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Quantum dot single-photon sources with ultra-low multi-
photon probability
Lukas Hanschke1, Kevin A. Fischer2, Stefan Appel1, Daniil Lukin2, Jakob Wierzbowski1, Shuo Sun2, Rahul Trivedi2, Jelena Vučković2,
Jonathan J. Finley1 and Kai Müller 1

High-quality sources of single photons are of paramount importance for quantum communication, sensing, and metrology. To
these ends, resonantly excited two-level systems based on self-assembled quantum dots have recently generated widespread
interest. Nevertheless, we have recently shown that for resonantly excited two-level systems, emission of a photon during the
presence of the excitation laser pulse and subsequent re-excitation results in a degradation of the obtainable single-photon purity.
Here, we demonstrate that generating single photons from self-assembled quantum dots with a scheme based on two-photon
excitation of the biexciton strongly suppresses the re-excitation. Specifically, the pulse-length dependence of the multi-photon
error rate reveals a quadratic dependence in contrast to the linear dependence of resonantly excited two-level systems, improving
the obtainable multi-photon error rate by several orders of magnitude for short pulses. We support our experiments with a new
theoretical framework and simulation methodology to understand few-photon sources.
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INTRODUCTION
Two-level systems (2LS) provided by excitonic transitions in self-
assembled quantum dots (QDs) are commonly used on-demand
sources for high-quality single photons.1,2 Crucially, resonant
excitation enables nearly transform-limited linewidth3–5 and high
photon indistinguishability.6 Combined with nanoresonators,
single-photon sources with high emission rates and collection
efficiency have been demonstrated7–14 and are now being
incorporated into quantum information processors. For example,
a solitary high-quality QD source was recently used in exciting
demonstrations to create a train of single photons, which were
temporally multiplexed to the input of a Boson Sampler.15,16

Boson sampling with this source, to date, has provided one of the
best experimental validations of optical quantum computing. The
quality of the experimental data in this, and future optical
quantum information processors, ultimately relies on the ability of
the source to emit precisely one photon when triggered by a laser
pulse. However, it has recently been shown (from our work17–19

and others20) that resonant excitation of a 2LS provides a
fundamental limitation to the error rate of the single-photon
source and hence the information processor. This results from the
emission of a photon during the presence of the excitation pulse
which leads to re-excitation and multi-photon emission.
In this letter, we investigate an alternative scheme which is

based on a four-level system, given by the biexciton-exciton
ladder in a QD, and demonstrate that it facilitates significantly
higher single-photon purity than a resonantly driven 2LS due to
dramatically reduced re-excitation. At the same time, it maintains
a simple implementation and high single-photon generation rates.
Moreover, it enables an even higher brightness since it eliminates
the need for polarization suppression of the excitation laser.

RESULTS
We first provide detailed experimental results supporting that the
bi-excitonic system is a superior single-photon source over a 2LS
due to re-excitation. Second, we provide a new theoretical analysis
for photon sources, using the biexcitonic system as an example.

Experimental results
The sample consists of InGaAs QDs of low areal density (<1 μm−2)
embedded in the intrinsic region of an n-i Schottky diode. The
QDs are grown at a distance of 35 nm from the n-doped region
which allows control of the charge occupancy of the QDs. A field-
dependent photoluminescence measurement is presented in Fig.
1a and confirms clear charge stability plateaus for the neutral
exciton transitions X and emission from a negatively charged trion
(X−). The latter can be used as a true 2LS with emission rate γX�
(Fig. 1b—left) while the former is part of a four-level system given
by the biexciton 2X, exciton X and ground state 0 (Fig. 1b—right).
Due to anisotropy in QD shape, the exchange interaction results in
two X levels where one couples 2X and 0 with horizontal
polarization and the other with vertical polarization.21,22 Depend-
ing on the specific type of QD, the two X levels are non-
degenerate with a fine structure splitting of 0–100 μeV. This
system is well-known for the generation of entangled photon
pairs.23–25 Due to the Coulomb interaction, the energy of 2X is
detuned from twice the X energy by the binding energy Eb.
Therefore, 2X can be excited via a two-photon process where the
laser energy is detuned from X by Eb/2.

