eq. (67). The GGM of these two
states, |ψABC〉 and |gGHZ3〉, are respectively given by

G(|ψABC〉) = 1−max{λA, λB , λC}, (112)

G(|gGHZ3〉) = 1− α, (113)

where λi, i = A, B, C, are the largest eigenvalues of the
reduced density matrices ρA, ρB , ρC respectively. Here
we assume α ≥ 1

2 . Suppose now that the GGMs for these
two states are equal which leads α = max{λA, λB , λC} =
λA as per the premises of the theorem. This immediately
implies δD(|ψABC〉) ≤ h(λA) = δD(|gGHZ3〉), where we
use the fact that S(ρA) = h(λA), and D ≥ 0.
To obtain lower bound, we note that Eq. (106) reduces

to D(ρAB)+D(ρAC) = E(ρAB)+E(ρAC) when |ψ〉ABC is
pure and also the EOF (E) of a bipartite state is bounded
above by von Neumann entropies of the local density
matrices38. Therefore D(ρAB) + D(ρAC) ≤ 2S(ρA),
which implies δD(|ψABC〉) ≥ −S(ρA) = −h(λA) =
−h(α) = −δD(|gGHZ3〉). �

XI. APPLICATIONS OF DISCORD

MONOGAMY SCORE

Over the last few years, it has been found that the dis-
cord monogamy score can be efficiently used for analysis

37 An N -qubit gGHZ state [749] is given by

|gGHZN 〉 = √
α|00 . . . 0〉N +

√
1− αeiφ|11 . . . 1〉N , (108)

with α ∈ [0, 1], and φ being a phase factor.
38 Suppose the optimal pure state decomposition of ρAB , is

the ensemble {pi, |ψi〉}. Thus from Eq. (149), E(ρAB) =
∑

i piS(ρ
i
X) ≤ S(

∑

i piρ
i
X) = S(ρX), where we use the concavity

of von Neumann entropy. Here, X = A,B, ρiX = trX̄(|ψi〉〈ψi|)
with X̄ being the complement to X ∈ {A,B}.

and applications in different multiparty quantum infor-
mation tasks including state discrimination, distinguish-
ing between noisy channels, classical information transfer
between multiple senders and receivers and identifying
different phases in many-body systems.

A. Quantum state discrimination

The set of three-qubit genuinely multiparty entan-
gled pure states can be divided into two disjoint sub-
sets with respect to transformation possible by using
stochastic local operations and classical communication
(SLOCC) [750]. Specifically, it was shown that states
from one class cannot be converted into another at the
single-copy level under LOCC with any non-zero prob-
ability. These two inequivalent classes are the “GHZ”
and the “W” classes, arbitrary members of which can be
expanded as

|GHZc〉 =
√
K(α0|000〉+ β0e

iφ|ψ1ψ2ψ3〉), (114)

where |ψj〉 = αj |0〉 + βj |1〉, with K =
(
1 +

2β0Π
3
i=0αi cosφ

)−1
and

|W c〉 = √a|001〉+
√
b|010〉+√c|100〉+

√
d|000〉, (115)

where a, b, c, d are real numbers with a+ b+ c+ d = 1.
The three-party gGHZ state, |gGHZ3〉, belong to the
GHZ class, while the generalized W (gW) state, given by

|gW3〉 =
√
a|001〉+

√
b|010〉+√c|100〉, (116)

is a subclass of |W c〉. It can be easily shown that
the discord monogamy score is negative for the entire
class of gW states while it is non-negative for the gGHZ
states [721]. Furthermore, it was shown that for states of
the W class, δD < 0 [716, 721], although for states of the
GHZ class, δD can be both positive and negative (and
zero). To prove the result for the W class, first notice
that the monogamy score of squared concurrence van-
ishes, i.e. C2AB+C2AC = C2A:BC , for all W-class states [403].
Since E (see Eq. (149)) is a concave function of C2 [711]
and E , C ∈ [0, 1], EA:BC < EAB + EAC for states of the
W class39. Using the relation of Koashi-Winter given in

39 For a concave function f(x), with f(0) = 0, we can show that
if x =

∑

j yj , then f(x) ≤
∑

j f(yj), where equality holds when
yj = 0, ∀j except some yi. To show this, note here that for some
t ∈ [0, 1], as f is concave, we have f(tz) = f(tz+(1−t)0) ≥ tf(z).
So,

∑

j

f(yj) =
∑

j

f

(

(

∑

i

yi

) yj
∑

i yi

)

=
∑

j

f
(

xtj
)

≥
∑

j

tjf
(

x
)

= f(x), (117)

where 0 ≤ tj ≤ 1, and
∑

j tj =
∑

j yj/(
∑

i yi) = 1. Equality
holds only when tj = 0 ∀j except one.
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Eqs. (102), and (106), for states of the W-class, one finds

D←AB +D←AC = EAB + EAC > EA:BC = D←A:BC . (118)

The inequality comes from the concavity of entanglement
of formation with respect to concurrence squared. The
inequality is strict, as (i) CAB = 0 or CAC = 0 along
with C2AB + C2AC = C2A:BC implies that three-qubit pure
state is not genuinely multiparty entangled, and (ii) the
relation (117) is strict unless tj = 0 ∀j except one. The
last equality comes from the fact that both EOF and QD
reduce to the von Neumann entropy of the local density
matrices [47, 714] for pure states. The discord monogamy
score, therefore, is to the GHZ-class states as the entan-
glement witnesses [248, 251, 252] are to entangled states:
δD ≥ 0 implies that the state is from the GHZ class, while
δD < 0 is inconclusive, provided the input is promised to
be a three-qubit pure genuinely multipartite entangled
state [716, 721].

B. Quantum channel discrimination

Another important aspect of the discord monogamy
score is that it can distinguish between noisy channels
[751]. Consider a game in which we are provided with a
black box that is a quantum channel taking an arbitrary
three-qubit state as an input, and which is promised to
be a global noisy, or a local amplitude damping (ADC),
or a local phase damping (PDC), or a local depolarizing
channel (DPC) [3, 594]. The game is to find out what
the channel is. The input states that have been used
are the three-qubit gGHZ as well as the gW states, and
the monogamy scores of QD (δ→D ) and negativity (δN )
are considered as the distinguishing “order parameter”.
(See Appendix XVA3 for a definition of negativity.) The
Authors of Ref. [751] proposed a two-step protocol, for
discriminating the global and local noises by using the
gGHZ and gW states (see figure 15), where the choice of
QC measure in the second step depends on the outcome
of the first step. It works in the following way: Step 1:
the gW state is taken as an input and after its passage
through the unknown channel, δ→D is computed for the
output. Step 2: According to the value of δ→D in Step
1, δN or δ→D is calculated for the output state, when a
gGHZ state (see Eq. (108)) with 0.65 ≤ √α ≤ 1√

2
is sent

through the same channel. If δ→D ≥ 0 in the first step,
δN is calculated in the next step, while for negative δ→D ,
measurement of δ→D is performed again in the second step.
If δ→D ≥ 0 in the first step together with δN > 0 in the
second one, the channel is global, whereas δN = 0 implies
that it is the DPC. On the other hand, if δ→D < 0 in the
first step, and if the value of δ→D lies within [0.13, 0.3] in
the second step, the channel can be identified as ADC,
while if δ→D ∈ [0.019, 0.09] in the second step, the channel
is the PDC. The accomplishment of the above protocol
depends on two assumptions, namely (i) the strength of
the noises should be “moderate” and (ii) the channels
can be used twice.

