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We report a study of spin-dependent transport in a system composed of a quantum dot coupled to a normal

metal lead and a ferromagnetic lead �NM-QD-FM�. We use the master equation approach to calculate the

spin-resolved currents in the presence of an external bias and an intradot Coulomb interaction. We find that for

a range of positive external biases �current flow from the normal metal to the ferromagnet� the current

polarization �= �I↑− I↓� / �I↑+ I↓� is suppressed to zero, while for the corresponding negative biases �current flow

from the ferromagnet to the normal metal� � attains a relative maximum value. The system thus operates as a

rectifier for spin-current polarization. This effect follows from an interplay between Coulomb interaction and

nonequilibrium spin accumulation in the dot. In the parameter range considered, we also show that the above

results can be obtained via nonequilibrium Green functions within a Hartree-Fock type approximation.

DOI: 10.1103/PhysRevB.75.165303 PACS number�s�: 73.23.Hk

I. INTRODUCTION

Polarized transport in spin-dependent nanostructures is a

subject of intense study in the emerging field of spintronics,1

due to its relevance to the development of spin-based

devices.2–4 In addition, transport through QDs provides

information about fundamental physical phenomena in

spin-dependent and strongly correlated systems, such as

the Kondo effect,5–9 the Coulomb- and spin-blockade

effects,10–14 spin valve effect and tunneling magnetoresis-

tance �TMR�,15–26 etc. Spin filters and pumps have also been

proposed using QDs coupled to normal metal leads.27–29 A

system of particular interest in this context comprises a quan-

tum dot or a metallic grain coupled to ferromagnetic leads.

The ferromagnetism of the leads introduces spin-dependent

tunneling rates between the leads and the central region. This

results in a nonzero net spin in the central region for asym-

metric magnetization geometries. This effect is called spin

accumulation or spin imbalance.30–32 It has been shown

that spin accumulation affects several transport properties,

such as magnetoresistance,18,35 �negative� differential

resistance10,35 and the zero-bias anomaly.8,11,18 In addition it

provides a way to generate and control the current spin po-

larization via gates or bias voltages,33,34 which is one of the

main goals within spintronics.

Systems composed of a nonmagnetic lead and a ferromag-

netic lead with a quantum dot or a quantum wire as spacer

have been analyzed recently. It was pointed out that if the

spacer is a dot and the ferromagnetic lead is half-metallic, a

mesoscopic current-diode effect arises.4,35,36 Spin-current

rectification was also predicted in an asymmetric system

composed of a ferromagnetic �Fe or Ni� and nonmagnetic

�Au or Pd� contacts coupled to each other via a molecular

wire.37 Additionally, it was pointed out that a NM-QD-FM

system can operate as a spin-filter and as a spin-diode.38 In

Ref. 38 the authors use the bias voltage to change the reso-

nance position of the dot level with respect to the spin-split

density of states of the ferromagnetic lead. This gives rise to

spin-dependent currents.

Here we study spin-resolved currents in a single-level

quantum dot attached to a nonmagnetic lead �“left lead”� and

to a ferromagnetic lead �“right lead”�, Fig. 1. As we shall

show, the magnetic asymmetry between the left and right

terminals results in a rectification of the current polarization

for a particular bias range for which the single electron chan-

nel �d is on-resonance, and the double-occupancy channel

�d+U is off-resonance. More precisely, when the nonmag-

netic lead operates as an emitter and the ferromagnetic lead

as a collector, defined as the positive bias �eV�0�, the cur-

rent is unpolarized. In contrast, when the ferromagnetic lead

is the emitter and the nonmagnetic lead is the collector

�negative bias� a spin-polarized current arises. Importantly,

this rectification occurs only in this particular bias range, as

we shall demonstrate both analytically and numerically. This

is attributed to an interplay between nonequilibrium spin ac-

cumulation and Coulomb interaction within the dot. For high

enough bias voltages, the current polarization is essentially

FIG. 1. System studied: a nonmagnetic quantum dot coupled via

tunneling barriers to a nonmagnetic left lead and a ferromagnetic

right lead. A bias voltage V is applied across the system so that the

left ��L� and right ��R� chemical potentials differ by �L−�R=eV.
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symmetric with respect to the bias, and no rectification is

found.

