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Distance to Uncontrollability is a crucial concept in classical control theory. Here, we introduce
Quantum Distance to Uncontrollability as a measure how close a universal quantum system is to a
non-universal one. This allows us to provide a quantitative version of the Quantum Speed Limit,
decomposing the bound into a geometric and dynamical component. We consider several physical
examples including globally controlled solid state qubits and a cross-Kerr system, showing that
the Quantum Distance to Uncontrollability provides a precise meaning to spectral crowding, weak
interactions and other bottlenecks to universality. We suggest that this measure should be taken
into consideration in the design of quantum technology.

Introduction– Just as it is in our day-to-day
computers, universality - the ability to run any
algorithm in principle- is the central concept in
quantum computing. In the current race to prove
the first traces of it, and with the first success to
report it in larger systems [1], this is more true
than ever. It is often argued [2] that universality
itself is universal, e.g. that almost all systems are
universal, and if not, a slight change of parameters
would render them so. This is even true in noisy
systems, where universality needs to be combined
with error correction.

However, we argue, that there is a flip-side to this:
if any non-universal system is close to a universal
one, then also many universal ones are dangerously
close to non-universal ones. Universality might
be unstable or inefficient then. Indeed, it seems
that nature is hesitant to explore high-dimensional
dynamics [3] and simple non-universal systems
are often good approximations. Experimentalists
working hard to engineer weak non-linearities
in quantum optics, weak anharmonicities in
superconducting systems, or to avoid spectral
crowding in solid state systems are well aware of
such limitations. Here, we put this intuition in
a precise framework we call quantum distance to

controllability, and we show how it relates to a
notoriously difficult to compute yet independently
interesting quantity: the quantum speed limit

[4–6]. Intuitively speaking, the distance to
uncontrollability identifies and quantifies the control
bottleneck of a quantum system.

But first, let us put our result into context.
Universality is also universal in (Kalman) linear
control, a key subject in engineering with a

wide range of applications ranging from mobile
communications to space travel. The concept
of distance to controllability was introduced in
the linear setting [7, 8] to quantify the smallest
perturbation that would lead to an uncontrollable
system. There is no no speed limit in linear control,
and distance to controllability is used as a test of
the numerical robustness of controllability.
In quantum mechanics, our results rely on the

simple observation that if a controllable quantum
system is close to an uncontrollable one, nature
needs time to distinguish them. This should provide
us with a bound for the quantum speed limit.
In order to make this precise we have to find a
path-independent controllability criterion, and solve
a group theoretic worst-case scenario. We solve
both using very recently developed techniques and
insights on controllability [9, 10].
The latter is worthwhile motivating

independently. Let us imagine Bob wants to
buy a quantum computer, but unfortunately the
shop is out of stock of universal machines. However,
he can choose amongst any non-universal device.
Bob knows that his friend Alice will try to run the
hardest possible algorithm on whichever machine he
chooses. Which is the best machine to buy, and how
much is his machine going to fail at running Alice’s
task? We give a dimension-independent bound to
this question.
Setup– We consider a control system given by a

time-dependent Schrödinger Equation

d

dt
U(t) = iH(t)U(t), (1)

where U and H are complex valued square matrices
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of size d < ∞ and U(0) = 1. First, for simplicity,
we assume that H(t) decomposes into a drift and a
single control as

H(t) = Hd + f(t)Hc, (2)

with Hd, Hc self-adjoint and traceless and f(t)
arbitrary piece-wise continuous. The extension to
multiple controls and other classes of control pulses
will be considered later. It is well known that
the pair (Hd, Hc) is controllable if and only if the
smallest real Lie algebra g that contains iHd and
iHc and has maximal dimension,

dim g(Hd, Hc) = d2 − 1. (3)

From now on we assume that (Hd, Hc) is such a
controllable pair. In this case there is a minimal
time T∗ > 0 such that all unitaries U can be reached
exactly at that time [11]. We refer to this as the
control time and note that not much is known about
the dependence of the control time on the drift
and controls. Interestingly in linear control theory
controllable systems can, in principle, be controlled
arbitrarily fast. In our case, however, it is clear that
even for unbounded controls f(t) the evolution of the
drift sets a ‘quantum speed limit’ (we first consider
pulses as ‘free resources’ and later look at more
general scenarios with additional constraints). The
goal of the present study is to understand this limit
better by finding the distance to uncontrollability.
More specifically, consider the smallest self-

adjoint modification to the drift which renders the
system not fully controllable (here referred to as
‘uncontrollable’):