FIG. 15: Discrimination of quantum channels by using
monogamy scores. The protocol is discussed in Sec. XI B by
calculating δ→D (denoted in the figure as δD) and δN . The
states |gGHZ3〉 and |gW3〉 are represented in the figure as
|ψ〉gGHZ and |ψ〉gW respectively. The corresponding outputs
are respectively denoted in the figure as ρgGHZ and ρgW .
[Reprinted from Ref. [751] with permission. Copyright 2016
Elsevier.]

It was also observed that when the three-party states
are sent through these noisy channels, δ→D is always
monotonically decreasing with the increase of noise when
gGHZ states are used as the input, while δ→D of the re-
sulting states behave non-monotonically with noise pa-
rameters when the input states are gW states [751].

C. Connection with dense coding

In the bipartite domain, efficiency of quantum com-
munication protocols, both classical information transfer
via quantum states and quantum state transmission, are
related to the QC content of the shared quantum state.
It was found that the pattern of δD can be used for un-
derstanding the capacity of dense coding (DC) involving
multiple senders and multiple receivers. We will discuss
three different DC protocols, namely, Case 1: multiple
senders and a single receiver [752, 753], and Case 2: a
single sender and many receivers [754].
The multiparty DC capacity (Cmulti) [752, 753], of an

N -party state ρ12...N , shared between N − 1 senders and
a single receiver, is given by

Cmulti(ρ12...N ) =
1

log2 d12...N
max{log2 d1d2 . . . dN−1,

log2 d1d2 . . . dN−1 + S(ρN )− S(ρ12...N )},(119)
where d1, d2, . . . , dN−1 are dimensions of the systems in
possession of the N −1 senders, and where the last party
is taken to be the receiver, in possession of a system of di-
mension dN . We set d12...N = d1d2 . . . dN . Here, one may
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note that the amount of information that can be sent by
using a “classical” protocol (i.e., without using a shared
quantum state) is log2 d1 . . . dN−1, and hence the positiv-
ity of the “coherent information” [3], S(ρN )−S(ρ12...N ),
guarantees the advantage of using the shared quantum
state in classical information transmission, and is known
as the DC advantage [755]. A connection between Cmulti
and δD has been made for arbitrary pure states [756], by
considering the receiver as a nodal observer, as given in
the theorem below.
Theorem 10 [756]: Among all multiparty pure states
having equal amount of δD, Cmulti is bounded below by
that of the gGHZ state.
Proof: For an arbitrary pure state |ψ〉12...N , the discord
monogamy score is given by

δD = D12...N−1:N −
∑

i

Di:N

≤ D12...N−1:N = S(ρN ). (120)

Equating δD for |ψ〉12...N with δD(|gGHZN 〉), given in
Eq. (111), one has

S(ρN ) ≥ h(α),

which implies Cmulti(|ψ〉12...N ) ≥ Cmulti(|gGHZN 〉).
(121)

Hence the proof. �

In other words, to send a fixed amount of classical in-
formation, in the scenario of Case 1, the gGHZ state
requires the maximal multiparty QC, as quantified by
δD, among all pure multipartite quantum states. This
is prominently visible from figure 16(a). The DC ca-
pacity, given in Eq. (119), has been derived under the
assumption that the encoded qubits are sent through the
noiseless quantum channels to the receivers.
Let us now move to a scenario where the channels be-

tween the senders and the receivers are noisy. There are
at least two different ways in which the noise can act.
Firstly, it can affect the shared quantum state at the time
of sharing the multipartite state. Secondly, noise can be
present in the quantum channel by which the senders
send their encoded part [757–760] to the receiver. The
first case has already been incorporated in the capacity
given in Eq. (119). The second case is not easy to han-
dle, and a compact form of DC capacity for an arbitrary
noisy channel is not known. However, for the covariant
noisy channel40, the capacity for DC can be obtained41,

40 Covariant noise [758, 761], Λc, in a quantum channel is a com-
pletely positive trace preserving (CPTP) map which “commutes”
with any one complete set of unitary operators {Wi}, defined on
the same Hilbert space of operators which contains the state,
that the channel will carry in the following sense:

Λc(WiρW
†
i ) =WiΛ

c(ρ)W †i , ∀i,

where ρ is a quantum state passing through the quantum chan-
nel.

41 The DC capacity [757–760] of a shared quantum state ρ12...N ,

in a useful form. Moreover, the capacity can be con-
nected with δD, which establishes a relation between the
noisy DC capacity of an arbitrary state with that of the
gGHZ state, as has been obtained in the noiseless case in
Theorem 10 (see figure 16(b)) [756].
Let us now consider a different classical information

transmission protocol, viz. that corresponding to Case
2. Suppose that an N -party state ρ12...N is shared be-
tween a single sender (“1”) and N − 1 receivers, and
where the sender individually sends classical information
to each receiver [754, 763]. In this case, the DC advan-
tage (Cadv) [754] reads as

Cadv(ρ12...N ) = max [{S(ρi)− S(ρ1i)|i = 2, . . . , N} , 0] .
(123)

The connection between δD and Cadv has also been an-
alyzed. It was found that for three-qubit pure states, a
complementary relation exists between the DC advantage
and δD [754]. Moreover, the equality of that relation is
attained by an one-parameter family of states, given by
|ψα〉 = 1√

2(1+α2)

(
|111〉 + |000〉 + α(|101〉 + |010〉)

)
, with

α ∈ [0, 12 ], within the GHZ-class of states, and which
has been called the “maximally-dense-coding-capable”
states.

D. Discord monogamy score in cooperative

phenomena

We now briefly discuss the behavior of QD monogamy
score in cooperative quantum phenomena. Such many-
body system include one-dimensional spin models and a
biological model, mimicking the photosynthesis process.