In the main body of the paper we employ the master-

equation approach of Glazman and Matveev39 to describe the

spin-dependent transport through the NM-QD-FM junction

in the sequential tunneling regime ��0�kBT,39 where �0 is a

characteristic tunneling rate�. An alternative description in

terms of nonequilibrium Green functions is also presented in

the Appendix, that corroborates our results obtained via the

master equation.

II. MODEL AND MASTER EQUATION APPROACH

The NM-QD-FM system we study is schematically illus-

trated in Fig. 1. An external bias voltage V drives the system

away from equilibrium thus imposing a chemical potential

imbalance between the left �L� and the right �R� leads, �L

−�R=eV, where �L�R� is the chemical potential of the lead

L�R� and e is the absolute value of the electron charge �e
�0�. The system Hamiltonian is

H = �
k��

�k��ck��
† ck�� + �

�

�dd�
†d� + Ud↑

†d↑d↓
†d↓

+ �
k��

�tk��ck�
† d� + tk�

* d�
†ck��� , �1�

where �k�� is the free-electron energy with wave vector k

and spin � in lead � ��=L ,R�, �d is the spin-degenerate dot

level, U is the on-site Coulomb repulsion and the operators

ck�� �ck��
† � and d� �d�

†� destroy �create� an electron with spin

� in the lead � and in the dot, respectively. The matrix ele-

ment tk�� gives the lead-dot coupling. We do not consider

any spin-flip processes.

To calculate the current we use rate equations,24,39 which

yield

I�
� = e��01�

� �1 − n� − n�̄ + n↑↓� − �10�
� �n� − n↑↓��

+ e��̃01�
� �n�̄ − n↑↓� − �̃10�

� n↑↓� , �2�

where we have assumed �=1. The parameter �01�
� corre-

sponds to the rate of adding one electron to the dot coming

from lead �, and �10�
� is the rate of moving one electron from

the dot to lead �. In addition, �̃01�
� and �̃10�

� give the rates of

moving one electron with spin � to and from the dot, respec-

tively, when it is already occupied by one electron with op-

posite spin. Following Ref. 24 we define n�= �n̂�� and n↑↓

= �n̂↑n̂↓� �n̂�=d�
†d�� as the dot single and double average oc-

cupancies, respectively. The tunneling rates are

�01�
� = ��

�f�, �3�

�10�
� = ��

��1 − f�� , �4�

�̃01�
� = �̃�

� f̃�, �5�

�̃10�
� = �̃�

��1 − f̃�� , �6�

where f�=1/ �exp���d−��� / �kBT��+1	 and f̃�=1/ �exp���d

+U−��� / �kBT��+1	. The rates ��
� and �̃�

� are related to the

spin-resolved density of states of lead � via ��
�

=2	
t
2
����d� and �̃�
�=2	
t
2
����d+U�. Here we assume

�↑
L=�↓

L and �↑
R
��↓

R. This reflects the fact that the density of

states of the left lead is spin-degenerate while the right one is

spin-split. Assuming a constant density of states and a con-

stant tunneling parameter t, we have ��
�= �̃�

�. With this as-

sumption the terms with n↑↓ in Eq. �2� cancel out,24 and one

simply finds

I�
� = e��01�

� �1 − n� − n�̄� − �10�
� n� + �̃01�

� n�̄� . �7�

To calculate the current via Eq. �7� we need to find n�

from24

d

dt
n� = �01��1 − n� − n�̄ + n↑↓� − �10��n� − n↑↓�

+ �̃01��n�̄ − n↑↓� − �̃10�n↑↓, �8�

where

�01� = �01�
L + �01�

R = ��
L fL + ��

RfR, �9�

�10� = �10�
L + �10�

R = ��
L�1 − fL� + ��

R�1 − fR� ,

�10�

�̃01� = �̃01�
L + �̃01�

R = �̃�
L f̃L + �̃�

R f̃R, �11�

�̃10� = �̃10�
L + �̃10�

R = �̃�
L�1 − f̃L� + �̃�

R�1 − f̃R� .

