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Quantum dynamics as an analog of conditional probability

M. S. Leifer*
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5

�Received 14 June 2006; published 12 October 2006�

Quantum theory can be regarded as a noncommutative generalization of classical probability. From this
point of view, one expects quantum dynamics to be analogous to classical conditional probabilities. In this
paper, a variant of the well-known isomorphism between completely positive maps and bipartite density
operators is derived, which makes this connection much more explicit. This isomorphism is given an opera-
tional interpretation in terms of statistical correlations between ensemble preparation procedures and outcomes
of measurements. Finally, the isomorphism is applied to elucidate the connection between no-cloning and
no-broadcasting theorems and the monogamy of entanglement, and a simplified proof of the no-broadcasting
theorem is obtained as a by-product.

DOI: 10.1103/PhysRevA.74.042310 PACS number�s�: 03.67.�a, 03.65.Ta

I. INTRODUCTION

Quantum theory can be regarded as a noncommutative
generalization of classical probability theory, in which den-
sity operators play the role of probability distributions and
the Cartesian product of probability spaces becomes the ten-
sor product of Hilbert spaces �or more generally of C* alge-
bras�. This point of view has been highly influential in the
developing field of quantum information theory �1�, which
studies the same questions that arise in classical information
theory in the noncommutative context.

However, quantum theory, as it is usually formulated, is
not directly analogous to abstract probability theory in the
sense of Kolmogorov �2�, but is much closer to the theory of
stochastic processes �3�. In nonrelativistic quantum mechan-
ics, a quantum state is conceived as the state of a number of
subsystems at a particular time and states at different times
are related by dynamics, generally represented as a com-
pletely positive �CP� map. In the relativistic case, there are
many such descriptions corresponding to different inertial
frames, related to each other via unitary transformations.
Nevertheless, the states are always defined on spacelike hy-
perplanes, so the underlying causal structure is still present
in all of these descriptions. This type of theory is closely
analogous to a classical stochastic process, in which a state is
a probability distribution over a set of random variables rep-
resenting the properties of a system at a given time and the
states at different times are related by dynamics, given by a
stochastic transition matrix.

In contrast, abstract probability spaces make no assump-
tions about the causal structure of the events on which prob-
abilities are defined. Two disjoint events might refer to prop-
erties of two different subsystems at a given time, or they
might refer to properties of the same subsystem at two dif-
ferent times. In full generality, events need have no interpre-
tation in terms of causal structure at all. It is interesting to
ask whether quantum theory can be reformulated as an ab-
stract noncommutative probability theory in this sense. A
first step along this road is to ask whether correlations be-

tween different subsystems and correlations between the
same system before and after the application of a CP map
can be expressed using an identical formalism. In the analo-
gous classical case, both can be handled by conditional prob-
abilities, so we are really asking whether a good quantum
analog of conditional probability exists.

In this paper, the question is answered in the affirmative
by deriving a variant of the isomorphism between bipartite
states and CP maps discovered by Jamiołkowski �4� and
Choi �5�, which makes the connection to conditional prob-
ability much more explicit. An operational interpretation of
this isomorphism is given by showing that the same sets of
correlations can be obtained in each of the two cases.

This result is interesting from the point of view of quan-
tum information, since many relationships have already been
discovered between the properties of bipartite quantum states
and those of noisy quantum channels �6,7�—i.e., trace-
preserving CP maps. Some of these can be extended using
our approach. In particular, it is shown that the various types
of no-cloning and no-broadcasting theorems �8–10� can be
associated directly to statements about the monogamy of en-
tanglement for tripartite states �11�—i.e., the fact that if two
subsystems are in a pure entangled state, neither of them can
be entangled with any other subsystems. As a by-product of
this, a simplified proof of the no-broadcasting theorem is
obtained.

A. Prior work

The central question addressed in this paper was origi-
nally raised by Ohya �12,13�. Griffiths �14� suggested that
the Jamiołkowski isomorphism might be extended by allow-
ing a CP map to act on a more bipartite state. The suggestion
was not pursued in that work, but D’Ariano and Lo Presti
later developed it in the context of quantum process tomog-
raphy �15�. The specific isomorphism developed here was
very much inspired by some observations made by Fuchs
�16,17�. During the preparation of this manuscript, I became
aware of work by Asorey et al. �18�, where a similar isomor-
phism to the one developed here is considered. The main
novelties of the present work are the operational interpreta-
tion of the isomorphism and the application to no-cloning*Electronic address: mleifer@perimeterinstitute.ca
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and no-broadcasting theorems. Also, the case of density op-
erators that are not of full rank is treated more carefully here.
Finally, Cerf and Adami have developed a different notion of
quantum conditional probability �19–21�, based on the defi-
nition of the conditional von Neumann entropy.

B. Outline

The remainder of this paper is structured as follows. As
preparation for the quantum isomorphism, the different
causal structures that can give rise to the same classical joint
probabilities are reviewed in Sec. II. The standard version of
the Jamiołkowski isomorphism is reviewed in Sec. III, and
Sec. IV combines the ideas of Secs. II and III to obtain a
different variant of the isomorphism for the quantum case.
Section V develops the application of the isomorphism to the
connection between cloning and broadcasting and the mo-
nogamy of entanglement. Finally, further potential applica-
tions and open questions suggested by this work are dis-
cussed in Sec. VI.

II. CAUSAL RELATIONS AND CLASSICAL JOINT
PROBABILITIES

Given two integer-valued random variables X and Y, with
joint probability distribution P�X= i ,Y = j�, the marginal
probability distributions for X and Y are given by

∀ j P�X = j� = �
k

P�X = j,Y = k� , �1�

∀ k P�Y = k� = �
j

P�X = j,Y = k� .

As is conventional in probability theory, the notation P�X�
is used as a stand-in for P�X= j�, when j is an arbitrary
unspecified integer. Similar definitions apply for P�Y� and
P�X ,Y�. When a random variable appears as a free index in
an equation involving probabilities, then it is implicit that the
equation holds for all possible values that the variable can
take and �X is an instruction to sum over the possible values
of X. With these conventions, Eq. �1� may be simplified to

P�X� = �
Y

P�X,Y�, P�Y� = �
X

P�X,Y� , �2�

and the conditional probability of Y, given X, is defined as

P�Y�X� =
P�X,Y�
P�X�

, �3�

for all values of X such that P�X��0, and is undefined
whenever P�X�=0. Clearly,

P�X,Y� = P�Y�X�P�X� �4�

whenever the right-hand side is defined and P�X ,Y�=0 oth-
erwise.

Note that so far no mention has been made of how the
correlations between X and Y arise. X and Y might refer to
the same physical quantity at two different times, Y differing
from X due to the dynamics of the system, or they might

refer to quantities associated with distinct physical systems
at the same time. Indeed, they may have no interpretation in
terms of physical quantities at all. In other words, classical
probability theory does not depend in any way on the causal
ordering of variables, and in particular it does not depend on
how or even whether the random variables are embedded in
spacetime. Of course, if X and Y are given physical meaning,
then this is likely to severely constrain the possible assign-
ments of P�X ,Y� we are likely to entertain, but this happens
at the level of the application of probability theory to phys-
ics, and not within the abstract theory itself.

