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Abstract
In this overview paper, we present low-temperature electronic transport
measurements of carbon nanotube quantum dots with a back gate. In a
semiconducting tube, charge carriers could be completely depleted. The
addition energy and the excitation spectrum have been studied as a function
of the number of charges (electrons or holes), one by one. We observe
electron–hole symmetry, which is a direct consequence of the symmetric
band structure of the nanotube. The excitation spectrum for metallic
nanotubes exhibits four-fold shell filling and is completely described by an
extended constant-interaction model. Furthermore, nanotubes with a
four-fold shell structure are investigated in a parallel magnetic field. The
magnetic field induces a large splitting between the two orbital states of each
shell, demonstrating their opposite magnetic moment and determining
transitions in the spin and orbital configuration of the quantum dot ground
state. Also, a small coupling is found between orbitals with opposite
magnetic moments leading to anti-crossing behaviour at zero field.
Current–voltage characteristics of suspended carbon nanotube quantum dots
show an additional series of steps equally spaced in voltage. The energy
scale of this harmonic, low-energy excitation spectrum is consistent with that
of the longitudinal low-k phonon mode (stretching mode) in the nanotube.
Finally, we report on a fully tunable carbon nanotube double quantum dot.
We perform inelastic transport spectroscopy via the excited states in the
double quantum dot, a necessary step towards the implementation of new
microwave-based experiments for quantum information technology.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since their discovery [1], carbon nanotubes (CNTs) have

emerged as prototypical one-dimensional conductors [2].

A continuous improvement in device fabrication and CNT

quality has enabled the recent observation of many different

quantum phenomena, e.g. Luttinger liquid behaviour [5],

Fabry–Perot interferences [6], Kondo effect [7, 8], influence

of vibrations [9, 10] and effects of superconductivity [11–13].

At low temperatures, CNT devices form quantum dots (QDs)

where single-electron charging and energy level quantization

effects dominate [3, 4]. In this paper, we focus on low-

temperature electron transport in CNT QDs. We start with the

most basic three-terminal field effect transistor type geometry

on insulating substrates. We continue our investigation with

suspended CNTs (to study effects of vibrations) and finish

with more sophisticated CNT structures to form double QDs.

2. Fabrication

Nanotubes are grown/deposited on the top of oxidized silicon

substrates. The Si substrates are highly doped (p-doped in

our case) so that they remain conductive at low temperatures

and can serve as a back gate in our devices. The thickness

of the thermally grown oxide is typically ∼250 nm and

isolates the devices from the back gate. A set of markers

is necessary to later locate the position of the nanotubes

and for the fabrication of the electrodes. These include a
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Figure 1. Schematic electron beam lithography cycle. (a) Double
layer of organic resist is spun on a substrate and a predesigned
pattern is irradiated with a beam of electrons. (b) After
development, an opening is left in the resist. (c) Metal is evaporated
on the top of the substrate + remaining resist. (d) The remaining
resist is removed and the metal is left at the predesigned positions.

set of electron beam lithography alignment markers (e-beam

markers) and atomic force microscopy (AFM) markers.

The patterning of these markers requires one e-beam

lithography ‘cycle’ (figure 1), which consists of spinning

a double layer of e-beam resist, e-beam lithography,

development, metal evaporation and lift-off. The bottom

layer of resist (poly-methyl methacrylate (PMMA) 350K 3%

in chlorobenzene) is thicker and more sensitive to e-beam

radiation; it serves as a spacer and ensures a proper lift-off.

The top resist layer (PMMA 950K 2% in chlorobenzene) is less

sensitive and serves as the actual mask for metal evaporation.

Once the resist is spun, a pattern is ‘written’ by irradiating the

PMMA with a beam of electrons, which breaks the bonds in the

polymer. The ‘exposed’ resist is removed from the substrate

by immersing the sample in a developer (a 1:3 solution of

methyl isobutyl ketone (MIBK) and iso-propyl alcohol (IPA)).

Then, the substrate is placed in an e-beam evaporator, where

(Cr or Ti)/Pt (5/70 nm) is evaporated. Chromium or titanium

is used as a sticking layer for the platinum. We use Pt for the

markers because they withstand, without severe deformation,

the high temperatures (∼900 ◦C) during nanotube growth.

After metal evaporation, the unexposed resist and excess metal

are removed by immersing the sample in hot acetone (∼55 ◦C).

After lift-off, the substrate contains e-beam markers, AFM

markers, as well as a series of optical and numerical markers

to help handling and tagging of samples.

We have used two methods to place nanotubes on the

substrates: direct deposition from a solution and chemical

vapour deposition (CVD) growth. For the first one, we

put a small amount of carbon nanotube material in a bottle

containing DCE (dichloroethane) and sonicate until the

nanotube material has disentangled into separate nanotubes

(typically ∼30 min to 1 h). Then, a few droplets of solution

are placed on a substrate and blown-dried with nitrogen. This

process leaves nanotubes all over the substrate. It is easy

and fast, but it has certain disadvantages. Many times the

nanotubes appear in ropes and not individually. We have

also noted that it is harder to make good contact to deposited

NTs than to CVD-grown tubes. For these reasons, most of

our experiments have been performed with carbon nanotubes

grown by CVD. For the catalyst, 40 mg of Fe(NO3)3·9H2O,

2 mg of MoO2(acac)2 and 30 mg of alumina nanoparticles

Figure 2. Fabrication process. Left: scheme of a substrate with the
AFM markers, catalyst particles at predefined positions, grown
nanotubes and designed electrodes. The separation between AFM
markers is 6 µm. Right: actual AFM picture of one of our devices.

are mixed in 30 ml of methanol and sonicated for ∼1 h.

The resulting liquid catalyst is deposited onto the substrate

with 0.5 µm2 openings in the PMMA resist (patterned on

specific known locations by e-beam lithography) and blown

dry. After lift-off in acetone, the substrate with patterned

catalyst is placed in a 1 inch quartz tube furnace and the CVD

is carried out at 900 ◦C with 700 sccm H2 and 520 sccm

CH4 for 10 min. Argon flows through during heating up

and cooling down. The methane and hydrogen flows have

been optimized to obtain long and clean nanotubes (∼10 µm)

without amorphous carbon deposition. After growth, typically

a few tubes have grown from each catalyst site.