�12�

When ��
�= �̃�

�, Eq. �8� becomes

d

dt
n� = �01��1 − n� − n�̄� − �10�n� + �̃01�n�̄, �13�

where the terms with n↑↓ cancel out.

Stationary regime. In this regime �dn� /dt=0� Eq. �13�
reduces to

n� =
�01� + ��̃01� − �01��n�̄

�01� + �10�

, �14�

which can be solved for each spin component, thus resulting

in

n� =
�01��10�̄ + �01�̄�̃01�

��

, �15�

where ��= ��01�+�10����01�̄+�10�̄�− ��̃01�−�01����̃01�̄

−�01�̄�. Using Eq. �15� in Eq. �7� we obtain
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I�
� = e

�01�
� ��10��10�̄ − �̃01��̃01�̄� − �10�

� ��01��10�̄ + �01�̄�̃01�� + �̃01�
� ��01�̄�10� + �01��̃01�̄�

��

. �16�

From Eq. �16� we can readily evaluate the current polariza-

tion �= �I↑− I↓� / �I↑+ I↓�. Next �Sec. III� we provide some

simple analytical results valid when double occupancy is en-

ergetically forbidden. Numerical results are presented in Sec.

IV.

III. REGIME OF SINGLY OCCUPIED DOT

As we shall see, the most interesting behavior takes place

when the channel �d is completely within the conduction

window and �d+U is far above the Fermi energy of the emit-

ter. With this channel configuration we approximate f̃�=0,

and fL=1, fR=0 for eV�0 and fL=0, fR=1 for eV�0. Us-

ing this into the occupation and current equations, Eqs. �15�
and �16�, we find analytical expressions for the first plateau

that appears in the current and its polarization for both posi-

tive and negative bias voltage. Equation �15� then becomes

n� =
��

���̄
�̄

��
�̄��̄

�̄
+ ��

L��̄
R

+ ��̄
L��

R
, �17�

where �=L, �̄=R for eV�0 and �=R, �̄=L for eV�0. The

current of the left lead then becomes

I�
L = ± e

��̄
���

L��
R

��
���̄

�
+ ��

L��̄
R

+ ��̄
L��

R
, �18�

where �=R and the 
 sign corresponds to eV�0, while �
=L and the � sign to eV�0. The right-hand side current is

simply given by I�
R=−I�

L for a spin-conserving stationary re-

gime. Equation �18� gives the �bias-independent� current in

the regime addressed here. For the particular case of spin-

independent tunneling rates, i.e., ��
L =�L and ��

R=�R, we ob-

tain

IL = I↑
L + I↓

L = � 2e��L�R�/�2�L + �R� , eV � 0,

− 2e��L�R�/��L + 2�R� , eV � 0,
�

�19�

in accordance with results already known in the

literature.39,40

Using Eq. �18� into the definition �= �I↑− I↓� / �I↑+ I↓�, we

obtain the current polarization plateau

� =
��↑

� − �↓
��

��↑
� + �↓

��
, �20�

where �=L for eV�0 and �=R for eV�0. We model the

tunneling rates by �↑
L=�↓

L=�0 and �↑�↓�
R =�0�1± p�, where p

� �0,1� is the spin polarization degree of the ferromagnetic

right lead24 and �0 the lead-dot coupling. Within this model

Eq. �20� gives

� = �0, eV � 0,

p , eV � 0.
� �21�

Thus, when only the level �d is within the conduction win-

dow, the current becomes unpolarized for positive bias, while

spin-polarized for negative bias. Therefore the NM-QD-FM

junction functions as a current-polarization diode.

IV. RESULTS

A. Parameters

We assume that the dot level depends on the bias voltage

according to �d=�gate−xeV, where x accounts for asymmetric

voltage drops along the left and right tunnel barriers.23,24 �gate

can be controlled via gate voltages. For the numerics we take

�gate=0.5 meV, �L=0, �R=−eV, kBT=212 �eV, U=3 meV,

and �0=10 �eV.41,42 In Secs. IV B–IV D we assume a sym-

metric potential drop across the system with x=0.5. In Sec.