1. Many-body systems

We have already discussed in Sec. VII about the effec-
tiveness of QD as detector of different phases in many-
body system. In this subsection, we will discuss whether
QD monogamy score can also detect quantum critical
points. The monogamy scores are the one of the few
QC measures which quantify QC in a multiparty domain,
that are relatively easy to compute. The monogamy score

under the covariant noise Λc between N − 1 senders and a single
receiver, where noise acts after the encoding, is given by

Cc
multi(ρ12...N ) =

1

log2 d12...N
max{log2 d12...N−1,

log2 d12...N−1 + S(ρN )− S(ρ̃12...N )},

where ρ̃12...N = Λc
(

(Umin
12...N−1 ⊗ IN )ρ12...N (Umin †

12...N−1 ⊗ IN )
)

,

with Umin
12...N−1 being a unitary operator in the sender’s subsys-

tems. The unitary operator can be global or local depending on
the type of encoding, and “min” in the superscript of Umin

12...N−1
indicates that the unitary operator minimizes the von Neumann
entropy of ρ̃12...N .
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FIG. 16: Capacity of DC vs. the monogamy score of
QD (δD). Blue dots represent Haar uniformly generated
three-qubit pure states while the solid line is for the gGHZ
state. The ordinates and the abscissae are respectively δD and
Cmulti. In panel (a), the noiseless DC capacity of Case 1 is
considered, and it is observed that all the points are bounded
above by the gGHZ line, as shown in Theorem 10. On the
other hand, panel (b) depicts noisy channelsa between two
senders and a receiver and it is observed in this case that all
the points are moving leftward, with respect to their position
in panel (a), as is expected due to the interaction of noise in
the channels, and at the same time they cross the gGHZ line,
thereby violating the constraint set in place in the noiseless
case by Theorem 10. In both the cases, all the QDs are cal-
culated by performing measurement on the nodal observer,
which is the receiver. Both axes in both figures are measured
in bits. [Adapted from Ref. [756] with permission. Copyright
2014 American Physical Society.]

aThe covariant noise used in the depiction of the figure is the fully
correlated Pauli noise [762], acting on the senders subsystem in the
following way

ρABC → Λc(ρABC) =
∑

i

pi(σ
i
A ⊗ σi

B ⊗ I2)ρABC(σi
A ⊗ σi

B ⊗ I2),

(122)
with pi being the probability or the noise parameters, i ∈ {0, x, y, z}
and σ0 = I2. The noise parameters are taken to be p0 = p3 = 0.485
and p1 = p2 = 0.015.

of squared QD has been used to analyze the QPT at
∆ = 1 of the XXZ model (which is obtained by setting
γ = h = 0 in the Hamiltonian in Eq. (69) [764]. In a
triangular configuration, by varying J from positive to

negative, the transverse Ising model (γ = 1 and ∆ = 0 in
Eq. (69)) changes from a frustrated to a non-frustrated
phase at J = 0. The ground state of this model has been
simulated in the laboratory in an NMR system [765]. It
was reported that the value of δD is much higher in the
non-frustrated regime than the frustrated one. Moreover,
the transition point was accompanied with the vanishing
of δD.
Another investigation of monogamy of QD has been

carried out for strongly correlated electrons in the bond
charge exended 1D Hubbard model [766]. The ground
state of the model possesses three different phases. Vary-
ing the system parameters, it was shown that the discord
monogamy score, which is always negative in this case,
behaves differently, depending on the phases in which the
system lies. For example, in one phase where off-diagonal
long-range order is present, the ground state violates the
monogamy relation maximally.

2. Quantum biological systems

Recent developments suggest that QC can play an im-
portant role in biological processes including the light
harvesting protein complexes responsible for photosyn-
thesis, avian magnetoreception, and tunnelling through
enzyme-catalysed reactions [313–317, 767–769]. This,
however, is still being debated. In the photosynthe-
sis process, as modeled by the Fenna-Matthews-Olson
(FMO) light-harvesting pigment-protein complexes [769],
it was claimed that quantum coherence measures [770,
771], QD, and the Leggett-Garg inequality [772, 773]
can help to understand the energy transfer mecha-
nism [313, 774–778].

A recent study shows that the time-dynamics of dis-
cord monogamy scores between different sites of FMO
complexes is useful for indicating the pathway of energy
transfer from the pigment-protein antenna to the reac-
tion center in the photosynthetic FMO complex [314].
The evolution was taken to be Markovian, represented
by the Lindblad master equation with dissipative and
dephasing effects. The initial state of the evolution is
chosen to be an excited pure state at one of the sites
closer to the antenna or an equal mixture of them. See
figure 17 for a schematic diagram of the FMO complex.

E. Linking with Bell inequality violation

Monogamy of QD has also been connected to viola-
tion of Bell inequalities for multipartite pure states. For
two-party system, all pure entangled states violate a Bell
inequality [226, 227, 779–781]. This one-to-one correpon-
dence is however missing in the case of multiparty pure
states [782, 783] (cf. [784, 785]). For an arbitrary two-
qubit state ρAB , which is possibly mixed, the maximal
amount of violation of the Bell-CHSH [226, 779] inequal-
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FIG. 17: Schematic structure of the FMO complex and the
group classifications of different sites, as inferred from the
dynamics of quantum correlations. [Reprinted from Ref. [314]
with permission.]

ity is given by [786]

BVAB = BV (ρAB) = max{2
√

M(ρAB)− 2, 0}, (124)

where M(ρAB) is the sum of the two largest eigenvalues
of the Hermitian matrix TTT , with T being the classical
correlation matrix Tij (see Eq. (28)). Here the quantity
BVAB is shifted, so that it is vanishing for Bell-inequality-
satisfying states and non-vanishing otherwise.
For an N -party state ρ12...N , one may define a

monogamy score for violation of Bell inequality (BVM)
as

δBV = BV (ρ1:rest)−
N∑

i=2

BV1:i. (125)

Let us begin by noting that for any N -qubit state, at
most one reduced two-qubit state can violate the Bell-
CHSH inequality [787]. Consider now a subset of N -
qubit pure states, called “non-distributive” states, for
which no two-qubit reduced state violates the Bell-CHSH
inequality. It was shown in Ref. [788] that among all
non-distributive N -qubit pure states having the same
discord monogamy score, the BVM of a gGHZ state is
the least. Restricting to the three-qubit case, but for
all pure states, whether distributive or not, it was nu-
merically found [788] that the lower bound was provided
by the gGHZ state or the “special GHZ” state, depend-
ing on whether D← or D→ is used to calculate the dis-
cord monogamy score. Here, the special GHZ state is
given by |sGHZN 〉 = 1√

2

(
|00 . . . 0〉N+|11〉(√β|00 . . . 0〉+√

1− β|11 . . . 1〉)N−2
)
. A numerically obtained comple-

mentarity relation between monogamy of Bell inequality

violation and discord monogamy score was also reported
in Ref. [789] (cf. [741]).
A connection between GQD and a maximum violation

of CHSH inequality has also been established [287, 790].
For example, it was shown that in case of Bell-diagonal
states for a given GQD, the violation of CHSH inequality
[226] is bounded between 4

√DG and 2
√
1 + 2DG.