After the nanotube deposition/growth, the substrates are

inspected by atomic force microscopy. All our devices have

‘customized electrodes’, i.e., we design electrodes individually

for each nanotube device. We typically choose straight

segments of nanotubes located on ‘residue-free’ areas. The

AFM pictures determine the precise location of the nanotubes

with respect to the predefined AFM markers. We import

these pictures into a CAD program and directly design the

electrodes on the top of the desired NTs. A subsequent

e-beam lithography step is carried out to write the electrodes

and evaporate the metal. The contact metal can be Cr/Au,

Ti/Au, Pd, Ti/Al, etc depending on the type of experiment.

After lift-off, the sample is ready for optical inspection and

room temperature characterization. In some cases, we etch

part of the SiO2 in order to suspend the nanotubes. This is

done by immersing the samples in buffered HF for ∼1–2 min,

transfer to water and followed by a gentle drying in hot IPA

(to prevent the collapse of the nanotube due to surface tension

effects).

So far, we have only described the fabrication process for

the ‘standard’ three-terminal nanotube devices. For making

more complex device architectures, additional e-beam steps

are required. In the following, we describe the extra fabrication

steps to make nanotube double quantum dots with tunable

tunnel barriers defined by aluminium top gates (see figure 3).

The tunable tunnel barriers are the very narrow Al top

gates. The advantage of a narrow top gate is that it controls the

tunnelling barrier on a local scale and only a small portion of

the tube is covered with oxide. To fabricate nanotube double

dot devices, we first make the Pd contacts to the tubes in the

same way as described above. Pd is used, because it introduces

little or no barrier at the nanotube–metal contact [14]. In a
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Figure 3. AFM picture of a carbon nanotube double quantum dot
device. The contacts (source and drain) are made of Pd and the gate
structures of Al. The top gates (TGL, TGM and TGR) create tunable
tunnel barriers and the side gates are used to change the
electrochemical potential of the separate dots individually.

subsequent electron beam lithography step, we make the gate

structures. First, we evaporate 2 nm thin layer of Al and then

this layer is completely oxidized for 10 min at 1 bar pure

oxygen atmosphere. This step can be repeated to obtain a

thicker oxide. After the oxidation, evaporation is continued

with 35 nm of Al and followed by 15 nm of AuPd.

3. Semiconducting carbon nanotubes in the
few-charge regime

We focus on the regime of a few charge carriers (electrons

or holes) in clean semiconducting nanotubes. High-purity

carbon nanotubes (HiPco [15]) are used, which are deposited

with low density on a doped Si substrate (serving as a back

gate) that has an insulating SiO2 top layer [16, 17]. Individual

nanotubes are electrically contacted with source and drain

electrodes (thickness 50 nm Au on 5 nm Cr). We then

suspend the nanotubes by etching away part of the SiO2

surface [17]. We generally find that removing the nearby oxide

reduces the amount of potential fluctuations (i.e. disorder) in

the nanotubes, as deduced from transport characteristics.

We focus on a particular semiconducting device that

shows regular single QD behaviour for both few-hole and

few-electron doping. The distance between the electrodes in

this device is 270 nm (inset in figure 4(a)). The dependence

of the linear conductance on gate voltage shown in figure 4(a)

is typical for semiconducting p- and n-type behaviour [18].

The conductance in the n-type region is lower than that in

the p-type, as usually observed in ambipolar nanotube FETs

[18, 19]. A low-temperature measurement around zero

gate voltage (figure 4(b)) shows a large zero-current gap of

about 300 meV in bias voltage, reflecting the semiconducting

character of this nanotube. The zigzag pattern outside

the semiconducting gap is due to Coulomb blockade [20].

These Coulomb blockade features are more evident in

figure 4(c), where a high-resolution measurement of the

differential conductance shows the semiconducting gap with

the first two adjacent Coulomb blockade diamonds.

The identification of the Coulomb diamonds for the

first electron and first hole allows for an unambiguous

determination of the particle number as we continue to fill

the QD by further changing the gate voltage. Figure 5(a)

shows the filling of holes, one by one, up to 20 holes. The

region for the first two holes is enlarged in figure 5(b). The

-400 -200 0 200 400 600 800
-40

-20

0

20

40

V
(m

V
)

V
G

(mV)

-1 0 1
-200

-100

0

100

200

V
(m

V
)

V
G

(V)

-2 -1 0 1 2
0

5

G
(1

0
-
2
e

2
/h

)

V
G

(V)

p n

1h

(a) (b)

(c)

1eN=0

T=150K T=4K

T=0.3K

Figure 4. (a) Linear conductance, G, as a function of gate voltage,
VG, at a temperature T ∼ 150 K showing the p- and n-conducting
regions separated by the semiconducting gap. Inset: atomic force
microscope image of the device before suspension (scale bar:
200 nm). (b) Large-scale plot of the current (in the light regions the
current is blocked) versus both V and VG at T = 4 K. (c) High-
resolution measurement of the differential conductance as a function
of V and VG in the central region of (b) at 0.3 K. Between
VG ∼ −250 and 650 mV, the nanotube QD is depleted entirely of
mobile charge carriers. As VG increases (decreases), one electron
(hole) enters the dot as indicated in the right (left) Coulomb
diamond.

regularity in the Coulomb diamonds indicates a nanotube that

is free of disorder. A closer inspection shows that the size

of the Coulomb diamonds varies periodically on a smooth

background as the hole number increases (figure 5(c)). The

alternating, even–odd pattern in this addition energy, Eadd,

reflects the subsequent filling of discrete orbital states with

two holes of opposite spin [20]. These features are explained

in more detail below.

We first focus on the additional discrete lines outside

the Coulomb diamonds running parallel to its edges, as for

instance indicated by arrows in figure 5(b). Whereas the

upper-left edge of the N-hole diamond reflects the ground

state energy of the (N + 1)th hole, the extra lines located at

higher voltages, V , represent the discrete excitation spectrum

for (N + 1) holes [20]. The spacing in V directly measures the

energy separation between the excitations.

The ambipolar character of the devices allows us to

compare the excitation spectra for a particular hole (h) number

with the same electron (e) number. The left and right columns

in figure 6 show the spectra for, respectively, holes and

electrons. The upper row compares the spectra for 1h and 1e.

The arrows in figure 6(a) point at the first three excited states

for a single hole. (Note that only lines with positive slopes

are observed because of asymmetric tunnel barriers [20].) The

arrows in figure 6(b) indicate the corresponding first three

excitations for a single electron. Remarkably, we have simply

mirror-imaged the arrows from the hole to the electron side

without any adjustment of their spacing. We thus find that the

1h and 1e excitations occur at the same energy. Since one-

particle systems are free from particle–particle interactions,

this symmetry implies that the confinement potential for

electrons is the same as for holes.

