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Quantum discord is the minimal bipartite resource which is needed for a secure quantum key distribution,
being a cryptographic primitive equivalent to non-orthogonality. Its role becomes crucial in
device-dependent quantum cryptography, where the presence of preparation and detection noise
(inaccessible to all parties) may be so strong to prevent the distribution and distillation of entanglement. The
necessity of entanglement is re-affirmed in the stronger scenario of device-independent quantum
cryptography, where all sources of noise are ascribed to the eavesdropper.

O
ne of the hot topics in the quantum information theory is the quest for the most appropriate measure and
quantification of quantum correlations. For pure quantum states, this quantification is provided by
quantum entanglement1 which is the physical resource at the basis of the most powerful protocols of

quantum communication and computation2–4. However, we have recently understood that the characterization of
quantum correlations is much more subtle in the general case of mixed quantum states5,6.

There are in fact mixed states which, despite being separable, have correlations so strong to be irreproducible by
any classical probability distribution. These residual quantum correlations are today quantified by quantum
discord7, a new quantity which has been studied in several contexts with various operational interpretations and
applications, including work extraction8, quantum state merging9,10, remote state preparation11, entanglement
distribution12, discrimination of unitaries13 and quantum channel discrimination14. Discord-type quantum cor-
relations also play a crucial role in tasks such as quantum state broadcasting15 and quantum metrology16,17.

In this paper, we identify the basic role of quantum discord in one of the most practical tasks of quantum
information, i.e., quantum key distribution (QKD)18. The claim that quantum discord must be non-zero to
implement QKD is intuitive. In fact, quantum discord and its geometric formulation are connected with the
concept of non-orthogonality, which is the essential ingredient for quantum cryptography. That said, it is still very
important to characterize the general framework where discord remains the only available resource for QKD.
Necessarily, this must be a scenario where key distribution is possible despite entanglement being absent.

Here we show that this general scenario corresponds to device-dependent (or trusted-device) QKD, which
encompasses all realistic protocols where the noise affecting the devices and apparata of the honest parties is
assumed to be trusted, i.e., not coming from an eavesdropper but from the action of a genuine environment. This
can be preparation noise (e.g., due to imperfections in the optical switches/modulators or coming from the natural
thermal background at lower frequencies19–23) as well as measurement noise and inefficiencies affecting the
detectors (which could be genuine or even added by the honest parties24,25). Such trusted noise may be high
enough to prevent the distribution and distillation of entanglement, but still a secure key can be extracted due to
the presence of non-zero discord.

By contrast, if the extra noise in the apparata cannot be trusted and is considered to be the effect of side-channel
attacks26, then we have to enforce device-independent QKD2,27,28. In this more demanding scenario, quantum
discord is still necessary for security but plays a secondary role with respect to the coherent information, which
directly provides the optimal secret-key rates, so that key distribution is a consequence of entanglement distil-
lation. A similar situation occurs in ideal QKD protocols, where state preparation and quantum detections are
assumed to be perfect, with no other noise present except that channel noise.

Results
We start with a brief review on quantum discord, specifying its relation with the coherent information. We then
introduce the device-dependent QKD protocols, characterized by extra trusted noise, and we explain why non-
zero discord is a necessary cryptographic resource. Next we analyze the optimal secret-key rates which are
achievable in device-dependent QKD, showing that key distribution can be secure in the absence of entanglement.
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We then consider device-independent QKD, where the extra noise is
assumed to be untrusted, and also ideal QKD, where no extra noise is
present. In these cases we reaffirm the crucial role of entanglement,
with quantum discord providing an upper bound to the optimal
rates.

Quantum discord. Discord comes from different quantum
extensions of the classical mutual information. The first is
quantum mutual information1, measuring the total correlations
between two systems, A and B, and defined as I(A, B) :5 S(A) 2

S(AjB), where S(A) is the entropy of system A, and S(AjB) :5 S(AB)
2 S(B) its conditional entropy. The second extension is C(AjB) :5
S(A)2Smin(AjB), where Smin(AjB) is the entropy of system A
minimized over an arbitrary measurement on B. This local
measurement is generally described by a positive operator valued
measure (POVM) {My}, defining a random outcome variable Y 5

{y, py} and collapsing system A into conditional states rAjy. Thus, we
have

Smin AjBð Þ :~ inf
Myf g

S AjYð Þ, S AjYð Þ~
X

y

pyS rAjy

� �
, ð1Þ

where the minimization can be restricted to rank-1 POVMs7. (In our
formulas, variables can be discrete or continuous; in the latter case,
sums become integrals and probability distributions become
densities).

