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Abstract

This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in

biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences

and are widely anticipated to eventually find application in a number of commercial consumer and clinical

products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous

absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology

for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical

properties such as optical and electron transport characteristics are quite different from those of the bulk materials.
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Review
Introduction

In the past years, a new class of fluorescent particles

emerged as a good candidate for single molecule and sin-

gle particle tracking (SPT) in living cells and organisms,

the semiconductor quantum dots [1]. Quantum dots

(QDs), often described as ‘artificial atoms,’ exhibit discrete

energy levels, and their bandgap can be precisely modu-

lated by varying the size [2]. QDs are nanometer-scale

semiconductor crystals composed of groups II to VI or

III to V elements and are defined as particles with phys-

ical dimensions smaller than the exciton Bohr radius [3].

QDs exhibit unique luminescence characteristics and

electronic properties such as wide and continuous ab-

sorption spectra, narrow emission spectra, and high

light stability [4]. They absorb white light and then re-

emit a specific color a few nanoseconds later depending

on the bandgap of the material [5-7]. QDs are one of

the first nanotechnologies to be integrated with the bio-

logical sciences [4,8] and are widely anticipated to even-

tually find application in a number of commercial

consumer and clinical products [9]. For example, CdSe/

ZnS quantum dots are presently the most common

commercially available product as secondary antibody

conjugates that are composed of a core of cadmium sel-

enide ranging from about 10 to 50 atoms in diameter

and about 100 to 100,000 atoms in total [10]. QD range

is typically between 2 and 10 nm in diameter. QDs con-

sist of a semiconductor core, overcoated by a shell (e.g.,

ZnS) to improve optical properties, and a cap enabling

improved solubility in aqueous buffers [11]. The applica-

tion of QDs, as a new technology for biosystems, has

been mostly studied on mammalian cells. There is an in-

creasing tendency to apply QDs as markers in plant sci-

ence [12-16]. The application of QDs as markers of the

cells or their cell walls for plant bioimaging would be

advantageous because of their small size, brightness, in-

dependence of emission on the excitation wavelength,

and stability under relatively harsh environments. They

also have excellent photostability [17] and overcome the

limitations associated with photobleaching. Due to the

small structures of QDs, some physical properties such

as optical and electron transport characteristics are quite

different from those of the bulk materials [18]. The

study of the impurity states in these low dimensional

structures is an important aspect to which many theor-

etical and experimental works based [16,19-21]. This re-

view introduces QDs and explores their properties,

synthesis, applications, delivery systems in biology, and

their toxicity.
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Synthesis

Several routes have been used to synthesize QDs [22]

but, generally, techniques for QD synthesis used top-

down processing methods and bottom-up approach.

Top-down processing methods include molecular beam

epitaxy (MBE), ion implantation, e-beam lithography,

and X-ray lithography. Using the alternative bottom-up

approach, colloidal QDs are prepared by self-assemblyin

the solution following a chemical reduction [23-26].

In the approaches of top-down, for making the QDs, a

bulk semiconductor is thinned. For the achieve QDs of

diameter approximately 30 nm, electron beam lithog-

raphy, reactive-ion etching, and/or wet chemical etching

are commonly used. For systematic experiments on

quantum confinement effect, controlled shapes and sizes

are achievable with the desired packing geometries.

Alternatively, focused ion or laser beams have also been

used to fabricate arrays of zero-dimension dots. Incorpor-

ation of impurities into the QDs and structural imperfec-

tions by patterning are major disadvantages with these

processes [22].

A number of different self-assembly techniques

(bottom-up) have been used to synthesize the QDs, and

they may be broadly subdivided into wet-chemical and

vapor-phase methods [22]: (a) wet-chemical methods

mainly follow the conventional precipitation methods

with careful control of parameters for a single solution or

mixture of solutions. The precipitation process invariably

involves both nucleation and limited growth of nanopar-

ticles. Nucleation may be categorized as homogeneous,

heterogeneous, or secondary nucleation [27]. Homoge-

neous nucleation occurs when solute atoms or molecules

combine and reach a critical size without the assistance

of a pre-existing solid interface. Wet-chemical methods

are generally microemulsion, sol–gel [28-30], competitive

reaction chemistry, hot-solution decomposition [31-33],

sonic waves or microwaves [34], and electrochemistry. (b)

Vapor-phase methods for producing QDs begin with pro-

cesses in which layers are grown in an atom-by-atom

process. Consequently, self-assembly of QDs occurs on a

substrate without any patterning [35-38]. Self-assembly

of nanostructures in material grown by MBE, sputtering,

liquid metal ion sources, or aggregation of gaseous

monomers are generally categorized under vapor-phase

methods [22]. MBE has been mainly used to self-

assemble QDs from III-V semiconductors and II-VI semi-

conductors using the large lattice mismatch, e.g., InAs on

GaAs has a 7% mismatch and leads to SK growth [35].

