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ABSTRACT: 

We proposed a novel structure of ultrafast all optical Feynman logic gate based on the cross-phase modulation that is 

principle nonlinear effect in a quantum dot semiconductor optical amplifier assisted with a Mach-Zehnder 

interferometer at the wavelength of 1.55 µm. To realize ultrafast mechanism, an active layer with a thickness of 1.7-

µm, and the confinement factor of 0.75 and 0.7 respectively for both TE0 and TM0 modes, are provided. By solving 

the rate equations, a gain difference up to 0.1 dB has been obtained. The proposed structure has the potential 

application in advanced optical devices such as optical memristors. 

 

KEYWORDS: Semiconductor Optical Amplifier, Optical Logic gate, Cross-Phase Modulation, Mach-Zehnder 
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1.  INTRODUCTION 

In recent years, in advanced telecommunication 

systems, the rate of the data transmission has been 

considered. Up to now, all optical systems with high 

data transmission capability are highly desirable to 

support the all optical signal processing [1]. Logic 

gates are one of the key elements for ultrafast signal 

processing such as ultrafast advanced encryption and 

decryption [2], [3], arithmetic operations and 

complicated processing circuits (e.g., multiplier, shift 

registers, counter, and central processing unit). [4]- [8]. 

Typically, all optical logic gates using optical 

components which work base on the nonlinear effect of 

medium [9]. Hence, the optical logic gates are divided 

into two categories based on nonlinear mechanism 

including optical fiber logic gates and semiconductor 

optical amplifier (SOA) logic gates [10], [11]. 

However, the optical fiber has a weak nonlinearity, and 

high power pump needs to achieve reasonable 

switching efficiency. The SOA has a small size and 

electrically pumped, also SOA less expensive than 

optical fiber amplifier and can be integrated with an 

optical component such as a laser, modulator and 

multiplexer [12]. In the different methods, integrated 

Mach-Zehnder interferometer (MZI) based on SOA has 

been developed as a practical platform for logic gates 

due to its compact size [13], thermal stability and low 

power consumption. All optical Feynman gates as one 

of the quantum logic gates implemented with various 

nonlinearities in SOA including cross gain modulation 

(XGM), cross phase modulation (XPM) and four wave 

mixing (FWM) which enable switching light to another 

wavelength [14-16].  

In this paper, different from the previous works, to 

realize ultrafast logic mechanism, we first propose a 

quantum dot (QD) InAs/GaAs SOA, in which only TE0 

and TM0 modes can propagate. We show that it is 

possible to obtain good polarization insensitivity 

(sensitivity < 0.1 dB) for proposed SOA. That is 

obtained by solving the rate equations. Then, by 

considering the XPM effect, we use the above-

mentioned structure to realize of Feynman logic gates. 

Finally, based on the numerical results it is suggested 

that the structure is a good candidate for future optical 

logic gates. 

 The remainder of the paper is organized as follows. 

In Section 2 the principle of operation and structure of 

SOA is studied. Then we derive, analyze, and interpret 

results on the performance of the all optical Feynman 

logic gate. In Section 3 we provide the discussion of 

the proposed logic gate. Finally, in Section 4. We 

summarize the main findings of our work and 

simulation results. 

 

2.  THE SOA PRINCIPLE WORK 

Owing to the significant effect of active layer 

thickness in SOA, by considering a suitable thickness 

for the active layer and also by choosing the lattice 

matching for the wavelength of the optical pumping, it 

allows harnessing the propagation of TE and TM in the 

semiconductor optical amplifier. Hence, the 

investigation of the thickness and wavelength 
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sensitivity of the SOA in quantum dot structure is a 

helpful method to characterize the thick behavior of 

SOAs. In Fig. 1 we illustrate the configuration of the 

proposed quantum dot SOA. We assign the direction of 

wave propagation as the z-axis and the index profile is 

independent of z as well. The electric field E~(x,y,z) 

and magnetic field H~ (x,y,z) propagation along the z 

direction. 

 
Fig. 1. The three dimensional schematic of the 

proposed QD-SOA. 

 

As a next step, we have presented the band structure 

(BS) of the structure. The BS of the InAs/GaAs QD-

SOA is shown in Fig. 2. 

 
Fig. 2. Energy diagram Band of the proposed 

Quantum Dot Semiconductor Optical Amplifier 

structure. 

 

In Fig. 2 we considered the spontaneous emission, 

the stimulated absorption, the stimulated emission and 

the non-radiative transitions. The input light is focused 

into SOA by considering a microscope objective lens 

with the focal length of 4.6mm (numerical 

aperture=0.65). Moreover, the proposed structure is 

InAs/GaAs QD-SOA with the length of a 10µm. 

The active layer of the SOA was sandwiched 

between InAs layers (17 A◦) with a bandgap 

wavelength of 0.9µm. Optical mode confinement 

factors for TE0 and TM0 modes are calculated by the 

conventional slab waveguide analysis using refractive 

indices of 3.53 and 3.37, for the active layer and the 

cladding layer, respectively at the wavelength of 

1.55µm, as shown in Fig. 3 and Fig. 4. 

 

 
Fig. 3. The numerical calculation of the refractive 

index of InAs. 

 

 
Fig. 4. The numerical calculation of the refractive 

index of GaAs. 

