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In this work, we give a comprehensive derivation of an exact and numerically feasible method to perform

ab initio calculations of quantum particles interacting with a quantized electromagnetic field. We present a

hierarchy of density-functional-type theories that describe the interaction of charged particles with photons and

introduce the appropriate Kohn-Sham schemes. We show how the evolution of a system described by quantum

electrodynamics in Coulomb gauge is uniquely determined by its initial state and two reduced quantities.

These two fundamental observables, the polarization of the Dirac field and the vector potential of the photon

field, can be calculated by solving two coupled, nonlinear evolution equations without the need to explicitly

determine the (numerically infeasible) many-body wave function of the coupled quantum system. To find

reliable approximations to the implicit functionals, we present the appropriate Kohn-Sham construction. In the

nonrelativistic limit, this density-functional-type theory of quantum electrodynamics reduces to the density-

functional reformulation of the Pauli-Fierz Hamiltonian, which is based on the current density of the electrons

and the vector potential of the photon field. By making further approximations, e.g., restricting the allowed modes

of the photon field, we derive further density-functional-type theories of coupled matter-photon systems for the

corresponding approximate Hamiltonians. In the limit of only two sites and one mode we deduce the appropriate

effective theory for the two-site Hubbard model coupled to one photonic mode. This model system is used to

illustrate the basic ideas of a density-functional reformulation in great detail and we present the exact Kohn-Sham

potentials for our coupled matter-photon model system.
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I. INTRODUCTION

The behavior of elementary charged particles, such as elec-

trons and positrons, is governed by quantum electrodynamics

(QED). In this theory, the quantum particles interact via the

exchange of the quanta of light, i.e., the photons [1–3]. Thus,

in principle we have to consider the quantum nature of the

charged particles as well as of the light field. However, in

several important cases we can focus almost exclusively on

either the charged particles or the photons, while employing

crude approximations for the other degrees of freedom.

In condensed matter physics and quantum chemistry, the

quantum nature of light can usually be ignored and the inter-

action between the charged quantum particles is approximated

by the instantaneous Coulomb interaction. However, even

then the resulting quantum mechanical equations (usually the

many-body Schrödinger equation), where the electromagnetic

fields are treated classically through the solution of the

Maxwell equations, are solvable only for very simple systems.

This lies ultimately in our incapability of handling the huge

number of degrees of freedom of many-particle systems and

consequently in our inability to determine the many-body

states. This so-called many-body problem spawned a lot of

interest into the question as to whether one can devise a

closed set of equations for reduced quantities which do not
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involve the explicit solution of the full quantum mechanical

equations and in which the many-body correlations can be

approximated efficiently. Pursuits in this direction have led to

various approaches such as, among others, many-body Green’s

function theories [4,5], (reduced) density-matrix theories [6],

and density-functional theories [7–10]. These approaches

differ in the complexity of the reduced quantity, which is

used to calculate the various observables of interest. Especially

density-functional theories, which are based on the simplest of

those (functional) variables, the one-particle density (current),

have proven to be exceptionally successful [11]. Their success

can be attributed to the unprecedented balance between

accuracy and numerical feasibility [12], which allows us at

present to treat several thousands of atoms [13]. Although the

different flavors of density-functional theories cover most of

the traditional problems of physics and chemistry (including

approaches that combine classical Maxwell dynamics with the

quantum particles [14–18]), by construction these theories can

not treat problems involving the quantum nature of light.

In quantum optics, on the other hand, the focus is on the

photons, while usually simple approximations for the charged

particles are employed, e.g., a few-level approximation.

However, even in this situation the solution of the resulting

equations [19,20] is only possible in simple cases (again

due to the large number of degrees of freedom) and usually

simplified model Hamiltonians, e.g., the Dicke model realized

in a cavity [21–23], are employed to describe these physical

situations. Already the validity of these effective Hamiltonians

and their properties can be a matter of debate [24–26] and
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often further simplifications are adopted such as the Jaynes-

Cummings model in the rotating-wave approximation. The

rapid progress in quantum-optical experiments, on the other

hand, especially in the field of cavity QED [27–30] and circuit

QED [31,32], allows us to study and control multiparticle

systems ultrastrongly coupled to photons [33–36], where

such a simple approximative treatment is no longer valid

[37]. This new regime of light-matter interaction is widely

unexplored for, e.g., molecular physics and material sciences

[38]. Possibilities such as altering and strongly influencing the

chemical reactions of a molecule in the presence of a cavity

mode or setting the matter into new nonequilibrium states

with novel properties, e.g., light-induced superconductivity

[39], arise. Specifically in such situations, an oversimplified

treatment of the charged particles may no longer be allowed

and an approach that considers both, the quantum nature of

the light field as well as of the charged particles, is needed.