Applications

In this review, we evaluate few experiments that show

the high potential of QDs in biological application, in-

cluding tracking different macromolecules in the cell,

tracking various cells in the tissue, labeling organelles

and cells, clinical applications, and other applications

[39-43].

QDs for labeling cells

Because QDs have constant and unique optical proper-

ties, they are the best candidate for cell labeling, as com-

pared with organic dyes.

Use in plant bioimaging There is an increasing applica-

tion of QD as markers for the cells or cell walls (CWs)

in plant science. A first target location for external

agents in a plant cell is the CW [44]. Djikanović et al.

demonstrated that CdSe QDs bind typically to cellulose

and lignin in the cell wall of Picea omorika branch. Re-

spectively, binding to lignin and cellulose are achieved by

interaction with the chains of C=C and C-C alternating

bonds and interaction with the OH groups [44]. Data

showed that QDs are suitable for homogenous marking

of the whole cell wall. This is a consequence of the struc-

tural arrangement of the cell wall polymers in the whole

cell wall network as well as the extremely small size of

the QDs. These characteristics enable a feasible penetra-

tion of the nanoparticles inside the polymer structures in

the CW composite [44].

Use in animal bioimaging Goldman et al. used biotiny-

lated CTxB in conjunction with QD-avidin conjugates

[45] for labeling of the live HeLa cells which Figure 1

shows an image of the lateral membrane staining for

GM1 ganglioside using QDs (in red) and nuclear staining

using Hoechst (in blue). Punctuate labeling of the cell

surface by QD bioconjugate is typical for molecules such

as GM1 that is present in membrane rafts [46].

In another study, they labeled live HeLa cells which

were biotinylated using sulfo-NHS-SS biotinylating re-

agent and then incubated with the avidin-conjugated yel-

low-emitting QDs. It is shown in Figure 2 [47].

Figure 1 Live HeLa cells growing on a glass coverslip. Labeled

with QD-avidin for GM1 (in red) and Hoechst 3342 for nuclear

staining (in blue) [46].

Valizadeh et al. Nanoscale Research Letters 2012, 7:480 Page 2 of 14

http://www.nanoscalereslett.com/content/7/1/480



For long-term live cell imaging, Hasegawa et al. used

the CHPNH2-QD complexes which were uniformly

internalized into the cells without being aggregated.

Therefore, CHPNH2 nanogel has high potential for use

in long-term live cell imaging. The interaction of QDs

with cells was successfully controlled by the amino group

content of the CHPNH2 nanogel [48].

Use in prokaryote bioimaging Sensitive and selective

staining of bacterial mutants using QD labels was

demonstrated by Smith's group. This principle of de-

tection is based on selective targeting affinity of Zn(II)-

dipicolylamine coordination complex to phospholipids

on the bacterial cell surface of specific strain as shown

in Figure 3 [49,50].

In another study, authors demonstrated the use of

magnetic beads coated with anti-E.coli O157 antibodies

and streptavidin-coated QDs for measuring the bacterial

cell concentration [51]. Yang and Li, using QDs with dif-

ferent emission wavelengths (525 nm and 705 nm),

reported the simultaneous detection of E. coli O157:H7

and Salmonella typhimurium [52].

Tracking different particles

With the application of new imaging methods and the

use of brighter and more stable probes, such as QDs,

single particle tracking has the potential to enter into a

new era of high resolution and long timescale imaging

[53-55]. SPT techniques allow scientists to follow single

molecules in real time and visualize the actual molecular

dynamics in their habitant environment.

For extracellular study Because QDs do not require

intracellular delivery through the impermeable plasma

membrane, membrane receptors or membrane-associated

proteins are intuitive targets for QD imaging [53].

Howarth et al. demonstrated a method to track endogen-

ous cell-surface proteins without cross-linking by purify-

ing monovalent antibody-QD conjugates. They approach

to make monovalent tight-binding QDs, using mSA,

which could be applied to other nanoparticles that show

sufficient electrophoretic mobility. They applied sQD-

mSA1 to study the mobility of a mutant of low-density

lipoprotein (LDL) receptor with a truncated cytosolic tail,

originally found from an individual with familial hyper-

cholesterolemia. This mutant phenotype has been exten-

sively investigated by following LDL, but Howarth and co-

workers analyzed the behavior of the receptor itself (sup-

plementary methods). They imaged single monovalent

sQDs bound to the biotinylated AP-LDL receptor, as indi-

cated by QD fluorescence intensity and blinking. The mo-

bility of mutant receptors labeled with sQD-mSA1 was

significantly greater than that of labeled wild-type LDL re-

ceptor (P=1.6× 10−14) [56].