 

To calculate gain and power we must solve the 

three-level rate equation for the electron transmission 

between the wetting layer (WL), excited state (ES), and 

ground state (GS) respectively, which are as follows 

[12]: 
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and the photon rate equation is 
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where h is the electron occupation probability of the 
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ES, f is the electron occupation probability of the GS, 

τw2 is the electron relaxation time (ERT) from the WL 

to the ES, τ2w is the electron escape time (EET) from 

the ES to the WL, τwR is the spontaneous radiative 

lifetime (SRL) in WL, τ21 is the ERL from the ES to 

GS, τ12 is the EET from the GS to the ES, τ1R and τ2R 

are the SRL in the QD GS and ES respectively. NQ is 

the density of the QDs, Nw is the electron density in the 

WL and Lw is the effective thickness of the WL and τph 

is the cavity photon lifetime. The electromagnetic field 

profile is simulated using finite difference time domain 

(FDTD) method. The carrier density and photon 

density are calculated by solving the rate equations, as 

depicted in Fig. 5.  

 
Fig. 5. Carrier density and photon density 

calculated from the rate equation. 

 

Fig. 6a shows the numerical calculated far-field pattern 

(FFP) along the vertical and horizontal directions to the 

junction plane. The full-width at half-maximum 

(FWHM) of the FFPs was numerically calculated as 

30◦×30◦. Moreover, the calculated field profile is 

shown in Fig. 6b. 

Table 1 provides the structural parameters of a QD-

SOA for rate equation.  

 

 

 

 
Fig. 6. a): the FWHM of the proposed structure, b): 

the field profile of the QD-SOA. 

 

Table 1. Major structural parameters of a quantum 

dot semiconductor amplifier in rate equation approach. 

Symbol Definition Value 

L Thickness of active layer 1.7µm 

Γ Confinement factor  0.7 

λ Wavelength  1.55 µm 

w2 ERT from WL→ES 3 ps 

2w EET from ES→WL 1 ns 

1R SRL in WL 0. ns 

21 ERL from ES→GS 0.15 ps 

12 EET from GS→ES 1 ps 

NQ Density of QDs 2*1024 cm-2 

J Current density 2.5K.A/ cm-2 

 

2.1.  The Structure of Feynman Logic gate 

The proposed Feynman logic gate based on MZI-

SOA is shown in Fig. 7. A structure of MZI is created 

of two 3db-couplers (50:50 coupler) connected by arms 

of equal optical length. Also two semiconductor optical 

amplifier (SOA) is placed into the upper and lower 

arms of MZI. MZI has two input ports, two output ports 

and the input signal is split into the two arms of the 

input 3db-coupler. Finally split signal, are recombined 

in the output combiner. In both arms, SOA used for 

amplification and attenuation of an optical signal.  
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With XPM effect, changing the refractive index of 

one of the arms, so the phase difference at the input of 

the 3db-combiner changed and signal switches from 

one output port to the other. In MZI-SOA, if one signal 

presented attenuated in one arm and amplified in the 

other arm. The working principle of the MZI-SOA can 

be explained as follows. In the demonstrated structure, 

any input signal is propagated simultaneously in the 

two arms of MZI. If the input signal is split at the upper 

coupler, more power pass through upper arm. With 

XPM effect in SOA, gain saturation induced and carrier 

density reduced, as a result, an additional π phase can 

be introduced on the upper arm because of the XPM. 

Now it's clear with no signal XPM effect, the input 

signal pass through two arms and nothing exits from 

the upper output port. The nonlinear switching 

component used was an above mentioned QD-SOA, 

when driven with 150mA. In this structure optical filter 

is placed in front of the output ports for blocking the 

amplified spontaneous emission (ASE) noise and Bit 

synchronization in the structure was achieved using 

optical delay. 

From logic mechanism point, the proposed 

Feynman gate using two MZI-SOA and two beam 

combiner (BC) based all optical logic gate. BC is to 

simply combine the optical signal while the beam 

splitter, splits the beams into two optical signals. A 

Feynman gate is a 2input and 2output having the 

mapping (A,B) to (P=A,Q=A xor B). The demonstrated 

structure of Feynman gate is shown in Fig. 7. 

 

3.  RESULT AND DISCUSSION 

We proposed a simple Feynman logic gate structure 

for logic application and discuss the influence of the 

XPM and active layer thickness on the logic operation 

of SOA. The QD-SOA structure was found to be 

optimum for the logic application. According to section 

2, it is found that at a wavelength of 1.55 µm, 

polarization sensitivity is smaller than 0.1 dB up to 1.7 

µm thickness and remains under 1 dB at higher 

thicknesses. However, the temperature rise in the active 

layer due to the high operating current density (I > 

2.5Ith) might be a drawback to this structure. Hence, 

owing to the temperature stability of the structure 

considering graphene material for logical application 

[17], [18], in future work semiconductor optical 

amplifier assisted with graphene plasmonic structure 

will be considered. 

 

4.  CONCLUSION 

Here we have proposed the design of Feynman logic 

gate based on QD-SOA-MZI in telecommunication 

range, i.e., 1.55 µm. The numerical result was shown 

that by considering the effect of both XPM and active 

layer thickness for propagating one polarization 

through the SOA, the ultrafast and low power 

consumption structure can be obtained. Therefore, the 

proposed structure can find the potential application in 

advanced optical devices such as optical memristors. 
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