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As a key process of many biological reactions such as biological energy transduction or human
sensory systems, proton transport has attracted much research attention in biological, biophysical,
and mathematical fields. A quantum dynamics in continuum framework has been proposed to study
proton permeation through membrane proteins in our earlier work and the present work focuses
on the generalized correlation of protons with their environment. Being complementary to electro-
static potentials, generalized correlations consist of proton-proton, proton-ion, proton-protein, and
proton-water interactions. In our approach, protons are treated as quantum particles while other
components of generalized correlations are described classically and in different levels of approx-
imations upon simulation feasibility and difficulty. Specifically, the membrane protein is modeled
as a group of discrete atoms, while ion densities are approximated by Boltzmann distributions, and
water molecules are represented as a dielectric continuum. These proton-environment interactions
are formulated as convolutions between number densities of species and their corresponding inter-
action kernels, in which parameters are obtained from experimental data. In the present formula-
tion, generalized correlations are important components in the total Hamiltonian of protons, and
thus is seamlessly embedded in the multiscale/multiphysics total variational model of the system.
It takes care of non-electrostatic interactions, including the finite size effect, the geometry confine-
ment induced channel barriers, dehydration and hydrogen bond effects, etc. The variational prin-
ciple or the Euler-Lagrange equation is utilized to minimize the total energy functional, which in-
cludes the total Hamiltonian of protons, and obtain a new version of generalized Laplace-Beltrami
equation, generalized Poisson-Boltzmann equation and generalized Kohn-Sham equation. A set of
numerical algorithms, such as the matched interface and boundary method, the Dirichlet to Neu-
mann mapping, Gummel iteration, and Krylov space techniques, is employed to improve the ac-
curacy, efficiency, and robustness of model simulations. Finally, comparisons between the present
model predictions and experimental data of current-voltage curves, as well as current-concentration
curves of the Gramicidin A channel, verify our new model. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3698598]

I. INTRODUCTION

Ion channels are fundamental components in various
physiological processes, from cellular energy transduction,
cardiac cycles, to human sensory systems. The importance
of ion channels to biological science and biomedical en-
gineering can never be overestimated. For instance, in hu-
man sensory systems, cooperations of sodium, potassium, and
calcium channels, which are mediated by external stimuli
(chemical, physical, mechanical, thermal, acoustic, or pho-
tonic ones, etc.), convert environmental signals, such as vi-
sion, hearing, somatic sensation (touch), taste and olfaction
(smell), into electric signals recognizable by human brain. As
a special type of ion permeation, proton transport plays a ma-
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jor role in energy transduction in a bioenergetic system. For
example, chemical/biological energy is stored as proton gradi-
ents, then proton flux across cell membranes drives adenosine
triphosphate generation in the mitochondria. Another impor-
tant example of the function of proton channels occurs in the
respiratory burst process of phagocytes such as human neu-
trophils. Due to these critical functions, ion channels have at-
tracted a great deal of attentions in the past several decades,
from experimental exploration,1–3 theoretical investigation,4–8

to numerical simulation,9–13 modeling,14–19 and mathemat-
ical analysis.20–23 Generally, an ion channel system is ex-
tremely complicated, which consists of an ionic solvent, spe-
cific channel proteins and various lipid bilayers or cellular
membranes.

The starting point to examine such a complex system
is the solvation analysis, since almost all important biologi-
cal processes in nature take place in aqueous environments.
Solvent-solute interactions must be considered carefully. Ad-
ditionally, the molecular structure of a channel protein is of
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paramount importance because it determines the gating mech-
anism, selectivity function, and the efficiency of the ion con-
ductance of the channel in a complex environment. Apart
from the molecular structure, dynamics of ion transport is
another critical aspect. Regular ions may permeate mem-
brane bilayers with the assistance of channel proteins via
an electrohydro-diffusion mechanism, accompanying with the
dehydration and rehydration processes, while proton trans-
port also involves the hydrogen bond making and breaking
process, which is often termed as Grotthuss mechanism.24

In order to understand molecular mechanism of ion channel
transport, it is indispensable to take into account molecular
structures and dynamics.

Current major strategies for modeling general ion trans-
port processes include molecular dynamics (MD), Brown-
ian dynamics (BD), and the Poisson-Nernst-Planck (PNP)
theory. MD is able to provide the most detailed descrip-
tions in biomolecular systems and there are several user-
friendly packages available, such as AMBER,25 CHARMM,26

or GROMOS,27 etc. However, the use of MD in modeling the
whole ion permeation process is still extremely computation-
ally expensive, due to the long total simulation time needed
to mimic the ion permeation time scale in large systems. It
is instead utilized to estimate the mean-field potential and
obtain necessary physical parameters such as diffusion co-
efficients of ions. Practically, BD and the PNP theory are
powerful tools to study ion channels based on the mean-field
approximation. Both the BD and PNP models have a num-
ber of similarities in their initial setups and computational
approaches.10, 28, 29 In the former approach, ions are treated
as explicit particles, whereas in the PNP approach, all ions
are further modeled by the continuum description through the
electro-diffusion theory. Atomic details of the channel protein
are retained in these two approaches to estimate electrostatic
potentials, whose gradient drives the ion motion while details
of water molecules are erased and treated as a dielectric
continuum.

For Gramicidin A (GA) channel, the experimental data of
voltage-current curves of proton transport3 show much differ-
ent characteristic from that of K+ and Na+ transport.1 Diffu-
sion models or Brownian dynamics may work well for de-
scribing the transport of heavy atoms or ions, but not for
the transport of protons, which has to be treated quantum
mechanically.15, 28, 30–35 In view of transport mechanism, un-
like other ions, protons transfer via the exchange of hydrogen
nuclei along successive hydrogen-bond donors and acceptors,
instead of via pure diffusion. Further, the hydrogen-bonded
water chain (HBWC) may be compensated by some amino
acid residues of the channel protein when the water molecules
are not continuous in an extremely narrow channel pore.36

In view of physical properties, proton has the lightest mass
among all ions and an effective radius that is about 105 times
smaller than other ions because it bears no electron. Proton
transfer and all interactions with surrounding molecules are
greatly facilitated by its light mass, tiny size, and thus, nu-
clear quantum effects (zero-point energy and quantum tunnel-
ing of hydrogen nuclei) are significant:36, 37 these unique char-
acteristics are far beyond the description of simple diffusion
models. There are many investigations of proton transport ei-

ther in bulk water or transmembrane proteins in the literature.
For example, dynamics of protons in bulk phase water are
computed with an emphasis on a quantum dynamical treat-
ment by Schmitt and Voth.35 In an extensive effort, Roux and
co-workers explored the single file of water molecules of the
Gramicidin A channel and its ability to function as a proton
wire via Feynman path integral dynamical simulations.28, 33, 34

It is generally believed that nuclear quantum effects have
a significant but no governing impact to proton transfer in
equilibrium conditions.28, 33, 34 However, under nonequilib-
rium initial conditions, such as the effect of an external elec-
tric field,38 or a narrow situation in which hydrogen-bonding
partners restricting the displacements of water molecules,39

nuclear tunneling and nonadiabatic transitions may play an
important role in the proton translocation.28, 37 In the past
decade, handling nuclear quantum effects in proton transfer
has become a standard practice in theoretical investigations.
Yan et al. studied coherent proton transfer along HBWCs,40

using the proton quantum dynamical approach developed by
Cukier.31, 41 Recently, Shepherd and Morrison have reported
the effects of different density functional theory (DFT) func-
tionals to proton transfer through channel water-wires.32 In
fact, the use of quantum mechanical descriptions is a must
when proton transfer or dislocation is coupled to electron
transfer.30, 31, 41, 42 All these studies are based on a full-atom
fashion.