In similar studies, recently, QDs used to target

membrane proteins and investigate the mobility and

entry-exit kinetics in several systems: (1) various trans-

membrane proteins, for example, integrins [57], channels

[58], and aquaporines [59]; (2) receptors GABA [60], gly-

cine [61], interferon [62], and HER [63,64]; and (3)

neurological synapse [65,66].

For intracellular study In one of the study, the advan-

tages of the broad, continuous excitation spectrum were

demonstrated in a dual-emission, single-excitation label-

ing experiment on mouse fibroblasts. These nanocrystal

probes are, thus, complementary and, in some cases,

may be superior to existing fluorophores [4]. Nonspecific

labeling of the nucleus by both the red and the green

probes resulted in a yellow color. The red actin filaments

were specifically stained. Also, the green probes pene-

trate into the nucleus. Both are shown in Figure 4[4].

This is shown as green color for nucleus and red color

for actin filaments. Nonspecific labeling of the nucleus

by both the red and the green probes resulted in a yellow

color [4].

Superior stability of QD fluorophores gives the possi-

bility to improve quantitation of FISH analysis of human

chromosomal changes. Xiao and Barker have investigated

coated (CdSe)ZnS QDs as fluorescence labels for FISH

of biotinylated DNA to human lymphocyte metaphase

chromosomes under conditions that approximate those

commonly found in clinical cytogenetics laboratories

[67]. They have also demonstrated the application of

Figure 2 HeLa cells labeled with the avidin-conjugated yellow-

emitting QDs.[47]. (A) Image of cells immediately after the

unbound QDs were removed in which labeling is restricted to the

cell surface. (B) Image of a cell that was allowed to grow for 2 h

after washing out of unbound QDs.

Figure 3 Imaging of rough Escherichia coli JM83 cells. Left

imaging is red QD, and right imaging is green QD. Scale bar is 2 μM

[49].
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QDs to FISH detection of the clinically relevant HER2

locus in breast cancer cells (Figure 5).

Pierobon et al. [68] and Nelson et al. [69] tagged my-

osin V molecules with QDS toestablish a link between

in vitro and in-cell measurements of myosin V motors.

Then, the complex myosin V/QD (MyoV::QD), using the

pinocytic influx, was introduced into the cells.

Yoo et al. [70] and Courty et al. [71] characterized the

dynamics of other major actors of intracellular transport:

the kinesin-1, the actin filaments, and the microtubules

[65].

Imaging in situ

Imaging of the satellite cells in rat intact and injured so-

leus muscles using quantum dots The employment of sat-

ellite cells, which are located between the basement

membrane and the plasma membrane in myofibers, is

required for myofiber repair after muscle injury or dis-

ease. Using QDs conjugated to anti-M-cadherin anti-

body, Ishido and Kasuga attempted the visualization of

satellite cells in both intact and injured skeletal muscle

of rat in situ. They demonstrated in situ real-time im-

aging of satellite cells localized within the skeletal muscle

(Figure 6) [72].

Imaging morphogenesis in Xenopus with quantum dot

nanocrystals Stylianou and Skourides are the first to re-

port the use of near-infrared QDs to image mesoderm

migration in vivo with single cell resolution and provide

quantitative in vivo data regarding migration rates [73].

Navarro et al. experiments revealed that Arabidopsis

exposed to QDs that are dispersed in Hoagland's solu-

tion for 1 to 7 days did not internalize intact QDs. Fluor-

escence microscopy showed strong evidence that the

QDs were generally on the outside surfaces of the roots

(Figure 7). The amount of QDs adsorbed is dependent

on the stability of the QDs in suspension [74].

Using QDs in clinical applications

The development of multifunctional nanomaterials com-

bining diagnostic and therapeutic purpose has recently

attracted intensive interests [75-81]. In this paper, we

have reviewed the clinical applications of QDs in the

three categories that include: (1) biomarker detection in

various cancers, (2) imaging and sensing of infectious

diseases, and (3) other clinical therapeutic applications.

Biomarker detection in various cancers using QDs The

detection of cancer biomarkers is important for diagno-

sis, disease stage forecasting, and clinical management

[82]. QDs with intense and stable fluorescent properties

could enable the detection of tens to hundreds of cancer

biomarkers in blood assays, on cancer tissue biopsies, or

as contrast agents for medical imaging. Clinical outcome

of cancer diagnosis is highly dependent on the stage at

which the malignancy is detected, and therefore, early

screening has become extremely important in any type

of cancer [83].