24,26 The emission rates of
this system are γ2x and γx . A typical spectrum for two-photon
excitation of 2X is presented in Fig. 1c and confirms identical
intensities for 2X and X emission as expected. The dependence of
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the emission intensity on the excitation power is presented in Fig.
1d for exciting with 3 ps long pulses and reveals clean Rabi
oscillations. Time-resolved measurements reveal lifetimes of
260 ps for the emission from X and 173 ps for the emission from
2X.
To generate single photons from this system, the emission has

simply to be frequency filtered to the 2X or X transition. The
single-photon purity is quantified by the measured degree of
second-order coherence g(2)[0]= 〈n(n− 1)〉/〈n〉2 where n is the
number of photons per pulse. We performed measurements of
g(2)[0] for two-photon excitation and frequency filtered detection
on 2X using a standard Hanbury-Brown and Twiss (HBT) setup. An
example measurement for 3 ps long excitation pulses of area π is
presented in Fig. 2a. The obtained values for g(2)[0] are so low that
fitting the data with a series of peaks does not yield a value.
Therefore, we integrate the data over an interval that contains the
complete peaks (2.6 ns) and compare the integrated counts
around zero time delay to the average intensity of the peaks away
from zero delay. After subtracting a constant dark count
background we obtain a value of g(2)[0]= 9.4 × 10−5 ± 1.9 × 10−3.
The measured value of g(2)[0] is lower than values obtained for a

resonantly driven 2LS.17 While the upper limit is dominated by the
error which results from the dark counts of the avalanche
photodiodes used here, very recently Schweickert et al.27 have
reported a value of g(2)[0]= (7.5 ± 1.6) × 10−5 using the same
scheme but superconducting detectors with negligible dark count

rates. As discussed above, for the resonantly excited 2LS, g(2)[0] is
limited by re-excitation that is enabled by emission of a photon
during the presence of the pulse. In contrast, for a two-photon
excitation of 2X, re-excitation is strongly suppressed. Because the
laser is far detuned from the 2X transition by Eb/2 re-excitation
following the excitation of 2X can only occur after the cascade
2Xj i ! Xj i ! 0j i has returned the system to the ground state.
Since the re-excitation probability depends on the pulse length

T, we performed measurements of g(2)[0] for different values of T.
The results are presented as red datapoints in Fig. 2b. For
comparison, the values obtained for a resonantly driven 2LS
formed by the X− transition of the same QD are presented in Fig.
2b as black datapoints (reproduced from ref. 19). Thereby, the
pulse lengths are normalized to γX� and γx , respectively. Note, for
the 2LS data and very short pulses, g(2)[0] was corrected for an
imperfect suppression of the excitation laser which can be
quantified by electrically detuning the X− transition.19 For both
cases g(2)[0] increases with pulse length and asymptotically
approaches the classical limit of 1 for long pulses. Crucially, for
all measured pulse lengths, the values obtained from the two-
photon excitation scheme are significantly lower than the
resonantly excited 2LS. The improvement in g(2)[0] amounts to
an improvement of several orders of magnitude for sufficiently
short pulses. A power law fit in the short pulse regime (not shown)
results coefficients of 0.73 ± 0.07 for the resonantly driven 2LS and
1.89 ± 0.40 for the two-photon excitation scheme. This indicates a
scaling behavior of approximately g(2)[0]∝ Tγ for the resonantly
driven 2LS and g(2)[0]∝ ðTγÞ2 for the two-photon excitation
scheme, which will be confirmed in theoretical considerations
below. Slight deviations of the experimental data from this
behavior can be attributed to changes in the pulse shape when
increasing the pulse length.

Theoretical results
Next, we gain insight into the behavior through a theoretical study
of the emission from an ideal 2LS and 2X system. First, consider an
ideal 2LS,19,28 with a ground state e�j i and an excited state X�j i.
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Fig. 1 Two-photon excitation scheme. a Gate voltage dependent
photoluminescence. b Schematic illustration of resonant excitation
of a 2LS and two-photon excitation of 2X. Solid arrows represent
laser drive, while dotted arrows represent spontaneous emission. c
Example spectrum for two-photon excitation of 2X at 912.34 nm. d
Rabi oscillations between 0j i and 2Xj i, measured from 2X
luminescence
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Fig. 2 Measured degree of second-order coherence. a Example of a
measurement for two-photon excitation and filtering on the 2X
emission using a pulse length of 3 ps. b Measured values of g(2)[0] as
a function of the pulse length for a resonantly driven two-level
system (black) and two-photon excitation of 2X (red). Dashed line
represents Poissonian statistics of driving laser
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Suppose the system is driven by an optical pulse starting at t= 0,
resonant with the e�j i $ X�j i transition and where the rotating
wave approximation holds. As a function of the interacted pulse
area