Based on a general variational multiscale framework,23 a
series of differential geometry based multiscale models (DG-
MMs) have been established to study ion channels and pro-
ton transport.16, 17, 19 A basic DGMM (Ref. 19) and a Poisson-
Boltzmann-Nernst-Planck (PBNP) model18 are proposed for
regular ion channels. In a series efforts, a basic quantum dy-
namics in continuum (QDC) model16 and its combination
with variational solvent-solute interface (VSI) (Ref. 17) are
introduced to model the proton transport through membrane
proteins. These DGMMs follow the same spirit that they orig-
inate from the solvation analysis and the total energy function-
als are constructed with multiscale, multiphysics, and mul-
tidomain descriptions on an equal footing. Furthermore, a set
of matched interface boundary (MIB) based computational
techniques43–46 is employed to overcome related numerical
challenges in realistic simulations.13 These techniques pro-
vide rigorously second-order convergent solutions for com-
plex geometries, nonsmooth interfaces, and singular charges
of membrane channel proteins, therefore high accuracy and
efficient of simulations are ensured.

In current ion channel models, most emphasizes are fo-
cused on the long-range force or electrostatic interactions be-
tween ions and surroundings. Explicit description of short-
range interactions is often neglected and the corresponding
effects are encapsulated in model parameters, such as diffu-
sion coefficients or relaxation time of ions. While short-range
interactions including dipolar, induced dipolar, quadrupolar,
dispersion, or size effects are also important components for
more detailed permeation dynamics such as ion selectivity.
For example, because the ions of Na+ and K+ have the same
charge, simple electrostatic potential landscape is not able to
distinguish two species. One has to consider detailed ion-
water interactions in order to explain the selectivity of
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potassium channels. Many successful improvements, such as
dielectric barrier and ionic size effects, have been developed
in classical continuum models.10, 47–49 Under our QDC frame-
work, this type of interactions is termed as generalized cor-
relations (GCs) and must be modeled by quantum mechani-
cal means, and more importantly, its ingredients are extended.
The GC is of special importance to the proton transport pro-
cess because of the Grotthuss (or hop-and-turn) mechanism.32

The profiles of water molecules (for example, length and
angle of hydrogen bond) in narrow channel pore are sig-
nificantly different from those in bulk region. Protons ex-
perience dehydration and rehydration processes during the
permeation. One of the GC interactions, the ion-water inter-
action, may contribute to the channel selectivity. Additionally,
as mentioned above, protons are able to form and break hy-
drogen bonds with residues of channel protein as well. There-
fore, the GC must contain interactions of proton with water,
proton with channel, and proton with themselves and needs to
be modeled quantum mechanically.

Short-range proton-environment interactions, especially
proton-water interaction, have been intensively studied at
atomic level. Both protons and water molecules are consid-
ered as individual atoms and the proton hop-turn mechanism
is investigated in bulk water and in single-file water chain or
“water wire.” The existence of proton in the solvent can gen-
erally be represented either as a hydronium (H3O+) or as a
“Zundel cation” (H5O+

2 ). In general, the translocation barrier
of a proton depends strongly on the interatomic (proton-water
and water-proton-water) distance and the orientation of wa-
ter molecules, which are usually treated as control parameters
in various models. It is widely believed that changes in the
hydrogen-bond connectivity of water molecules (the length or
angle of the hydrogen bonds) facilitate the process of proton
translocation.50 Based on these theories, a diversity of simula-
tion methods has been proposed to model proton transport in
water, focusing on different aspects. Examples include Car-
Parrinello simulations of liquid water, ab initio calculations
of protonated water clusters, path integral, centroid, classical
molecular dynamics, Monte Carlo simulations using central
force fields, and empirical valence bond methods which are
used both as general methods and as ad hoc sets of func-
tions and parameters. In these models, water molecules are
described as individual atoms with SPC/E, TIP3P, or PM6
models. However, there is no best water model for all pur-
poses, and one has to make a compromise between accu-
racy, number of predictable physical phenomena and com-
putational expense. Quantum dynamics theory is also intro-
duced to study the proton-water reaction. To reduce com-
putational cost, it is nature to apply the quantum mechanics
(QM) only to the proton and restrict the quantum subsystem
to a Born-Oppenheimer plane, i.e., the environment is evolv-
ing according to classical MD. A mixed QM/MD simulation
of proton transfer is proposed in Ref. 51 based on the GRO-
MOS96e MD program. This model gives a detailed description
of the coupling between the quantum mechanics of proton and
the classical environment. Apart from the electrostatics en-
ergy, the proton potential energy of the Hamiltonian consists
of proton-water pair interaction and water-proton-water triple
interaction, whose shapes are both fitted to relaxed MP2/6-

31G potential energy surfaces of the respective clusters in

vacuo, based on the SPC/E water model. Pair particle inter-
actions and their impact to the transport equations of density,
velocity and energy were considered in the Boltzmann kinetic
theory framework by Snider et al. in 1996.52, 53 Solution to
the generalized Boltzmann equation and transport coefficient
evaluation were also carried out.

The objective of the present work is to explore a quan-
titative formulation of the GC so as to improve our multi-
scale QDC model16, 17 for the prediction and analysis of pro-
ton transport across membrane proteins. The GC has been an
important ingredient but treated less quantitatively in our ear-
lier QDC models.16, 17 In this work, it will be modeled in a
general formulation for short-range ion-ion, ion-water, and
ion-protein interactions. Unlike other traditional models, in-
cluding ab initio MD or hybrid ones on proton transport in
solvent, in which water molecules are treated as explicit indi-
viduals, the water in our QDC models is considered as struc-
tureless continuum and described by a density function. In
this setting, the present work provides an efficient way to em-
bed quantum mechanical description of protons into the clas-
sical environment, which is mainly approximated as a con-
tinuum in order to balance the computational efficiency and
physical complexity. A GC functional, depending on densi-
ties of water, proton, all other ion species and the membrane
protein, is proposed and serves as part of potential energy in
the Hamiltonian of protons. Therefore, the newly developed
formulation can be easily adopted in our previous QDC the-
ory. The total energy functional of the system consists of the
proton energy and the solvation free energy of the membrane
channel system. The proton energy is described by the quan-
tum formalism and includes the kinetic and potential contri-
butions. An interesting point is that, the potential energy of
protons encompasses the GC and electrostatics as part of the
system solvation energy. As a result, all the ingredients are fit
into our multiscale/multiphysics/multidomain framework on
an equal footing. By using the variational principle, we derive
new governing equations, which are coupled and related to
the GC formulation.