1. Multicolor and multiplexing potentialities of QDs are

used for the detection of four protein biomarkers

CD15, CD30, CD45, and Pax5 of Hodgkin's

lymphoma from lymphoma tissues. Simultaneous

visualization using multiplexed QD staining was

advantageous for the selective identification of rare

Hodgkin (Reed-Sternberg) cells, a primary diagnostic

target for Hodgkin's disease, which was not

Figure 4 Image was obtained with 363-nm excitation and× 40 oil

1.3 numerical aperture objective.

Figure 5 Qualitative FISH detection of HER2 gene-amplified SK-

BR-3 breast cancer cells. With (A) streptavidin-conjugated Qdot605

and (B) FITC, respectively [67].

Figure 6 Double fluorescence staining to visualize the

localization of M-cadherin (in red) and nuclei (in blue). Arrows

indicate that M-cadherin-positive satellite cells were located within

the intact soleus muscle in situ [72].
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achievable using traditional immunohistochemistry

assays [84,85].

2. Yu et al. reported the use of GSH-TGA-QDs-ND-1

probes to label colorectal cancer cells CCL187. They

prepared QDs, which were conjugated with

monoclonal antibody ND-1 for specific reaction with

antigen LEA [86].

3. In the United States, pancreatic cancer is the fourth

leading cause of cancer death (about 18,770 men and

18,030 women (36,800 people) in 2010) [87]. Using

semiconductor QD-antibody conjugates, Lee et al.

demonstrated quantitative profiling of biomarkers for

pancreatic cancer at the single-cell level. Their results

show the possibility of this method for staging and

forecasting, such as prostate stem cell antigen

claudin-4, and mesothelin, which are expressed in

different stages of progression of pancreatic cancer

[82]. Anyway, realizing quantitative profiling requires

stable quantum yield, monodisperse QD-Ab

conjugates, and well-defined surface chemistry [88].

There are evidences showing the application of QDs in

micro- and nanoarrays for the detection of cancer bio-

markers [83].

Imaging and sensing of infectious diseases by QDs QDs

have become one of the most hopeful and interesting

materials for diagnostic applications of bioimaging, label-

ing, and sensing for infectious diseases such as respira-

tory syncytial virus (RSV)that isone of the families of

Paramyxoviridae [50]. In Table 1, some of the infectious

diseases and QDs used to distinguish them are shown.

1. QDs for assessing axon growth

A major health problem with injuries to the spinal

cord and brain is traumatic central nervous system

injury reporting of approximately 265,000 and 1.5

million new injuries each year [103-105]. QDs

represent a new device of significant potential in

neuroscience research, and they are useful for

experiments that are limited by the restricted

anatomy of neuronal and glial interactions [106]. One

of the problems in treatment is estimating its

effectiveness. They allow the ability to visualize and

track dynamic molecular processes over long times

(Figure 8) [106]. Application of surface-engineered

QDs is an area of nanotechnology probing the details

of cellular and molecular processes in neuronal cells

[4,107-109]. QD bioconjugates based on surface

chemistry can be broadly classified as follows: (1)

QDs' surface modified by bioactive molecules and (2)

QD-polymer nanocomposites [103]. This advance

might be significantly important to assess axon

growth pending the regeneration process [103].

Previous investigations were demonstrated in Table 2.

2. QD used as a probe in an anti-malarial drug-

screening assay

Malaria is a major global health problem, threatening

over 300 million people and causing nearly one

million deaths annually [114,115]. Tokumasu et al.

used QD-Ab to demonstrate the distinct pattern of

distribution of protein and to observe erythrocyte

membrane deformation occurring duringthe invasion

of erythrocytes by Plasmodium falciparum [116]. Ku

et al. showed a simple and efficient method to label

P. falciparum-infected RBC using a QD-based probe

and its applicability as an efficient probe for anti-

malarial drug screening [115].

Other applications

QDs as pH probes for the study of enzyme reaction kinet-

ics [117] Lately, worth advancement has been achieved

in water-soluble QDs as ionic probe. Jin et al. reported

the use of modified CdSe QDs for the sensitive deter-

mination of cyanide ions [C�N]− [117,118]. Xie et al.

reported the determination of Cu2+ by using CdSe/ZnS

QDs modified with bovine serum albumin [119]. QDs

also have been reported to be sensitive to pH [120-125].