The quantity C(AjB) quantifies the classical correlations between
the two systems, corresponding to the maximal common random-
ness achievable by local measurements and one-way classical com-
munication (CC)29. Thus, quantum discord is defined as the
difference between total and classical correlations5–7

D AjBð Þ :~I A,Bð Þ{C AjBð Þ~Smin AjBð Þ{S AjBð Þ§0: ð2Þ

An equivalent formula can be written by noticing that Ic(AæB) :5
2S(AjB) is the coherent information30,31. Then, introducing an ancil-
lary system E which purifies rAB, we can apply the Koashi-Winter
relation32,33 and write Smin(AjB) 5 Ef (A, E), where the latter is the
entanglement of formation between A and E. Therefore

D AjBð Þ~Ic AiBð ÞzEf A,Eð Þ§max 0,Ic AiBð Þf g: ð3Þ

It is important to note that D(AjB) is different from D(BjA), where
system A is measured. For instance, in classical-quantum states
rAB~

X
x

px xj iA xh j6rB xð Þ, where A embeds a classical variable

via the orthonormal set {jxæ} and B is prepared in non-orthogonal
states {rB(x)}, we have D(BjA) 5 0 while D(AjB) . 0. By contrast, for
quantum-classical states (B embedding a classical variable), we have
the opposite situation, i.e., D(AjB) 5 0 and D(BjA) . 0.

Device-dependent QKD protocols. Any QKD protocol can be
recast into a measurement-based scheme, where Alice sends Bob
part of a bipartite state, then subject to local detections. Adopting
this representation, we consider a device-dependent protocol where
extra noise affects Alice’s state preparation, as in Fig. 1 (this is
generalized later). In her private space, Alice prepares two systems,
A and a, in a generally mixed state rAa. This state is purified into a 3-
partite state WPAa with the ancillary system P being inaccessible to
Alice, Bob or Eve.

System a is then sent to Bob, who gets the output system B. From
the shared state rAB, Alice and Bob extract two correlated variables:
System A is detected by a rank-1 POVM {Mx}, providing Alice with
variable X 5 {x, px}, while B is detected by another rank-1 POVM
{My}, providing Bob with variable Y 5 {y, py}, whose correlations
with X are quantified by the classical mutual information I(X, Y).

After the previous process has been repeated many times, Alice
and Bob publicly compare a subset of their data. If the error rate is
below a certain threshold, they apply classical procedures of error
correction and privacy amplification with the help of one-way CC,
which can be either forward from Alice to Bob (direct reconciliation),
or backward from Bob to Alice (reverse reconciliation). Thus, they
finally extract a secret key at a rate K # I(X, Y), which is denoted by
K(YjX) in direct reconciliation and K(XjY) in reverse reconciliation.

To quantify these rates, we need to model Eve’s attack. The most
general attack is greatly reduced if Alice and Bob perform random
permutations on their classical data34,35. As a result, Eve’s attack
collapses into a collective attack, where each traveling system is
probed by an independent ancilla. This means that Eve’s interaction
can be represented by a two-system unitary Uae coupling system a
with an ancillary system e prepared in a pure state (up to isometries
which do not increase Eve’s information). The output ancilla E is
then stored in a quantum memory which is coherently measured at
the end of the protocol (see Fig. 1). In this attack, the maximum
information which is stolen on X or Y cannot exceed the Holevo
bound.

Non-zero discord is necessary. Before analyzing the secret-key rates,
we briefly clarify why discord is a necessary resource for QKD.
Suppose that Alice prepares a quantum-classical state rAa~P

k pkrA kð Þ6 kj ia kh j with {jkæ} orthogonal, so that D(Aja) 5 0.
Classical system a is perfectly clonable by Eve. This implies that
the three parties will share the state

rABE~
X

k

pkrA kð Þ6 kj iB kh j6 kj iE kh j, ð4Þ

with Eve fully invisible, since her action is equivalent to an identity
channel for Alice and Bob, i.e., rAB 5 rAa.