ε∗ = inf{‖∆H‖ : dim g(Hd+∆H,Hc) < d2−1} (4)

where ∆H = ∆H† and ‖A‖ ≡ ‖A‖∞ the operator
norm . Notice that (0, Hc) is uncontrollable
(dim g(0, Hc) = 1) and therefore ε∗ ≤ ‖Hd‖. If a
system is uncontrollable, intuitively there is a least
one ‘direction’ in the dynamics missing. This will be
made more precise later. Let us denote with R the
set of unitaries that can be reached in the not fully
controllable system (Hd + ∆H,Hc). We are then
interested in

δ(R) = sup
U∈SU(d)

inf
V ∈R

‖U − V ‖, (5)

which describes the unitary that has the worst
approximation within R. For any uncontrollable
system (Hd + ∆H,Hc) there is a U such that any
evolution is at least at distance δ(R) to U :

‖T ei
∫

T

0
(Hd+∆H+f(t)Hc)dt − U‖ ≥ δ(R) (6)

for any time T and any control pulse f(t) on [0, T ].
On the other hand, by the definition of T∗ there is a
control pulse f on the interval [0, T∗] such that

T ei
∫

T∗

0
(Hd+f(t)Hc)dt = U. (7)

A simple calculation [12, 13] using the unitary
invariance of the operator norm states that for this
f(t) we have

‖T ei
∫

T∗

0
(Hd+∆H+f(t)Hc)dt − U‖ ≤ T∗‖∆H‖. (8)

Since this holds for any ∆H rendering the system
uncontrollable we get

T∗ ≥ δ(R)/ε∗ . (9)

This bound characterises the speed limit in terms of
a geometric term δ(R) and a dynamical one ǫ∗.
Note that δ(R) still depends on the geometry of

specific control system, and computing R typically
involves a Lie closure. For applications in quantum
information theory R can be exponentially large,
and therefore δ(R) is hard to obtain. Thus, it is
interesting to introduce a universal bound

δ∗ = inf
R6=SU(d)

δ(R), (10)

which is independent of the details of the model.
This allows us to obtain a non-trivial bound on the
control time,

T∗ ≥ δ∗/ε∗ . (11)

The next part of this manuscript is dedicated
to finding explicit expressions on the geometric
δ∗ (which is only a function of the dimension d
of Hilbert space – we however give a dimension
independent lower bound) and on the dynamical
quantity ε∗ = ε∗(Hd, Hc). We will then look at
examples.
Understanding the geometric component δ∗– The

simplest case is when R has a symmetry, that is,
there is a non-trivial projection P such that [R, P ] =
0. In such a case, we may choose a target unitary
U which moves a particular state |ψ〉 in the range of
P to an orthogonal state in its kernel. Then, for all
V ∈ R, ‖V −U‖ ≥ ‖(V −U)|ψ〉‖ =

√
2 (the distance

between two orthogonal states). As an example this
provides the loose bound

T∗ ≥
√
2
/

‖Hd‖ , (12)

which is an instance of [13]. In general, this approach
does not work, since there are uncontrollable
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systems without symmetry (see the first physical
example below).
In the supplementary material, we use recent

results [9, 14] that show uncontrollable systems
always have non-trivial symmetries on a doubled
system. This allows us to make an argument similar
to the simple case above. However, in general
even fully controllable systems in the doubled space
cannot move states in the range of such symmetries
to their kernel, and we need to use a group averaging
argument to see how far we can move them at least.
Both steps (doubling and averaging) cost us some
constants in the bound, but we show that δ∗ ≥ 1/4.
This is remarkable, because it is independent of the
dimension, and only a factor of 8 from the trivial
bound δ∗ ≤ 2. In terms of the quantum speed limit,
it means we can eliminate the geometric component
at little cost and obtain the bound