The sensitivity of QDs' photoluminescence to pH, im-

prove stability, and a monitoring range for the determin-

ation of proton concentration, which is maybe due to a

function of surface modifications and effects on exciton

trap sites, leads to applications utilizing QDs as pH

probes [126]. Water-soluble QDs, ZnS, modified with

mercaptoacetic acid (MAA) were sensitive to environ-

mental factors and found to be a satisfactory pH probes

that could have potential applications in chemical and

biochemical sensing. Using the modified QD surface,

they were applied as pH probes in monitoring the

hydrolysis of glycidyl butyrate which is catalyzed by por-

cine pancreatic lipase (PPL) [117].

QDs use for protein micro- and nanoarrays to the de-

tection of cancer biomarkers Protein microarrays are use-

ful device as highthroughput screening tools in

proteomics [127-129], for biosensing purpose [130], new

Figure 7 Imaging of roots from plants exposed to QD

suspension in HS+HA. For (A) 1 and (B) 7 days [74].HS, Hoagland's

solution; HA, one of the important groups of organic acids.
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Table 1 Some of the infectious diseases and QDs used to distinguish them

Authors Type of infectious diseases In vitro/in vivo Type of modified QDs

Tripp et al. [89] RSV In vitro/in vivo Antibody anti-F protein conjugated to QDs(CdTe)

Agrawal et al. [90] Individual molecules of genes,
proteins, and virus particles

In vivo QD-antibody color-coded NP
probes and two-color co-localization imaging

Bentzen et al. [91] RSV In vivo Streptavidin-coated QDs conjugated
to antibody anti-F and antibody anti-G

Dwarakanath et al. [92] S. typhimurium In vivo Antibody-QD and DNA aptamer-QD

E. coli

B. subtilis spores

Goldman et al. [93] Choleratoxin, ricin, shinga-like toxin1 and
staphylococcal enterotoxin B

In vitro Antibody-QD (CdSe/Zns)

Zhao et al. [94] Food-borne pathogenic E. coli O157:H7,
S. typhimurium and S. flexneri

QDanti-S. flexneri antibody,anti-E. coli
antibody, anti-S. typhimurium antibody

Hahn et al. [95] Single cells of E.coli O157:H7 Streptavidin-coated QDs conjugated to antibody

Mukhopadhyay et al. [96] Detect E. coli at levels as low as
104 bacteria/ml of sample

Mannose-conjugated QDs

Edgar et al. [97] Mycobacterium In vivo Streptavidin-coated QDs conjugated to phage

B. anthracis

Zhu et al. [98] C. parvum QD-conjugated antibodies

G. lamblia

Klostranec et al. [99] Biomarkers of the most globally
prevalent blood-borne infectious diseases
(i.e., hepatitis B, hepatitis C, and HIV) with
low sample volume

QD-antibody

Gazouli et al. [100] Mycobacterium genus In vivo Specific DNA sequences combining
QDs with magnetic beads [101,102]

Hahn et al. [95] Individual pathogenic E. coli O157:H7
in phosphate buffer saline solution

Streptavidin-coated Qdots labeled by
antibody selectively targeted pathogenic
E. coli O157:H7

Su and Li [51] E. coli O157 In vivo Streptavidin-coated QDs conjugated to
anti-E. coli O157 antibody

Yang and Li [52] E. coli O157∶H7 In vivo QDs with different sizes conjugated to
anti-E. coli O157 and anti-Salmonella antibodies

S. typhimurium
The bead-cell complexes reacted with QD-antibody
conjugates to form bead-cell-QD complexes

Other clinical therapeutic applications.

Figure 8 Using QD conjugated with antibody for labeling of neurons and glia. (A) Labeled β-tubulin in primary cortical neurons. (B) Labeled

glial fibrillary acidic protein in primary cortical astrocytes. (C) Labeled for β-tubulin in PC12 cells [106].
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drug discovery [131], and enabling a quick parallel

screening method for the detection of protein-protein

interactions in case of large protein populations. There

are various reports in which QDs have been used in

microarray fabrication such as sandwich-based immuno-

assay type, RP protein microarray type, etc. [132-135].

Here, IgG detection was done on a glass chip using a

QD-labeled secondary Abs as sandwich assay approach.

In RP protein microarrays, Geho et al. used pegylated

QDs conjugated with streptavidin as detection elements.

In another study, Zajac et al. investigated the ability of

the platform to detect different cytokines TNF-α, IL-8,

IL-6, MIP-1β, IL-13, and IL-1β using two different models

of quantum dot probes. Their results demonstrated high

sensitivity of the investigated detection system with less

than picomolar concentration [136]. Kerman et al.

reported the use of QDs for detection cell lysates spiked

with DNA-PK proteins with the help of mAb, in an RP

protein microarray format. Kerman et al. make immuno-

sensor based on QD for the detection of prostate specific

antigen (PSA) in a sandwich assay approach for chip

fabrication [134]. Gokarna et al. used pegylated QD-

conjugated PSA Abs to demonstrate the fabrication of a

cancer protein biochip for the detection of PSA, which is

a biomarker for prostate cancer. The QD nonspecificity

can show to be quite detrimental to some extent in case

of multiplexed assay systems where multiple proteins are

to be detected simultaneously [83].