XII. MULTIPARTY MEASURES

It is natural to extend the notion of QC beyond entan-
glement to the multipartite regime, and this is the main
aim in this section. Discord monogamy score, discussed
in the preceeding section, is one approach to capture QC
in multipartite states. Several other investigations have
been carried out in search of multiparty QC beyond en-
tanglement, including Refs. [117, 133, 647, 791–796].

A. Global quantum discord

Rulli and Sarandy [117] proposed a multipartite mea-
sure for QC, called global QD, by extending symmetric
QD for bipartite systems (introduced in Sec. IIA 3) to
multipartite states.
Let us consider an N -party quantum state ρ12...N on

which a set of local measurements {Π1
j1
⊗ . . .⊗ΠNjN } has

been performed. The global QD for ρ12...N is then defined
as

Dglobal(ρ12...N ) = min
{Πk}
{S(ρ12...N ||φ(ρ12...N ))

−
N∑

i=1

S(ρi||φi(ρi))}.

(126)

Here φi(ρi) =
∑

ji
ΠijiρiΠ

i
ji

and φ(ρ12...N ) =
∑

k Πkρ12...NΠk with Πk = Π1
j1
⊗ . . .⊗ΠNjN , k being the

indices j1 . . . jN . By definition, the measure is symmetric
with respect to exchange of subsystems, and it was shown
that it is non-negative for an arbitrary multipartite state.
The optimization in the definition can be performed

analytically for the tripartite mixed state given by

ρABC =
1− p
8

I8 + p|GHZ3〉〈GHZ3|, (127)

where 0 ≤ p ≤ 1 and |GHZ3〉 = 1√
2
(|000〉 + |111〉)ABC .

The expression of global QD for this state takes the form

Dglobal(ρABC) = −
1

4
(1 + 3p) log2(1 + 3p) +

1

8
(1− p) log2(1− p) +

1

8
(1 + 7p) log2(1 + 7p). (128)

Note that Dglobal = 0 for the maximally mixed state
(with p = 0), while it is maximum for the GHZ state
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FIG. 18: Global QD for noisy GHZ states. Tripartite global
QD for the GHZ state, admixed with white noise, is plotted
as a function of the mixing parameter µ. In this plot, we
have considered µ = p in the text. Note that global QD is
a monotonic function of µ. Global QD is denoted as D(µ)
in the figure while it is Dglobal in the text. All quantitites
plotted are dimensionless. [Reprinted from Ref. [117] with
permission. Copyright 2011 American Physical Society.]

(p = 1) (see figure 18). The results can be generalized
to the case of N -qubit GHZ states admixed with white
noise. Comparing figures 2 and 18, we notice that the
trends of QD for the Werner state are similar to that
of the global QD for the GHZ state admixed with white
noise.
Another class of N -qubit states, for which it is possible

to analytically compute global QD, is given by

ρ12...N =
1

2N

(

I
⊗N
2 +

3∑

i=1

ci(σ
i)⊗N

)

, (129)

and the corresponding global QD is

Dglobal(ρ12...N ) = f(ρ12...N )− g(ρ12...N ). (130)

Here f(ρ12...N ) = − 1+c
2 log2

1+c
2 − 1−c

2 log2
1−c
2 with c =

max{|c1|, |c2|, |c3|}. And g(ρ12...N ) = − 1+d
2 log2

1+d
2 −

1−d
2 log2

1−d
2 with d =

√

c21 + c22 + c23 for odd values of

N , while for even N , g(ρ12...N ) = −1 −∑4
i=1 λi log2 λj ,

where

λ1 = [1 + c3 + c1 + (−1)N/2c2]/4,
λ2 = [1 + c3 − c1 − (−1)N/2c2]/4,
λ3 = [1− c3 + c1 − (−1)N/2c2]/4,
λ4 = [1− c3 − c1 + (−1)N/2c2]/4.

(131)

Here ci’s, i = 1, 2, 3 are real numbers constrained by 0 ≤
∑3
i=1 c

2
i ≤ 1, when N is odd, or 0 ≤ λi ≤ 1, i = 1, 2, 3, 4,

when N is even.

Symmetric QD can be written in terms of mutual in-
formation as given in Eq. (17). Similarly, global QD can
also equivalently be written as [120, 647]

Dglobal(ρ12...N ) = min
φ

[I(ρ12...N )−

I(φ(ρ12...N ))], (132)

where the N -party mutual information is given by

I(ρ12...N ) =
∑N
i=1 S(ρi) − S(ρ12...N ). Like symmetric

QD, Eq. (132) can be used to interpret as the minimal
loss of mutual information due to local measurements.

B. Quantum dissonance

In Secs. II A 3 and IIB 1, we have seen that the relative
entropy distance can be used to conceptualize measures
of QC beyond entanglement in the bipartite case. Simi-
lar definitions are possible in the multipartite case. The
options here are far more than in the bipartite case, par-
tially due to the multitude of sets of states that can be
identified as sets of “classically correlated” states.

An N -party quantum state will be called a product
state if it is of the form

Π12...N = ρ1 ⊗ ρ2 ⊗ . . .⊗ ρN . (133)

Clearly, the product state does not have any kind of
correlation (classical or quantum). One may note that
the set of product states are a subset of N -party c-c
states χ12...N =

∑

i1i2...iN
pi1i2...iN |i1i2 . . . iN 〉〈i1i2 . . . iN |

with 〈ij |i′j〉 = δii′ for j = 1, 2, . . . , N . Compare
with Eq. (23). The set of separable states σ12...N =
∑

i1i2...iN
pi1i2...iNρi1 ⊗ ρi2 ⊗ . . . ⊗ ρiN (see Eq. (19) for

the bipartite case) is a convex set and the sets of product
as well as N -party c-c states are subsets of it. How-
ever, if a state cannot be written in the separable form,
then it can be called a multiparty entangled state. The
minimum relative entropy distance of an N -party state,
ρ12...N , from the set of separable states, and from the
set of N -party c-c states lead to two definitions of QC,
and they are respectively a measure of relative entropy
of entanglement and a measure of relative entropy-based
discord.

Modi et al. [133] came up with another definition of
nonclassical correlation, called “dissonance”, in the fol-
lowing way. Suppose that for an arbitrary state ρ12...N ,
the relative entropy of entanglement, defined above, is
attained for the separable state σρ12...N . We now find
the relative entropy-based quantum discord, as defined
above, for σρ12...N , and suppose that this minimum is at-
tained at χσρ12...N

. The last quantity is referred to as the
dissonance of ρ12...N . Therefore the dissonance of ρ12...N
is given by

Q = min
χ
S(σρ12...N ||χ12...N ), (134)
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where the minimization is over all N -party c-c states. It
was shown in Ref. [133] that Q can be rewritten as

Q = min
|k′〉

S

(
∑

k′

|k′〉〈k′|σρ12...N |k′〉〈k′|
)

− S(σρ12...N ),

(135)
where {|k′〉 = |k1k2 . . . kn〉}. On the other hand, the
relative entropy-based QD of ρ12...N is given by

Drel = min
|k′〉

S

(
∑

k′

|k′〉〈k′|ρ12...N |k′′〉〈k′|
)

− S(ρ12...N ).