The rest of this paper is organized as follows.
Section II is devoted to the theory of the QDC model and
the formulation of generalized correlations. A general en-
ergy functional is constructed for the proton transport. The
generalized correlation kernel is provided in the context of
the proposed QDC formalism. In Sec. III, we derive a set of
coupled governing equations by using the variational princi-
ple for the QDC description of the proton system. The solu-
tion procedure of this coupled equation system is discussed
in detail. A number of mathematical algorithms, including
the Dirichlet-to-Neumann mapping (DNM), the MIB method,
and Krylov space techniques are utilized to implement the
proposed model in a computationally efficient manner. The
numerical results of the present formulation are given in
Sec. IV. We first illustrate the effects of geometric constraints
of a narrow channel to the generalized correlation and the
channel Hamiltonian. Additionally, we utilize the Gramicidin
A, to validate the present theory and model. Comparison is
given to experimental measurements of proton transport. This
paper ends with brief concluding remarks.
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II. THEORY AND FORMULATION

To establish notation and facilitate further development,
we first give a brief review of the theoretical formulation of
the QDC model of the proton transport system. The quanti-
tative description of the generalized correlation functional is
presented.

A. Total free energy functional of the system

A proton transport system is extremely complicated in
its biological structure, dynamics, and transport process.
This system constitutes a bulk solvent, a channel pore, and
molecule/membrane regions, which have distinguished phys-
ical and biological characteristics. In terms of materials with
different levels of interests, there are protons, other mobile

ions, water molecules, and membrane protein, etc. Figure 1
gives an illustration of the QDC model for a proton trans-
port system. The system is restricted in a three-dimensional
(3D) rectangular domain, with electrodes on two sides for
the application of transmembrane voltages. There are at
least two subdomains, the solvent domain �s and the mem-
brane/protein domain �m, which are separated by the solute-
solvent interface. In the multiscale treatment, the continuum
approximation for the solvent and discrete atomic description
for the membrane protein are implemented on the two sub-
domains, receptively. As indicated in Figure 1, the channel
system is described by different physics and governing equa-
tions. These governing equations are derived from a total free
energy functional which brings together multidomain, multi-
scale, and multiphysics in a unified fashion.17

GTotal[S,�, n] =

∫ {

γ |∇S(r)| + pS(r) + ρ0(1 − S(r))Uss
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[
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2
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⎤
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]

+ (1 − S(r))λ

[

Np

V�

−

∫

e
−
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kB T |�E(r)|2dE

]}

dr. (1)

The above functional depends on three major vari-
ables, the solute-solvent characteristics function S(r) : R

3

�→ R, the electrostatic potential �(r) : R
3 �→ R, and the

number density of ions of major interests (i.e., proton in this
work) n(r) : R

3 �→ R. The first line of the right-hand side of
Eq. (1) gives the nonpolar solute-solvent interaction energy
of the system in the form of molecular surface area, volume
and solvent-solute dispersion interaction, where γ , p, ρ0, and
Uss are the surface tension, hydrodynamic pressure, solvent
density, and solute-solvent interaction potential, respectively.
The second and third lines give the polar or electrostatic con-
tribution to the system, with ǫm and ǫs(r) being dielectric con-
stants of the biomolecular and solvent regions. The charge
sources of the electrostatics come from the ions of interests,
other mobile ions and fixed charge of the channel protein. The
number density of proton n(r) is obtained via quantum dy-
namics and q is the fundamental charge. All fixed charges of
the channel protein are discretely represented by the charge
density ρ f. For other mobile ions, the Boltzmann distribu-
tion has been applied with kB, T and μj being the Boltzmann
constant, the temperature and the general electrochemical po-
tential of jth ion species, respectively. Here, n0

j , qj, and N ′
c

are the reference number density, ionic valence of the jth
ionic species, and the total number of other ionic species,
respectively.

The proton is described in a quantum mechanical for-
mulation in terms of kinetic and potential energies. Here ¯

is the reduced Planck constant, and m(r) is effective mass
of the proton. The kinetic energy is represented by the

FIG. 1. Model illustration: the whole system is divided into two subdo-
mains, the solvent domain �s and membrane/channel domain �s. Multiscale
treatments and multiphysics descriptions are applied in corresponding sub-
domains and materials. The z-direction is considered as the proton transport
direction. Profile of water in the channel pore is not displayed.
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gradient of the proton wavefunction �E(r). The potential en-
ergy of protons is approximated as functionals of the proton
density. Here UGC[n] and UExt[n] are the generalized corre-
lation and external energies of protons, respectively. It should
be pointed out that the electrostatic energy of protons has been
accounted in the previous line, namely �n(r)q. It was shown
in our previous work16 that a complete description of electro-
static source terms leads to a full prescription of the proton
electrostatic potential energy.

Without protonation and deprotonation in the channel,
proton transport over membrane protein pore can be modeled
as a scattering problem and the corresponding Hamiltonian
has an absolutely continuous spectrum. To compute the statis-
tical rate of proton transport, we utilize the Boltzmann statis-
tics to integrate the energy spectrum E. The wavefunction and
number density of the proton have the following relation:

n(r) =

∫

|�E(r)|2e−
E−μp

kB T dE, (2)

where μp is the general electrochemical potential of protons.
Finally, the additional term in the last row of Eq. (1) is a La-
grange multiplier for the constraint of the proton density due
to the total number of protons Np over the total volume V�

=
∫

� dr. When there are protonation and deprotonation in
the channel protein, the present formulation has to be modi-
fied to account for reactive scattering processes. However, this
aspect is not investigated in the present work.

The total energy functional (1) represents a multiphys-
ical and multiscale framework that contains the continuum
approximation for the solvent, while explicitly takes into ac-
count the channel protein in discrete atomic details. More
importantly, it puts the classical theory of electrostatics and
the quantum mechanical description of protons on an equal

footing. Similar energy frameworks have been developed in
our recent work for biomolecular systems19, 23, 54 and nano-
electronic devices.55

B. Generalized correlation (GC)

The electrostatic potential plays a significant role in the
proton transport. However, there are many other interactions
that are also important for proton dynamics in the system.
These additional interactions, termed as generalized correla-
tion, include van der Waals interactions, dispersion interac-
tions, proton-water dipolar interactions, proton-water cluster
formation or dissociation, proton spin effects, proton-protein
interaction, etc. For example, one of generalized correlation
effects is an energy barrier to the ion transport due to the
change in the solvation environment from the bulk water to a
relatively dry channel pore, such as a single-file water chain.
For proton transport, the energy needed to form and/or break
the hydrogen bond depends on the proton-water distance and
angles between hydrogen bonds, which are different in the
channel and bulk conditions. As part of the generalized cor-
relation, this type of proton-water interactions has been in-
tensively studied in the literature.32, 35, 50, 51, 56, 57 Figure 2(a)
provides a schematic diagram that illustrates a basic method-
ology. In this picture, the circles in various colors represent
different atoms of a channel protein. Both the proton and wa-
ter molecules are considered as individual particles. In such
an explicit representation, the proton-water and water-proton-
water configurations are parametrized by α, β, angles be-
tween the excess proton and two hydrogen atoms in the wa-
ter molecule, as well as r, the distance between oxygen atom
and the excess proton. It is based on these quantities that
the proton-water interaction mechanism is studied in different