QD delivery Due to the unique properties of QDs, they

are best tools for intracellular studies such as visualizing

the cellular structure, studying the dynamic cellular pro-

cesses, and tracking single molecules in the cell

[137,138]. To achieve this goal, translocation of functio-

nalized QDs into the cell for labeling organelles and

tracking single molecules is important. QDs have hydro-

phobic surface and have a little toxicity, therefore cannot

be applied in vivo unless their surface is modified. Thus,

by surface modification, their hydrophilicity will increase

but their toxicity will decrease.

Hasegawa et al. used nanogel-QD hybrid nanoparti-

cles for live cell imaging [48]. They also confirmed the

cellular uptake of CHPNH2(15)-QD nanoparticles using

other normal cells (TIG-3 and MRC-5) and cancer

cells (T24, Saos-2, T98G, A549, MCF-7, and YKG-1)

(Figure 9) [48].

Table 2 Applications of QDs in labeling neurons and glia cells

Authors Type of QD used Application of QD

Dahan et al. [61] QD-GlyR Target neurons to investigate a specific neurophysiological
process(QDs to track individual glycine receptors and analyze
their lateral dynamics in the neuronal membrane)

Pathak et al. [106] Antibody-conjugated quantum dots Performed the specific labeling of neurons and glia cells

Vu et al. [110] Tagged nerve growth factor (βNGF) to QDs Investigate the QD nanostructure's potential to assess
the neurite outgrowth

Sundara Rajan et al. [111] QD-anti-TrkA-TrkA receptor with transport by GFP Immobilized QDs were conjugated with NGF, activate
Trk receptors, and initiate neuronal differentiation
in PC12 cells.

Howarth et al. [112] Tagged cell surface proteins with a specific
peptide (acceptor protein) that can be directly
biotinylated as a target for streptavidin-conjugated
quantum dots

Specifically label and track AMPA receptors on
cultured hippocampal neurons

Prasad et al. [113] Thioglycolic acid (TGA)-stabilized CdTe QDs Performed imaging of PC12 cells

Figure 9 Confocal laser scanning fluorescence microscopyimages of cells labeled with CHPNH2(15)-QD nanoparticle. (A) TIG-3 cells, (B)

MRC-5 cells, (C) MCF-7 cells, and (D) YKG-1 cells [48].
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In recent years, functional peptides that transmit bio-

materials into cells have been developed in biomaterial

research. Because of lysosomal trapping, QD delivery

into cells with conjugated cell-penetrating peptides by

the endocytic pathway was challenging in biomedical

applications [139]. In another study, engineered peptides

for producing QDs tagging protein ligands and biosen-

sors to their surfaces, by appropriate cysteines or histi-

dines, have served as ligands [140]. Encapsulation of

QDs in viral capsids provides a new tool which allows

the design of intracellular microscopic probes and vec-

tors [141]. More samples of QD delivery systems are

shown in Table 3.

Toxicity of QDs

There are different opinions about the toxicity of QDs;

therefore, we investigated their toxicity in amoeba as pri-

mary eukaryotes, in plant, and in animal.

In amoeba

It has been determined that QD labeling had no detect-

able effect on cell growth and had no deleterious effects

on cellular signaling and motility during development of

the Dictyostelium discoideum cells [47].

In plant

The ratio of reduced glutathione levels (GSH) relative to

the oxidized glutathione (GSSG) in plants suggests that

QDs caused oxidative stress on the plant at this condi-

tion [74].

In animal

Yan et al. investigated the potential vascular endothelial

toxicity of mercaptosuccinic acid (2-sulfanylbutanedioic

acid)-capped QDs in vitro. Their results suggested that

QDs could not only impair mitochondria but also exert

endothelial toxicity through activation of mitochondrial

Table 3 QD delivery systems

Authors Delivery system of QD Use

Jia et al. [142] Multiwalled carbon
nanotube (MWNT)
delivery system

MWNTs are containing antisense oligodeoxynucleotides
and CdTe QDs via electrostatically layer-by-layer assembling.

Chen et al. [143], Xue et al. [144],
Delehanty et al. [145], Ruan et al. [146],
Wei et al.[147]

Tat peptide-mediated
delivery system

QDs conjugated to the cell-penetrating peptide
derived from the human immunodeficiency virus-1
transactivator protein

Lagerholm et al. [148] Peptide delivery system Nine residue biotinylated l-arginine peptide is used
to enhance delivery of streptavidin-conjugated QDs
into mammalian cells.