Electron–hole symmetry also survives interactions as

demonstrated in the lower rows in figure 6. Again the arrows
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Figure 5. (a) Two-dimensional colour plot of the differential conductance, dI/dV , versus V and negative VG at T = 4 K (black is zero,
white is 3 µS). In the black diamond-shaped regions, the number of holes is fixed by the Coulomb blockade. (b) Zoom-in taken at 0.3 K of
the region with 0, 1 and 2 holes (white represents dI/dV > 10 nS). Lines outside the diamonds running parallel to the edges correspond to
discrete energy excitations (the black arrow points at the one-electron ground state and the light (red) arrows at the one-electron excited
states). (c) Addition energy, Eadd, as a function of hole number. Eadd is deduced from the diamond size for positive and negative V . Inset:
the capacitances CS (green), CD (blue) and CG (black) versus hole number. (d) Calculation of the addition energy spectrum for a
semiconducting nanotube (as an example we have taken a zigzag (35, 0), with Egap ∼ 259 meV, meff = 0.037me) for a harmonic potential
(top) and a hard-wall potential (bottom). The parameters for the harmonic potential are V (x = 135 nm) = Egap/2. (e) Zeeman splitting
energy, EZ, versus magnetic field, B, for the one-hole orbital states. Inset: g-factor as a function of hole number.
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Figure 6. Excitation spectra for different electron and hole numbers
demonstrating electron–hole symmetry. dI/dV is plotted versus
(V , VG) at T = 0.3 K. (a) The transition from the 0 to 1h Coulomb
diamonds. (b) Corresponding transition from 0 to 1e. The white
dotted lines in (b) are guides to the eye to indicate the diamond edge
(not visible for this choice of contrast). (c) and (d) Same for 1–2h
and 1–2e. (e) and (f ) Low-bias zoom-in of the 1–2h and 1–2e
crossings.

pointing at the hole excitations have simply been mirror-

imaged to the electron side. Thus, we find that the spectra

for 2h and 2e and for 3h and 3e (not shown here) show

virtually perfect electron–hole symmetry in the excitation

spectra. From a closer look, one can see that also the

relative intensities of the excitation lines display electron–hole

symmetry.

The quality of our data allows for a quantitative analysis.

The addition energy is defined as the change in electrochemical

potential when adding the (N + 1) charge to a QD already

containing N charges. The constant-interaction (CI) model

[20] gives Eadd = U + δE, where U = e2/C is the charging

energy (C = CS + CD + CG) and δE is the orbital energy

difference between N + 1 and N particles on the QD. In the

case of a semiconductor QD, the addition energy for adding

the first electron to the conduction band equals U + Egap.

From the observed gap size of 300 meV and U ∼ 50 meV, we

determine the semiconducting gap Egap ∼ 250 meV, which

corresponds to a nanotube diameter of 2.7 nm [21]. AFM

measurements, that usually underestimate the real height [22],

indicate an apparent tube height of 1.7 ± 0.5 nm.

Since two electrons with opposite spin can occupy a single

orbital state, the CI model predicts an alternating value for

Eadd, where Eadd = U for N = odd and Eadd = U + δE for

N = even. We indeed observe such an even–odd alternation in

figure 5(c) with δE ∼ 4.3 meV throughout the entire range of

N = 1 to N = 30. Measurements of the Zeeman spin splitting

in a magnetic field [23] confirm our assignment of even–odd

particle number: lines corresponding to ground states for odd

N split (i.e. total spin = 1/2), whereas even-N lines do not

split (i.e. total spin = 0). The data in the lower inset of

figure 5(c) yield a g-factor, g = 1.0 ± 0.2, which is a factor of

2 lower than that reported in metallic nanotubes [3, 24]. Lower

g-factors are usually due to spin–orbit coupling, but this effect

is small for carbon. It may hint at strong electron–electron

interactions in the 1D QD.

The addition energy spectrum indicates that δE ≈
4.3 meV for consecutive states as we fill the QD with holes.

Previous spectra from metallic nanotubes have been analysed

by considering a hard-wall potential in the nanotube, with an

effective mass determined by the band structure. Our data

show that this approach is not justified for semiconducting
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Figure 7. (a) Current as a function of V and VG at T = 300 mK. Current ranges from −40 nA to +40 nA. (b) Values of the parameters for
three different groups of four. In the inset, the low-energy band structure of a metallic SWNT is shown. For a finite-length SWNT, the wave
vector k is quantized along the tube axis which leads to a set of quantized energy levels separated by � in each band. δ is the mismatch
between the two bands. (c) The differential conductance (dI/dV ) for the first group from (a). Black is zero and bright is >12 µS. Lines
running parallel to the diamond edges correspond to discrete energy excitations. The excitation energies corresponding to the dashed arrows
have been used to deduce the model parameters. The predicted excitations are indicated by (yellow) arrows. (d) Calculated spectrum. The
stars correspond to the arrows in (c). The white diagrams indicate the spin filling of the ground state.

nanotubes. Lack of effective screening in 1D and the low

number of mobile charges yield a gradual potential decay

from the contacts [25]. We have computed the addition

energy spectrum for a semiconducting nanotube whose gap is

∼250 meV for two situations (figure 5(d)): hard-wall and

harmonic potentials of height Egap/2 at the contacts [25]. For

hard walls, the level spacing increases slowly up to ∼1.9 meV

for N = 34. In the case of a harmonic potential, the

level spacing is constant, as in the experiment, and equals

2.7 meV, in reasonable agreement with the experimental value

of ∼4.3 meV.

On the top of the predicted even–odd pattern, there

is a monotonic decrease of the average charging energy

with N, implying that the total capacitance is changing. We

have performed a detailed analysis of the QD electrostatics

following [26]. The result is given in the top-right inset of

figure 5(c). It shows that the change in C is mainly due to

an increase in CS and CD. This increase can be assigned

to a decrease of the tunnel barrier widths as |VG| increases,

consistent with the simultaneous decrease of dI/dV in

figure 5(b). Indeed, dI/dV varies from 5 G� in the first

Coulomb peak to 400 k� at large negative VG.