In contrast, the quantum formalism handles correlations in
very different ways depending on how they arise. Joint states
of two subsystems are handled by taking the tensor product
of the underlying Hilbert spaces, whereas correlations be-
tween the same physical quantity at differing times are not.
This is a weak point in the analogy between quantum theory
and classical probability, since the former cannot be viewed
as a completely abstract theory that is independent of how
the observables we are interested in are embedded in space-
time. The isomorphism of Sec. IV is intended to remove this
deficiency, but before moving on to the quantum case, it is
helpful to understand the different ways in which joint prob-
ability distribution P�X ,Y� may be described in distinct
causal scenarios, the simplest of which are depicted in Fig. 1.

A possible situation in which case �c� might arise is if X
and Y represent the values of some physical quantity, asso-
ciated with two distinct subsystems. Z may then represent the
state of a source, which produces the two subsystems and
sends them flying out in opposite directions. In this situation,
the values of X and Y could potentially be observed at space-
like separation from one another. P�X ,Y� then represents the
joint state of the two subsystems, and the marginals P�X� and
P�Y� represent their reduced states. This is entirely analo-
gous to the quantum description of the joint state of two
subsystems by a density matrix �AB�L�HA � HB� and the
descriptions of the reduced states of the two subsystems by
the reduced density matrices �A=TrB��AB�, �B=TrA��AB�,
where HA and HB are the Hilbert spaces associated with two
subsystems A and B, and L�H� denotes the space of linear
operators on a Hilbert space H.

A possible situation in which case �a� or �b� might arise is
if X and Y represent the values of the same physical quantity,
associated with the same physical system at two different
times t1� t2. In case �a�, X is the value of the quantity at t1
and Y is its value at t2. The transition from X to Y is the
result of the dynamics of the system, which may include a
stochastic component due to random external influences or a
lack of knowledge about the precise details of a deterministic
dynamics. A general dynamics is therefore described by a
stochastic matrix �Y�X, where ��Y�X�ij is the probability of a
transition from the state X= j at t1 to the state Y = i at t2. The
general picture we obtain from this is that the state P�X� is
prepared at time t1; then, the dynamics �Y�X occurs, resulting
in a final state P�Y� at t2. This is summarized by the dynami-
cal rule

P�Y = i� = �
j

��Y�X�ijP�X = j� . �5�
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In the quantum case, the analog of �Y�X is a trace-
preserving completely positive �TPCP� map EB�A :L�HA�
→L�HB�, which can be used to describe the dynamics of a
system that is interacting with its environment or when the
dynamics is controlled by a random classical parameter �see
�1� for further details�. In this case, a density operator �A is
prepared at t1 and then the system is subjected to a dynami-
cal evolution according to the TPCP map EB�A to obtain a
density operator �B=EB�A��A� at t2. Classically, there is no
reason not to consider the two-time joint probability distri-
bution P�X ,Y� that results from combining the preparation
P�X� with the dynamics �Y�X. To do this, we need only define
the conditional distributions P�Y �X�, since the joint probabil-
ity is then given by Eq. �4�. Comparing Eq. �5� with Eqs. �2�
and �4�, we see that setting

P�Y = i�X = j� = ��Y�X�ij , �6�

for all i , j such that P�X= j��0, gives the desired result.
Note that, for a fixed preparation P�X�, we may vary the
dynamics arbitrarily for all values of X that have no support
in P�X�, without affecting the conditional distribution
P�Y �X� or the joint probability P�X ,Y�. Conversely, know-
ing P�Y �X� or P�X ,Y� only specifies the dynamics on the
support of P�X�.

Now, the set of joint probability distributions obtainable
in cases �a� and �c� are precisely the same, so we can define
an isomorphism between the pair of objects consisting of a
preparation and a dynamics and the joint state of two sub-
systems:

�P�X�,�Y�X
r � ↔ P�X,Y� . �7�

Here, �Y�X
r refers to the restriction of the dynamics �Y�X to the

support of P�X� and is in one-to-one correspondence with the
conditional probability P�Y �X�. The left-hand side of Eq. �7�
can be thought of as a description of a case �a� scenario and
the right-hand side as a description of a case �c� scenario.
This may seem like an unnecessarily complicated restate-
ment of what is essentially the definition of conditional prob-
ability, but it is worth remarking upon because the new iso-

morphism of Sec. IV is the quantum analog of this. That is,
we construct an isomorphism between the pair of objects
consisting of a preparation and a dynamics and the joint state
of two subsystems:

��A,EB�A
r � ↔ �AB, �8�

where EB�A
r denotes the restriction of a TPCP map EB�A to the

support of �A. The object EB�A
r is to be thought of as a quan-

tum analog of conditional probability, playing the same role
as �Y�X

r does in classical probability theory.

III. JAMIOŁKOWSKI ISOMORPHISM

In this section, the standard Jamiołkowski isomorphism is
reviewed. This relates CP maps EB�A to bipartite states �AB,
without introducing the state �A that appears in Eq. �8�, and
is later shown to be a special case of the more general iso-
morphism described in Sec. IV. Sections III A and III B give
the mathematical statement of the isomorphism, and Sec.
III C gives its operational interpretation. Comments about
the isomorphism that will be important in what follows are
made in Sec. III D. The discussion is intended to be self-
contained, but the interested reader can find detailed over-
views different aspects of the isomorphism in �7,22�.

A. Operators and pure states

Let HA and HB be Hilbert spaces of dimension dA and dB,
respectively, and let ��j�A	 be an orthonormal basis for HA.
An operator RB�A :HA→HB is isomorphic to a �generally un-
normalized� pure state ��R�AB�HA � HB given by

��R�AB =
1


dA
�
j=1

dA

�j�A � RB�A��j�A� = IA � RB�A���
+�AA�,

�9�

X

(c)(b)(a)

YY

X

X

Z

Y

ΓY |X ΓX |Y ΓX |Z ΓY |Z

FIG. 1. Distinct ways in which a general joint probability distribution P�X ,Y� may arise. �a� X is the cause of Y. The generation of Y must
be in the temporal future of the generation of X. For example, Y may be the result of sending X through a noisy channel described by a
stochastic matrix �Y�X. �b� Y is the cause of X. The generation of X must be in the temporal future of the generation of Y. For example, X
may be the result of sending Y through a noisy channel described by a stochastic matrix �X�Y. �c� X and Y are the result of some common
cause, described by a random variable Z. They may be observed at spacelike separation from one another, provided the points where this
happens are both in the forward lightcone of the point where Z was generated.
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where A� denotes an additional system with the same Hilbert
space as A,1 ��+�AA�= 1


dA
� j=1

dA �j�A � �j�A� is a maximally en-
tangled state on HA � HA� and IA is the identity operator on
HA.2

To see that this is an isomorphism, note that the action of
RB�A on a pure state ���A can be recovered from ��R�AB via

RB�A���A = dA��+�AA����A � ��R�A�B. �10�

B. Completely positive maps and mixed states

The isomorphism can be extended from operators to CP
maps, EB�A :L�HA�→L�HB�, where L�H� is the space of lin-
ear operators on a Hilbert space H. An arbitrary CP map can
be characterized by a set of linear operators RB�A

�	� :HA→HB,
known as Kraus operators. The action of EB�A on density
operators �A�L�HA� is given by

EB�A��A� = �
	

RB�A
�	��ARB�A

�	�†, �11�

where † denotes the conjugate transpose. Note that a CP map
typically has more than one decomposition into Kraus opera-
tors.