T∗ ≥ 1/4ε∗ , (13)

which should be considered as a milestone result of
this manuscript.
Understanding the dynamical component ε∗– At

first glance ε∗ is daunting. One reason is the Lie
criterion. As opposed to linear systems, where
controllability can be checked by computing a
the rank of the controllability matrix with fixed

dependence on the perturbation, here we compute
the rank of certain Lie polynomials which depend
on the generators. While perturbing the system
with ∆H can change this rank, this does not
imply uncontrollability: it could just mean that
one has to construct another set of polynomials.
Fortunately there is a recent, powerful alternative
characterisation of controllability which circumvents
this problem [9, Theorem 21]:

dim g(Hd +∆H,Hc) < d2 − 1 ⇔
dim{(Hd +∆H)(2), H(2)

c }′ > 2, (14)

where A(2) ≡ A ⊗ 1 + 1 ⊗ A denotes the tensor
symbolisation of a matrix A on the doubled space,
and {S}′ is the commutant of the set S (the vector
space of matrices commuting with all elements of S).
We can boil this down to something more standard
by noting that X commutes with a matrix B if and
only if B(ad) vec(X) ≡ (B⊗1−1⊗BT ) vec(X) = 0,
where we used row vectorisation. The dimension of
the commutant becomes equivalent to the nullity of
the 2d4 × d4 matrix

R(Hd +∆H,Hc) ≡





(

i(Hd +∆H)(2)
)(ad)

(

iH
(2)
c

)(ad)



 . (15)

Finally controllability is equivalent to this matrix
having a rank of d4 − 2 and ε∗ can be defined by
reducing this rank with a minimal Hermitian choice
of ∆H :

ε∗ = inf{‖∆H‖ : rankR(Hd+∆H,Hc) < d4−2}.
(16)

Having mapped Eq. (4) to a rank problem, we may
use the vast literature on algorithms designed to
approximate ε∗ in the classical case. For recent
computable bounds see [15] and in particular for
structured (including Hermitian) perturbations see
[16]. Because the rank criterion (16) involves
a structured optimisation not considered in the
previous literature, we were only able to find lower

bounds on ǫ∗ with the classical algorithms. We
therefore discuss two alternative approaches for the
quantum case: one based on energy gaps, and one
on graph theory.
Relating ǫ∗ to the energy gap– There is an intricate

relationship between symmetry and controllability
[9, 14, 17]. Altafini [18] and Turinici [19] considered
sufficient criteria based on the absence of certain
degeneracies. Here we make the following simple
observation. Assume the drift Hd has an n-fold
degeneracy, e.g. there are orthogonal eigenstate
{Hd|ek〉 = e|ek〉, k = 1, . . . , n}. Assume further
that the control acts only non-trivially on a subspace
Hc, that is, H = Hc ⊕ H⊥

c , and that Hc is left
invariant by the control. Then if dimHc < n, there
is a symmetry in the control system, ∃M = M † :
[Hc,M ] = [Hd,M ] = 0, and δ∗ ≥

√
2. To see

this, simply build linear combinations of degenerate
eigenstates (of which there are enough) to get an
eigenstate of Hd that has no support on Hc. The
corresponding projector will be such a symmetry,
and by linearity and the Jacobi identity, it will
commute with R and thereby render the system not
fully controllable. To summarise: by looking at the
block structure of the control(s), and the spectrum
of the Hamiltonian, we can see how to make the
system uncontrollable. In particular, when Hc is
rank 1, we get ǫ∗ < min∆ek, the minimum gap of
the energy eigenstates of Hd.
Relating ǫ∗ to graph properties and min-cut–

We bring Hc =
∑

k |ek〉〈ek| into a diagonal
representation. If H0 + ∆H is not a connected
graph in this basis, the system is not controllable
[18]: the system splits into a block structure with a
corresponding symmetry, and δ∗ ≥

√
2. To find such

a perturbation efficiently, we can consider a graph
with weights |〈ek|H0|ej〉| and run the polynomial
sized Stoer-Wagner algorithm [20]. It provides the
minimal ∆H in the L1,1 norm, and thereby an
interesting upper bound on ǫ∗. Before we consider
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examples, let us also generalise to multiple control
functions that are possibly bounded.
Bounded & multiple controls– Often, control

amplitudes are bounded, and in such case we can
compute a distance to uncontrollability also by
perturbing the controls. We may consider a time-
dependent Hamiltonian H(t) =