Direct reconciliation fails since rABE is symmetric under B–E per-
mutation, which means that Eve decodes Alice’s variable with the
same accuracy of Bob. Reverse reconciliation also fails. Bob encodes
Y in the joint state rAEjy~

X
k

pkjyrA kð Þ6 kj iE kh j, where pkjy :5

ÆkjMyjkæ. Then, Eve retrieves K 5 {k, pkjy} by a projective POVM,
while Alice decodes a variable X with distribution

pxjy~Tr MxrAjy

� �
~
X

k

pxjkpkjy, pxjk :~Tr MxrA kð Þ½ �: ð5Þ

This equation defines a Markov chain Y R K R X, so that I(Y, K)
$ I(Y, X) by data processing inequality, i.e., Eve gets more informa-
tion than Alice. (This reasoning can easily be extended to considering
coherent detections for Eve and Alice.)

Figure 1 | Device-dependent protocol with preparation noise. Alice

prepares a generally-mixed input state rAa, which is purified into a state

WPAa by adding an extra system P inaccessible to all parties. System a is sent

through an insecure line, so that Alice and Bob share an output state rAB.

By applying rank-1 POVMs on their local systems, A and B, they derive two

correlated random variables, X and Y, which are processed into a secret key.

In the middle, Eve attacks the line using a unitary U which couples system a

with a pure-state ancilla e. The output ancilla E is then stored in a quantum

memory, which is coherently detected at the end of the protocol.

www.nature.com/scientificreports
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As expected, system a sent through the channel must be quantum
D(Aja) . 0 in order to have a secure QKD. Indeed, this is equivalent
to sending an ensemble of non-orthogonal states. By contrast, the
classicality of the private system A is still acceptable, i.e., we can have
D(ajA) 5 0. In fact, we may build QKD protocols with preparation
noise using classical-quantum states

rAa~
X

x

px xj iA xh j6ra xð Þ, ð6Þ

whose local detection (on system A) prepares any desired ensemble
of non-orthogonal signal states {ra(x),px}. For instance, the classical-
quantum state of two qubits rAa 5 (j0, 0æAaÆ0, 0j1 j1, QæAaÆ1, Qj)/2,
with {j0æ, j1æ} orthonormal and Æ0jQæ ? 0, realizes the B92 protocol36.

Secret-key rates. Once we have clarified that non-zero input discord
D(Aja) . 0 is a necessary condition for QKD, we now study the
secret-key rates which can be achieved by device-dependent
protocols. Our next derivation refers to the protocol of Fig. 1 and,
more generally, to the scheme of Fig. 2, where Alice and Bob share an
output state rAB, where only part of the purification is accessible to
Eve (system E), while the inaccessible part P accounts for all possible
forms of extra noise in Alice’s and Bob’s apparata, including
preparation noise and detection noise (quantum inefficiencies,
etc…) Note that the scheme of Fig. 2 can also derive from QKD
protocols with an untrusted relay, where Alice’s and Bob’s
apparata are trusted while Eve controls a relay whose
measurement creates remote correlations37.

In direct reconciliation, Alice’s variable X is the encoding to guess.
The key rate is then given by K(YjX) 5 I(X,Y) 2 I(E,X), where I(E,X)
5 S(E) 2 S(EjX) is the Holevo bound quantifying the maximal
information that Eve can steal on Alice’s variable. We can write an
achievable upper bound if we allow Bob to use a quantum memory
and a coherent detector. In this case, I(X, Y) must be replaced by the
Holevo quantity I(B,X) 5 S(B) 2 S(BjX) and we get the forward
Devetak-Winter (DW) rate38,39

K Y jXð ÞƒK BjXð Þ :~I B,Xð Þ{I E,Xð Þ: ð7Þ

The optimal forward-rate is defined by optimizing on Alice’s indi-
vidual detections Kð Þ :~sup Mxf gK BjXð Þ.

We can write similar quantities in reverse reconciliation, where
Bob’s variable Y is the encoding to infer. The secret key rate is given
by K(XjY) 5 I(X, Y) 2 I(E, Y), where I(E, Y) 5 S(E) 2 S(EjY) is Eve’s
Holevo information on Y. Assuming a coherent detector for Alice,
this rate is bounded by the backward DW rate

K XjYð ÞƒK AjYð Þ :~I A,Yð Þ{I E,Yð Þ, ð8Þ

which gives the optimal backward-rate K( ) by maximizing on Bob’s
individual detections {My}.