The observation of electron–hole symmetry imposes

severe restrictions on the QD system: the effective masses

for holes and electrons should be equal and the QD should be

free of disorder. Scattering by negatively charged impurities,

for example, is repulsive for electrons but attractive for holes,

so it would break electron–hole symmetry. A symmetric band

structure has been theoretically predicted for graphite materials

and carbon nanotubes [21].

A detailed analysis of the excitation spectrum requires

calculations that are beyond the constant-interaction model.

The change in orbital energy when adding a charge is

unambiguously given by �E ∼ 4.3 meV, seemingly

independent of N. Excitations of a smaller energy scale have

to be related to interactions. The likely interactions in

semiconducting nanotubes are the following. (1) Exchange

interaction between spins (e.g. spin = 1 triplet states gain

energy from the exchange interaction). Note that we observe

an even–odd pattern, which seems to exclude ground states

with spins >1/2. Excited states, however, can have spins

>1/2. (2) Electron–phonon interactions. The vibrational

modes in a suspended nanotube also have a discrete spectrum,

which can show up in the excitation spectra [27]. Note that

vibrational modes do not affect the addition spectrum of the

ground states. (3) Electron–electron interactions. The value

for the interaction strength parameter U/�E ∼ 10. Such

a large U/�E ratio points to the presence of phenomena

that are not captured by the CI model. Luttinger liquid

models developed for finite-length metallic nanotubes are not

applicable to our few-particle nanotubes. A more appropriate

starting point is the exact calculations for 1D QDs. In

the few-particle regime, the charge carriers tend to localize

and maximize their separation, thereby forming a Wigner

crystal [28]. In such a Wigner state, the spectrum consists

of both high-energy single-particle excitations and collective

excitations at low energy [29], similar to our experiment.

4. Excitation spectrum and shell filling in metallic
carbon nanotubes

The two-fold degenerate, low-energy band structure of a

metallic SWNT is schematically shown in the inset of

figure 7(b). Quantization along the nanotube axis leads to

a set of single-particle states that are equally spaced because

of the linear energy dispersion relation [21]. The combination

of the two bands and the spin yields a four-fold periodicity

in the electron addition energy. This four-fold periodicity

has been measured by different groups [30–34]. To describe

CNT QDs, the CI model has been extended [35] to include five
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independent parameters: the charging energy EC, the quantum

energy level separation �, the subband mismatch δ (see inset

in figure 7(b)), the exchange energy J and the excess Coulomb

energy dU (the excess interaction of two electrons occupying

the same level). The CNT QD has an energy gain of J when

two electrons have aligned spins compared to the situation

of two electrons having opposite spins. An independent

verification of this extended CI model [35] requires the

observation of the ground-state addition energies and of at least

two excited states. In this section, we investigate the excitation

spectrum of closed SWNT QDs. Not only the ground but also

the complete excited state spectrum of these QDs has been

measured by transport spectroscopy experiments, enabling us

to determine all five parameters independently. With these,

the remaining measured excitation energies are well predicted

leading to a complete understanding of the spectrum, without

adjustable parameters.

The device is made from a HiPco NT [15] with L =
180 nm and a diameter of 1.1 nm as determined by AFM.

It is contacted by evaporating Cr/Au (5/75 nm) electrodes.

Figure 7(a) shows the current, I, as a function of source–drain

bias voltage, V , and gate voltage, VG. In the light-coloured

diamond-shaped regions, the current is blocked due to CB

and the number of electrons is fixed. The clear four-fold

periodicity makes it possible to assign the number of electrons

in the last occupied shell. The sizes of the diamonds form

an interesting pattern, namely a repetition of small medium

small big. This pattern is a consequence of the large subband

mismatch compared to the exchange energy, as we discuss

below. The addition energy is obtained by multiplying the

diamond width, �VG, by a conversion factor, α (≈0.017),

which relates the gate voltage scale to the electrochemical

potential [26].

The Oreg et al model [35] yields the following equations

for the addition energy of the Nth electron added1:

�µ1 = �µ3 = EC + dU + J, (1)

�µ2 = EC + δ − dU, (2)

�µ4 = EC + � − δ − dU. (3)

To extract all five parameters, two more equations are

needed. These are provided by the excitation spectrum. In

figure 7(c), we show the numerical derivative of figure 7(a)

(i.e., the differential conductance) for the first group of four.

Excited states of the electrons are visible for all diamonds.

The value of a particular excitation energy equals the bias

voltage at the intersection between the excitation line and the

Coulomb diamond edge (see figure 7(c)). The dotted (white)

arrows in diamonds 1 and 2 in figure 7(c) correspond to the

first excitation for one and two electrons extra on the CNT QD,

respectively. The theoretical values of these two energies are

�µex
1 = δ, (4)

�µex
2 = δ − J − dU. (5)

Equations (1)–(5) allow us to uniquely determine the five

unknown parameters from the experimental data alone. We

find EC = 4.3 meV, � = 9.0 meV, δ = 3.2 meV, J = 0.4 meV

and dU ≈ 0 meV. The values of the parameters do not vary

1 This set of equations corresponds to a singlet ground state for N = 2. The

triplet case is incompatible with the experimental data.
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Figure 8. (a) Schematic band structure of a CNT near its energy
gap. Black lines represent the one-dimensional energy dispersion
relation, E(k||), at B = 0 (k|| is the wave vector along the CNT
axis). The valence (conduction) band has two degenerate maxima
(minima). Size quantization in a finite-length CNT results in a set of
discrete levels with both spin and orbital degeneracy. The
degeneracy is lifted by a magnetic field parallel to the CNT. The 1D
subbands (and the corresponding levels) at finite B are represented
by (red and blue) dotted (solid) lines. Only the orbital splitting of
the energy levels is shown in this figure. (b) Linear conductance, G,
versus gate voltage, VG, taken at T = 8 K. Inset: device scheme.

significantly between the different groups of 4, as shown in

figure 7(b). The theoretically expected value for the level

spacing is � = hvF/2L [3]. With vF = 8.1 × 105 m s−1

[36] and L = 180 nm (the CNT length between the contacts),

we find 9.3 meV in excellent agreement with the experimental

value.

Figure 7(d) shows the calculated spectrum of the NT

QD using the parameters deduced from the experiment. Some

excitations are split by the exchange energy. The stars in

the calculated spectrum correspond to the arrows in the

experimental data. The excitations denoted with ‘x’ were used

for obtaining the parameters and correspond to the dashed

arrows in figure 7(c). The calculated spectrum resembles

the measured one strikingly well. Although the results in

this section have been obtained in a HiPCO tube, four-fold

shell filling is also commonly observed in our CVD grown

nanotubes.