If �	RB�A
�	�†RB�A

�	� = IA, then the map is called a trace preserv-
ing completely positive �TPCP� map and it can be imple-
mented with certainty by introducing an ancilla, performing
a unitary transformation and then taking the partial trace over
a subsystem �see �1� for details�. On the other hand, if
�	RB�A

�	�†RB�A
�	� � IA, then the action of the CP map gives the

�unnormalized� updated state after obtaining a particular out-
come in a generalized measurement, and it cannot be imple-
mented with certainty. In what follows, the main focus is on
TPCP maps, but comments on the general case are made in
Sec. III D.

The state isomorphic to EB�A is generally mixed and is
given by

�AB = �
	

��R�	��AB��R�	��AB �12�

=IA � EB�A����
+�AA���

+�AA�� , �13�

where IA is the identity CP map on L�HA�. Note that the
state �AB depends only on EB�A and not on a particular de-
composition into Kraus operators. The form in Eq. �12� gives
different pure-state decompositions of the same density op-
erator as the Kraus decomposition is varied and all pure state
decompositions of �AB can be obtained in this way.

The reverse direction of the isomorphism is similar to Eq.
�10�. The action of EB�A on an arbitrary 
A�L�HA� is given
by

EB�A�
A� = dA
2��+�AA�
A � �A�B��+�AA�. �14�

C. Operational interpretation

So far, the isomorphism has been stated as a mathematical
fact. For TPCP maps, it obtains operational meaning via
noisy gate teleportation, the obvious extension of a protocol
described in �23� for unitary gates.

Suppose Alice holds an unknown state 
A and that Bob
wishes to end up with the transformed state EB�A�
A�, where
EB�A is a TPCP map. They also share a copy of the isomor-
phic state �A�B and they wish to achieve the task via local
operations and classical communication �LOCC�. If the map
EB�A is just the identity IA, then the task can be achieved via
the usual teleportation protocol, since �A�B is maximally en-
tangled in this case. In general, the task can be achieved with
probability of success at least 1

dA
2 , since if Alice makes a

measurement in a basis that includes the state ��+�AA�, then
Bob will receive the correct transformed state whenever Al-
ice gets this outcome, as can be seen from Eq. �14�. For
certain special maps, Bob can correct his state when Alice
does not get the right outcome, as in the teleportation proto-
col, but this is not possible in general.

D. Remarks

The following facts about the Jamiołkowski isomorphism
are important in what follows. First, note that the isomor-
phism is basis dependent, since the definition of the state
��+� makes use of a particular basis. The association be-
tween a bipartite state and a CP map is unique, up to this
choice of basis.

Second, if EB�A is a TPCP map, then the state �AB always
has the maximally mixed state as the reduced density opera-
tor for system A—i.e., TrB��AB�=

IA

dA
. This can be deduced

from Eq. �13� and the fact that the state ��+�AA� is maximally
mixed on A. To obtain an arbitrary state via the isomorphism,
one has to use the more general CP maps that cannot be
implemented deterministically. For example, the pure prod-
uct state �00�AB corresponds to the projection operator
�0�B�0�A that results from obtaining the �0� outcome of a mea-
surement in the computational basis and then relabeling sys-
tem A to B. A major difference between the standard isomor-
phism and the new variant described in Sec. IV is that in the
new version, all bipartite states are obtained with just TPCP
maps.

IV. VARIANT OF THE JAMIOŁKOWSKI ISOMORPHISM

In this section, our isomorphism is described. It is con-
structed and shown to be an isomorphism in Sec. IV A. Sec-
tion IV B gives the operational interpretation of the isomor-
phism. Finally, Secs. IV C and IV D describe some
properties of the isomorphism that are exploited in the appli-
cations that follow.

A. Construction of the isomorphism

Recall from Sec. II that the aim is to construct an isomor-
phism

1Generally, X� ,X� , . . . are used as labels for ancillary systems with
the same Hilbert space as the system labeled by X, and HX� ,HX� , . . .
are synonyms for HX.

2Generally, IX denotes the identity operator on HX for an arbitrary
system label X.
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��A,EB�A
r � ↔ �AB, �15�

where EB�A
r denotes the restriction of a TPCP map EB�A to the

support of �A.
We begin by describing the forward direction of the iso-

morphism, ��A ,EB�A
r �→�AB. First, construct the state

���AA� = 
dA��A
T�1/2

� IA���
+�AA�, �16�

where T denotes transpose in the basis used to define
��+�AA�. Note that this is a normalized state since
�� ���AA�=Tr��A

T�=1. Also, TrA��������AA��=�A
T and

TrA�������AA�� is identical to �A, so that the action of EB�A�
r

on system A� is well defined for this state. Finally, define

�AB = IA � EB�A�
r �������AA�� , �17�

which is a normalized state because EB�A�
r is the restriction of

a TPCP map.
For the reverse direction �AB→ ��A ,EA→B

r �, begin by de-
fining the state

�A = �A
T = TrB��AB�T. �18�

To define the map EB�A
r , care must be taken if �A is not in-

vertible. If this is the case, define �A
−1 to be the inverse re-

stricted to the support of �A. This means that its nonzero
eigenvalues are the reciprocals of the nonzero eigenvalues of
�A and they are associated with the same eigenvectors and
that the zero eigenspaces of �A and �A

−1 are the same. Now,
define the state


AB = �A
−1/2

� IB�AB�A
−1/2

� IB. �19�

This is a density operator with 
A=TrB�
AB�= 1
dA

r PA, where
PA is the projector onto the support of �A and dA

r is the rank

of �A. The associated subspace PAHA is also a Hilbert space,
for which PA is the identity operator, so 
A is maximally
mixed on this subspace. Thus, 
AB is uniquely associated
with a TPCP map EB�A

r :L�PAHA�→L�HB� via the standard
Jamiołkowski isomorphism.