IV E we briefly discuss the asymmetric case with x�0.5.

B. Current polarization

Figure 2 shows the current polarization as a function of

the external bias eV. We observe that for positive bias the

current polarization decreases for increasing bias, reaching

zero around eV=4 meV. Conversely, for the negative biases

we obtain a maximum polarization p around eV=−4 meV,

confirming the analytical result found in Sec. III, Eq. �21�.
The voltage range for this behavior scales with the parameter

U. For high enough bias voltages �
eV
�7 meV� the polar-

ization reaches the same nonzero plateaus for both positive

and negative voltages. Both the suppression �eV�0� and the

enhancement �eV�0� of the current polarization are due to

the interplay of Coulomb interaction and spin accumulation

in the quantum dot. Quite interestingly this interplay affects

FIG. 2. Current polarization � as a function of the external bias.

For p values between 0.2 and 0.9, � reaches zero for some particu-

lar positive bias range, while for the negative counterpart it reaches

maximum plateaus.

QUANTUM DOT AS A SPIN-CURRENT DIODE: A MASTER-… PHYSICAL REVIEW B 75, 165303 �2007�

165303-3



� differently with the bias sign, namely, for direct bias it

suppresses � while for reverse bias it enhances �.43 The

suppression of � for positive bias results in the zero polar-

ization seen for all p values except p=1. In the half-metallic

case �p=1�, there is only spin-up current flowing in the sys-

tem �I↑
�
�0, I↓

�=0�, so the polarization becomes simply �

= �I↑
�− I↓

�� / �I↑
�+ I↓

��= I↑
� / I↑

�=1. On the other hand, for negative

bias, the maximum polarization plateau changes as p varies.

In particular, � attains a plateau equal to the polarization

degree of the ferromagnetic lead, according to Eq. �21�. To

gain a more detailed understanding of the spin-diode effect

we investigate next the spin accumulation m=n↑−n↓ and the

spin-resolved I-V curves as a function of the bias.

C. Spin accumulation

Figure 3 shows the spin accumulation m=n↑−n↓ as a

function of the bias voltage, for distinct polarization param-

eters p. For all the p values considered here we note that

m�0 for positive bias and m�0 for negative bias. This

spin-imbalance can be understood in terms of the tunneling

rates ��
� between dot and leads. Due to the ferromagnetism

of the right lead, the rates ��
L and ��

R become asymmetric.

For example, for p=0.2 the rates are �↑
R=12 �eV, �↓

R

=8 �eV, and �↑
L=�↓

L=10 �eV. For positive bias, ��
L be-

comes the ingoing tunneling rate for electrons with spin �
and ��

R the outgoing tunneling rate. Due to the inequality

�↑
R��↑

L, the spin-up electrons can tunnel out the dot faster

than they come into it. On the other hand, since �↓
R��↓

L, the

spin-down electrons leave the dot slower than they come into

it. So on average the spin-down electrons spend more time in

the dot than the spin-up ones for eV�0, thus n↓�n↑⇒m
�0. A similar reasoning applies to the other p values, except

for p=0 for which there is no accumulation. For negative

bias, �↑
L and �↓

L are the outgoing tunneling rates while �↑
R and

�↓
R become the ingoing tunneling rates. As a consequence of

this interchange, the spin accumulation inverts its sign �m

�0�. For small p values the spin accumulation is essentially

an odd function of the bias, Fig. 3.

When p increases, though, the imbalance becomes stron-

ger for positive bias. In particular for p=1, m reaches −1 in

the positive bias range corresponding to single occupancy

��d+U��L�, and a constant plateau for all negative bias.

This happens because no spin-down states are available in

the right lead for p=1, so a spin-down electron that enters

the dot, coming from the left-hand side �eV�0�, cannot

leave the dot to the right-hand side. Hence a spin-up electron

cannot hop into the dot when �d+U��L, so the accumula-

tion becomes completely spin-down polarized for positive

bias. For high enough bias voltages an additional electron

with opposite spin can jump into the dot �for both positive

and negative bias�, thus resulting in a suppression �in modu-

lus� of m.