A2LSðtÞ ¼
Z t

0
dt0μ � Eðt0Þ=�h; (1)

where E(t′) is the envelope of the pulse’s electric field and μ the
system’s electric dipole moment, the system undergoes coherent
oscillations between its ground e�j i and excited X�j i states. If the
system is initially prepared in the ground state, as is typical in
cryogenic experiments, the probability of the system being in the
excited state PX�ðAðtÞÞ shows Rabi oscillations that are nearly
sinusoidal

PX�ðAðtÞÞ � sin2ðAðtÞ=2Þ; (2)

for excitation by a short pulse relative to the spontaneous
emission time of the 2LS. The Rabi oscillations are captured by the
Hamiltonian (in a reference frame rotating at the laser frequency)

H2LSðtÞ ¼ μ � EðtÞ
2

e�j i X�h j þ X�j i e�h jð Þ; (3)

where σ ¼ e�j i X�h j is the system’s dipole operator.
Second, to model the 2X system we will actually use only a

three-level system (3LS) with levels labeled as 0j i, X 0j i and 2Xj i.
Although there is strictly no transformation that makes these
systems equivalent, if the polarization of photons emitted is
disregarded in the photon counting procedure, then the behavior
of the 3LS mirrors that of the 2X system. Since a two-photon
transition excites the system 0j i $ 2Xj i via the intermediate state
X 0j i, the system undergoes Rabi oscillations that scale linearly with
the pulse power rather than the field. Hence,

A3LSðtÞ ¼
Z t

0
dt0
ðμ � Eðt0ÞÞ2

�hEb
(4)

and

H3LSðtÞ ¼ μ � EðtÞð Þ2
2Eb

0j i 2Xh j þ 2Xj i 0h jð Þ (5)

where σ 2 0j i X 0h j; X 0j i 2Xh jf g are the system’s dipole operators.
The operator 0j i 2Xh j only appears after adiabatic elimination of
the intermediate state.
The dynamics of the systems under spontaneous emission into

Markovian reservoirs are captured in the density operator for the
systems, whose evolutions can be written in terms of a Liouvillian
as

ρ t1ð Þ ¼ V t1; t0ð Þρ t0ð Þ
¼ T exp

R t1
t0
dtLðtÞ

h i
ρ t0ð Þ; (6)

where T← is the chronological operator which orders the
infinitesimal products in Eq. (6). The Liouvillian is a superoperator
defined by

LðtÞρðtÞ ¼ �i HðtÞ; ρðtÞ½ � þ
X
k

D Lk½ �ρðtÞ; (7)

with the Dissipator defined as

D½L�ρðtÞ ¼ J ½L�ρðtÞ � 1
2 LyL; ρðtÞ� �

(8)

and the recycling (or emission) superoperator

J ½L�ρðtÞ ¼ LρðtÞLy: (9)

Finally, Lk are the loss operators defined by the system operators
σk and their coupling rates to the reservoirs γk , i.e., Lk ¼ ffiffiffiffiffi

γk
p

σk .
Even though the 2X system physically emits into the same
reservoirs for 2Xj i ! Xj i and Xj i ! 0j i, they are at such different
frequencies Eb � γ; γX ; γ2Xð Þ they can be considered to emit into
separate Markovian reservoirs.