5. Magnetic field dependence of carbon nanotube
quantum dot excitations exhibiting a four-fold
shell structure

In this section, we describe magnetic field dependent electronic

transport spectroscopy measurements on CNT QDs exhibiting

a four-fold shell structure. We show that (i) each shell

consists of two orbitals with opposite magnetic moment, (ii)

the splitting of the orbital states with B accounts for all the

observed transitions in the spin and orbital configuration of

the CNT QD, (iii) a weak coupling exists between orbitals

with opposite magnetic moment resulting in level repulsion

at B = 0, and (iv) Zeeman and orbital contributions to the

electron magnetic moment can be distinguished by inelastic

co-tunnelling spectroscopy.
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Ajiki and Ando [37] predicted that the orbital degeneracy

should be lifted by a magnetic field parallel to the CNT axis

(figure 8(a)). This effect can be understood by noting that,

due to clockwise and anti-clockwise motion around the tube,

electrons in degenerate ‘+’ and ‘−’ subbands should have

opposite orbital magnetic moments, µorb. In the case of finite-

length CNTs, a discrete energy spectrum is expected from

size quantization. The level spectrum of a CNT QD can then

be described as two sets of spin-degenerate levels, E
(n)
+ and

E
(n)
− , where n = 1, 2, 3, . . . is the quantum number in the

longitudinal direction (see figure 8(a)). In the absence of inter-

subband mixing, E
(n)
+ = E

(n)
− at B = 0, a four-fold degenerate

shell structure is expected for every n. Below we show that a

finite coupling can exist, resulting in a small orbital splitting

even at B = 0.

The four-fold shell filling emerges in a measurement of

the linear conductance, G, versus gate voltage, VG. This is

shown in figure 8(b) for a QD device fabricated from a metallic

nanotube with a small band gap2 [38]. G exhibits Coulomb

blockade oscillations [26, 20] corresponding to the filling of

the ‘valence’ band of the CNT. From left to right, electrons are

consecutively added to the last three electronic shells, n = 3,

2 and 1, respectively. The shell structure is apparent from the

VG spacing between the Coulomb oscillations. The addition

of an electron to a higher shell requires an extra energy cost

corresponding to the energy spacing between shells. This

translates into a larger width of the Coulomb valley associated

with a full shell3. The first group of four Coulomb peaks on

the left-hand side of figure 8(b) (n = 3) is strongly overlapped

due to a large tunnel coupling to the leads and the Kondo effect

[8]. The coupling decreases with VG and becomes very small

near the band gap, which lies just beyond the right-hand side of

the VG range shown. Due to this small coupling, the Coulomb

peaks associated with the last two electrons in n = 1 are not

visible (see figure 9(b)).

The shell structure breaks up at finite B (figure 9(a)),

which shows gate traces as a function of magnetic field.

Peaks in the conductance appear white. In each group of

four Coulomb peaks, the first (last) two peaks shift towards

lower (higher) VG. This behaviour demonstrates the strong

B-dependence of the orbital levels described in figure 8(a).

The magnetic field shifts the ‘−’ orbital levels down in energy,

while the ‘+’ orbitals are shifted up due to their opposite µorb.

Consequently, the addition of the first (last) two electrons to a

shell results in a pair of Coulomb peaks shifting towards lower

(higher) VG. For each shell, µorb can be extracted from the

shift, �VG(n), in the position of the corresponding Coulomb

peaks. Neglecting the Zeeman splitting, we use the relation

eα�VG(n) = |µorb(n) cos ϕ�B|, where �B is the change

in B, ϕ is the angle between the nanotube and B, and α is

the capacitance ratio extracted from nonlinear measurements.

The values obtained (0.90, 0.80 and 0.88 meV T−1 for n = 1,

2 and 3, respectively) are an order of magnitude larger than the

electron spin magnetic moment (1/2gµB = 0.058 meV T−1

2 This band gap can be due to perturbations such as curvature or strain. The

measured value of the band gap is ∼30 meV.
3 From measurements in the nonlinear regime (not shown), we estimate

�1,2 ∼ 3 meV and �2,3 ∼ 5 meV, where �n,n+1 ≡ E
(n)
+ − E

(n+1)
+ =

E
(n)
− − E

(n+1)
− . The Coulomb charging energy is U ∼ 5 meV.
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Figure 9. G versus B on a colour scale at T = 0.34 K for the VG

range shown in figure 8(b). Red, white and blue indicate high,
intermediate and low G, respectively. The conductance range is 0
(dark blue) to 3e2/h (dark red). (b) Zoom-in of (a). Here G ranges
from 0 (dark blue) to 2e2/h (dark red). The green dashed lines
highlight the evolution of the Coulomb peaks with B. They are
labelled as AA′, BB′, . . . , FF′. These divide the plot into different
Coulomb blockade regions indicated by the number of electrons in
the last two shells (white numbers 0 to VI). The high-G regions
(indicated by yellow dashed lines) in between Coulomb peaks are
due to the Kondo effect. Numbers (orange) indicate the spin in each
region. On the right-hand side, G is multiplied by 20, so that the
triplet–singlet transition is clearly seen along F1G1.

for g = 2) and in good agreement with an estimate of µorb

based on the nanotube diameter4.

The strong B-dependence of the orbital states induces

changes in the orbital and spin configuration of the QD similar

to previous findings in semiconducting QDs [39]. These are

reflected as kinks in the evolution of the Coulomb peaks with

B (figure 9(b)). Remarkably, a fully consistent description

of the B-dependent energy spectrum and the ground-state

spin/orbital configuration can be obtained through a careful

analysis of all the kinks in figure 9(b) [40].

Note that kinks in figure 9(b) are connected by

conductance ridges crossing the Coulomb valleys. The

enhancement of G at these ridges is due to Kondo effects of

different origins. At B1C1, D1E1 and F1G1, the Kondo effect

arises from singlet–triplet degeneracy [41]. At AB, CD and

EF, an enhanced Kondo effect is observed in relation to orbital

degeneracy [8]. The Kondo ridges at C2D2 and E2F2 are due

to the recovery of orbital degeneracy between E
(2)
− and E

(1)
+

[8]. Note that, as a result of electron–hole symmetry, region

III (three electrons in shell n = 2) and region V (one electron

in shell n = 1) have a certain degree of mirror symmetry, both

in terms of the slope of the Coulomb peaks’ evolution with B

and the Kondo ridges.