In the above construction, Eq. �19� can be viewed as a
direct analog of the definition of conditional probability
P�Y �X�= P�X ,Y� / P�X�, since conjugation by �A

−1/2 reduces to
elementwise division in the case where �AB is diagonal in a
basis ��� j�A � ��k�B	, where the �� j�A form an orthonormal
basis for HA and the ��k� form an orthonormal basis for HB.
The introduction of the transpose in Eq. �18� is due to a time
reversal implicit in the construction, which is illustrated by
Fig. 2. Note that in the case where �A=

IA

dA
, this construction

reduces to the standard Jamiołkowski isomorphism.
Theorem IV.1. The construction described above is an iso-

morphism.
Proof. The above relations define an isomorphism if it can

be shown that one obtains the same pair ��A ,EB�A
r � on apply-

ing the forward and reverse directions in sequence. To check
this for the state �A, let R

B�A�
�	� be a set of Kraus operators for

EB�A�
r . Then,

�AB = �
jk	

��A
T�1/2�j��k���A

T�1/2
� RB�A�

�	� �j��k�RB�A�
�	�† . �20�

Taking the partial trace gives

�A = �
jk	

��A
T�1/2�j��k���A

T�1/2�k��
	

RB�A�
�	�†RB�A�

�	� �j� . �21�

Since EB�A
r is trace preserving, �	R

B�A�
�	�†

R
B�A�
�	� = IA�, so

(b)

(a)

BA

B

AA

B

(c)

Source: τAB

τA

τAB

τA

E rB | A

ρA = τ TA

FIG. 2. In these diagrams, time flows up the page. Starting from �a�, the space and time axes are interchanged and the diagram is
“stretched out” to arrive at �b�. This does not describe a possible experiment, since we cannot send system A backwards in the time direction.
In order to arrive at a feasible experiment, some arrows must be reversed, giving rise to �c�. The transpose on �A is an artifact of this time
reversal.
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�A = ��A
T�1/2�

j

�j��j���A
T�1/2 = ��A

T�1/2��A
T�1/2 = �A

T , �22�

which gives the correct state for the reverse direction.
To check the map EB�A

r , note that the state ��+�AA� that
appears in Eq. �16� can be replaced by the state ��+�AA�

r

=
dA

dA
r PA � IA���

+�AA�, provided 
dA is also replaced by 
dA
r

in Eq. �16�. This is because ��A
T�1/2 only has support on the

subspace that PA projects onto, so the state ���AA� obtained
will be the same. The action of EB�A�

r is well defined on
��+�AA�

r and the two steps of the construction commute, so
that the same state �AB is obtained by applying the CP map to
��+�AA�

r , followed by conjugation with ��A
T�1/2. The state

��+�AA�
r is maximally entangled on the Hilbert space PAHA

� PAHA, and so the state 
AB=IA � EB�A�
r ���+�r��+�AA�

r � is
obtained from applying the standard Jamiołkowski isomor-
phism to EB�A

r . On applying the reverse construction, the
same state 
AB is obtained in Eq. �19�, and because states and
maps are uniquely related by the standard isomorphism, the
map EB�A

r that we started with is recovered from this proce-
dure. �

B. Operational interpretation

Unlike the standard Jamiołkowski isomorphism, our iso-
morphism does not have an immediate operational interpre-
tation in terms of noisy gate teleportation. However, there is
a sense in which �AB and the pair ��A ,EB�A

r � are operationally
indistinguishable. To understand this, we need to recall the
role of positive-operator-valued measures �POVM’s� in de-
scribing generalized quantum measurements �1� and explain
their correspondence to ensemble preparations of density op-
erators.

A POVM is a set of positive operators that sum to the
identity. Here, POVM’s are denoted by uppercase letters
M ,N , . . .. The operators within a POVM are denoted by the
corresponding boldface letter—e.g., M = �M�m�	, where the
superscript m is a positive integer used to distinguish the
operators within POVM.

POVM’s are normally used to compute the probabilities
for the possible outcomes of generalized measurements. Let
the possible outcomes be labeled by the same integers as the
POVM elements, so that the generalized Born rule is

P�M = m� = Tr�M�m��� . �23�

Note that the symbol M, which stands for a collection of
operators, is also being used to denote the random variable
generated by the measurement. It should be clear from the
context which of the two meanings is intended.

It is convenient to extend the random variable notation
used in Sec. II to POVM’s, by leaving the index m implicit.
With this, the POVM is written as M = �M	, and Eq. �23�
reduces to

P�M� = Tr�M�� . �24�

Generally, a POVM only describes the outcome statistics
of a measurement and does not specify how the state is to be

updated on obtaining a particular outcome. The update rule
that should be used depends on the details of the interaction
between the system being measured and the measuring de-
vice. Among the possible update rules, a particularly natural
choice is

��M� =

M�
M

P�M�
, �25�

since this reduces to the Lüders–von Neumann projection
postulate �24� in the case where each M is a projection op-
erator. If a POVM M is measured on a state �, generating the
probability distribution of Eq. �24�, and the state is updated
according to Eq. �25�, then we refer to this an M measure-
ment of �. The update rule for an M measurement is not
important for the operational interpretation developed in this
section, but it is used in Sec. IV C and in the applications of
Sec. V.

Although POVM’s are normally used to describe mea-
surements, they can also be used to describe the different
methods of preparing a density operator �. This is demon-
strated by the following lemma.

Lemma IV.2. Let � be a density operator and M = �M	 a
POVM. Define P�M�=Tr�M�� and let ��M�=


�M
�
p�M� when-

ever P�M��0. Then, �=�MP�M���M� is an ensemble de-
composition of � into a convex combination of density op-
erators. Conversely, any ensemble decomposition of � is
related to a POVM in this way.

Proof. It is clear from the definition of a POVM that
0
 p�M�
1 and �Mp�M�=1. The operators ��M� are posi-
tive, since they are of the form A†A for A=
M
�. They also
have unit trace, so they are density operators. Furthermore,
�MP�M���M�=�M


�M
�=�, by virtue of the fact that
POVM operators sum to the identity.

To prove the converse, let �=�MP�M���M� be an en-
semble decomposition of �. Then, define positive operators
Mr= P�M��−1/2��M��−1/2, where �−1/2 is the restricted in-
verse of �1/2 as defined in Sec. IV A. These satisfy
Tr�Mr��= P�M� and


�Mr
�
p�M� =��M�. Clearly, �MMr= P�,

where P� is the projector onto the support of �. Let P�
� be

the projector onto the orthogonal complement of this
subspace and choose a set of positive operators Ms of the
same cardinality as M, supported only on this orthogonal
complement, which sum to P�

�. Since Ms�1/2=0, the opera-

tors M=Mr+Ms satisfy

�M
�
p�M� =��M� and sum to the identity,

as required. �
The above lemma shows that POVM’s may be used to

describe ensemble preparations of density operators as well
as measurements. For a POVM M and a density operator �,
an M preparation of � is defined to be the procedure of
generating a classical random variable with distribution
P�M�=Tr�M�� and then preparing the corresponding density
matrix ��M�=


�M
�
p�M� .

At this stage, the relation between the statistics obtainable
from a bipartite state �AB and those obtainable from the iso-
morphic pair ��A ,EB�A

r � can be stated and proved. It can be
understood schematically from the idea that the isomorphism
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represents an interchange of space and time axes, as shown
in Fig. 3.