We can then calculate the pulse-wise second-order coherences
gð2Þk ½0� from the integrated versions of the correlators17

Gð2Þk t1; t2ð Þ ¼ tr J Lk½ �V t2; t1ð ÞJ Lk½ �V t1; 0ð Þρð0Þ½ �: (10)

These coherences were calculated for A= π pulses (we took
γ ¼ γx ¼ γ2x=2), driving both the 2LS (Fig. 3a—black) and 3LS
(Fig. 3a—red), and they very closely match the experimental
results of Fig. 2b. Small differences between experiment and
theory result from experimental inaccuracies, such as the error in
determining the pulse area of π, inaccuracies in the pulse shape,
as well as drifts and fluctuations in power over the duration of the
measurements.19 We also note that we performed all quantum
simulations with the Quantum Toolbox in Python (QuTiP).29

The final goal is to compare these results to the theoretical
photocount distribution Pn, from which the photodetectors
sample. The ideal 2LS emits an entirely pure photonic state into
the reservoir,30 whereas the 3LS cascade is known to emit an
entangled state between the reservoirs.17,23 From the perspective
of a single reservoir, i.e., tracing over the other reservoir, this
means the state could be highly mixed and hence our previous
techniques would not apply easily.17,19,30 Instead, we will use the
Mandel photon counting formula, as connected to the system
state by Carmichael.31–33 To do this, we first define a new
superoperator

K t1; t0ð Þ ¼ T exp
Z t1

t0

dt LðtÞ � J Lk½ �ð Þ
� �

; (11)

which can be thought of as an unnormalized map that evolves the
density matrix conditioned on no photon emissions into the k-th
reservoir. Then, the total density matrix evolution can be
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Fig. 3 Probabilities for different photodetection events. a Simulated
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unraveled with respect to n emissions into the k-th reservoir as

ρðtÞ ¼ P1
n¼0

R t
0 dtn

R tn
0 dtn�1 � � �

R t2
0 dt1K t; tnð ÞJ Lk½ � ´

K tn; tn�1ð ÞJ Lk½ � � � � K t2; t1ð ÞJ Lk½ �K t1; 0ð Þρð0Þ:
(12)

This summation is over different numbers of photon emissions
into the k-th reservoir, such that the probability density for a
sequence of n emissions at times t1, t2, …, tn < t over the interval
[0, t] is given by

pn t1; t2; ¼ ; tn; ½0; t�ð Þ ¼ tr K t; tnð ÞJ Lk½ �K tn; tn�1ð ÞJ Lk½ �½
� � � K t2; t1ð ÞJ Lk½ �K t1; 0ð Þρð0Þ�: (13)

We drop the time label by taking the limit

pn t1; t2; ¼ ; tnð Þ � lim
t!1 pn t1; t2; ¼ ; tn; ½0; t�ð Þ; (14)

which corresponds to the case where the system has entirely
decayed after excitation by the laser pulse. In practice, we just
integrate for a few spontaneous emission lifetimes after the pulse
ends. Then, the photocount distribution into the k-th channel is
given by

Pn ¼
Z 1

0
dtn

Z tn

0
dtn�1 � � �

Z t2

0
dt1pn t1; t2; ¼ ; tnð Þ: (15)

Note there is only one possible way to count zero photons
emitted:

P0 ¼ lim
t!1 tr½Kðt; 0Þρð0Þ�: (16)

To our knowledge, this is the first use of such a model to extract
photocount distributions for photon sources. For a single-photon
source, driven with area A= π, only Pn for n < 3 are significant—
we calculate these probabilities in Fig. 3 for (b) the 2LS and (c) the
3LS filtered on either transition frequency. For the single-photon
sources, g(2)[0] ≈ 2P2/(P1+ 2P2)

2, which scales linearly for the 2LS
and quadratically for the 3LS with pulse length. Then, the error
rate for the single-photon source is directly accessible as P2 ≈
g(2)[0]/2.

DISCUSSION
As we have shown, the bi-excitonic and effective 3-level systems
are superior single-photon sources to a 2LS. We briefly provide an
approximate analysis which yields strong insight into the
fundamental reason behind this behavior.
Previously, we derived an analytic estimate for the two-photon

error rate P2 and hence g(2)[0], for short pulses resonantly driving a
2LS.19 Keeping only terms to first order in γT , where T is the pulse
length, results for short pulses are P2 � γT

8 and gð2Þ½0� � γT
4 . Here,

we further derive an analytic estimate for the 3LS.
For the 3LS, the only way for two emissions to occur at the 2X

transition frequency is through the cycle of transitions

0j i ! 2Xj i ! X 0j i ! 0j i ! 2Xj i: (17)