Playing with system P, we can easily derive upper and lower
bounds for the two optimal rates. Clearly, we get lower bounds K*

# K if we assume P to be accessible to Eve, which means to extend E

to the joint system E 5 EP in previous equations (7) and (8). By
exploiting the purity of the global state YABE and the fact that the
encoding detections are rank-1 POVMs (therefore collapsing pure
states into pure states), we can write the entropic equalities S(AB) 5

S(E), S(BjX) 5 S(EjX) and S(AjY) 5 S(EjY). Then we easily derive

K�ð Þ~Ic AiBð Þ, K�ð Þ~Ic BiAð Þ, ð9Þ

where the coherent information Ic(AæB) and its reverse counter-
part40,41 Ic(BæA) quantify the maximal entanglement which is distill-
able by local operations and one-way CC, forward and backward,
respectively.

It is also clear that we get upperbounds K*$ K by assuming P to be
accessible to the decoding party, Alice or Bob, depending on the
reconciliation. In direct reconciliation, we assume P to be accessible
to Bob, which means extending his system B to B 5 BP in equation
(7). Using the equalities S(AB) 5 S(E) and S(BjX) 5 S(EjX), we get

K�ð Þ~Ic AiBð Þ~Ic AiBð ÞzI A,PjBð Þ, ð10Þ

where I(A, PjB) $ 0 is the conditional quantum mutual information.
Then, in reverse reconciliation, we assume P to be accessible to Alice,
so that A becomes A 5 AP in equation (8). Using S(AB) 5 S(E) and
S(AjY) 5 S(EjY), we get K*( ) 5 Ic(BæA) 1 I(B, PjA).

Thus, the optimal key rates satisfy the inequalities

Ic AiBð ÞƒKð ÞƒIc AiBð ÞzI A,PjBð Þ, ð11Þ

Ic BiAð ÞƒKð ÞƒIc BiAð ÞzI B,PjAð Þ, ð12Þ

where the right hand sides can be bounded using

I A,PjBð Þ, I B,PjAð ÞƒI AB,Pð Þƒ2min S Pð Þ,S ABð Þf g: ð13Þ

According to equations (11) and (12), key distribution can occur
(K $ 0) even in the absence of distillable entanglement (Ic 5 0). This
means that device-dependent QKD is the crucial scenario for
quantum discord. In device-dependent QKD, we can indeed build
protocols which are secure (K . 0) despite entanglement being com-
pletely absent (in any form, distillable or bound) as long as the
minimal discord condition D(Aja) . 0 is satisfied. A secure protocol
based on separable Gaussian states41 is explicitly shown in the
Supplementary Information.

In general, there is an easy way to design device-dependent pro-
tocols which are secure and free of entanglement. Any prepare and
measure protocol whose security is based on the transmission of
non-orthogonal states {ra(x), px} can be recast into a device-depend-
ent protocol, which is based on a classical-quantum state rAa as in
equation (6), whose classical part A is detected while the quantum
part a is sent through the channel. This is as secure as the original one
as long as the purification of the classical-quantum state is inaccess-
ible to Eve. Thus, in such assumption of trusted noise, any prepare
and measure protocol has an equivalent discord-based representa-
tion, where non-zero discord guarantees security in the place of non-
orthogonality.

Side-channels and device-independent QKD. Let us consider the
more demanding scenario where all sources of noise are untrusted.
This means that the extra noise in Alice’s and Bob’s apparata comes
from side-channel attacks, i.e., system P in Fig. 2 is controlled by Eve.
In this case, the secret-key rates are given by

Kð Þ~Ic AiBð Þ, Kð Þ~Ic BiAð Þ, ð14Þ

so that QKD is equivalent to entanglement distillation.
It is easy to check that quantum discord upperbounds these key

rates. Applying equation (3) to equation (14), we obtain the cryp-
tographic relations

Figure 2 | Output state from a device-dependent QKD protocol. Alice

and Bob extract a secret-key by applying rank-1 POVMs on their local

systems A and B. Eve steals information from system E, while the extra

system P is inaccessible and completes the purification of the global state

YABEP.

