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A functional-integral formulation is used to treat the quantum dynamics of a microscopic
model of a Josephson junction, including the dissipative effects of quasiparticle tunneling.
The calculation is carried to a point where it makes contact with, and therefore substan-
tiates, recent work by Caldeira and Leggett in which the system is treated by analogy
with the quantum Brownian motion of a massive particle coupled to a phenomenological

heat bath.

PACS numbers: 74.50.+r, 05.30.-d, 05.40.+]j

There is considerable current interest in the
theory of the quantum dynamics of tunneling be-
tween superconductors. The subject is topical
because it appliés to the switching of supercon-
ducting quantum interference devices at low tem-
peratures, and also because it concerns a situa-
tion in which the quantum mechanics of a macro-
scopic variable—the phase of the order param-
eter—cannot be decoupled from microscopic de-
grees of freedom, so that dissipation is an essen-
tial part of the dynamics.

In the pioneering work on this subject,’ the
phenomenological dissipation-free equation for
the phase variable of a Josephson tunnel junction
is treated as a classical equation derivable from
a Lagrangian, L,; terms describing microscopic
degrees of freedom and their coupling to the
phase are added to this Lagrangian; and quantum
mechanics is applied to the enlarged system,
Since the phase associated with a Josephson junc-
tion is not a classical variable, this procedure
raises conceptual questions? in particular, the
mass and potential energy in L, contain explicit
factors of 7z, Furthermore, the phenomenological
coupling to the environment leads to model-de-
pendent frequency renormalizations which re-
quire good judgment for their correction inter-
pretation. In Ref. 1, these renormalizations are
absorbed into the nondissipative zeroth-order |

problem. However, in more recent work® such
effects are interpreted, we believe incorrectly
(see below), as having physical consequences.*®

In this note, we construct a theory of the quan-
tum mechanics of the phase variable from a
microscopic model of superconducting tunneling.
We are able to clarify the problems alluded to
in the last paragraph. We obtain a result which
is somewhat more general than that of Caldeira
and Leggett; it reduces to their form when cer-
tain simplifying assumptions are made, Our
calculation produces the correct barrier against
phase fluctuations and contains no additional re-
normalizations, thus justifying the treatment in
Ref. 1. In addition, we cast some light on the
approximations inherent in ignoring quantum
fluctuations. Thus we make a beginning towards
answering the question® of the theoretical limit
to the accuracy of the measurement of 2¢/7% by
the Josephson effect.

We start from a microscopic model described
by the Hamiltonian

J=3C, +5Cp +3C, +4Cq (1)

Here 3, and 3Cg describe the superconductors on
the left and right of the junction, s is the tunnel-
ing Hamiltonian, and 3y is the Coulomb energy
associated with charge transfer across the junc-
tion. Explicitly, we take

2
JCL =fd3x ZI‘L(JT [-g;—ﬂ' v - FL] 4’1,0 _%fdax ¢L0T(§) ZpL-o T(;i)%-o(?’()%a(i) . (2)

Here y, is the electron field operator for spin 0, and repeated spin indices are summed over; ¥z
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=3 (Y~ x, &L~ LR (right) superconductors, i.e.,
Qr=e) d Yo @y o) .
’ To study the low-lying quantum states of this
system we calculate the partition function Z
(3)  =Tr[exp(- 73/k)], with T a real number with
the dimension of time. Divide 7 into a large num-
S0, = _1_<Q; - Qg>2 (4)  ber, N, of intervals. Ineach interval, express
¢ 2c 2 ’ the charging energy (4) and the parts of 3¢, and
3C quartic in field operators as Gaussian inte-

with @ (g, the operator for the charge in the left | grals.” In this way, the partition function be-
comes a multiple functional integral:

o= [ d® [T (X, %), 0 (@ o) +Hoe.]
XcL,
X'CR

Z = D%, DAp DV Tr{Texp|- [T atset)/ml}. (5)

Here A and Aj are complex functions of X and ¢, V is a real function of ¢,® and all three are periodic
in ¢ with period 7. The trace is still over the electron variables. T orders operators in time from
zero to 7. IC.¢r is obtained from the terms in (1) by the following replacements:

3CL~(SCL)5”'=— K+fd3x[AL*(;(, t)‘PL&(?E)‘PLf(i) "'H-C-]‘*’ g}‘ fdax ' A1,(§» t)|? (6)
L

[K is the first term in (2)]; 3Cg—(3Cg)css in 2 similar way;
Hq=(3CQ) err = 2 V(1) [QL - Q] +3CV(¢); (n

and X, is unchanged. The definition of the measure in the functional integrals in (5) is contained in the
operations, described above, leading to their construction.” Since JC.¢; is bilinear in electron opera-
tors, the trace can be done exactly. One obtains

Z=|D%A, D% ,DVexp{-G|a, A%, V]} (8
where®
2 2
-a=Tr1n§-l—fg§<'—Al—’—+'—AL'—>—det—1—cvz. (9)
- n 8L 543 o 2n

Here dyx =d’ dt, and we have introduced a four-component electron space by adding the Nambu spaces™
of the left and right superconductors. In particular,

g, -7 8(t - 1)
A-l= -~ A~
§ 7t 8(¢—1") ! ’ (10)
A 3 e ] L A
8™ = [ o (ZJ vep( V(t)> 4=y gy | O =7, (11)

) 0 A,m\ . [T O
A1.,(13)= AL(R)* 0 , T = 0 —‘T* . (12)

Note that we indicate matrices in the Nambu space of one superconductor by carets, and matrices de-
scribing both superconductors by underlines.