FIG. 2. Different strategies on treatment of proton-water interaction model.
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models, from ab initio, quantum/semi-classical to molecular
dynamics approaches. These treatments are obviously rich in
details and are able to exhibit as much physical characteristics
as possible. However, they are too computationally expensive
to be employed for the entire proton transport process in re-
alistic settings. Here we are seeking a balance between the
simulation efficiency and biological details, by utilizing the
spirit of multiscale quantum dynamics in continuum to incor-
porate the generalized correlation in reduced forms. All par-
ticles that may have non-electrostatic interactions with pro-
tons, including proton themselves, other ion species, water
molecules, and fixed atoms of the channel protein, are all de-
scribed in terms of number densities other than individuals in
the generalized correlation. Nevertheless, the number density
of protons is evaluated by a novel DFT via a new Kohn-Sham
equation.

In our approach, the free energy functional of short-range
interactions is modeled as a function of the local ion density
n(r) and the density gradient ∇n, i.e., UGC[n, ∇n]

GGC[S, n] =

∫

(1 − S(r))UGC[n,∇n]dr. (3)

We start from the assumption that the ∇n dependence
has been omitted as a first order approximation, and then the
UGC[n] is classified into proton-proton, proton-other mobile
ions, proton-water and proton-protein interactions, i.e.,

GGC[S, n] =
1

2

∫ ∫

(1 − S(r))n(r)n(r′)Kp(r − r′)dr′dr

(4)

+

N ′
c

∑

j=1

∫ ∫

(1 − S(r))n(r)n′
j (r′)Kj (r − r′)dr′dr (5)

+

∫ ∫

(1 − S(r))n(r)nw(r′)Kw(r − r′)dr′dr (6)

+

Na
∑

i=1

∫

(1 − S(r))n(r)ni(r
′)Ki(r − r′)dr, (7)

where functions of proton number density n(r) and all other
ion species n′

j (r) follow the previous definitions. We define
the number density of each fixed atom of the channel pro-
tein as ni(r) = δ(r − ri) and the water density nw(r) will be
discussed later. From Eqs. (4)–(7), it is easy to see that all
short-range interactions are in a uniform structure, i.e., the in-
tegral of product between proton number density, the number
density of the environments and the corresponding interaction
kernels. By taking variation with respect to the proton number
density, one obtains the generalize correlation potential, i.e.,

∂UGC[n,∇n]

∂n
= VGC(r)

= n(r) ∗ Kp(r) +

N ′
c

∑

j=1

n′
j (r) ∗ Kj (r)

+ nw(r) ∗ Kw(r) +

Na
∑

i=1

ni(r) ∗ Ki(r), (8)

where * represents the convolution operation.

In the current work, we explore more sophisticated mod-
els for the VGC. The kernel function Kα(r)(α = {i, j, p,w}) :
R

3 → R is assumed to be continuous and have the following
properties:

Kα(r) ∈ L1(R3) ∩ L2(R3); (9)

lim
|r|→∞

Kα(r) ∼ o(|r|−2); (10)

lim
|r|→0

Kα(r) → ∞. (11)

Property (9) ensures the boundedness of integrals of the ker-
nel with other possible constant number densities and over-
all energy functional. Property (10) indicates the behavior
of fast decay or short-range interactions, while the last one
prevents the overlapping of particle centers. The Pauli repul-
sion term should grow much faster than any attractive term as
|r| → 0. An easy and direct construction of the interaction
kernel would be

Kα(r) =

∞
∑

k=3

cα
k |r|−k (12)

with cα
k being fitting parameters necessary to various ex-

perimental observations. In fact, this formulation covers the
Lennard-Jones potential and its variants for interactions be-
tween various particles. Some specific forms of this general
expression are also adopted in modeling the discrete proton-
water interactions.50

In the present work, in order to reduce the size of the
parameters set, we conveniently consider the 12-6 Lennard-
Jones pair potential kernel of form

Kα(r) = ǭα

[

(

σp + σα

|r|

)12

− 2

(

σp + σα

|r|

)6
]

(13)

where ǭα is the well-depth parameter and σ α is the radius pa-
rameter of ions or atoms. With this simplification, one can
spell out the components of the VGC(r),

VGC(r) = ǭp

∫

n(r′)

[

(

2σp

|r − r′|

)

12 − 2

(

2σp

|r − r′|

)6
]

dr′

+

N ′
c

∑

j=1

ǭj

∫

n′
j (r′)

[

(

σp + σj

|r − r′|

)12

− 2

(

σp +σj

|r − r′|

)6
]

dr′

+ ǭw

∫

nw(r′)

[

(

σp + σw

|r − r′|

)12

− 2

(

σp + σw

|r − r′|

)6
]

dr′

+

Nα
∑

i=1

ǭi

[

(

σp + σi

|r − ri |

)12

− 2

(

σp + σi

|r − ri |

)6
]

. (14)

Although the Lennard-Jones formulation is utilized as the
interaction kernels, the GC in our work is significantly dif-
ferent from the conventional Lennard-Jones potential. First
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of all, Lennard-Jones potential is traditionally formulated to
model short-range interactions between two individual parti-
cles. While the current GC is more general, it could represent
particle-particle interactions. More importantly, it includes
continuum-continuum (proton-ion and proton-water) interac-
tions and continuum-discrete (proton-protein) interactions.58

Another aspect is that the description of the proton number
density is quantum mechanical. There is much literature for
the study of proton interactions in full atomic details with
either quantum mechanics or classical mechanics. However,
to our knowledge, it is the first time that quantum dynamics
is built into the multiscale (discrete and continuum) formula-
tion of the complex heterogeneous system in order to balance
accuracy and efficiency. In other words, the formulation of
the GC is also proposed in the spirit of our quantum dynam-
ics in continuum. The finite size effect of ions in the narrow
channel is naturally described in the GC formulation. More
importantly, ion-water interactions are quantitatively formu-
lated in our ion channel model. The ion-water interaction is
critical to the channel selectivity among ions with the same
charge and the essential translocation mechanism of protons.
For regular ions, they exist in the solvent as ion-water clus-
ters. When ions diffuse from bulk water to a relatively narrow
channel, they have to undergo the dehydration process. Such a
process poses an additional energy barrier, because the pres-
ence and/or motion of water molecules in a narrow channel
are greatly restricted, and some physical characteristics, such
as oxygen-oxygen distance, water orientation angle, will be

significantly different from those in the bulk region. For pro-
tons, forming and breaking hydrogen bonds in a narrow chan-
nel will be different for those in the bulk water. The proceed-
ing paragraphs are contributed to demonstrate how this GC
formulation can reveal the difference of proton-water interac-
tions in the bulk solvent and the narrow channel pore.