(136)
Dissonance has been evaluated for certain classes of

multipartite pure states [133]. For example, if one con-
siders |W3〉 = 1√

3
(|100〉+ |010〉+ |001〉), the closest sepa-

rable state for obtaining the relative entropy of entangle-
ment is σ3 = 8

27 |000〉〈000|+ 12
27 |W3〉〈W3|+ 6

27 |W̄3〉〈W̄3|+
1
27 |111〉〈111|, with |W̄3〉 = 1√

3
(|011〉+ |101〉+ |110〉) [797].

Now, χσ3
is obtained by dephasing σ in the x-basis, re-

sulting in the dissonance of |W3〉 to be approximately
Q = 0.94. On the other hand, for the cluster states
of 4 qubits [798, 799], given by |C4〉 = |0 + 0+〉 + |1 +
1+〉+ |0− 1−〉+ |1− 0−〉, the closest separable state is
σ4 = 1

4

(
|0+0+〉〈0+0+ |+ |1+1+〉〈1+1+ |+ |0−1−〉〈0−

1−|+ |1− 0−〉〈1− 0−|
)
, which is a four-party c-c state,

leading to vanishing dissonance for |C4〉. The possibility
of using dissonance as resource in unambiguous quantum
state discrimination was considered in Ref. [800].

XIII. MISCELLANEOUS

A set of disparate aspects of QD are collated in this
section.

A. Quantum discord and Benford’s law

Benford’s law is an empirical law of distribution of
the first significant digits of data obtained from natu-
ral sources or models and from mathematical sequences.
The first significant digits of such data may intuitively
be expected to be uniformly distributed. Benford’s law
proposes to rule out such intuition. By analyzing huge
collections of data sets from different origins, Simon New-
comb in 1881 [801] and later, Frank Benford in 1938 [802],
discovered that the relative frequency distribution of the
the first significant digits, d, which can take values from
1 to 9, is given by pb(d) = log10(1 + 1/d).
To bypass certain trivialities, for any data set rep-

resenting a quantity q, one defines the quantity qb =
q−qmin

qmax−qmin
, where qmin and qmax respectively denote the

minimum and maximum values of q. Data sets rang-
ing from biological phenomena to financial models in
economy and astronomical data satisfy the law. How-
ever, there exists data sets which may violate Benford’s

law, and it turns out that the violation amount can be
used to detect certain phenomena like the onset of earth-
quake [803], QPT [804], etc. The Benford violation pa-
rameter (BVP) can be defined as

vmd =

9∑

d=1

∣
∣
∣
∣

p0(d)− pb(d)
pb(d)

∣
∣
∣
∣
, (137)

where p0(d) and pb(d) are respectively the observed rel-
ative frequency distribution and that predicted by Ben-
ford’s law. The BVP can be seen as a distance between
the two distributions. Other distance metrics such as
the Bhattacharya metric [805] has also been considered
[806, 807].
In Ref. [807], the first significant digit distributions for

several entanglement as well as information-theoretic QC
measures have been calculated using Haar-uniformly gen-
erated two-qubit states of varied ranks. It was observed
that the distribution for QD is closer to the Benford
prediction than for quantum WD. Moreover, it was also
shown that for the transverse field XY model (Eq. (69)
with ∆ = 0), one can detect the QPT by considering the
leading digit distribution of D of the nearest-neighbor
spin pairs of the zero-temperature state. Unlike entan-
glement measures, the observed frequency distribution,
p0(d), for QD changes its pattern from a decreasing one
(decreasing with respect to d) to an increasing one in the
two phases, namely the antiferromagnetic and the para-
magnetic phases. However, the BVP of D cannot detect
the phase transition present in the XXZ model (Eq. (69)
with γ = 0) and remains unchanged at the critical point.

B. Uncertainty relation

Uncertainty relations form one of the basic tenets
of quantum mechanics. Entropic Uncertainty rela-
tions (EUR) [808, 809] were initially formulated by
Deutsch [810] and latter improved by Massen and
Uffink [811]. For an arbitrary pair of observables X and
Y , the EUR reads

H(X) +H(Y ) ≥ −log2cX,Y . (138)

Here H(X) denotes the Shannon entropy of the proba-
bility distribution of the outcomes obtained by measur-
ing the observable X on a quantum state ρ. Note that
we have used the same notation to denote the Shannon
entropy of a probability distribution corresponding to a
classical random variable X in Sec. IIA. H(Y ) represents
the same for the observable Y on the same quantum state
ρ. And cX,Y = maxi,j |〈xi|yj〉|2 with {|xi〉}, {|yi〉} be-
ing the eigenbases of X and Y respectively. The right
hand side of (138) gives a non-trivial lower bound when
X and Y do not share any common eigenstate. This
formulation of the uncertainty relation does not incorpo-
rate the possibility of the system being measured hav-
ing a quantum memory. To overcome such disadvantage,
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FIG. 19: Plot of the right-hand side of the EUR by Berta et
al. [812] as mentioned in (139) (dashed green) and the right-
hand side of the improved EUR derived by Pati et al. [813] as
defined in (141) (solid blue line), as functions of the system
parameter p, when the system-memory state is in a two-qubit
Werner state ρW (p). The horizontal axis is dimensionless,
while the vertical one is in bits. [Reprinted from Ref. [813]
with permission. Copyright 2012 American Physical Society.]

Berta et al. [812] provided a reformulation that incorpo-
rates a quantum memory. Consider a scenario in which
the system A which performs the measurements and the
memory B share a quantum state ρAB . The EUR in this
case was proven to be of the form

SX|B + SY |B ≥ − log2 cX,Y + S̃A|B . (139)

Here S̃A|B = S(ρAB)−S(ρB). SX|B and SY |B are defined
as follows. After measurement in the basis {|xi〉}, post-
measurement state is given by

ρXB =
∑

i

pi|xi〉〈xi| ⊗ ρiB , (140)

where ρiB = trA(〈xi|ρAB |xi〉)
pi

, with pi = trAB〈xi|ρAB |xi〉.
Then SX|B is given by SX|B = S(ρXB)−S(ρB). SY |B is

similarly defined42.
It was shown recently [813] that the lower bound ob-

tained in (139) can be improved further. Precisely, it was
shown that

SX|B + SY |B ≥ −log2cX,Y + S̃A|B
+ max{0,D→(ρAB)− JB|A}. (141)

In particular, it has found that the sum of the LHS
of (138), for the two-qubit Werner state (see Eq. (10))
coincides with the lower bound in (141), for X = σx
and Y = σz, clearly showing the improvement achieved