Theorem IV.3. Let �AB be a bipartite state that is related to
a pair ��A ,EB�A� by the isomorphism of Sec. IV A. Let M and
N be arbitrary POVM’s, defined on HA and HB, respectively,
and let MT be the POVM obtained by taking the transpose of
all the operators in M with respect to the basis used to con-
struct the isomorphism. Then, the joint probability distribu-
tion of M and N measurements on �AB, performed in parallel,
is the same as the joint probability distribution of the se-
quence of operations consisting of an MT preparation of �A,
followed by evolution according to EB�A, followed by an N
measurement.

Proof. The proof is by direct computation. Let P�M ,N�
=Tr�MA � NB�AB� be the probability distribution of the two
measurements performed in parallel on the state �AB, and let
Q�M ,N�=TrB�NBEB�A

r ��A
1/2MA

T�A
1/2�� be the joint probability

distribution of the MT preparation, followed by evolution
according to EB�A

r , followed by the N measurement. Let ��j�	
be the basis of HA in which the isomorphism is defined.
Then,

P�M,N� = Tr�MA � NB�AB� �26�

=Tr�MA � NB�A
1/2

� IB
AB�A
1/2

� IB� , �27�

where 
AB is the state defined in Eq. �19�. Since 
AB=IA

� EB�A�
r ���+�r��+�AA�

r �, this gives

P�M,N�

= Tr��A
1/2MA�A

1/2
� NB

1

dA
r �

j,k=1

dA
r

�j��k�A � EB�A
r ��j��k�A�
 .

�28�

Let �RB�A
�	� 	 be a set of Kraus operators for EB�A

r . Substituting
these and rearranging then gives

P�M,N� = �
j,k=1

dA
r

�k��A
1/2MA�A

1/2�j��k�RB�A
�	�†NBRB�A

�	� �j� �29�

=�
j=1

dA
r

�j���A
1/2�TMA

T��A
1/2�T�

k=1

dA
r

�k��k�RB�A
�	�†NBRB�A

�	� �j� .

�30�

Now, �A
T =�A and �k=1

dA
r

�k��k�= PA, where PA is the projector
onto the support of �A, so

(a)

A B

NM
B

A

M

N
(b) (c)

M

B

A

N

M -measurement N -measurement

τAB

τA

M -measurement

τA

τAB

N -measurement

M T -preparation

ρA = τ TA

ErB |A

N -measurement

FIG. 3. The same experiments as Fig. 2, with the addition of measurements and preparations. �a� is obtained by simply adding M and N
measurements to Fig. 2�a�. In �b�, the space and time axes have been swapped and the diagram has been “stretched out.” As with Fig. 2�b�
this does not represent a possible experiment. To obtain a feasible experiment, in addition to the transformations of Fig. 2, the M measure-
ment must be transformed into a preparation, leading to �c�. The transpose is an artifact of this time reversal.
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P�M,N� = �
j=1

dA
r

�j��A
1/2MA

T�A
1/2PARB�A

�	�†NBRB�A
�	� �j� . �31�

However, �A
1/2PARB�A

�	�†=�A
1/2RB�A

�	�†, since RB�A
�	� is only defined

on the support of �A. Substituting this and rearranging gives

P�M,N� = TrB�NBRB�A
�	��

j=1

dA
r

�j��j�A�A
1/2MA

T�A
1/2RB�A

�	�†
 .

�32�

Now again � j=1
dA

r

�j��j�A= PA and RB�A
�	� PA�A

1/2=RB�A
�	��A

1/2, so

P�M,N� = TrB�NBEB�A
r ��A

1/2MA
T�A

1/2�� �33�

=Q�M,N� . �34�

�

C. Commutativity properties of the isomorphism

Two commutativity properties of the isomorphism are
useful for the applications that follow. First, the isomorphism
commutes with the partial trace for tripartite states. To de-
scribe this, it is useful to introduce the concept of a reduced
map.

Definition IV.4. For a linear map EBC�A :L�HA�
→L�HB � HC�. The reduced map EB�A :L�HA�→L�HB� is
given by composing the map with the partial trace—i.e.,
EB�A=TrC �EBC�A.

Starting with a pair ��A ,EBC�A
r �, the isomorphism can be

used to arrive at a tripartite state �ABC, and then the partial
trace over C gives the bipartite reduced state �AB. This is the
same bipartite state that one obtains by applying the isomor-
phism to the pair ��A ,EB�A

r �. This is summarized in the fol-
lowing diagram:

�ABC v ��A,EBC�A
r �

TrC↓ ↓TrC

�AB v ��A,EB�A
r � .

�35�

The second commutativity property concerns M measure-
ments. Starting with a pair ��A ,EB�A

r �, the isomorphism can be
used to arrive at a bipartite state �AB, and then an M mea-
surement can be applied to system A, giving a bipartite state

MA � IB�AB


MA � IB, where the normalization factor has
been omitted. This is the same bipartite state that one obtains
by first performing an MT measurement on �A to obtain the
pair �
MA

T�A

MA

T ,EB�A
r � and then applying the isomorphism.

This is summarized in the following diagram:

�AB v ��A,EB�A
r �

MA-measurement↓ ↓MA
T-measurement


MA � IB�AB

MA � IB v �
MA

T�A

MA

T,EB�A
r �

�36�

These commutativity properties are straightforward to
prove from the definition of the isomorphism, and so the
proofs are omitted here.

D. Remarks

As with the standard isomorphism, our construction de-
pends on the basis chosen for ��+�AA�. The forward direction
takes a particularly simple form if this is chosen to be an
eigenbasis of �A, since this basis is then a Schmidt basis for
���AA�. Let �A=� j� j�j��j�A be an eigendecomposition of �A.
Then Eq. �16� can be written as

���AA� = �
j


� j�j�A � �j�A� �37�

and Eq. �17� reduces to

�AB = �
jk


� j�k�j��k�A � EB�A�
r ��j��k�A�� . �38�

With this choice of basis, the cumbersome transpose can be
eliminated, since �A

T =�A. Additionally, MT=M holds for any
POVM M with operators M that are diagonal in this basis.

Note that if EB�A is a unitary operation, then the state
�AB is pure, regardless of the state �A. If in addition �A is of
rank �2, then �AB has more than one Schmidt coefficient, so
it is both pure and entangled.

V. APPLICATION: CLONING, BROADCASTING,
AND THE MONOGAMY OF ENTANGLEMENT

The standard Jamiołkowski isomorphism is useful be-
cause it allows facts about CP maps to be recast as facts
about bipartite states and vice versa. On the other hand, there
are situations in which it is not necessary to know the action
of a TPCP map on the whole Hilbert space, but only how it
acts on a particular density matrix or, more generally, on an
ensemble decomposition of a particular density matrix. In
such cases, the present isomorphism is a more appropriate
tool to use. A simple example of this is given by the no-
cloning and no-broadcasting theorems �8–10�. In their origi-
nal form, these theorems concern the possible action of a
TPCP map on just a pair of noncommuting input states. The
isomorphism allows these theorems to be recast as facts
about the monogamy of entanglement in tripartite states.
These terms are defined precisely in Sec. V A. Section V B
gives a simple result for the no-universal broadcasting theo-
rem, and Sec. V C describes the most general results, includ-
ing a simplified proof of the no-broadcasting theorem that is
derived as a by-product.