III. GOVERNING EQUATIONS AND THEIR SOLUTION

In this section, the governing equations for S, �, and
�E are derived from the total free energy functional with
the GC component by the variational principle via the Euler-
Lagrange equation.23 Computational algorithms and pro-
cedures for the solution of governing equations are also
discussed.

A. Generalized Laplace-Beltrami (LB) equation

By variation of Eq. (1) with respect to the characteristic
function S(r), we have

δGtotal[S,�, n]

δS
= 0 =⇒ −∇ ·

(

γ
∇S

|∇S|

)

− VLB = 0,

(15)

where ∇ ·
(

γ ∇S
|∇S|

)

is a generalized Laplace-Beltrami oper-

ator, which is a generalization of the usual Laplacian op-
erator to a smooth manifold of the solvent-macromolecular
interface23, 59 and the generalized Laplace-Beltrami (LB) po-
tential VLB is defined as

VLB = −p + ρ0Uss +
[ǫm

2
|∇�|2 − �ρf

]

−

⎡

⎣

ǫs(r)

2
|∇�|2 − �n(r)q + kBT

N ′
c

∑

j

n0
j

(

e
−

qj �−μj

kB T − 1

)

⎤

⎦

+

[∫

¯2e−(E−μp)/kBT

2m(r)
|∇�E(r)|2dE + UGC[n] + UExt[n]

]

− λ

[∫

e
−

E−μp

kB T |�E(r)|2(r)dE −
Np

V�

]

.

Generally, Eq. (15) can be solved by introducing an artifi-
cial time to obtain an alternative parabolic partial differential
equation of S̄ : � × [0,∞) �→ R:

∂S̄

∂t
= |∇S̄|

[

∇ ·

(

γ
∇S̄

|∇S̄|

)

+ VLB

]

, (16)

with boundary condition

S̄(r) = 0,∀r ∈ ∂� × [0,∞)

and initial condition

S̄(r, 0) =

{

1, r ∈ Dm =
⋃Na

i=1{r : |r − ri | < rVDW
i + rp}

0, otherwise,

(17)

where rVDW
i and rp are atomic van der Waals radius and the

probe radius, respectively. The solution to Eq. (15) is given
by S(r) = S̄(r) at the steady state: ∂S̄/∂t = 0. We have de-
veloped this approach for the construction of biomolecular
surfaces over many years;58–61 also see Ref. 62 for similar
work.
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B. Generalized Poisson-Boltzmann (PB) equation

The governing equation for the electrostatic potential can
be derived by the variation of energy functional (1) with re-
spect to electrostatic potential �

δGTotal[S,�, n]

δ�
= 0 =⇒ −∇ · (ǫ(S)∇�(r))

− (1 − S)
N ′

c
∑

j=1

n0
je

−
qj �(r)−μj

kB T

= (1 − S)n(r)q + Sρf (r). (18)

Equation (18) is a generalized Poisson-Boltzmann
equation23, 58 describing the electrostatic potential with three
types of charge sources: the ions of interest, other ions
species in the solvent described by the continuum approxi-
mation (i.e., Boltzmann distribution) and fixed point charges
in biomolecules. This equation is not closed because S(r)
and n(r) need to be evaluated from other governing equa-
tions. Equation (18) is presented in the so-called Eulerian
formulation, which offers a smooth surface profile of the
biomolecule.23, 58 A Lagrangian formulation54 of our varia-
tional approach has also been derived, which gives rise to a
sharp interface Ŵ. In practice, one can obtain a Lagrangian
representation of the VSI from the Eulerian formulation by
setting a level set of the characteristic function S, namely,
Ŵ = {r ∈ R

3|S(r) = c}, where 0 < c < 1 is a constant. With
this algorithm, the electrostatic potential �(r) solves the fol-
lowing generalized PB equation at the VSI limit:

−∇ · (ǫ(r)∇�(r)) −

N ′
c

∑

j=1

qjn
0
je

−
qj �−μj

kB T

= qn(r) +

Na
∑

i=1

Qiδ(r − ri), (19)

subject to the following jump conditions,

[�]|Ŵ = �+(r) − �−(r) = 0, (20)

[ǫ∇� · n]|Ŵ = ǫ+∇�+(r) · n − ǫ−∇�−(r) · n = 0, (21)

and mixed boundary conditions

�(r) = VExt,∀r on predefined electrode region of ∂�

∂�(r)

∂n
= 0,∀r on other part of ∂�,

where VExt is the external electric voltages on the electrodes,
superscripts “+” and “−” represent the limiting values of a cer-
tain function at two sides of interface Ŵ, and n is the unitary
outward normal direction of Ŵ or ∂�.

Consequently, Eqs. (20) and (21) guarantee the continu-
ities of the potential function and its flux. Equation (19) has
discontinuous coefficient ǫ(r) across the sharp interface Ŵ,
which is very complex in general for biomolecules. Addi-
tionally, charge sources consist of a large number of delta
functions, which may cause computational difficulties. For-

tunately, all of the above-mentioned challenges can be suc-
cessfully handled by our MIB method43–46 and our DNM
scheme.16, 45

C. Generalized Kohn-Sham (KS) equation

In the present multiphysics model, the proton number
density n(r) in Eq. (18) is related to the wavefunction �E(r),
which is governed by the generalized Kohn-Sham equation.
This equation is obtained by the variation of the total free en-
ergy functional (1) with respect to wavefunction �

†
E

δGTotal[S,�, n]

δ�∗
E

= 0 =⇒ −∇ ·
¯2

2m(r)
∇�E(r) + V (r)�E(r)

= E�E(r), (22)

where we set the Lagrange multiplier λ = E. The total
Hamiltonian of the proton is given by

H = −∇ ·
¯2

2m(r)
∇ + V (r), (23)

in which the total effective potential energy

V (r) = q�(r) + VGC(r) + VExt(r) (24)

consists of electrostatic, generalized correlation and exter-
nal contributions. The external potential can be omitted for
a closed system without external fields.

It is important to note that generalized Kohn-Sham equa-
tion (22) is fundamentally different from the normal Kohn-
Sham equation for electronic structures. The Kohn-Sham op-
erator in Eq. (22) has an absolutely continuous spectrum
and invokes the Boltzmann statistics for proton scattering.
Whereas the normal Kohn-Sham operator has a discrete spec-
trum and assumes the Fermi Dirac statistics for electron oc-
cupations (bound states).

One of important quantum observables, the proton cur-
rent, is defined by standard probability flux, whose practical
expression is the following

I =
q

h
Tr

∫

G(E)V ah
intraG

†(E)V ah
extra[e− E−μextra

kB T − e
−

E−μintra
kB T ]dE.

(25)
where Tr is the trace operation, G is the Green’s operator

G(E) = (E − H )−1, (26)

and μextra and μintra are the external electrical field energies
at extracellular and intracellular electrodes, respectively. Here
V ah

extra and V ah
intra are the anti-Hermitian components of the ex-

ternal potentials.16

It is worthwhile to emphasis that Eqs. (15), (18), and
(22) are closely coupled. Both the generalized PB and KS
equations depend on the VSI, which is generated from the
characteristics function S(r). Furthermore, the proton number
density n(r), which is the solution of the generalized KS equa-
tion, serves as part of the charge source in the PB equation,
while the electrostatics �(r) is part of the Hamiltonian of the
proton. Finally, both the proton number density and electro-
statics appear in the generalized LB equation to determine the
characteristics function. This coupled system endows us the
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FIG. 3. Work flow of the overall surface driven self-consistent iteration.

flexibility to deal with complex multiphysics in a multiscale
fashion — the quantum dynamics in continuum model.