42 The derivation of (139) also considers POVM measurement car-
ried out by A.

in (141) over (139), as also depicted in figure 19. Com-
parative studies of trends of the above two EURs ((139)
and (141)) for two-qubit states under different local de-
coherence models have been carried out [814]. The EUR
in (141) turns out to be useful to obtain an upper bound
of QD. For a two-qubit state ρAB , QD is bounded above
by the von Neumann entropy of the measured subsystem
(see Theorem 3 of Ref. [81]) i.e.,

D→(ρAB) ≤ S(ρA). (142)

However, applying (141), one obtains a stronger upper
bound of QD [815], as given by

D→(ρAB) ≤ min{S(ρA), IAB ,ΛT }, (143)

where IAB is the total correlation defined in Eq. (5)
and ΛT is given by ΛT = 1

2 (IAB + SX|B + SY |B +
log2cX,Y − SA|B). Moreover, an observable-independent
lower bound of the memory-assisted EUR, has recently
been proposed [816], and is given by

SX|B + SY |B ≥ 2 SA|B + 2 D→(ρAB). (144)

It turns out to be less tight than that obtained in (141),
as can be illustrated by considering the Werner state and
higher-dimensional isotropic states.

C. Complementarity between quantum discord and

purity

A complementarity relation between purity and QC
measures for multipartite states has recently been ob-
tained [817]. The purity of a part of the system is shown
to have connection with a quantum characteristic of that
part with the remainder of the system. It was found
to have potential connection with quantum cryptogra-
phy [4]. Let us concentrate on a bipartite QC measure,
Q′ such that Q′(ρAB:C) ≤ S(ρAB), for a three-party
quantum state ρABC . The complementarity relation then
reads

P(ρAB) +Q(ρAB:C) ≤ 1, when log2 d1d2 ≤ log2 d3.
(145)

For log2 d1d2 > log2 d3, if we additionally assume 0 ≤
Q′(ρAB:C) ≤ log2 d3, we get

P(ρAB) +Q(ρAB:C) ≤ 2− log2 d3
log2 d1d2

. (146)

Here P(ρAB) = log2 d1d2−S(ρAB)
log2 d1d2

quantifies the normal-

ized purity of the system in the AB part and Q(ρAB:C) =
Q′(ρAB:C)

min{log2 d1d2,log2 d3} represents the normalized QC mea-

sures of the system in the AB:C bipartition. Here d1d2
and d3 are the dimensions of the Hilbert spaces of AB and
C respectively. Calculating QD for ρABC in the AB : C
bipartition, and by measuring in the AB part, it follows
that the QD is bounded by S(ρAB), and consequently
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FIG. 20: The complementarity relation for three-qubit rank-
2 states. The histogram exhibits the sum of the normalized
purity P and normalized QD. See text for the definitions.
The vertical axis represents the relative frequency (R.F.) of
occurrence of a Haar uniformly generated rank-2 three-qubit
state in the corresponding range of the sum of the two quan-
tities on the horizontal axis. All quantities are dimensionless.
[Adapted from Ref. [817] with permission. Copyright 2016
American Physical Society.]

the above relations are true for this variety of QD. When
d1 = d2 = d3, a dimension-independent complementarity
bound can be obtained:

P(ρAB) +Q(ρAB:C) ≤
3

2
. (147)

The complementary relation has also been numeri-
cally checked for measures not satisfying the entropy
bound [817]. Figure 20 shows a histogram of the rela-
tive frequency distribution of the sum of the purity and
QD for rank-2 three-qubit states.

XIV. CONCLUSION

Quantum discord, and measures resembling it, were
first conceptualized about a decade and a half earlier. In
the ensuing years, the concepts have been seen from a
variety of approaches. The notions have also been crit-
icized from several angles. One such is based on the
fact that almost all two-party quantum states have a
non-zero QD [66], the criticism being that if some quan-
tity is present in almost all states, it cannot be useful
for any task. One may however note that almost all
pure states are coherent superpositions of a chosen ba-
sis of pure states. Such superpositions are known to be
useful, for example, for security in quantum cryptogra-
phy [4, 289, 292, 818].

Among the diverse topics that have been considered
within the realm of QD and related measures, there are
quite a few which have not been possible to cover within
the limited span of this review.
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XV. APPENDIX: ENTANGLEMENT

MEASURES

In this Appendix, we define certain bipartite and mul-
tipartite entanglement measures which we have used in
different parts of this review. Bipartite QC measures
can be classified into two broad categories. One contains
those which are based on the entanglement-separability
paradigm [2] and the other consists of those which are
defined from an information-theoretic perspective. The
latter was the main focus of this review.

A. Bipartite entanglement measures

Among bipartite entanglement measures, entangle-
ment of formation (EOF) [57], concurrence [711], log-
arithmic negativity (LN) [516], and relative entropy of
entanglement (RE) [130] are defined below.

1. Entanglement of formation

Entanglement of formation [57, 710–712] of an arbi-
trary bipartite quantum state ρAB is defined as the min-
imum number of singlet states required to prepare ρAB
by LOCC. For a pure bipartite state |ψAB〉, EOF is de-
fined as

E(|ψAB〉) = S(ρA) or S(ρB), (148)

which is the minimal asymptotic rate at which singlets
are required to create |ψAB〉 by LOCC [714]. For a mixed
state ρAB , the EOF is defined by using the EOF of pure
states and a convex roof extension, so that

E(ρAB) = min
{pi,|ψi〉}

∑

i

piS(trB |ψi〉〈ψi|), (149)

where the minimization is taken over all possible pure
state decompositions of ρAB =

∑

i pi|ψi〉〈ψi|.

2. Concurrence

The EOF for an arbitrary mixed state, discussed in
Eq. (149), is not easy to compute due to the minimiza-
tion involved in the definition. For two-qubit systems,
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the minimization has been carried out [710–712], and is
represented by

E(ρAB) = h

(
1 +
√
1− C2
2

)

, (150)

where h(x) is given in Eq. (67). C is the “concurrence”
defined as

C(ρAB) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (151)

where {λi : i = 1, . . . , 4} are the eigenvalues of the
non-Hermitian matrix ρAB ρ̃AB in descending order,
with ρ̃AB = σy ⊗ σyρ∗ABσy ⊗ σy being the spin-flipped
state. The complex conjugation of ρAB is in the com-
putational basis. In case of a pure state |ψAB〉, we have
C = 2

√
detρA.