www.nature.com/scientificreports
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Kð Þ~D AjBð Þ{Ef A,Eð ÞƒD AjBð Þ, ð15Þ

Kð Þ~D BjAð Þ{Ef B,Eð ÞƒD BjAð Þ: ð16Þ

The optimal forward rate K( ), where Alice’s variable must be
inferred, equals the difference between the output discord D(AjB),
based on Bob’s detections, and the entanglement of formation Ef(A,
E) between Alice and Eve. Situation is reversed for the other rate
K( ). Note that quantum discord not only provides an upper bound
to the key rates, but its asymmetric definition, D(AjB) or D(BjA), is
closely connected with the reconciliation direction (direct or
reverse ).

Ideal QKD protocols. In practical quantum cryptography, extra
noise is always present, and we distinguish between device-
dependent and device-independent QKD on the basis of Eve’s
accessibility of the extra system P. In theoretical studies of
quantum cryptography, it is however common to design and assess
new protocols by assuming no-extra noise in Alice’s and Bob’s
apparata (perfect state preparation and perfect detections).

This is an ideal scenario where system P of Fig. 2 is simply absent.
For such ideal QKD protocols, the secret-key rates satisfy again
equations (14), (15), and (16), computed on the corresponding out-
put states. Remarkably, the discord bound can be found to be tight in
reverse reconciliation. In fact, as we show in the Supplementary
Information, we can have K( ) 5 D(BjA) in an ideal protocol of
continuous-variable QKD, where Alice transmits part of an Einstein-
Podolsky-Rosen (EPR) state over a pure-loss channel, such as an
optical fiber.

Discussion
Quantum discord can be regarded as a bipartite formulation of non-
orthogonality, therefore capturing the minimal requisite for QKD. In
this paper we have identified the general framework, device-depend-
ent QKD, where discord remains the ultimate cryptographic prim-
itive able to guarantee security in the place of quantum
entanglement. In this regard, our work is radically different from
previous studies where security was based on the presence of entan-
glement, distillable or bound42.

We have considered a general form of device-dependent protocol,
where Alice and Bob share a bipartite state which can be purified by
two systems: One system (E) is accessible to Eve, while the other (P) is
inaccessible and accounts from the presence of trusted noise, e.g.,
coming from imperfections in the state preparation and/or the
quantum detections. This is a scenario where the optimal key rate
may outperform the coherent information and key distribution may
occur in the complete absence of entanglement (in any form, distill-
able or bound) as long as discord is non-zero. As a matter of fact, any
prepare and measure QKD protocol whose security is based on non-
orthogonal quantum states can be recast into an entanglement-free
device-dependent form which is based on a classical-quantum state,
with non-zero discord transmitted through the channel.

This discord-based representation is secure as long as the extra
system P is truly inaccessible to Eve, i.e., Alice’s and Bob’s private
spaces cannot be accessed. Such a condition fails assuming side-
channel attacks, where no noise can be trusted and P becomes part
of Eve’s systems. In this case, the secret-key rates are again dominated
by the coherent information, which means that quantum entangle-
ment remains the crucial resource for device-independent QKD. For
both device-independent QKD and ideal QKD (where system P is
absent), discord still represents an upper bound to the optimal secret-
key rates achievable in direct or reverse reconciliation, with non
trivial cases where this bound becomes tight.

Note that, in our analysis, we have assumed a simplified scenario
for device-independent QKD, which captures minimal requirements

such as security and robustness against detector inefficiencies and
imperfect preparations. This minimal or partial device-independent
scheme is already sufficient to prove the necessity of quantum entan-
glement, which continues to be needed in more advanced formula-
tions43. In our simplified scenario, Alice and Bob are able to
reconstruct their shared state by comparing a subset of their out-
comes. More generally, such state tomography could be not possible
and the quantum measurements could be totally uncharacterised43.

In conclusion, quantum discord is a necessary resource for
secure QKD. This is particularly evident in device-dependent QKD
where entanglement is a sufficient but not a necessary resource.
Entanglement becomes necessary in device-independent and ideal
QKD, where discord still provides an upper bound to the secret-key
rates. Future work may involve the derivation of a direct mathemat-
ical relation between the amount of quantum discord in Alice and
Bob’s output state and the optimal secret-key rates which are achiev-
able in device-dependent QKD.
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