We expand the first term of (9) in powers of the tunneling matrix elements, namely the off-diagonal
parts of (10). Keeping the lowest nonvanishing term, we obtain

—G=—&L-GR—%Tr§:T§§—fr-——CV2. (13)
-=== J, B 2

The third term, which we examine in detail below, contains the effects of pair and quasiparticle tunnel-
ing. The first two terms are the time integrals of the bulk free energies of the two uncoupled super -
conductors. If V(¢) is set equal to zero and A r taken to be real, it is easy to identify the BCS free en-
ergies. Quite generally, we can make gauge transformations to make A, and A g real, whereupon (11)

1746



VoLUME 48, NUMBER 25 PHYSICAL REVIEW LETTERS 21 JUNE 1982

becomes (for the left superconductor)

~ 9 N 2¢y2 .
9L'1={—h§+ihvn'v+[ﬁzrz +ﬂ-%vsf+§(h—%‘--eV>]73—AL}é(x -x'). (14)

ot

Here Vg, = -(Vy, +eA/lc)/2m, if we allow for a vector potential. In (14) A, is now real, and —¢, is
the phase of A; in (12). Expanding (14), and the similar expression with L - R, in powers of the elec-
tromagnetic potentials in this preferred gauge we get (for slowly varying potentials)

9 2
&L=GL°+fT%t fx[ﬂfii)(ﬁ—;—;ﬁ —eV> + épSLVSLz}. (15)
0

Above, N(0) is the density of free electron states at the Fermi surface; and pgVg, the supercurrent
induced by V5. Thus we see that bulk energies fix the magnitudes of A; and A in (8) at their equilib-
rium values, and also pin #¢Q (g to (+) eV.!! When these values are fixed, the multiple functional
integral in (8) is reduced to a single one, over ¢=¢; — ¢z, and the effective action is given by the last
two terms in (13), the last term in (15), and a similar term with L -~ R, Working out the third term

in (13), we find it to be given by (with |7 |2 being the appropriate average'? of tunneling matrix elements)

@‘r=|7'|2 (27[7i)3f%ﬁ%1)%f dtf””'( { [ (t)—(p(t’)]}GL(t—t' pL)GR(t -t pR)

- exp {-23 Lolt) +olt’ )]}FL(t =1, PIFR(t' ~1,P5) +(R -L)> . (16)

Here we have introduced Gorkov’s G and F functions.!®

Equation (16) is the basic result of this paper. It is nothing more or less than the standard tunneling
theory: The analytic continuation to real times of the least-action path agrees completely with known
results.'?

Let us pause briefly to summarize what we have done. For the model defined by (1), we considered
the partition function, Z, First, we introduced additional fields to eliminate the interaction terms in
the Hamiltonian; second, we integrated out the individual electron variables; third, we were able to
reduce the multiple functional integral to a single one over the phase difference by noting that large
bulk energies determine the magnitude of the order parameter and the phase voltage relation.'* The
result is an effective action for the tunnel junction.

Equation (16) contains the nonlinear quasiparticle resistance and the frequency-dependent critical
current characteristic of the tunneling model. To make connection with simpler models in wide use,
we evaluate the first term of (16) in the normal state, and the second for zero voltage. With these
simplifying assumptions, (16) reduces to

G:T..[.‘Tdt (—512— coso(t) +2font, alt —¢")sin? {3 (1) - ¢(tl)]}> . (an

Here I, is the critical current, and we have dropped a g-independent constant (via 1 —cos2x =2sin%).
Further,

&y "
ofr) = 21T (27%)3f(27f;_)3 Gu(t,B2)Cxl~t, Br) . (18)

Within the approximation (18), «(f) is easily calculated. For ¢ not too small, one may approximate
the densities of states by constants, to obtain

R 1
2me®Ry t2’
with Ry~ =47e?| T 2N .(0)N g(0) /% being the normal-state resistance which can be interpreted as the
shunt resistance present in many experiments. For simplicity, (19) has been calculated in the zero-
temperature limit.

We can also treat a situation in whlch the external current is fixed., We imagine a one-dimensional
geometry (along the x direction), the L and R superconductors occupying the regions [- I,- €] and

olt) = [t|>>%, (19)
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[+€,+1] (€ <I). From the kinetic energy contri-
bution in (15)—and the similar one for R—we
then obtain a term given by

T
__/0‘ dt'zLe[w_(pext]’ (20)
where we have identified the total current,
=areaXe/mX(psvs) ., g, the phase difference ¢
=@ (=€) = @g(+€), and @y = ¢(=1) = ¢(+1). The
last term in (20) describes the work done from
outside to keep the current I constant. It can be I

Gurlol= [ "L[2C (32) v v2f Tt [ Carrate- st {ile) - o]

the “potential energy” u(¢) contains the contri-
butions discussed above. Our derivation gives a
microscopic justification for the method used by
Caldeira and Leggett' to calculate the zero-tem-
perature decay rate of a Josephson junction in the
presence of damping. (Their cutoff frequency is
seen to be the Fermi energy.) Although our damp-
ing term agrees with theirs only in the approxima-
tion where the sine is replaced by its argument,
the similarities in structure will be apparent.
For example, the argument leading to the conclu-
sion that “damping decreases the decay rate”
can be easily repeated. Since we have consis-
tently included the oscillatory and damping ef-
fects of tunneling, we have illuminated the recent
controversy about frequency renormalizations.3™®
We support the procedure adopted in Ref. 1 of cal-
culating the decay rate as a function of damping
constant for fixed renormalized frequency.
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