As in the 2LS, the first emission 2Xj i ! X 0j i contributes a factor of
γ2Xsin

At
2T

� �2
to the emission probability density, under the

approximation of a square driving pulse. After the first emission,
the system is almost exclusively in X 0j i so X 0j i ! 0j i contributes a
factor of γXe

�γX t . Finally, 0j i ! 2Xj i again provides another
γ2Xsin

At
2T

� �2
. Hence, the two-photon emission density into the first

reservoir is approximately

p t1; t2; t
0
1

� � �
γ2X sin

At1
2T

� �2
γXe

�γX t01�t1ð Þγ2X sin
�A t2�t01ð Þ

2T

�2
if 0<t1<t01<t2<T

γ2X sin
At1
2T

� �2
γXe

�γX t01�t1ð Þ γ2Xsin
�A T�t01ð Þ

2T

�2
e�γ2X t2�Tð Þ if 0<t1<t01<T<t2

0 otherwise

8>><
>>:

(18)

�
γ2X sin

At1
2T

� �2
γXγ2X sin

�A t2�t01ð Þ
2T

�2
if 0<t1<t01<t2<T

γ2X sin
At1
2T

� �2
γX γ2Xsin

�A T�t01ð Þ
2T

�2
e�γ2X t2�Tð Þ if 0<t1<t01<T<t2

0 otherwise

8>><
>>:

(19)

where t01 is the time of emission of the first photon at the X
transition frequency. Hence, the two-photon error rate at the 2X
frequency is

P2 ¼
Z 1

0

Z 1

0

Z 1

0
dt1dt

0
1dt2p t1; t2; t

0
1

� �
: (20)

In the short pulse regime

P2 � γ22XγX
R T
0

R T
t1

R T
t01
dt1dt01dt2 sin

At1
2T

� �2
sin

�Aðt2�t10Þ
2T

�2

þγ2XγX
R T
0

R T
t1
dt1dt01 sin

At1
2T

� �2
sin

�A T�t01ð Þ
2T

�2
� OðT4Þ þ O T2ð Þ:

(21)

Since the leading order of the second integral is lowest, and for an
A= π pulse, the 3LS has

P2 � γ2XγX
R T
0

R T
t1
dt1dt01 sin

At1
2T

� �2
sin

�A T�t01ð Þ
2T

�2
� γ2XγXT

2 π2�8
8π2

(22)

or g(2)[0] ≈ γ2xγxT
2(π2− 8)/4π2. This quadratic scaling matches

exactly with the linear region of the theoretical results in Fig. 3
and the experimentally observed results in Fig. 2.
In summary, we have quantified the re-excitation process in

resonantly driven 2LS and two-photon excitation in 3LS. We have
demonstrated that the 3LS, and hence the 2X system, dramatically
suppresses re-excitation resulting in orders of magnitude better
single-photon source operation. While our experiments are a
proof-of-principle with a sample structure that does not provide a
high collection efficiency, the technique is directly applicable to
QDs embedded in nanophotonic structures where a very efficient
detection of emitted photons is possible.34–37 Beyond superior
single-photon purity, the 2X scheme has the advantage over a
resonantly driven 2LS that no cross-polarized suppression of the
excitation laser is necessary because the driving laser and
emission are far detuned such that the laser can easily be
spectrally filtered out. Thus, it is easier to implement, as
misalignment or optical imperfections do not pose an additional
possibility for multi-photon errors. For example, very short laser
pulses typically degrade cross-polarized suppression due to the
increased spectral width of the laser, a wavelength sensitivity of
the suppression and less efficient driving. Moreover, it does not
reduce the source brightness which would be the case in a
resonantly driven 2LS where laser and signal are orthogonally
polarized but need to couple to the same transition. To obtain
high photon indistinguishability experimentally the emission has
still to be filtered to one polarization, however Purcell enhancing
just one polarization with a nanoresonator would transform the
four-level system to an effective three-level system with a source
brightness near unity. Therefore, we expect this scheme combined
with appropriate nanoresonators be an excellent candidate for a
single-photon source in future quantum information processors.
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METHODS
The sample investigated is grown by molecular beam epitaxy (MBE). It
consists of a layer of InGaAs QDs with low areal density (<1 μm−2),
embedded within the intrinsic region of a Schottky photodiode formed
from an n-doped layer below the QDs and a semitransparent titanium gold
front contact. The distance between the doped layer and the QDs is 35 nm,
which enables control over the charge status of the dot. A weak planar
microcavity with an optical thickness of one wavelength is formed from a
buried 18-pair GaAs/AlAs distributive Bragg reflector (DBR) and the
semitransparent top contact, which enhances the in-coupling and out-
coupling of light.
All optical measurements were performed at 4.2 K in a liquid helium