The data shown so far have been explained in terms of a

B-induced splitting of orbital degeneracy, as if the two orbital

states of every shell were degenerate at B = 0. A small zero-

field orbital splitting, however, may exist and it may be masked

by the Kondo effect at AB, CD and EF. In order to investigate

this possibility, we considered a different device, which has

a much smaller coupling to the leads and hence a much

weaker Kondo effect. This device also exhibits a four-fold

4 From the value for n = 1, we extract a nanotube diameter D = 4µorb/evF =
4.5 nm, in agreement with the measured diameter of 4.0 ± 0.5 nm as

determined by atomic force microscopy. For this device, ϕ = 37◦.
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Figure 10. (a) Colour plot of the differential conductance, dI/dV ,
versus bias, V , and B, measured in the centre of the Coulomb
diamond (see (c)) at T = 30 mK. The (yellow) dashed lines indicate
the traces shown in the top and bottom insets. Insets: (top) dI/dV
trace taken at B = 80 mT, showing the onset of inter-orbital IC and
a small zero bias peak due to ordinary spin-1/2 Kondo effect. The
vertical axis scale spans from 0.02 to 0.08 e2/h; (bottom) same as
the top inset, but at B = 0.7 T, showing the six IC steps.
(b) Numerical derivative of the dI/dV plot in (a). The two inner
lines result from Zeeman splitting of the Kondo peak at B = 0. The
outer lines represent the B-evolution of the spin-split orbital levels.
(c) dI/dV versus V and VG, for a single electron in a shell at
B = 80 mT. (d) Calculated B-dependence of the IC spectrum for a
single electron in a spin-degenerate level for two coupled orbitals.
Red (blue) lines indicate upwards (downwards) steps in dI/dV with
increasing V .

periodicity in the Coulomb peaks’ pattern. Figure 10(c) shows

a Coulomb diamond corresponding to one electron in a shell at

B = 80 mT. Inside the diamond, single-electron tunnelling is

suppressed and transport occurs via higher order co-tunnelling

processes. A sharp increase in the differential conductance,

dI/dV , is observed at a bias |V | = Vin ∼ 190 µV, denoting

the onset of inelastic co-tunnelling (IC) [26, 42, 43]. The IC

transition takes place between the two spin-degenerate orbital

levels of the same shell (see the discussion below), thereby

indicating the existence of a finite splitting at B = 0. Before

discussing the B-dependence of the IC edges, we note that

a weak Kondo peak is also present at V = 0 (top inset in

figure 10(a)). This Kondo effect arises from the single-electron

occupancy of the spin-degenerate orbital ground state.

At finite B, both the Kondo peak and the IC edges split

due to Zeeman spin splitting. This is shown in figure 10(a),

where dI/dV is plotted versus (V , B) for VG at the centre of

the Coulomb diamond. In order to identify the dI/dV steps

more clearly, figure 10(b) shows the numerical derivative of the

dI/dV plot in figure 10(a) (i.e. d2I/dV 2 versus V and B). IC

steps in figure 10(a) turn into peaks (V > 0) or dips (V < 0)

in figure 10(b). The zero-bias Kondo peak evolves into two

dI/dV steps at V = gµBB/e (g = 2). These correspond

to IC processes in which the spin state of the QD is flipped,

i.e. from |−,↑〉 (ground state) to |−,↓〉 (excited state). Each

of the two dI/dV steps associated with inter-orbital IC splits

by gµBB/e and they move further apart due the increasing

orbital splitting, 2µorbB cos ϕ (ϕ = 33◦), as illustrated

in figure 10((d)). We estimate 2µorb ∼ 350 µeV T−1,

i.e. ∼3 times the Zeeman splitting. The six steps (‘Zeeman’,

‘orbital’ and ‘orbital + Zeeman’) can be seen in the bottom

inset of figure 10(a). An important consequence of the angular

dependence of the orbital splitting is that researchers have now

two ‘semi-independent’ knobs to control the energy spectrum

of CNT QDs (B controls the Zeeman splitting and the angle

nanotube–B controls the orbital splitting).

The evolution of the outer IC peaks is nonlinear at

low B, indicating an anti-crossing between the ‘+’ and ‘−’

orbital levels. Such an IC spectrum can be readily modelled

using a Hamiltonian that includes an inter-orbital coupling

besides orbital and Zeeman terms. The corresponding energy

eigenstates are E = ±
√

(δ/2)2 + (µorbB cos ϕ)2 ± 1/2gµBB

(the four possible sign combinations). The IC spectrum

calculated with this simple model (figure 10(d)) clearly

accounts for the experimental data. The nonlinear evolution

of the orbital splitting with B constitutes direct evidence that

the so-called subband level mismatch, usually denoted by δ

[30–35], is due to a small, but finite, quantum-mechanical

coupling between the two orbital subbands in carbon

nanotubes.

6. Excitations in suspended carbon nanotube
quantum dots

So far, we have considered excitations arising from the

electronic structure of the NT. In this section, we investigate

suspended CNT QDs to probe the effect of vibrations on

electron transport. We have performed low-temperature

electronic transport spectroscopy measurements on suspended

single-wall NTs of different lengths [44]; here we focus on

a single device. In figure 11(a), we show a stability diagram

[20, 26] for a suspended NT sample, with a length of 1.2

µm and a diameter of about 1 nm, measured at 10 mK.

The differential conductance, dI/dV , is plotted as a function

of bias and gate voltages. In the diamond-shaped regions

(Coulomb diamonds), the current is blocked due to the

Coulomb blockade and the charge number in the dot is fixed.

Regular and closing Coulomb diamonds indicate single dot

behaviour [20]. For the gate voltage range shown, single

dot behaviour is observed. The inset in figure 11(a), which

was taken at a higher temperature (300 mK) in a different

cool down, illustrates that the diamonds close. The low bias

current, however, is suppressed which could be a signature of

strong electron–phonon coupling [45–47].