Before getting into the technical details, a word of warn-
ing about how to interpret the results described below. The
goal is to relate properties of hypothetical TPCP maps of the
form EBC�A :L�HA�→L�HB � HC� to properties of hypotheti-
cal tripartite states �ABC via the isomorphism. The existence
of such maps and states is known to be in contradiction with
quantum mechanics via the no-cloning and no-broadcasting
theorems and the monogamy of entanglement, respectively.
Nevertheless, properties of �ABC are derived by assuming the
existence of EBC�A and the correctness of quantum mechanics
as premises. This may seem meaningless, since any state-
ment can be logically deduced from a contradiction, regard-
less of its truth or falsity. However, the commutativity of the
isomorphism with the partial trace averts this conclusion. As
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described below, the map EBC�A is defined by placing con-
straints on the reduced maps EB�A and EC�A. Quantum me-
chanics does in fact allow maps that satisfy these constraints
when they are considered in isolation. The no-cloning and
no-broadcasting theorems simply show that they cannot both
be the reduced maps of some global map EBC�A. Similarly, the
reduced states �AB and �AC of the hypothetical �ABC are in
fact valid density operators; it is just that they cannot both be
the reduced states of some valid global density operator �ABC.

The results below simply relate the properties of the valid
reduced maps EB�A and EC�A to those of the valid reduced
states �AB and �AC via the isomorphism. Thereby, no contra-
diction is involved, and a precise connection between the
properties that make the reduced maps incompatible with a
global map and those that make the reduced states incompat-
ible with a global state is obtained.

A. Definitions

The definitions of broadcasting and cloning concern
TPCP maps that have an output Hilbert space which is a
tensor product of two copies of the input Hilbert space. With
a view to applying the isomorphism, it is useful to continue
distinguishing the three copies of the Hilbert space by as-
signing them different labels A, A�, and A�. In this section,
states denoted by the same Greek letter, differing only in
their subsystem label, refer to the same state on different
copies of the same Hilbert space; e.g., �A, �A�, and �A� all
refer to the same state.

Definition V.1. A TPCP map EA�A��A :L�HA�→L�HA�
� HA�� is broadcasting for a state �A if

EA�A��A��A� = 
A�A�, �39�

where

TrA��
A�A�� = �A� and TrA��
A�A�� = �A�.

Equivalently, the reduced maps of EA�A��A must satisfy

EA��A��A� = �A�, EA��A��A� = �A�. �40�

Definition V.2. A TPCP map EA�A��A :L�HA�→L�HA�
� HA�� is cloning for a state �A if

EA�A��A��A� = �A� � �A�. �41�

Cloning is a stronger requirement than broadcasting, since
the output state is required to be a product. For example, if
the input state is maximally mixed �A= 1

dA
IA, then two pos-

sible output states for a broadcasting map are ��+���+�A�A�
and 1

dA�dA�
IA� � IA�, but a cloning map can only output the

latter. In the case of a pure state, cloning and broadcasting
are equivalent, since the purity of the reduced output states
on A� and A� ensures that they must be a product. Only the
broadcasting condition is needed below, but it is referred to
as cloning when only pure states are being considered.

Definition V.3. A universal broadcasting map is a TPCP
map EA�A��A :L�HA�→L�HA� � HA�� that is broadcasting for
every possible input state. Equivalently, both the reduced
maps EA��A and EA��A are the identity map.

The original no-cloning theorem �8,9� states that there is
no TPCP map that is cloning for a pair of nonorthogonal and
nonidentical pure states, and the original no-broadcasting
theorem �10� states that there is no TPCP map that is broad-
casting for a pair of noncommuting density operators. This
obviously implies that universal broadcasting is impossible
too, but it is worth considering as a special case because the
connection between no universal cloning and the monogamy
of entanglement is considerably simpler to prove than the
general case.

Definition V.4. A TPCP map is broadcasting for an en-
semble of states ��pj ,� j�	 if it is broadcasting for every state
� j in the ensemble.

Strictly speaking, the weights pj of the states in the en-
semble are irrelevant to the definition, but introducing them
is useful for deriving the connection to monogamy of en-
tanglement. This is because the ensemble average state
�A=� jpj� j can be used along with the reduced maps EA��A
and EA��A to construct bipartite states via the isomorphism.

Note that broadcasting and cloning are often defined in a
superficially more general way than the definitions given
here by allowing the input to include an arbitrary ancillary
system in a standard state and the output to also include an
ancillary system. However, the standard theorems about the
representations of reduced dynamics by CP maps �1� ensure
that the present definitions are equivalent.

The monogamy of entanglement refers to the fact that two
bipartite states �AA� and �AA� cannot be arbitrarily entangled
if they are the reduced states of a tripartite state �AA�A� �11�.
Typically, there is a trade-off such that the greater the en-
tanglement of �AA�, according to some entanglement mea-
sure, the lower the entanglement of �AA� �25–29�. For present
purposes, it is sufficient to note that if �AA� and �AA� are both
pure, then they must both be product states in order to be
compatible with a global state �AA�A�.

B. Universal broadcasting

The standard Jamiołkowski isomorphism can be used to
derive a connection between the no-universal broadcasting
theorem and the monogamy of entanglement. Its proof is
much simpler than the more general case described below, so
it is included here for completeness.

Theorem V.5. Supposing the existence of a universal
broadcasting map EA�A��A is equivalent to supposing the ex-
istence of a tripartite state �AA�A�, where both the bipartite
reduced states �AA� and �AA� are pure and maximally en-
tangled.

Proof. By the assumption that EA�A��A is universal broad-
casting, both the reduced maps EA��A and EA��A act as the
identity on all input states. The state isomorphic to the
identity by the standard isomorphism is the maximally en-
tangled state ��+�. Therefore, both �AA�= ��+���+�AA� and
�AA�= ��+���+�AA�.

Conversely, assume there is a tripartite state �AA�A�, such
that the reduced states �AA� and �AA� are pure and maximally
entangled. By acting with independent local unitary transfor-
mations on the subsystems A� and A�, these states can be
transformed to ��+���+�AA� and ��+���+�AA�. The isomorphic
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maps to these states are both the identity, so the map associ-
ated to the transformed tripartite state is universal broadcast-
ing. �

Since this result uses the standard isomorphism, it should
not be surprising that the converse has an interpretation in
terms of teleportation. Indeed, if there existed a tripartite
state �AA�A� with maximally entangled reduced states �AA�
and �AA�, then it would be possible to teleport any state to
both A� and A� simultaneously, which would provide a
method of implementing a universal broadcasting map.