D. Solution protocol

Equations (15), (18), and (22) form a strongly coupled
system and they need to be solved iteratively. This situation
results in a nonlinear system with three variables. One needs
to predetermine two of them to solve for the third one and the
whole loop is a complex self-consistent iteration procedure.
In our earlier work,17 a surface driven dynamical iteration
procedure is proposed to solve the system of three governing
equations. In this tactic, the characteristic function S(r) serves
as the leading variable in the dynamic evolution that initiates
the internal self-consistent iteration of �(r) and n(r).16, 54, 55, 58

The overall iteration is outlined as the following:

� Step 0. Preparation. All the necessary preparations for
the whole loop are accomplished in this step, which
include:

– 0.1. The channel protein of interest is downloaded
from the Protein Data Bank (PDB). Partial charges,
positions, radii of all atoms are determined by a cer-
tain force field such as CHARMM (Ref. 26) and re-
lated software packages, such as PDB2PQR.63 The

prepared channel structure is then embedded in a
proper computational domain.

– 0.2. Generate the initial condition S(r, 0) according
to Eq. (17) for Eq. (16).

� Step 1 (Surface dynamics). Solving the generalized
Laplace-Beltrami equation with �m(r) and nm(r) (ini-
tial guess as zero if m = 0). Calculate total energy
Gm

Total. Note that index m is for the external or surface
driven dynamic evolution loop.

� Step 2 (Self-consistent iteration). This step is con-
sidered as the internal self-consistent iteration of elec-
trostatics �m,l(r) and proton number density nm,l(r),
where superscripts l is added for the internal iteration:

– 2.1. Solve generalized Poisson-Boltzmann equation
to attain updated �m,l+1(r).

– 2.2. Calculate the generalized correlation using
nm,l(r) with designed correlation kernels.

– 2.3. Solve generalized Kohn-Sham equation to at-
tain new density nm,l+1(r).

� Step 3 (Self-consistent convergence check). If
||�m, l + 1 − �m, l|| < ε1 and ||nm, l + 1 − nm, l + 1||
< ε2, where ε1 and ε2 are predefined internal er-
ror tolerances, set �m + 1(r) = �m, l + 1, nm + 1(r) =
nm, l + 1(r) and go to Step 4, otherwise go to Step 2.1.

� Step 4 (Dynamic energy convergence check). Up-
date energy Gm+1

Total with Sm + 1(r), �m + 1(r). If the to-
tal energy is convergent, go to Step 5 otherwise go to
Step 1.

� Step 5 (Proton current calculation). Calculate the
proton current by Eq. (25).

Figure 3 gives an explicit graphic illustration of the above
work flow.

IV. RESULTS AND DISCUSSIONS

In this section, we carry out numerical experiments of the
proposed multiscale/multiphysics QDC model with the GC.
We first explore the behavior of the GC potentials. As dis-
cussed in Sec. II B, the present GC involves the evaluation
of the Lennard-Jones potential over the continuum domain,
which differs very much from the usual two-particle defini-
tion of the Lennard-Jones potential.

−2 −1 0 1 2

0

0.5

1

1.5

2

2.5

3

r (Angstrom)

E
n
e
rg

y
 (

k B
T

)

−5 0 5
0

0.5

1

D
e
n
s
it
y

−5 0 5
−4

−2

0

r (Angstrom)

E
n
e
rg

y
 (

k B
T

)

(a) Lennard-Jones Kernel (b) Integration in bulk water 

FIG. 4. A typical Lennard-Jones kernel and its interaction property in the bulk water.
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FIG. 5. A 1D demonstration of geometric confinement effects on ion-water interaction potential energy. Channel width is represented between the two vertical
dashed lines. (a) A narrow channel; (b) A wide channel.

The validity of the proposed model for proton transport
and related performance analysis are presented based on a
specific channel protein, the Gramicidin A (GA, PDB code:
1MAG). For simulation simplify, the solvent is considered as
hydrogen chloride (HCl), i.e., only protons and Cl− are mo-
bile ions. Unless specified, the parameters of the governing
equations in current work admit the same values as those in
our earlier work.17

A. Generalized correlations

In this subsection, we investigate the properties of the
GC by considering geometric effects, size effects, the effect
of solvent distribution, etc. For the purpose of illustration, we
consider two cases, a uniform distribution and a Gaussian dis-
tribution of the water density in the channel pore. Comparison
is given to the GC in the bulk water.

Figure 4 gives an illustration of a typical 12-6 Lennard-
Jones kernel and its convolution with a constant function,
which represents the water density (normalized as one) in
the bulk water region. Figure 4(a) depicts the profile of the
Lennard-Jones potential. The upper panel of Fig. 4(b) gives
the number density of water molecules and the lower panel
shows the proton-water interaction of the GC as convolution
of the number density and the interaction kernel. When the
water density is a constant in bulk region, one can essentially

obtain the interaction energy of water molecules and ions as
a predefined constant in the bulk, by choosing appropriate
parameters.

Figure 5 shows the GC of proton and water molecules in
a channel pore in a 1D demonstration. The upper panels of
Fig. 5 indicate the water densities in a narrow channel and a
wide one. The water density is simply taken as one in chan-
nel region while zero in protein region. By the convolution of
the functions in the upper panel of Fig. 5 with the kernel in
Fig. 4(a), one can obtain the interaction potential functions in
the lower panels. It can be easily found out that for an ex-
tremely narrow channel with a radius of 1.5 Å, the proton-
water interaction yields a moderately large energy barrier.
While for a wider channel with a radius of 7.0 Å, the energy
barrier is relatively low, similar to that in the bulk region, ex-
cept near the channel wall. This comparison explains the ge-
ometric confinement or size effect of the channel pore. When
the channel pore is relatively wide, as shown in Fig. 5(b),
the geometric confinement is not intense and the proton-water
interaction tends to be similar to that in the bulk solvent. How-
ever, when strong geometric confinement occurs, which usu-
ally results from a narrow channel pore, the interaction func-
tion changes and serves as a large energy barrier.

Figure 6 shows a similar profile for a channel of radius
2.0 Å, which is the typical size of a proton channel pore,
but with two different assumptions of the water density. In
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FIG. 6. A 1D demonstration of geometric confinement effects on ion-water interaction with different water density distribution. Channel width is represented
between the two vertical dashed lines. (a) Constant water density and energy profile; (b) Water density in Gaussian distribution and energy profile.
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Fig. 6(a), the water density is still assumed as a constant in
the channel (upper panel), and the energy profile is similar to
that of Fig. 5(a), but with a lower barrier in the middle. We
next consider the Gaussian distribution, which is a more suit-
able assumption of water density in the narrow channel.64 As
indicated in the Fig. 6(b), an energy barrier is also formed in
the channel region while it is more concentrated in the middle,
as expected.