As shown in section 3, electronic excitations in nanotubes

typically differ between adjacent charge states [24, 32]. In

figure 11(a), a dense set of equally spaced excitation lines

(starting from the first electronic excitation) is clearly visible

near VG = 210 mV and 230 mV, i.e., adjacent charge states

exhibit a similar set of excitations with approximately the same

energy spacing. The fact that excitations occur primarily in

one direction is due to asymmetric tunnel barriers [20]. The

energy difference between the excitation lines in figure 11(a)

is shown in figure 11(c). Clearly, the excitation energy is an

integer multiple of the first (fundamental) excitation. Thus,

they form a harmonic spectrum with up to five levels. A linear

fit yields an excitation energy of 140 µeV for this 1.2 µm long
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Figure 11. (a) Stability diagram for a suspended nanotube with
1.2 µm length and a diameter of about 1 nm. The conductance
(dI/dV ) is plotted as a function of source–drain voltage, V , and
gate voltage, VG. The range is from low to high conductance (blue to
red). Measurement has been done at T = 10 mK base temperature.
In the inset, a measurement performed at 300 mK temperature with
regular closing Coulomb diamonds is shown to illustrate that we
have single quantum dot behaviour for the shown gate voltage
range. In the main figure, a strong suppression of the conductance
for low bias is present. We furthermore observe a closely spaced set
of lines running parallel to the Coulomb diamond edges for two
charge states. These lines are excitations of the quantum dot. (b)
The current–voltage characteristic taken along the (green) line in
(a). The (red) lines represent the step heights calculated in the
Franck–Condon model (see the text) for an electron–phonon
coupling of 0.95. The calculated step heights follow the measured
steps well. (c) The energy separation between the excitation lines is
plotted. Clearly, the separation is equidistant and thus we have a
harmonic spectrum. The slope of the linear fit is 140 µeV.

nanotube. This value is an order of magnitude smaller than

the mean electronic level spacing given by � = hvF/2L.

The observed harmonic spectra indicate the presence

of a vibrational mode coupled to electron tunnelling [27].

Multiple steps with identical spacing would then arise from the

excitation of an integer number of vibrational quanta. Indeed,

the observed equidistant energy separation is consistent with

that expected from the longitudinal stretching mode in the

nanotubes. In figure 12, we plot the energy of important low-

energy vibrational modes of single-wall nanotubes [50–52].

For comparison, we plot the mean electronic energy level

separation, �, in black. Squares (blue) correspond to the

fundamental vibrational excitation energy extracted from the

linear fit in figure 11(c) and for two other devices [44].

The energy of the radial breathing mode (green) does not

depend on the nanotube length and equals 28 meV/d (nm)

[50]. The bending mode (red) has a L−2 dependence [53]

and an energy much smaller than the measured excitation

energy. The stretching mode vibration energy (blue) is

inversely proportional to the length [54], E = (nh/L)
√

Y/ρm,

where Y is Young’s modulus, ρm is the density and n is

the vibrational quantum number. For nanotubes with ρm =
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Figure 12. Energy scales of different vibrations and electronic
excitations plotted on a log scale for a nanotube with 1.4 nm
diameter. The radial breathing mode (green) does not depend on the
length L. The bending mode vibrations (red) have a L−2

dependence. The mean electronic level spacing (black) and the
stretching mode (blue) vibrations depend inversely on the length.
The symbols are excitation energy values obtained for suspended
NTs with different lengths.

1.3 g cm−3, Y = 1 TPa, the vibrational energy corresponding

to the fundamental mode is ∼110 µeV/L (µm).5 As figure 12

shows, the data are in good agreement with these predicted

values.

The coupling of electronic levels with vibrational modes

(quantum harmonic oscillators) can be described in terms of

the Franck–Condon model [55]. According to the Franck–

Condon principle, an electron in an electronic transition

moves so fast that the nuclear positions are virtually the same

immediately before and after the transition. As a consequence,

the transition rate is proportional to the Franck–Condon factors

defined as the square of the overlap integral between the

vibrational wavefunctions of the two states involved. An

important parameter is the electron–phonon coupling factor,

g = 1
2

(

x
x0

)2
. This is the ratio of the classical displacement

length, x, to the quantum-mechanical oscillator length, x0 =√
h̄/mω0.

For low damping, the vibrational levels remain sharp

and the Franck–Condon model predicts steps in the current–

voltage characteristics, that are equally spaced in energy

(bias voltage). In the presence of strong relaxation, the

normalized step heights are given by [45] Pn = e−ggn/n!.

In the strong coupling (g ≫ 1) limit, the height of the first

steps is exponentially suppressed (phonon blockade) [45–47].

Multiple steps only arise if g is of the order of 1 or larger and the

observation of a spectrum of equally spaced excitation lines

therefore indicates that the e–ph coupling in our suspended

nanotubes must be rather strong.

In figure 11(b), the red curve represents the step

heights (Pn) given by the Franck–Condon model with strong

relaxation discussed above. Considering the simplicity of the

model, reasonable agreement is obtained. The comparison

yields an estimate of g of 0.95. Similar values of g are found

for different samples with different lengths [44] indicating

that it is approximately length independent. The mechanism

behind this surprising high e–ph coupling is not understood

[44].

5 The twisting mode vibration of the nanotube has a comparable energy with

the stretching mode. However, the twisting mode does not couple [51].
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Figure 13. Differential conductance measured using a lock-in
amplifier as a function of the back-gate voltage with the top-gate
values such that they induce almost no barrier. Fabry–Perot-type
interferences are observed over a wide gate range. The inset shows a
zoom-in of the region in the white rectangle. Destructive
interferences at ±0.6 meV are clearly identified (see arrows). The
high conductance (up to G = 3.1e2/h) shows that the Pd contacts
have a transmission close to T = 1.

7. Excited states in carbon nanotube double
quantum dots

Double quantum dots (DQDs) are interesting systems [56]

and have gained renewed interest for the possibility of

realizing solid-state quantum bits [48]. Here we present low-

temperature measurements in a fully tunable CNT DQD. A

new fabrication technique has been used for the top gates

(TGs) in order to avoid covering the whole nanotube with an

oxide layer. The TGs allow us to form single dots and control

the coupling between them [49]. We observe four-fold shell

filling and excited states in the DQD, a necessary step for

determining the spin and orbital relaxation times.

In order to realize CNT DQDs (figure 3), it is desirable to

create tuneable tunnel barriers at arbitrary locations in a CNT,

and some elementary devices have already been demonstrated

[57–60]. In order to make use of a CNT DQD in quantum

information processing access to (spin) excited states is crucial.

Narrow top gates are evaporated such that only a small portion

of the CNT is covered with oxide. We show electronic

transport through the ground and excited energy states of CNT

DQDs.