C. Ensemble broadcasting and cloning

In order to generalize this result to the ensemble broad-
casting and cloning, some properties of the fixed point sets of
TPCP maps are needed. Proofs of the quoted results can be
found in �30,31�. These are used to provide a simple reduc-
tion of the no-broadcasting theorem to the no-cloning theo-
rem. The mathematical structure uncovered in this proof is
then used to derive the connection between ensemble broad-
casting and the monogamy of entanglement. Finally, this is
specialized to pure-state cloning, for which a stronger result
is possible.

1. Fixed-point sets of TPCP maps

The set of density matrices invariant under any TPCP map
that acts on L�H� is a convex linear subspace of L�H�. There
is a factorization of the Hilbert space H into a finite direct
sum of tensor products

H = �
�
H�1

� H�2
, �42�

such that the invariant density operators are all those of the
form

�
�

q�	�1
� ��2

, �43�

where 0
q�
1,��q�=1. In this decomposition, the 	�1
’s

can be any density operators in L�H�1
� and the ��2

are fixed
density operators in L�H�2

�. For a pair of TPCP maps E and
F, the set of density operators invariant under both E and F
is also of this form.

2. No-broadcasting theorem

Theorem V.6. A TPCP map EA�A��A that is broadcasting for
a pair of states 
1 ,
2, where �
1 ,
2��0, is cloning for a set
of nonorthogonal and nonidentical pure states.

Proof. The set of density operators invariant under both
the reduced maps EA��A and EA��A is of the form of Eq. �43�.
This set must include the density operators 
1 and 
2, by the
assumption that EA�A��A is broadcasting, so they can be writ-
ten as


 j = �
�

q�
�j�	�1

�j�
� ��2

. �44�

Since 
1 and 
2 do not commute, there must be at least one
value �, such that for �=�, the H�1

factor in the decompo-
sition of Eq. �42� is of dimension �2, �	�1

�1� ,	�1

�2���0 and

q�1

�1� ,q�1

�2��0. Both maps EA��A and EA��A act as the identity on
this factor, and hence any pure state on this factor is cloned
by the map EA�A��A. Since the factor is of dimension �2,
there are nonorthogonal and nonidentical pure states within
the factor. �

This result can be viewed as a simplified proof of the
no-broadcasting theorem, since the no-cloning theorem itself
is elementary to prove �8,9�. A similar strategy was used by
Lindblad to prove a more general theorem �32�, but the
above is a more direct route to no-broadcasting.

3. Ensemble broadcasting

Theorem V.7. Suppose there existed a TPCP map EA�A��A
that is broadcasting for a two-element ensemble of
states ��p ,
1� , ��1− p� ,
2�	, such that �
1 ,
2��0. Let
�A= p
1+ �1− p�
2. The tripartite state �AA�A�, isomorphic to
��A ,EA�A��A

r �, would have to be such that it can be trans-
formed with nonzero probability of success into a state that
has pure, entangled reduced states on both AA� and AA� by
local operations.

Proof. For the states 
1 ,
2, use the decomposition given
in Eq. �44� and define � as before. Now consider the en-
semble average density operator �A= p
1+ �1− p�
2. This
also has a decomposition of the form of Eq. �43�:

�A = �
�

q�	�1
� ��2

, �45�

where q�=Tr�pq�
�1�	�1

�1�+ �1− p�	�1

�2��, and if q��0, then

	�1
= �pq�

�1�	�1

�1�+ �1− p�	�1

�2�� /q�. Now, 	�1
must be of rank

�2 because �	�1

�1� ,	�1

�2���0.
Let P� be the projection operator onto H�1

� H�2
. The set

of P� for all values of � is a POVM �in fact it is a projector-
valued measure� that commutes with �A.

Now consider the pair ��A ,EA��A
r � and construct the iso-

morphic state �AA�. To do this, a basis must be chosen to
define the state ��+� used to construct the isomorphism.
Choose an eigenbasis of �A to make use of the facts noted in
Sec. IV D.

Recall that the state obtained from performing a
P�-measurement system A when the state is �AA� can be de-
termined by applying the isomorphism to the pair
�P��AP� ,EA��A

r �, where the T is omitted because P�
T = P� and

the square root is omitted because P� is idempotent. Suppose
the outcome � is obtained, which happens with nonzero
probability of success. Then the updated state after the mea-
surement is

P��AP� = 	�1
� ��2

. �46�

Since the map EA��A acts as the identity on the factor H�1
, the

isomorphic state on AA� is of the form ������ � �, where ���
is a pure state on H�1

� H�1
and � is a state on H�2

� H�2
.

One copy of H�1
and H�2

belongs to system A and the other
belongs to system A�. The state ��� is entangled, since ��1

is
of rank �2 and the rank of ��1

is the number of Schmidt
coefficients of ���.
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Thus, starting from the state �AA�, a pure entangled state
can be obtained with nonzero probability of success by per-
forming a P� measurement on system A and discarding the
two copies of the subsystem H�2

if the � outcome is ob-
tained. The same argument applies to �AA�, the state isomor-
phic to ��A ,EA��A

r �, so we have the desired result. �

4. Ensemble cloning

For pure state ensemble cloning, a stronger result is pos-
sible, which removes the need to perform a measurement on
system A.

Theorem V.8. Suppose there existed a cloning map EA�A��A
for an ensemble of �2 pairwise nonorthogonal and noniden-
tical, pure states ��pj , �� j��	, 0� pj �1, � jpj =1. Let
�A=� jpj�� j��� j�. The tripartite state �AA�A� isomorphic to
��A ,EA�A��A

r � would have to be such that both reduced states
�AA�, �AA� are pure and entangled.

Proof. Each state �� j��� j� is in the fixed-point set of both
the reduced maps EA��A and EA��A, and the common fixed-
point set is of the form of Eq. �43�. Therefore, each state �� j�
must be of the form �� j�= �� j��1

� �� j��2
, where �� j��1

is a
state on a factor H�1

and �� j��2
is a fixed state on a factor

H�2
. In fact, the factor � must be the same for all the states

�� j�, since otherwise they would be orthogonal. That means
that �� j��2

must be the same state ����2
for all j and that the

�� j��1
’s are nonorthogonal and nonidentical. The state �A

can then be written as �A=� j	�1
� ����2

����2
, where

	�1
=� jpj�� j��� j��1

. Note that 	�1
is of rank �2 and the map

EA��A acts as the identity on H�1
and on the state ����2

.
The isomorphic state �AA� is therefore of the form

������ � �������2
� �������2

�47�

where ��� is an entangled pure state on H�1
� H�1

. One copy
of H�1

belongs to the subsystem A and the other to A�, so the
state is both pure and entangled. The same argument applies
for the other reduced state �AA�. �

VI. DISCUSSION

In this paper, an alternative variant of the Jamiołkowski
isomorphism was derived and used to demonstrate the con-
nection between the no-cloning and no-broadcasting theo-
rems and the monogamy of entanglement. It is likely that our
isomorphism can be applied in a variety of other parts of
quantum information theory, whenever the action of a TPCP
map on a particular ensemble of states is of interest, rather
than its action on the entire Hilbert space. For example, this

occurs in prepare-and-measure quantum key distribution
schemes �33,34�.