D. Spin-resolved currents

In Fig. 4 we show the spin-resolved currents I↑ and I↓ as a

function of the bias voltage for differing polarization param-

eters p. We observe that for positive bias the spin-up and

spin-down currents coincide in the plateaus indicated by ar-

rows for any p value. This results in the zero current polar-

ization seen in Fig. 2. In the second plateau, though, I↑ at-

tains higher values compared to I↓, which enhances �. The

strong suppression of I↑ in the first plateau �eV�0� is attrib-

uted to the spin imbalance m�0 observed for the corre-

sponding bias range �see Fig. 3�. More specifically, since the

dot is predominantly spin-down occupied for positive bias,

the spin-up electrons tend to be more blocked than the spin-

down ones, thus reducing further I↑ and interestingly locking

FIG. 3. Spin accumulation m=n↑−n↓ as a function of the exter-

nal bias. For p=0 �unpolarized lead� there is no spin accumulation

in the dot. When p increases the spin accumulation increases as

well becoming negative for eV�0 and positive for eV�0.

FIG. 4. Spin-resolved currents against bias voltage. For the pla-

teaus indicated by arrows, I↑ lies on top of I↓. This gives rise to the

�=0 plateau seen in Fig. 2. For big enough polarizations �e.g., p

�0.8� a negative-differential resistance range arises in the spin-up

current.
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it on top of I↓. In contrast, for negative bias we have the

population inversion m�0. This gives a stronger suppres-

sion of I↓ as compared to I↑, which enhances the difference

between I↑ and I↓, and consequently �. When the channel

�d+U reaches resonance �eV�−7 meV� both the I↑ and I↓
plateaus attain values somewhat closer to each other, thus

reducing the current polarization �see Fig. 2�.
In particular for p=1 the I↓ is zero for any bias voltage

since there are no spin-down states available in the right-

hand lead. The I↑ increases slightly �for positive bias� while

the dot is becoming populated. When the population is high

enough the Coulomb interaction plays a role and the spin-up

current goes down to zero.44 This gives rise to a negative

differential conductance at the beginning of the first plateau

for eV�0 �see Fig. 4 with p=1�.45 For negative bias �and

p=1� I↑ attains one plateau instead of two steps as for the

other p values. This is expected because the spin-down elec-

trons do not participate in the transport in this case, so no

Coulomb interaction effect arises. Note that for p=1 the sys-

tem can operate as a mesoscopic current diode.4,35,36

E. Effects of the bias-drop asymmetry

Here we consider the effects of an asymmetric bias drop,

i.e., x�0.5. As Fig. 5 shows, the asymmetry in the bias drop

gives rise to quantitative, but not qualitative changes. For x
=0.2 the current polarization � goes to zero much slower

with the bias than it does for x=0.5. This is so because the

resonance condition �d��L �eV�0�, which is necessary to

have �=0 �see Sec. III�, happens for higher bias when x
decreases. For negative bias the resonance �d��R is reached

faster �i.e., at lower biases as compared with the x=0.5 case�
for decreasing x. This, in turn, translates into a steeper en-

hancement of � which then attains a plateau at �= p �see Eq.

�21��. In addition, for x=0.2 the zero current-polarization

plateau �eV�0� enlarges while the maximum plateau �eV

�0� shrinks compared to the respective x=0.5 widths. For

x=0.8 the resonance �d��L �eV�0� takes place faster with

the bias when compared to the x=0.2 and x=0.5 cases. This

results in the steeper suppression of � and the shrinkage of

the zero current-polarization bias range. For negative biases

the resonance condition �d��R for x=0.8 is more slowly

attained with the bias as compared to the x=0.2 and x=0.5

cases. Consequently, the polarization � reaches the plateau at

�= p for higher bias voltages �in modulus�.