In this work, we give a comprehensive derivation of an

exact and numerically feasible method that generalizes ideas

of time-dependent density-functional theory (TDDFT). This

method bridges the gap between the above two extreme cases

and provides a scheme to perform ab initio calculations of

quantum particles coupled to photons. The electron-photon

generalization of TDDFT in describing nonrelativistic many-

electron systems coupled to photon modes of mesoscopic

cavities was introduced in Ref. [40]. Here, we provide a

general framework describing fully coupled electron-photon

systems in most possible regimes and systems ranging from

effective model Hamiltonians to strongly relativistic cases,

which has been introduced in Refs. [41,42]. For clarity,

we divide the following presentation in two parts: We first

demonstrate the basic ideas in a simple model system and

then show how these concepts can be used in the case of

general coupled matter-photon problems. A summary of all

findings of this work for the time-dependent density-functional

description of QED at different levels of approximations,

namely, the basic variables, initial conditions, and funda-

mental Kohn-Sham multicomponent equations is given in

Appendix F.

We start considering a simple model system for charged

matter coupled to photons: the two-site Hubbard model

interacting with one photonic mode. By employing density-

functional ideas, we show how one can solve this quantum-

mechanical problem without the need to explicitly calculate

the complex many-body wave function. Instead, we derive

equations of motion for a pair of reduced quantities from which

all physical observables can by determined. We demonstrate

that these equations have unique solutions and can be used to

calculate the basic reduced quantities (here the basic pair of

reduced quantities is the charge density of the particle and the

potential induced by the photons) of the coupled problem.

Therefore, we here reformulate the coupled matter-photon

problem in terms of an effective theory, that we call in

the following a model of quantum electrodynamical density-

functional theory (QEDFT). Since an explicit calculation of the

coupled wave function is not needed, this approach allows us to

determine properties of the matter-photon system in a numeri-

cally feasible way. We introduce a new Kohn-Sham scheme to

approximate the unknown functionals in the basic equations

of motion and present results for a simple approximation. We

compare these results to the exact Kohn-Sham functionals and

identify shortcomings and indicate improvements.

Based on the ideas developed in the first part of this work,

we repeat the steps illustrated in our example but now we

construct a density-functional reformulation for the full theory

of QED [41,42]. We show that a straightforward approach

based on the current and the potential leads to problems and

that a consistent density-functional reformulation of QED has

to be based on the polarization and the potential which is gen-

erated by the photons. This approach to the fully coupled QED

problem we denote as relativistic QEDFT, and we present the

corresponding Kohn-Sham construction and give the simplest

approximation to the unknown functionals. In the following,

we then demonstrate how relativistic QEDFT reduces in the

nonrelativistic limit to its nonrelativistic version of the corre-

sponding nonrelativistic Hamiltonian. By employing further

approximations on the matter system or on the photon field, a

family of different approximate QEDFTs is introduced, which

are consistent with their respective approximate Hamiltonians.

At this level, we recover the theory of Ref. [40]. In lowest

order, we rederive the model QEDFT of the first part of this

work. Therefore, we demonstrate how all different flavors of

QEDFT are just approximations to relativistic QEDFT in the

same manner as different physical Hamiltonians are merely

approximations to the QED Hamiltonian. Furthermore, by

ignoring all photonic degrees of freedom, we find the standard

formulations of TDDFT which are extensively used in the

electronic-structure community [9,10].

Outline. In Sec. II, we investigate the QEDFT reformulation

of a simple model of one particle coupled to one mode in great

detail. The developed ideas are then employed in Sec. III to

derive a QEDFT reformulation of QED. In Sec. IV, we show

how all different QEDFT reformulations are approximations

to relativistic QEDFT. We conclude and give an outlook in

Sec. V.

II. MODEL OF QEDFT

In this section, we introduce the basic formulation and un-

derlying ideas of QEDFT. By employing a model Hamiltonian,

we can almost exclusively focus on the density-functional

ideas that allow a reformulation of the wave-function problem

in terms of simple effective quantities. We first identify the

pair of external and internal variables and then show that both

are connected via a bijective mapping. As a consequence, all

expectation values become functionals of the initial state and

the internal pair. This allows for a reformulation of the problem

in terms of two coupled equations for the internal pair. Then,

we introduce the Kohn-Sham construction as a way to find

approximations to the unknown functionals, and show first

numerical results.