B. Proton transport in Gramicidin A

The GA channel protein exists in the soil bacterial
species Bacillus brevis and is one of the best studied ion
channels, both structurally and functionally. The GA is a
dimer in a bilayer membrane, and consists of two head-to-
head β-helical parts. Two parts of the dimer have an iden-
tical sequence: FOR-VAL-GLY-ALA-DLE-ALA-DVA-VAL-
DVA-TRP-DLE-TRP-DLE-TRP-DLE-TRP-ETA. It forms a
narrow pore of about 4 Å in diameter and 25 Å in length.
The GA is known to select small monovalent cations, and
bind bivalent cations, while rejecting anions. Due to its
well-defined structure and abundant experimental data, the
GA has been used as a testbed for highly accurate numer-
ical algorithms13 and newly developed Poisson-Boltzmann-
Nernst-Planck model in our earlier work.18 Indicated by suffi-
ciently many experimental evidences, the GA is a water-filled
pore in which roughly twelve water molecules are aligned.
Hydrogen-bonded chain can form within the single file of
water molecules, which sustains proton transport through the
Grotthuss-type mechanism. Because of the simple structure
and fruitful biological conclusion of the GA, we utilize it to
validate the proposed model and algorithms.

1. Electrostatic properties

First, we examine the surface electrostatic distribution in
the GA channel protein. Figure 7 shows the calculated elec-
trostatic potential mapped on the VSI in this system. Although
the GA is neutral in general, its surface electrostatic potential
is mostly negative near the channel mouth as indicated by the
red color in the graph. Furthermore, as shown in Fig. 7(b), the
inner wall of the channel pore is also intensively negatively
charged. This fact indicates the obvious selectivity of the GA
channel — it selects cations and suppresses anions.

The electrostatics of the channel system greatly depends
on the dielectric constants used in Eq. (18). We have explored
a proper range of the dielectric constant of each component
in biological sense and tested a wide range of values in order
to obtain a reasonable prediction in our earlier work.16 The
study on the dielectric constant ǫm of the molecule in the ion
transport problem is quite fruitful and there is a general agree-
ment that ǫm could be taken as a constant that slightly greater
than 2, which is the value used in the solvation study. While
the dielectric constant ǫs for the solvent should be position de-
pendent. The dielectric constant ǫbath = 80 is the value widely
accepted in the literature for the bath water region. However,
since the mobility of the water molecules in the channel pore
is restricted because of the small radius, the dielectric con-

FIG. 7. 3D illustration of the Gramicidin A (GA) channel structure and sur-
face electrostatic potential. The negative surface electrostatics as indicated
by the intensive red color on the channel upper surface and inside the chan-
nel pore implies that the GA selects positive ions. (a) Top view of the GA
channel; (b) Side view of the GA channel.

stant ǫch remains mysterious and various values are tested in
reported simulations.16

Figure 8 quantitatively displays the electrostatic potential
of the GA channel with three different values of ǫch. All quan-
tities are averaged on the cross section along the channel axis,
although the original data is calculated in 3D. Here ǫm is taken
as 5 and the reference ionic density is set to 0.1 M. The verti-
cal dashed lines indicate the entrance (left) and exit (right) of
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the GA channel. Although the GA protein is overall neutral
in charge, it possesses a negative environment in the channel
region and this fact leads to a large potential well. Near the
entrance and the exit of the channel, there are two local po-
tential minima (the valley near the dashed line) and a major
barrier in the middle of the channel. The magnitude of the
electrostatic potentials responds directly to the change of ǫch

value. When ǫch decreases from 80, which is the commonly
used value for the solvent, to the smaller values suggested by
biological observations, the contrast between the energy wells
near the entrance/exit and the barrier in the middle becomes
sharper. This phenomenon verifies the impact of ǫch value and
leads us to prefer a smaller value in our model.

2. Generalized correlation properties

Next, we check the calculated generalized correlation
in a realistic situation. The parameters in Eq. (14) are the
following: σ p = 0.644 Å, σ w = 1.505 Å, σ j = 1.81 Å,
and σ i for each fixed atom is taken from the PDB data
file. For those energy well depths, ǭp = 0.0598 kcal/mol, ǭj

= 0.0295 kcal/mol, ǭw = 0.0472 kcal/mol, and ǭi

= 0.0173 kcal/mol. Figure 9 shows the calculated general-
ized correlation mapped on the VSI. As one can see from
Eq. (14), the value of GC depends on the corresponding num-
ber densities of particles and the parameter set. Since the GC
mainly represents the interactions of particles, the finite size
effect, the geometry confinement induced dehydration and re-
striction of water motion, it generally gives rise to a repulsive
force or serves as an energy barrier to permeating ions (re-
gardless of the sign of charge) near the surface, relative to the
bulk property. This fact has been revealed in Fig. 9. Compar-
ing to the intensive red color which indicates negative values
of electrostatic potential energy in Fig. 7, the GC mapped on
the channel surface is blue and positive. Figure 9(a) shows the
GC in top view, from which one can conclude that when ions
approach the mouth of the channel, they will response to the
repulsive force from the GC. Figure 9(b) shows the situation
in the channel, which also has intensively positive value of
the GC, the energy barrier in the channel pore represents the
geometric confinement.

Figure 10 gives detailed decomposition of the GC values
averaged along the transport direction. The pink curve rep-

FIG. 9. Calculated generalized correlation mapped on the 3D GA channel
surface. The positive surface generalized correlation as indicated by the in-
tensive blue color on the channel upper surface and inside the channel pore
implies that the GC usually generates a repulsive force. (a) Top view of the
GA channel; (b) Side view of the GA channel.

resents the interaction between proton and all mobile ions,
including protons themselves and other ions. Since ionic den-
sity is low in the channel, the GC interaction strength is
small in the channel comparing in the bulk solvent. The blue
curve indicates the GC interaction between proton and water
molecules. In the bulk region, the motion of water molecule
is not confined and relatively free, therefore the interaction
is small due to the homogeneous integration. However, be-
cause of geometric restriction of water density and degree of



134109-13 D. Chen and G. Wei J. Chem. Phys. 136, 134109 (2012)

−20 −10 0 10 20

0

5

10

15

20

Channel Direction(Angstrom)

G
e
n
e
ra

liz
e
d
 C

o
rr

e
la

ti
o
n
(k

B
T

)

 

 

Overall
Proton−Protein
Proton−Water
Proton−Ion

FIG. 10. Generalized correlation potentials of the GA channel along the
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freedom of motion, this interaction is positive in the channel
region. The green curve is the GC interaction between the pro-
ton and fixed channel protein atoms. It is easy to understand
that this interaction is almost zero far away from the protein
while may take big values in the narrow channel. Finally, the
three types of GC potentials are summed up to the overall
value, indicated by the red curve.