Bagalkot et al. [149] A10 RNA aptamer Functionalizes the surface of QD with the A10 RNA aptamer,
which recognizes the extracellular domain of the prostate
specific membrane antigen

Bakalova et al. [150] Silica-shelled quantum dots Based on silica-shelled single QD micelles with
incorporated paramagnetic substances
[tris(2,2,6,6-tetramethyl-3,5-heptanedionate)/gadolinium]
into the micelle and/or silica coat

Yum et al. [151] Nanoscale
mechanochemical method

Using a membrane-penetrating nanoneedle

Yuan et al. [152] Chitosan
(N-acetylglucosamine)
tumor-targeted drug delivery

QDs encapsulated with chitosan

Hasegawa et al. [48] Nanogel-QD hybrid Nanogels of CHPNH 2 with 15 amino groups per 100 glucose
units and QDs that were conjugated with protein A molecules
were mixed.

Dixit et al. [141] Viral vectors QDs encapsulation in viral capsids

Zhang and Liu [153] Nonviral vectors Cappingthe surface of ZnO QD with poly(2-(dimethylamino)
ethyl methacrylate)

Jablonski et al. [154] Cationic peptide and
a hydrophobic counterion

Quantum dots have been delivered to the cytosol of
living cells using a combination of a cationic peptide,
polyarginine, and a hydrophobic counterion, pyrenebutyrate.

Qi and Gau [155] QD-amphipol nanocomplex Advantages include cytoplasm delivery and endosome escape.

Gao et al. [109] Polymeric delivery system The structural design involves encapsulating QDs with an
ABC triblock copolymer and linking this amphiphilic polymer.

Duan and Nie [77] Polymeric delivery system QDs were encapsulated by PEI-g-PEG.
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Table 4 More details for toxicity of QDs (modified from [163])

QD Model Administration QD concentration Exposure duration Toxicity Study

CdSe/ZnS-SSA EL-4 cells 1 × 106 cells/well 0.1 to 0.4 mg/mL 0 to 24 h Cytotoxic: 0.1 mg/mL altered cell
growth; most cells nonviable at
0.4 mg/mL

Hoshino et al. 2004a

CdSe/ZnS-SSA EL-4 cells 200-μL cell
suspension injected
(iv) into the mice

0.1 mg/mL QDs per
5 × 107 cells

2 h to 7 days No toxicity in mice in vivo Hoshino et al. 2004a
(in vivo)

CdSe/ZnS conjugates:
NH2, OH, OH/COOH,
H2/OH, MUA, COOH

WTK1 cells 5 × 104 cells/mL 1 to 2 μM 12 h 2-μM QD-COOH-induced DNA
damage at 2 h

Hoshino et al. 2004b

CdSe/ZnS-MUA Vero, HeLa, and
primary human
hepatocytes

100-μL QDs/3 × 104 cells 0 to 0.4 mg/mL 24 h Cytotoxic: 0.2 mg/mL, Vero; 0.1 mg/mL,
HeLa; 0.1 mg/mL, hepatocytes

Shiohara et al. 2004

CdTe Rat pheochromocytoma
cells, murine, microglial
cells

1 × 105 cells/cm2 0.01 to 100 μg/mL 2 to 24 h 10 μg/mL cytotoxic Lovric et al. 2005

CdSe-MAA,
TOPO QDs

Primary rat hepatocytes 62.5-1,000 μg/mL 1 to 8 h Cytotoxic: 62.5 μg/mL cytotoxic
under oxidative/photolytic conditions

Derfus 2004

No toxicity on addition of ZnS cap

QD micelles: CdSe/ZnS
QDs in (PEG-PE) and
phosphatydilcholine

Xenopus blastomeres 5 × 109 QDs/cell
(approximately
0.23 pmol/cell)

1.5 to 3 nL of 2.3-μM
QDs injected, approximately
2.1 × 109 to 4.2 × 109

injected QDs/cell

Days 5 × 109 QDs/cell: cell abnormalities,
altered viability and motility

Dubertret et al. 2002

No toxicity at 2 × 109 QDs/cell

CdSe/ZnS amp-QDs
and mPEG QDs [158]

Mice 200-μL tail vein injection Injections, approximately
180-nM QD, approximately
20-pmol QD/g animal
weight