3. Negativity and logarithmic negativity

The negativity, N , [247, 248, 258, 516, 819, 820] of a bi-
partite quantum state ρAB is based on the partial trans-
position criterion [247, 248]. The partial transposition of
ρAB =

∑

i,j,µ,ν p
µν
ij |ij〉〈µν| with respect to subsystem A,

denoted by ρTA

AB , is defined as ρTA

AB =
∑

i,j,µ,ν p
µν
ij |µj〉〈iν|,

and similarly with respect to B. A partial transposed
state of a separable state ρAB =

∑

i piρ
i
A ⊗ ρiB is always

positive semidefinite. The negativity of ρAB is then de-
fined as

N (ρAB) =
||ρTA

AB ||1 − 1

2
, (152)

where ||ρ||1 is the trace norm, defined as ||ρ||1 =

tr(
√

ρ†ρ). Therefore, the negativity is obtained by
adding the moduli of all negative eigenvalues of the par-
tial transposed state. On C

2 ⊗ C
2, a non-zero negativity

is a necessary and sufficient condition for entanglement.
Logarithmic negativity (LN) is then defined as

LN (ρAB) = log2
(
1 + 2N (ρAB)

)
= log2 ||ρAB ||1. (153)

It is interesting to note that LN is addi-
tive on tensor products of bipartite states, i.e.
LN (ρAB ⊗ σAB) = LN (ρAB) + LN (σAB), while
N is not.

4. Relative entropy of entanglement

Relative entropy of entanglement [130, 131, 821] of an
arbitrary bipartite quantum state ρAB is the minimum
relative entropy distance of ρAB from the set of separable
state S, and is given by

ER(ρAB) = min
σAB∈S

S(ρAB ||σAB), (154)

where σAB is a bipartite separable state. It satisfies many
of the properties required of entanglement measures, and
reduces to local von Neumann entropy for pure bipartite
states. The asymptotic relative entropy of entanglement
is bounded below and above, respectively, by distillable
entanglement and entanglement cost. See Ref. [822] in
this regard. The definition of relative entropy of entan-
glement can be extended to the multiparty domain by
considering the minimum distance from a suitable set of
multipartite separable states [823].

B. Multiparty entanglement measures

Let us now move on to the multipartite scenario. We
have already mentioned that multiparty entangled mea-
sures can be defined using the relative entropy distance.
Here we use another distance measure, and restrict to

only pure states. Moreover, we try to identify a quan-
tity to measure genuine multiparty entanglement. An
N -party pure state |ψN 〉 is said to be genuinely multi-
party entangled if it is not a product across any biparti-
tion of the N parties. The generalized geometric measure
(GGM) of |ψN 〉 is given by [743–745] (see also [746–748])

G(|ψN 〉) = 1−max
|χ〉
|〈χ|ψN 〉|2, (155)

where the maximization is over all N -party pure states,
|χ〉, that are not genuinely multiparty entangled. It is
a measure of genuine multiparty entanglement. The dis-
tance measure used here is known as the Fubini-Study
metric [824]. Eq. (155) reduces to a simplified form, given
by

G(|ψN 〉) = 1−max{λA:B |A∪B = {1, 2, . . . , N}, A∩B = ∅},
(156)

where λA:B is the largest eigenvalue of the marginal den-
sity matrix ρA or ρB of |ψN 〉. This makes it computable
in any dimension and for an arbitrary number of par-
ties. It can also be shown to be non-increasing under
LOCC [743].

Multiparty entanglement measures can also originate
from the concept of monogamy of bipartite QC measures.
Examples include the tangle or the monogamy score of
squared concurrence, δC2 [403], and the squared negativ-
ity monogamy score, δN 2 [726].

XVI. APPENDIX: CLASSICAL CORRELATION

DOES NOT INCREASE UNDER DISCARDING

We prove here that the quantity J is not increasing
under discarding a subsystem. Precisely, for a tripartite
state, ρABC , we wish to show that J follows the relation
given by

JA|BC ≥ JA|B . (157)
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From the definition of J , given in Eq. (7), one has
JA|BC = S(ρA) − SA|BC , with the conditional en-
tropy SA|BC = min{ΠBC

i }
∑

i piS(ρA|i), where ρA|i =

trBC(I
A ⊗ ΠBCi ρABCI

A ⊗ ΠBCi )/pi, and pi = tr(IA ⊗
ΠBCi ρABCI

A ⊗ ΠBCi ). The conditional entropy can also
be written as [235]

SA|BC = min
{ΠBC

i }

[
S(ρ′ABC)− S(ρ′BC)

]
, (158)

where ρ′ABC =
∑

i I
A ⊗ ΠBCi ρABCI

A ⊗ ΠBCi . From the
strong subadditivity of von Neumann entropy [85], one
gets

S(ρ′ABC)− S(ρ′BC) ≤ S(ρ′AB)− S(ρ′B), (159)

where ρ′AB = trC(ρ
′
ABC) =

∑

k I
A ⊗ Π′Bk ρABI

A ⊗ Π′B†k ,
for some measurements {Π′Bk } derived from {ΠBCi }. Sup-
pose the optimization in SA|B is achieved for {Π̃Bk }. As
one can always have an extension of it in the higher-
dimensional Hilbert space of BC, so from (159), one has

SA|B = S(ρ′′AB)− S(ρ′′B) ≥ S(ρ′′ABC)− S(ρ′′BC) ≥ SA|BC ,
(160)

where ρ′′AB =
∑

k I
A ⊗ Π̃Bk ρABI

A ⊗ Π̃B†k and ρ′′ABC =
∑

i I
A⊗Π̃BCi ρABCI

A⊗Π̃BC†i , and where the equality and
the last inequality in (160) were obtained from Eq. (158).
Hence the result.

•

Acronyms

ADC Amplitude damping channel

AFM Antiferromagnetic

BB84 Bennett and Brassard quantum cryptography protocol in 1984

BD Bell-diagonal

BF Bit flip

BPF Bit-phase flip

BV Bell inequality violation

BVP Benford violation parameter

BVM Bell inequality violation monogamy score

B92 Bennett quantum cryptography scheme in 1992

CC Classical correlation

CHSH Clauser-Horne-Shimony-Holt inequality

CI Canonical initial

CLOCC Closed local operations and classical communication

CO Closed operation

CP Completely positive

CPTP Completely positive trace-preserving

CV Continuous variable

DC Dense coding

DE Distillable entanglement

DM Dzyaloshinskii-Moriya

DPC Depolarizing channel



45

DQC1 Deterministic quantum computation with single qubit

EOF Entanglement of formation

EPR Einstein-Podolsky-Rosen

EUR Entanglement uncertainty relation

EW Entanglement witness

E91 Ekert quantum cryptography protocol in 1991

FM Ferromagnetic

FMO Fenna-Matthews-Olson

GAD Generalized amplitude damping

GGM Generalized geometric measure

gGHZ Generalized Greenberger-Horne-Zeilinger state

GHZ Greenberger-Horne-Zeilinger state

GQD Geometric quantum discord

gW Generalized W state

JC Jaynes-Cummings model

LB Locally broadcastable

LOCC Local operations and classical communication

LN Logarithmic negativity

LU Local unitary

MIN Measurement-induced nonlocality

NMR Nuclear magnetic resonance

NPPT Non-positive partial transpose

PDC Phase damping channel

PF Phase flip

PM Paramagnetic

POVM Positive operator valued measurements

PPT Positive partial transpose

PV von Neumann projective measurement

QC Quantum correlation

QD Quantum discord

QDP Quantum dynamical process

QIP Quantum information processing

QKD Quantum key distribution

QPT Quantum phase transition

RE Relative entropy of entanglement
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RSP Remote state preparation