3. Proton conductivity

Before simulations and experimental data are compared,
we check the total potential energy of the GA channel that an
ion experiences during transport. The overall potential energy,
i.e., sum of the electrostatics and the GC can quantitatively
explain the transport mechanism and some aspect of channel
selectivity. Figure 11 shows the total effective potential with
contributions from both the electrostatics and generalized cor-
relation under different voltage biases. Figure 11(a) is for the
monovalent cations while Fig. 11(b) is for monovalent anions.
It is agreed that the channel protein structure, or total potential
field determines whether a specific ion can permeate the chan-
nel or not. Based on previous discussion and this figure one
can conclude that the GC always results in an energy barrier
in the channel pore, and its magnitude depends on the geomet-
ric confinement of the channel wall. On the other side, elec-
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FIG. 12. Voltage-current relation of proton translocation of GA at different
concentrations. Blue dots: experimental data of Eisenman et al. (Ref. 3); Red
solid curves: QDC model prediction.

trostatics facilitates the ionic permeation if the sign is right.
Since the GA channel wall presents negative electrostatics, it
is an energy well for the monovalent cations. Therefore, the
combination of negative electrostatic energy with the positive
GC forms a potential energy that allows cations to permeate.
In contrast, the negative electrostatics yields an energy barrier
for anions, the accumulation with the energy barrier of the
GC forms a huge barrier that prevent any anions entering the
channel.

Figure 12 displays simulated results of proton conduc-
tance through Eq. (25), compared with experimental data
from the literature14 of the GA channel. The blue dots in each
figure represent available experimental observations for cer-
tain voltage biases, while the red curves are our QDC model
predictions calculated with sufficiently many voltage samples.
The model parameters are chosen to match the experimental
data but all of the choices are taken within the range of physi-
cal measurements. Taking into account above considerations,
we can conclude that the present predictions agree with ex-
perimental data quite well. This quantitative agreement vali-
dates our GC formulation and quantum dynamics in contin-
uum model.

Apart from I-V curves, conductance-concentration rela-
tion (C-C curve) is another measurement under given voltages
for proton transport. Figure 13 illustrates such a relationship
with a comparison between experimental data and model pre-
dictions. The conductance of the channel is calculated with
various proton concentrations as indicated by the horizontal
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FIG. 13. Conductance-concentration relation of proton translocation at a
fixed voltage. Voltage bias = 0.05 V; Blue triangles: experimental data of
Eisenman et al. (Ref. 3); Red curve: QDC model prediction.

axis at a given voltage bias. The conductance-concentration
relation is computed with the same set of parameters as that in
Fig. 12. At lower proton concentrations (i.e., pH value greater
than 2), the agreement between our prediction and experimen-
tal data is quite good. At relatively higher concentrations, the
conductance saturates against the concentration as expected.
It corresponds to the sub-linear characteristics or the flat tail
of the C-C curve. The numerical simulations slightly overes-
timate the observed conductance between pH values of 1 and
2. Actually, the “shoulder” region exhibited in experimental
data between pH values 1 and 2 (or the −2 and −1 of the
log10[H+]) is considered as changes in the rate-determining
mechanism from the Grotthuss-type one to the hydrodynamic
conduction of hydronium ions.36 This aspect is not reflected
in our current model and needs to be investigated in the future.

V. CONCLUDING REMARKS

Proton transport across lipid membrane plays a signif-
icant role in living cells. However, it is an extremely com-
plicated system. When the membrane protein presents, this
system contains solvation process, transport dynamics, quan-
tum effects and protein structures, which all obey fundamen-
tal laws of nature. The diversity of physical principles and
different level of interest in each component of the system
require multiscale and multiphysics treatments in modeling
and simulation. An innovative model, the QDC model, which
includes a basic formulation with the VSI,16, 17 has been pro-
posed to study proton transport and dynamics in membrane
proteins for the prediction and analysis. In this model, the
proton of primary interest is described quantum mechanically
because of its unique traits, while other mobile ions and the
environment are treated in a classical sense. Additionally, the
membrane protein plays an essential role in the permeation
process so it is modeled explicitly, whereas a dielectric con-
tinuum treatment of solvent medium promises a reasonable
approximation to numerous solvent molecules. These multi-
scale and multiphysics treatments are coupled by the adaptive
solvent-solute interface. During the permeation process the
protons are under intensive interactions, which include long
range or Coulomb interactions and short-range interactions.

Previous work focuses mainly on the electrostatics interaction
while the present work provides a more quantitative descrip-
tion of the short-range generalized correlation.

In the present approach, the generalized correlation is
specifically split as proton-proton, proton-ion, proton-water,
and proton-protein interactions, which are formulated as con-
volutions of interaction kernels and particle number densities.
Number densities of mobile ionic species, including proton
and all other ions, follow the same definitions and treatments
as in our original model.16, 17 The number density of water
can be either approximated as a constant or Gaussian func-
tion depends on different sizes of channel pores. In contrast,
the density of channel protein atoms is accounted explicitly
and a multiscale discrete-continuum proton-protein interac-
tion is considered. Upon physical characteristics, interaction
kernels are designed in a uniform formulation with appropri-
ate parameters to reflect biological properties of ion species
and specific mathematical properties. Based on these treat-
ments, the generalized correlation is able to include the ion-
ion short-range interactions such as van der Waals interaction
and finite size effect. More importantly, it is well known that
extremely narrow channel pore will induce geometrical con-
finement to the freedom of water motion. As such, the inter-
action between ion and water is significantly different there
from that of the bulk region. A well designed generalized cor-
relation can capture this difference successfully. In this work,
the generalized correlation has a more quantitative description
which balances biological details and simulation efficiency,
and thus it is a reliable complement to the electrostatic poten-
tial in the total Hamiltonian of protons.

Several advanced numerical algorithms are equipped to
handle mathematical challenges in solving the coupled gov-
erning equations. The original generalized Laplace-Beltrami
equation is solved through a parabolic equation with pseudo
time and the Laplace-Beltrami potential is converted to a den-
sity related expression in order to avoid the direct evaluation
of the proton wavefunctions.17 The DNM method and the
MIB method are utilized to handle singular charges and dis-
continuous coefficients in the generalized Poisson-Boltzmann
equation. Based on the generalized Kohn-Sham equation, for-
mulations are derived for the proton number density and prob-
ability current. Finally, a surface driven self-consistent itera-
tion is employed to solve three coupled governing equations.

Validation of the proposed model and performance of
the related numerical techniques are verified by simulations
with the popular Gramicidin A (GA) channel protein. First,
as a component of GC, the proton-water interaction is specif-
ically tested with various simplified channel parameters to
demonstrate the geometric confinement effect. Then the re-
alistic generalized correlation is calculated and mapped on
the GA surface to compare with the result of electrostatic
potential. Furthermore, each component of the generalized
correlation is visualized to give a detailed physical illustra-
tion and the combination of generalized correlation and elec-
trostatics is displayed to explain the GA selectivity. Finally,
current voltage (I-V) curves and conductance-concentration
curves, which represent proton transport properties, are inves-
tigated over a large number of combinations of applied volt-
ages and reference bulk concentrations. The good agreement
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of our model predictions against experimental data validates
the present QDC with generalized correlation model.
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