15-min cell
incubations,
1 to 133 days
in vivo

No signs of localized necrosis at the
sites of deposition

Ballou et al. 2004

CdSe/ZnS-DHLA Dictyostelium discoideum
and HeLa cells

400 to 600 nM 45 to 60 min No effects on cell growth Jaiswal et al. 2003

Avidin-conjugated
CdSe/ZnS QDs

HeLa cells 0.5 to 1.0 μM 15 min No effect on cell growth
and development

Jaiswal et al. 2003

CdSe/ZnS-amphiphilic
micelle

Mice Tail vein injection 60-μM QD/g animal
weight, 1-μM and 20-nM
final QD concentration

Not given Mice showed no noticeable ill effects
after imaging

Larson et al. 2003

CdSe/ZnS-DHLA QDs Mice, B16F10 cells 5 × 104 B16F10 cells with
10-μL QDs (approximately
10 pmol), tail vein (iv)
injection

100 μL of B16F10 cells
used for tail vein
injection, approximately
2 × 105 to 4 × 105

cells injected

4- to 6-h cell
incubation, mice
sacrificed at 1 to 6 h

No toxicity observed in cells or mice Voura et al. 2004

CdSe/ZnS-MUA QDs;
QD-SSA complexes
[162]

Vero cells 0.4 mg/mL 0.24 mg/mL 2 h 0.4-mg/mL MUA/SSA-QD complexes
did not affect viability of Vero cells

Hanaki et al. 2003

CdSe/ZnS HeLa cells 1 × 106 cells 10 days
(cell culture)

10-nM QD had minimal impact on
cell survival

Chen and Gerion
2004
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Table 4 More details for toxicity of QDs (modified from [163]) (Continued)

10-pmol QDs/1 × 105

cells (approximately
10 nM)

CdTe aqQDs HEK293 cells 1 × 105 cells 300 or 600 nM 3 days Nearly completely inhibited cell growth
even from the very beginning

Nan Chen et al. 2012

CdTe-gelatinized/
nongelatinized

PC12 cells 1 × 105 cells/cm2 1 to 100 nM 72 h At 1 nM,did not initiate any detrimental
effects; at 100 nM, resulted in the death
of all cells

Babu R Prasad et al.
2010

CdTe, CdTe/CdS,
CdTe/CdS/ZnS

K562 and HEK293T
human cell lines

1 × 105 cells 0.2 to 3.0 μM 0 to 48 h Cells treated with CdTe and CdTe/CdS
QDs were mostly nonviable by
48 h (for all concentrations tested).

Su et al. 2009

CdSe/ZnS-PEG
(EviTag T1 490 QD)

Caco-2 (human colon
carcinoma) cell line

106 cells/ml, 0.2 ml/well 0.84 to 105 μM 0 to 24 h Commercially available QD
demonstrated low cytotoxicity
but induced cell detachment.

Wang et al. 2008

CdSe Primary rat hippocampal
neuron cells in culture

104to 105 cells/ml 1, 10, and 20nM 24 h 1-nM QD for 24 h showed no decrease
in cell viability; in contrast, cells treated
with 10- and 20-nM QD for 24 h showed
decreases in cell viability on the order
of 20 and 30%.

Tang et al., 2008
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death pathway and induction of endothelial apoptosis

[156].

More recently, Chen et al. have studied the cytotoxicity

of CdTe/CdS (core-shell) structured and also CdTe/CdS/

ZnS (core-shell-shell) structured aqueous synthesized

QDs, and their results suggest that the cytotoxicity of

CdTe QDs not only comes from the release of Cd2+ ions

but also intracellular distribution of QDs in cells and the

associated nanoscale effects [157]. Table 4 demonstrated

more results for toxicity of QDs [158-162].

Conclusions
In this review, we summarize few experiments that illus-

trate the high potential of QDs used for/as:

1. labeling biomolecules and cells;

2. tracer to follow the intracellular/extracellular

dynamic of a single biomolecule/cell;

3. localization of biomolecules in vitro/in vivo;

4. imaging of biomolecules or cells in vitro/in vivo;

5. assessing cell growth in damaged tissue;

6. pH probes for the study of enzyme reaction kinetics;

7. biomarker detection in various cancers;

8. imaging and sensing of infectious diseases; and

9. protein micro- and nanoarrays to the detection of

cancer biomarkers.

These studies have been generated using QDs because

of their small size, brightness, independence of emission

on the excitation wavelength, and stability under rela-

tively harsh environments which would be advantageous.

In contrast, there are different opinions about the tox-

icity and fate of QDs in vivo. Therefore, more experi-

ments should be done, and much more data should be

available, to be sure to do clinical trials on humans.

Future prospects

In the future, QDs will be used for identifying various

categories of cancer cells, the molecular mechanisms of

disease, and new drug action mechanisms, applying them

in the intracellular/extracellular studies, and making new

methods for biochemical assaying.
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