We have fabricated several devices which we can operate

in both the p-doped and n-doped regions. Only one sample

will be considered here. At low temperatures (300 mK),

we observe the highest conductance when applying negative

voltages to the top gates and operate the device in this hole-

transport regime. Figure 13 shows a differential conductance

plot as a function of source–drain and back-gate voltages.

The highly doped silicon substrate is used as the back gate

and changes the electrochemical potential of the nanotube

uniformly. Note that the average conductance is between two

and three times e2/h (the measured maximum is 3.14e2/h).

The pattern in figure 13 is due to interference of the charge

carriers in the nanotube (Fabry–Perot interference), which has

been studied in nanotubes [6]. The pattern here is less regular.

The bias voltage at the crossing point, VC, between adjacent

left- and right-sloping dark lines (see white arrows) depends

on the length of the nanotube L as hvF/2e = LVC. The first

intersection occurs around VC ∼ 0.5–0.6 meV, corresponding

to a length of about 3 µm. This suggests that the electron

scattering occurs primarily at the nanotube–Pd interfaces,

which are about 2 µm apart, since the extracted length is

much larger than the top-gate spacing (∼500 nm).

(N,M+1)(N,M)

(N+4,M+1)

(a) (b)

Figure 14. (a) Characteristic honeycomb pattern for the CNT DQD
system in the strongly coupled regime when measured as a function
of the two side gates for 1 mV bias voltage. The four-fold shell
filling of the left dot is clearly visible, from which we can identify
the filled shells when the charge number is N,N + 4, etc.
(b) Honeycomb structure of the current for the DQD in the weakly
coupled regime. Triple points with excited states are visible
(bias 5 mV).

By applying positive voltages to the top gates, we form

barriers in the p-type region and can form single dots on both

the left and right CNT segments individually (see figure 3).

The energy level spacing, �, we extract corresponds to the

length of the CNT between top gates [49].

Figure 14(a) shows the characteristic ‘honeycomb’

structure of the current through a DQD [56] in the strongly

coupled regime. Here, the two dots are not completely

separated but interact via tunnel coupling, thus forming the

analogue of a molecule with covalent bonding. The co-

tunnelling lines of the hexagonal pattern are visible and exhibit

four-fold shell filling for the left dot: a large hexagon is

followed by three small ones in the vertical direction of the

left side gate. This pattern repeats for every electron number

in the right dot. In figure 14(b), we show the double dot in the

weakly coupled regime, i.e. the inter-dot tunnel resistance is

high and the capacitive coupling between the dots dominates

the transport behaviour. The triple points of the expected

hexagon pattern are clearly visible and, due to the large bias,

develop into overlapping triangles [56]. Excited states are

observed at every triple point.

A high-resolution measurement of a pair of triple points

(electron and hole cycles) [56] is shown in figure 15 for

VSD = 4 mV. At the baseline of the triangle, the ground states

of the two dots are aligned and shifted together from the Fermi

level of the drain (point a in figure 15) to the Fermi level of

the source (point b). At the centre of the baseline, they lie

exactly in the middle between source and drain. On a line

from this point to the tip of the triangle (point c), the states

of the right dot are shifted downwards to the Fermi level of

the source, while the states of the left dot shift upwards to the

drain (a positive bias is applied at the source contact, while

the drain contact is put to ground). Along this line, we see

sharp excitations at 0.33, 1.24, 1.55 and 1.8 meV (see inset in

figure 15). These lines belong to different excited states of the
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Figure 15. Current versus side-gate voltages for a typical example
of a triple point pair at high bias (VSD = 4 mV) in the p-doped
region (hole transport). The ground-state tunnelling is weaker than
tunnelling through excited states. Lines parallel to the base (point a
to point b) of a triangle belong to tunnelling through excited states
of the left dot, while the right dot excited states show up parallel to
the upper-right side of the triangle (the first one enters the bias
window at point (*)). The inset shows a line cut from the centre of
the base of the upper triangle to the triangle tip (black line from
point d to point c), i.e., current as a function of the detuning between
levels. The level schemes of the double dot corresponding to the
points a–f depicted in the triangle are shown on the right-hand side
of the figure. Light (orange) lines represent the ground states and
dark (blue) lines the hole-excited states (the measurement is done in
the p-doped region). The dashed lines belong to the next excited
states corresponding to (**).

left dot which are probed by states of the right dot. An area of

non-resonant current spreads between 2 and 2.8 meV.

In the following, we give a possible scenario for the

resonant transport. Afterwards, we discuss the non-resonant

current. On the right-hand side of the triangles of both triple

points, there appears to be a region of strongly suppressed

current. This feature could be explained by bad coupling of

the ground state of the right dot to the source. As the levels

of the dots move upwards with lowering side-gate voltages, at

point (*) the first hole-excited state of the right dot enters the

bias window at ∼650 µeV. The coupling of this level to the

source contact is stronger, thus enhancing the current.

The lines parallel to the baseline of the triangle belong to

resonant transport through hole-excited states of the left dot.

Only the first of these excited states at ∼330 µeV is probed

by the ground state of the right dot (point e). At the other

lines, the excited state of the right dot at ∼650 µeV is aligned

with the excited states of the left dot (see point f as an

example). This could also explain the larger current through

these lines, as the excited states are probably better coupled to

the contacts. The energy splitting of the second excited state

(**) of the left dot to its ground state is 1.9 meV. This fits

well with the value for the level splitting we obtained from

the single dot measurement. The next two lines are separated

by 310 and ∼560 µeV with respect to the level (**) at �.

Like the first one at ∼330 µeV (point e), they are comparable

in size with the low energy splitting found in the single dot

measurement of the left QD.

Non-resonant transport can occur if an electron loses

energy due to spontaneous emission of an acoustic phonon

[61]. However, we do not observe the expected decay of the

current for one-dimensional acoustic phonons with detuning

of the DQD states. The non-resonant current between 2 meV

and 2.8 meV seems to have its origin rather in level broadening

of excited states at higher energy.

Electron–phonon coupling in a molecule such as a CNT

can show up as sharp resonance lines. These would be

equidistant with an energy difference that depends on the

diameter and length of the tube [44]. For a length of 2 µm,

an energy difference of Ephonon ∼ 55 µeV is expected for the

stretching mode [44]. If the size of the single QDs of ∼500 nm

determined the energy of the phonons, one would expect

Ephonon ∼ 440 µeV. None of these energy scales show up

in the lines inside the triangle. Thus, we conclude that the

lines inside the triangle are due to resonant transport through

electronic excitations.
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