dipstick set-up. For excitation and detection, a microscope objective with a
numerical aperture of NA= 0.68 was used. Cross-polarized measurements
were performed using a polarizing beam splitter. To further enhance the
extinction ratio, additional thin film linear polarizers were placed in the
excitation/detection pathways and a single-mode fibre was used to
spatially filter the detection signal. Furthermore, a quarter-wave plate was
placed between the beamsplitter and the microscope objective to correct
for birefringence of the optics and the sample itself.
For Fig. 1c, d, a weak laser background (due to an imperfect suppression

of the excitation laser) was subtracted. This linearly increasing background
was directly measured through electrically tuning the quantum dot out of
resonance, and typically amounted to less than 10% of the signal by 5π
pulse area.
The 3 ps to 80 ps-long excitation pulses were derived from a fs-pulsed

titanium sapphire laser (Coherent Mira 900) through pulse shaping. For the
3 ps to 25 ps long pulses, a 4f pulse shaper with a focal length of 1 m and
an 1800 lmm−1 grating was used. For the 80 ps long pulses a
spectrometer-like filter with a focal length of 1 m and an 1800 lmm−1

grating was used. Longer pulses were obtained through modulating a
continuous wave laser. For the modulation, a fibre-coupled and EOM-
controlled lithium niobate Mach-Zehnder (MZ) interferometer with a
bandwidth of 10 GHz (Photline NIR-MX-LN-10) was used. Such modulators
allow control of the output intensity through a DC bias and a
radiofrequency input. The radiofrequency pulses were generated by a
3.35 GHz pulse-pattern generator (Agilent 81133A). To obtain a high
extinction ratio, the temperature of the modulator was stabilized and
precisely controlled (1 mK) using a Peltier element, thermistor, and TEC
controller. This enabled a static extinction ratio >45 db.
Second-order autocorrelation measurements were performed using a

HBT set-up consisting of one 50:50 beamsplitter and two single-photon
avalanche diodes. The measured count rate for exciting 2X with a pulse of
area π was 9 kcps and the dark count rates of the detectors are 251 ±
16 cps and 95 ± 10 cps. The detected photons were correlated with a
TimeHarp200 time-counting module. The time-bin width was 60 ps. The
integration time for Fig. 2a was 11.05 h and for Fig. 2b between 7.52 h and
12.27 h. In the pulse-wise form gð2Þ½0� ¼ N0

N1
where N0 is the integrated area

of the center peak and and N1 is the average area of the side peaks. We
used 16 side peaks for the averaging, which is the largest number that we
can record with our correlation electronics and the used bin-width of 60 ps.
Note, that no long-term decay of the side peaks was observed, indicating
the absence of any blinking and consistent with the fact that we use
electronically stabilized devices. The error in N0 and N1 is given by

ffiffiffiffiffiffi
N0
p

andffiffiffiffiffiffi
N1
p

=4, where the factor of 4 results from the fact that the integrated area
of 16 peaks was used to calculate N1. The error in g(2)[0] can then be
calculated using quadratic propagation.
The measured correlations have a constant background that results from

dark counts of the detectors. To correct for the background, we first
calculate the dark counts per time bin nBG by averaging a large number of
bins between the peaks. The background corrected value of g(2)[0] is then
given by gð2Þcorr½0� ¼ N0;corr

N1;corr
where N0,corr= N0− NBG and N1,corr= N1− NBG.

Note, that the error still results from
ffiffiffiffiffiffi
N0
p

and not
ffiffiffiffiffiffiffiffiffiffiffiffi
N0;corr

p
, highlighting the

importance of detectors with low dark counts for the characterization
single-photon sources with ultra-low multi-photon error rates.
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