∑M

j=1 gj(t)H̃j +
∑L

k=1 fk(t)Hk with the first set of controls bounded
as |gj(t)| < c and the remaining controls not
bounded. This notation can also include a drift term
with the bound g(t) = 1. If now the generators
(H̃1, · · · , H̃M , H1, · · · , HL) are controllable, and the
modified set (H̃1+∆1, · · · , H̃M +∆M , H1, . . . , HL),
‖∆j‖ ≤ ǫ∗/M is uncontrollable, we can derive
a similar bound as above. For U1 generated by
∑M

j=1 gj(t)H̃j +
∑L

k=1 fk(t)Hk and U2 generated by
∑M

j=1 gj(t)(H̃j + ∆j) +
∑L

k=1 fk(t)Hk on [0, T∗] we

have ‖U1 − U2‖ ≤
∫ T∗

0
‖g(t)∆‖ ≤ cǫ and therefore

T∗ ≥ δ∗/(cǫ∗). Having generalised to this more
realistic scenario, we now look at four paradigmatic
examples.
Physical Examples– As a first and simple example

consider two qubits with full local control and the
drift δZ ⊗Z, where Z denotes a Pauli matrix. Even
when uncontrollable, this system has no symmetry,
and we use δ∗ ≥ 1/4. Our bound provides T∗ ≥
1/(4δ) while the exact limit was shown to be [21]
T∗ = π/(2δ), which only differs from our bound by
a constant factor.
Global controls– This is a commonly encountered

situation in solid state quantum technology. The
system with drift Hd =

∑

Zi ⊗ Zj and global
controls g1(t)

∑

γiXi and g2(t)
∑

γiYi is fully
controllable as long as |γi| 6= |γj | [22]. Therefore,
ǫ∗ ≤ ∆γ ≡ minij(|γi| − |γj |). The corresponding
quantum speed limit with bounded controls gi(t) ≤ c

T∗ ≥
√
2
/

c∆γ (17)

makes spectral crowding [23] rigorous.
Local controls– As our third example, we consider

the nearest-neighbour control system given by Hd =
∑d−1

n=1 |n〉〈n + 1| + |n + 1〉〈n| and Hc = |1〉〈1| on
a d-dimensional space with orthonormal basis |n〉.
This is one of the gold standards [6, 24] in Quantum
Speed Limits. The control is rank 1 so we can
use the energy gap to bound the speed limit. The
spectrum of the Hamiltonian is simply given by

ek = 2 cos
(

kπ
d+1

)

, k = 1, . . . , d. The minimum gap

can be upper bounded by 3π2/d2 and this bound
becomes tight as d → ∞. Therefore, we can find a
lower bound on the control time as

T∗ ≥
√
2d2

/

3π2 . (18)

To our knowledge this is the first analytical proof
that control times scale at least quadratically with
the dimension in this system.
Cross-Kerr interaction with fixed particle

number– Linear optics, both passive and active,
is a premier platform of quantum information
processing [25]. Thus, the problem of extension to
universality of passive linear optics has gained a
lot of attention in recently. In particular, it has
been shown that adding a cross-Kerr interaction
leads to universality [26, 27]. This is of relevance
in quantum metrology with random bosonic states
[28].
Here we will perform our analysis of distance

to controllability in such a platform, considering d
qumodes with N photons. The Hamiltonians that
we can implement are any linear optical gates with
essentially arbitrary strength, and cross-Kerr gates
between nearest-neighbor modes with a strength
that is typically strongly bounded, i.e., we have a
Hamiltonian of the form:

H =

d−1
∑

j=1

gj(t)njnj+1 +

d
∑

k≤l

fk,l(t)a
†
kal+h.c., (19)

where a†j and aj are the creation and annihilation

operators and nj = a†jaj is the particle number
operator corresponding to mode j. The control
functions fk,l can be considered unbounded, while
the control functions for the cross-Kerr interactions
are bounded gj(t) ≤ c. We can now upper-bound
the ǫ∗ by choosing ∆ =