SCI Special canonical initial

SLOCC Stochastic local operation and classical communication

SPPT Strong positive partial transpose

SVD Singular value decomposition

UF Uniaxial field

WD Quantum work deficit

1D One-dimensional
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[326] Ávila M, Sun G H and Salas-Brito A L 2014 Scales of
time Where the quantum discord allows an efficient ex-
ecution of the DQC1 algorithm Adv. Math. Phys. 2014

367905
[327] Cable H, Gu M and Modi K 2016 Power of one bit of

quantum information in quantum metrology Phys. Rev.
A 93 040304(R)

[328] Matera J M, Egloff D, Killoran N and Plenio M B 2016
Coherent control of quantum systems as a resource the-
ory Quantum Sci. Tech. 1 01LT01

[329] Ryan C A, Emerson J, Poulin D, Negrevergne C and
Laflamme R 2005 Characterization of Complex Quan-
tum Dynamics with a Scalable NMR Information Pro-
cessor Phys. Rev. Lett. 95 250502

[330] Lanyon B P, Barbieri M, Almeida M P and White A G
2008 Experimental Quantum Computing without En-
tanglement Phys. Rev. Lett. 101 200501

[331] Passante G, Moussa O, Trottier D A and Laflamme R
2011 Experimental detection of nonclassical correlations
in mixed-state quantum computation Phys. Rev. A 84

044302
[332] Mansell C W and Bergamini S 2014 A cold-atoms based

processor for deterministic quantum computation with
one qubit in intractably large Hilbert spaces New J.
Phys. 16 053045

[333] Kay A 2013 Degree of quantum correlation required to
speed up a computation Phys. Rev. A 92 062329

[334] Datta A and Gharibian S 2009 Signatures of nonclassi-
cality in mixed-state quantum computation Phys. Rev.



54

A 79 042325
[335] Fanchini F F, Cornelio M F, de Oliveira M C and

Caldeira A O 2011 Conservation law for distributed
entanglement of formation and quantum discord Phys.
Rev. A 84 012313

[336] Yu C S, Yi X X, Song H S and Fan H 2013 Entangling
power in deterministic quantum computation with one
qubit Phys. Rev. A 87 022322

[337] Lo H-K 2000 Classical-communication cost in dis-
tributed quantum-information processing: A generaliza-
tion of quantum-communication complexity Phys. Rev.
A 62 012313

[338] Pati A K 2000 Minimum classical bit for remote prepa-
ration and measurement of a qubit Phys. Rev. A 63

014302
[339] Bennett C H, DiVincenzo D P, Shor P W, Smolin J

A, Terhal B M and Wootters W K 2001 Remote State
Preparation Phys. Rev. Lett 87 077902

[340] Peng X, Zhu X, Fang X, Feng M, Liu M and Gao K 2003
Experimental implementation of remote state prepara-
tion by nuclear magnetic resonance Phys. Lett. A 306

271
[341] Peters N A, Barreiro J T, Goggin M E, Wei T-C and

Kwiat P G 2005 Remote State Preparation: Arbitrary
Remote Control of Photon Polarization Phys. Rev. Lett.
94 150502

[342] Xiang G Y, Li J, Bo Y, Guo G C 2005 Remote prepara-
tion of mixed states via noisy entanglement Phys. Rev.
A 72 012315

[343] Rosenfeld W, Berner S, Volz J, Weber M and Wein-
furter H 2007 Remote Preparation of an Atomic Quan-
tum Memory Phys. Rev. Lett. 98 050504

[344] Liu W T, Wu W, Ou B Q, Chen P X, Li C Z and Yuan
J M 2007 Experimental remote preparation of arbitrary
photon polarization states. Phys. Rev. A 76 022308

[345] Barreiro J T, Wei T C and Kwiat P G 2010 Remote
preparation of single-photon “Hybrid” entangled and
vector-polarization states Phys. Rev. Lett. 105 030407
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Serra R M 2010 System-reservoir dynamics of quantum
and classical correlations Phys. Rev. A 81 022116

[614] Wang B, Xu Z-Y, Chen Z-Q and Feng M 2010 Non-
Markovian effect on the quantum discord Phys. Rev. A
81 014101

[615] Altintas F and Eryigit R 2010 Quantum correlations in
non-Markovian environments Phys. Lett. A 374 4283

[616] Mazzola L, Piilo J and Maniscalco S 2010 Sudden tran-
sition between classical and quantum decoherence Phys.
Rev. Lett. 104 200401

[617] Xu J-S, Xu X-Y, Li C-F , Zhang C-J , Zou X-B and Guo

G-C 2010 Experimental investigation of classical and
quantum correlations under decoherence Nat. Commun.
1 7

[618] Karpat G and Gedik Z 2011 Correlation Dynamics of
Qubit-Qutrit Systems in a Classical Dephasing Envi-
ronment Phys. Lett. A 375 4166

[619] Berrada K, Eleuch H and Hassouni Y 2011 Asymptotic
dynamics of quantum discord in open quantum systems
J. Phys. B: At. Mol. Opt. Phys. 44 145503

[620] Bellomo B, Compagno G, Franco R L, Ridolfo A and
Savasta S 2011 Dynamics and extraction of quantum
discord in a multipartite open system Int. J. Quantum
Inf. 09 1665

[621] Xi Z, Lu X-M, Sun Z and Li Y 2011 Dynamics of quan-
tum discord in a quantum critical environment J. Phys.
B: At. Mol. Opt. Phys. 44 215501

[622] He Q-L, Xu J-B, Yao D-X and Zhang Y-Q 2011 Sudden
transition between classical and quantum decoherence
in dissipative cavity QED and stationary quantum dis-
cord Phys. Rev. A 84 022312

[623] Pal A K and Bose I 2012 Markovian evolution of clas-
sical and quantum correlations in transverse-field XY
model Eur. Phys. J. B 85 277

[624] Daoud M and Laamara R A 2012 Quantum discord of
Bell cat states under amplitude damping J. Phys. A:
Math. Theor. 45 325302

[625] Pinto J P G, Karpat G and Fanchini F F 2013 Sudden
change of quantum discord for a system of two qubits
Phys. Rev. A 88 034304

[626] Franco R L, Bellomo B, Maniscalco S and Compagno
G 2013 Dynamics of quantum correlations in two-qubit
systems within non-Markovian environments Int. J.
Mod. Phys. B 27 1345053
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