V. CONCLUSION

We propose a NM-QD-FM system which operates as a

diode for the current polarization. More specifically, when

double occupancy is forbidden in the system, i.e., the chan-

nel �d+U is far above the chemical potential of the emitter

lead, the system carries an unpolarized current for positive

bias and a spin-polarized current for negative bias. This ef-

fect is a result of the interplay between spin accumulation in

the dot and the Coulomb interaction. Interestingly, for posi-

tive biases the spin-resolved currents I↑ and I↓ lock onto the

same plateau for a particular bias range, thus resulting in �

=0.
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APPENDIX: NONEQUILIBRIUM GREEN FUNCTIONS

In the main text we have formulated the problem via the

master equation formalism. Here we show that Eqs. �17� and

�18�, from which our main result Eq. �21� directly follows,

can be obtained via the Keldysh formalism. We start with the

well-known equation for the stationary current46,47

I�
� = ie
 d�

2	
���

���G��
r ��� − G��

a ����f���� + G��
� ���		 ,

�A1�

where G��
r , G��

a , and G��
� are the retarded, advanced, and

lesser Green functions, respectively. To calculate these we

apply the equation of motion technique and use the Hartree-

Fock approximation to factorize high-order correlation func-

tions in the resulting chain of equations.48 The retarded

Green function becomes

G��
r ��� =

1

g��
−1 ��� − ��

r ���
, �A2�

where ��
r ��� is the noninteracting tunneling self-energy

given in the wide band approximation by ��
r ���

FIG. 5. Current polarization � as a function of the bias voltage

for the asymmetry parameters x=0.2 �upper panel� and x=0.8 �bot-

tom panel�. We observe that the �=0 plateau enlarges for x=0.2

and shrinks for x=0.8 when compared to the x=0.5 case. In con-

trast, the maximum plateau �= p reduces for x=0.2 and enlarges for

x=0.8 when compared to the x=0.5 case.
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=−i�� /2=−i���
L +��

R� /2, and g����� is the dot Green func-

tion without coupling to leads,

g����� =
� − �d − U�1 − n�̄�

�� − �d��� − �d − U�
, �A3�

where n�̄ is the dot occupation number, with �̄=−�. This

occupation can be calculated self-consistently via

n� = �d�
†d�� = − i
 d�

2	
G��

� ��� , �A4�

where the correlation function G��
� ��� is given by the

Keldysh equation

G��
� ��� = G��

r �����
�G��

a ��� . �A5�

The advanced Green function G��
a ��� is given by G��

a ���
= �G��

r ����*, while ��
�= i���

L fL+��
RfR�. In order to consider

the same channel configuration adopted in Sec. III, we as-

sume a large U ��d+U���� so the retarded Green function

becomes

G��
r ��� =

�1 − n�̄�

� − �d − ��
r �1 − n�̄�

, �A6�

and the lesser Green function reads

G��
� ��� =

i���
L fL + ��

RfR��1 − n�̄�2

�� − �d�2 + ���

2
�2

�1 − n�̄�2

. �A7�

Substituting Eq. �A7� into Eq. �A4� we have

n� =
�1 − n�̄�2

2	

 d�

���
L fL + ��

RfR�

�� − �d�2 + ���

2
�2

�1 − n�̄�2

. �A8�

Now assuming that the dot level �d is completely on reso-

nance within the conduction window between �L and �R for

positive or negative bias49 we can integrate Eq. �A8� in order

to obtain

n� =
��

�

��

�1 − n�̄� , �A9�

where �=L for eV�0 or �=R for eV�0. Solving Eq. �A9�
for each spin component we find exactly Eq. �17�.

To obtain Eq. �18� from the Green functions, we substitute

Eqs. �A6� and �A7� into the current formula �A1�, which

gives

I�
L = e
 d�

2	

��
L��

R�1 − n�̄�2�fL − fR�

�� − �d�2 + ���

2
�2

�1 − n�̄�2

. �A10�

Solving Eq. �A10� with the same assumptions adopted

previously49 we find

I�
L = ± e

��
L��

R

��

�1 − n�̄� , �A11�

where 
 and � signs correspond to eV�0 and eV�0, re-

spectively. Equation �A11� can also be written as Eq. �18�.
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