∑

j njnj+1. One can easily

show that ‖∆‖ = N2

4 . Thus we arrive at

T∗ ≥ 1
/

cN2 , (20)

which shows us how gate times scale with the
number of photons and the strength of the cross-
Kerr interaction.
Conclusions– We have introduced the quantum

distance to uncontrollabilty as a quantitative
measure how good a control systems is, and derived
bounds on the quantum speed limit. These are
provided in terms of a dynamical and geometric
component. We obtained a dimension-independent
bound for the geometric component, and linked the
computation of the dynamical part to energy gaps
and to graph theory, which provides an easy route
to computing speed limits. We gave several physical
examples from quantum technology. Maximizing
the distance to the nearest uncontrollable system
has also been used in the design of linear controlled
systems [29], and it would be interesting to consider
it in the design of quantum computers.
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SUPPLEMENTARY MATERIAL

Here we prove that δ∗ ≥ 1/4. First, let us derive
some simple norm bounds. Note that we can bound
norm differences on a doubled system as

‖U1 ⊗ U1 − U2 ⊗ U2‖ =

‖(U1 ⊗ U1 − U1 ⊗ U2) + (U1 ⊗ U2 − U2 ⊗ U2)‖
≤ ‖U1 − U2‖‖U1‖+ ‖U1 − U2‖‖U2‖
≤ 2‖U1 − U2‖. (21)

Next, we can relate norm differences of unitaries to
their action on states as follows.

‖V ρV † −WρW †‖1
= ‖ρ− V †Wρ(V †W )†‖1
= ‖ρ− V †Wρ+ V †Wρ− V †Wρ(V †W )†‖1
≤ ‖ρ− V †Wρ‖1 + ‖V †Wρ− V †Wρ(V †W )†‖1
= 2‖(1− V †W )ρ‖1. (22)

Using Hölder’s inequality, we get:

‖V ρV † −WρW †‖1
≤ 2‖ρ‖1‖(1− V †W )‖∞ = 2‖V −W‖, (23)

where we dropped the∞ subscript from the operator
norm.
Now suppose R 6= SU(d). Then by compactness

of SU(d), the closure R ≡ G is a connected and
strict subgroup of SU(d). By the above,

δ(R) = sup
U∈SU(d)

inf
V ∈R

‖V − U‖

≥ sup
U∈SU(d)

inf
V ∈G

‖V − U‖

≥ 1

2
sup

U∈SU(d)

inf
V ∈G

‖V ⊗ V − U ⊗ U‖

≥ 1

4
sup

U∈SU(d)

inf
V ∈G

‖AdV ⊗V (ρ)−AdU⊗U (ρ)‖1, (24)

where ρ is an arbitrary state on the doubled system
and AdW (ρ) =WρW †.
We will now use a representation theory argument

laid out in [9, 10, 14] to construct a state ρ that is
left invariant by V ⊗ V . Consider G⊗2 = {g⊗ g|g ∈
G}. It is known that this representation of G has
at least two invariant subspaces, the symmetric and
the antisymmetric subspace. It also follows from [10,
Theorem 6] that becauseG 6= SU(d), then either the
symmetric or the antisymmetric subspaces of G⊗2

(or both) break into more than one irreps of G. Let
us assume it happens in the symmetric space, with
the other case treated analogously. Thus there is
a projection P , such that for any V ∈ G, we have
V ⊗ V P (V ⊗ V )† = P ; and PP+ = P , where P+ is
the projection to the symmetric space, and P 6= P+.
We can assume that the dimension (rank) of P is
less than or equal to half of that of P+ (otherwise
consider its compliment in P+). Since projections
are positive, we can normalise them into a state ρ =
P/ dimP that will be a good choice for Eq. (24).
Due to its invariance, the infinum in Eq. (24)

disappears and we obtain

δ(R) ≥ 1

4
sup

U∈SU(d)

‖ρ− U ⊗ Uρ(U ⊗ U)†‖1. (25)

We now need to find a U ∈ SU(d) which moves ρ
far away. This would be a hard problem in general,
but we can use Jensen’s inequality and move to the
average case, which is good enough:

δ(R) ≥ 1

4
‖ρ−

∫

SU(d)

(U ⊗ U)ρ(U ⊗ U)†‖1

≥ 1

4
‖P/ dimP − P+/ dimP+‖1 ≥ 1/4. (26)

In the second step, we used that SU(d) acts
irreducibly in P+. In the last step, we went to a
joint diagonal representation of P and P+ and used
the fact that dimP ≤ dimP+/2 to explicitly bound
the trace norm.
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