A possible future project would be to derive bounds on
the maximum obtainable fidelity in approximate ensemble
broadcasting from the known inequalities for the monogamy
of entanglement �25–29�. It seems plausible that the closer
the bipartite reduced states can be made to the ones obtained
from the isomorphism, the better the fidelity of the broadcast
copies would be. Fewer results are known about approximate
broadcasting for mixed states �35–39� than for approximate
cloning of pure states, so this could be a fruitful route to
pursue. The main difficulty is that the entanglement mea-
sures used in monogamy inequalities are typically not related
to fidelity in a straightforward way.

From a more foundational point of view, we have shown
that the map EB�A

r mimics the behavior of classical condi-
tional probability very closely. The alternative definition of
quantum conditional probability proposed by Cerf and Ad-
ami �19–21� shares a different set of properties with its clas-
sical counterpart, particularly the role of conditional prob-
ability in the definition of conditional entropy. One might ask
whether there exists a unified notion of quantum conditional
probability that shares all these properties or whether certain
properties of conditional probability are mutually exclusive
when raised to the quantum domain. The answer to this ques-
tion could be of practical use, since there are several classical
probabilistic structures that are usually defined in terms of
conditional probabilities, such as Markov chains and Baye-
sian networks �40�. These might have more than one quan-
tum generalization if the quantum analog of conditional
probability is not unique.

More speculatively, the analogy to conditional probability
offers some hope that a formalism for an abstract quantum
probability without any background causal structures might
be obtainable, perhaps within the framework recently pro-
posed by Hardy �41�. One might hope that such a theory
would give insights into how to apply quantum theory to
cases in which the background causal structure is unknown a
priori, as in quantum gravity.

ACKNOWLEDGMENTS

I would like to thank Howard Barnum, Jonathan Barrett,
Lucien Hardy, Nick Jones, and Rob Spekkens for useful di-
cussions. Part of this work was completed while the author
was a visitor in Michael Nielsen’s research group at the Uni-
versity of Queensland. Research at Perimeter Institute has
been supported in part by the Government of Canada through
NSERC and by the Province of Ontario through MEDT.

�1� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, England, 2000�.

�2� A. N. Kolmogorov, Foundations of the Theory of Probability,
2nd English edition �Chelsea Publishing Company, New York,

1956�.
�3� J. L. Doob, Am. Math. Monthly 49, 648 �1942�.
�4� A. Jamiołkowski, Rep. Math. Phys. 3, 275 �1972�.
�5� M. D. Choi, Linear Algebr. Appl. 10, 285 �1975�.
�6� F. Verstraete and H. Verschelde, e-print quant-ph/0202124.

QUANTUM DYNAMICS AS AN ANALOG OF… PHYSICAL REVIEW A 74, 042310 �2006�

042310-11



�7� P. Arrighi and C. Patricot, Ann. Phys. �N.Y.� 311, 26 �2004�.
�8� W. K. Wootters and W. H. Zurek, Nature �London� 299, 802

�1982�.
�9� D. Dieks, Phys. Lett. 92A, 271 �1982�.

�10� H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schu-
macher, Phys. Rev. Lett. 76, 2818 �1996�.

�11� B. M. Terhal, IBM J. Res. Dev. 48, 71 �2004�.
�12� M. Ohya, IEEE Trans. Inf. Theory 29, 770 �1983�.
�13� M. Ohya, Lett. Nuovo Cimento Soc. Ital. Fis. 38, 402 �1983�.
�14� R. B. Griffiths, Phys. Rev. A 71, 042337 �2005�.
�15� G. M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 91, 047902

�2003�.
�16� C. A. Fuchs, e-print quant-ph/0205039.
�17� C. A. Fuchs, J. Mod. Opt. 50, 987 �2003�.
�18� M. Asorey, A. Kossakowski, G. Marmo, and E. C. G.

Sudarshan, Open Syst. Inf. Dyn. 12, 319 �2005�.
�19� N. J. Cerf and C. Adami, Phys. Rev. Lett. 79, 5194 �1997�.
�20� N. J. Cerf and C. Adami, Physica D 120, 62 �1998�.
�21� N. J. Cerf and C. Adami, Phys. Rev. A 60, 893 �1999�.
�22� K. Życzkowski and I. Bengtsson, Open Syst. Inf. Dyn. 11, 3

�2004�.
�23� M. A. Nielsen and I. L. Chuang, Phys. Rev. Lett. 79, 321

�1997�.
�24� G. Lüders, Ann. Phys. 8, 322 �1951�; translated by K. A. Kirk-

patrick, ibid. 15, 663 �2006�.
�25� V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,

052306 �2000�.
�26� K. A. Dennison and W. K. Wootters, Phys. Rev. A 65,

010301�R� �2001�.
�27� M. Koashi, V. Bužek, and N. Imoto, Phys. Rev. A 62,

050302�R� �2000�.
�28� M. Koashi and A. Winter, Phys. Rev. A 69, 022309 �2004�.
�29� T. J. Osborne and F. Verstraete, Phys. Rev. Lett. 96, 220503

�2006�.
�30� V. I. Paulsen, Completely Bounded Maps and Dilations �Long-

man, London, 1986�.
�31� V. I. Paulsen, Completely Bounded Maps and Operator Alge-

bras, Vol. 78 of Cambridge Studies in Advanced Mathematics
�Cambridge University Press, Cambridge, England, 2003�.

�32� G. Lindblad, Lett. Math. Phys. 47, 189 �1999�.
�33� C. H. Bennett and G. Brassard, in Proceedings of the IEEE

International Conference on Computer Systems and Signal
Processing �IEEE, New York, 1984�, pp. 175–179.

�34� C. H. Bennett, Phys. Rev. Lett. 68, 3121 �1992�.
�35� G. M. D’Ariano, C. Macchiavello, and P. Perinotti, Phys. Rev.

Lett. 95, 060503 �2005�.
�36� F. Buscemi, G. M. D’Ariano, C. Macchiavello, and P.

Perinotti, e-print quant-ph/0510155.
�37� G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, New J. Phys.

8, 99 �2006�.
�38� G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, Europhys. Lett.

75, 195 �2006�.
�39� F. Buscemi, G. M. D’Ariano, C. Macchiavello, and P.

Perinotti, e-print quant-ph/0602125, Phys. Rev. A �to be pub-
lished�.

�40� R. E. Neapolitan, Probabilistic Reasoning in Expert Systems
�Wiley, New York, 1990�.

�41� L. Hardy, e-print gr-qc/0509120.

M. S. LEIFER PHYSICAL REVIEW A 74, 042310 �2006�

042310-12


	Chapman University
	Chapman University Digital Commons
	2006

	Quantum Dynamics as an Analog of Conditional Probability
	Matthew S. Leifer
	Recommended Citation

	Quantum Dynamics as an Analog of Conditional Probability
	Comments
	Copyright


	tmp.1507228905.pdf.yIamM