To describe the dynamics of particles coupled to photons,

we solve an evolution equation of the form

i�c∂0|�(t)〉 = Ĥ (t)|�(t)〉 (1)

for a given initial state |�0〉. Here, ∂0 = ∂/∂x0 with x0 = ct

and the standard relativistic (covariant) notation x ≡ (ct,�r)

(see also Appendix A for notational conventions). The
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corresponding Hermitian Hamiltonian has the general form

Ĥ (t) = ĤM + ĤEM + 1

c

∫

d3r Ĵμ(x)Âμ(x)

+ 1

c

∫

d3r
(

Ĵμ(x)a
μ
ext(x) + Âμ(x)j

μ
ext(x)

)

, (2)

where the dependence of the total Hamiltonian on t indicates

an explicit time dependence. Here, the (time-independent)

Hamiltonian ĤM describes the kinetic energy of the particles,

i.e., how they would evolve without any perturbation, and

ĤEM is the energy of the photon field. The third term describes

the coupling between the (charged) particles and the photons

by the charge current Ĵμ and the Maxwell-field operators

Âμ (where the Einstein sum convention with the Minkowski

metric gμν ≡ (1,−1,−1,−1) is implied and Greek letters

refer to four vectors, e.g., μ ∈ {0,1,2,3}, while Roman

letters are restricted to spatial vectors only, e.g., k ∈ {1,2,3}).
This term is frequently called the minimal-coupling term and

arises due to the requirement of a gauge-invariant coupling

between the particles and the photon field. The specific form

of the operators Ĵμ and Âμ depends on the details of the

physical situation. Finally, the last term describes how the

particles interact with a (in general time-dependent) classical

external vector potential a
μ
ext and how the photons couple to a

(in general time-dependent) classical external current j
μ
ext.

While we usually have no control over how the particles and

photons evolve freely or interact, i.e., the first three terms of the

Hamiltonian (2), we have control over the preparation of the

initial state |�0〉 and the external fields (a
μ
ext,j

μ
ext). Therefore,

all physical wave functions, i.e., found by solving Eq. (1), can

be labeled by their initial state and external pair (a
μ
ext,j

μ
ext):

∣
∣�

([

�0,a
μ
ext,j

μ
ext

]

; t
)〉

.

However, for any but the simplest systems the (numerically

exact) solution of Eq. (1) is not feasible. Even if we decouple

the matter part from the photons by employing the Coulomb

approximation (i.e., describing the exchange of photons by the

respective lowest-order propagator), the resulting problem is

far from trivial.

A. Two-level system coupled to one mode

In this section, we introduce a simple model of charged

particles coupled to photons. We discuss the basic concepts

of a density-functional-type reformulation, identify the pair of

conjugate variables, and then deduce the fundamental equa-

tions of motion on which we base our QEDFT reformulation.

In order to demonstrate the basic ideas of a QEDFT,

we employ the simplest yet nontrivial realization of one

charged particle coupled to photons: a two-site Hubbard model

coupled to one photonic mode. The resulting Hamiltonian

(see Appendix E for a detailed derivation) reads as

Ĥ (t) = ĤM + ĤEM − λ

c
Ĵ Â − 1

c
[Ĵ aext(t) + Âjext(t)], (3)

where the kinetic energy of the charged particle is given by

ĤM = −tkinσ̂x,

and the energy of the photon mode reads as

ĤEM = �ωâ†â.

Here, tkin is the hopping parameter between the two sites, ω

is the frequency of the photonic mode, and (σ̂x,σ̂y,σ̂z) are the

Pauli matrices that obey the usual fermionic anticommutation

relations. The photon creation and annihilation operators (â†

and â, respectively) obey the usual bosonic commutation

relations. The current operator1 is defined by

Ĵ = eωlσ̂z,

where l is a characteristic length scale of the matter part and λ

is a dimensionless coupling constant.

The operator for the conjugate potential2 is given by

Â =
(

�c2

ǫ0L3

)1/2
(â + â†)√

2ω
,

where L is the length of the cubic cavity. Further, the current

operator couples to the external potential aext(t) and the

potential operator to the external current jext(t). These are

the two (classical) external fields that we can use to control the

dynamics.

If we then fix an initial state |�0〉 and choose an external

pair (aext,jext), we usually want to solve Eq. (1) with the

Hamiltonian given by Eq. (3). The resulting wave function,

given in a site basis |x〉 for the charged particle and a Fock

number-state basis |n〉 for the photons

|�([�0,aext,jext]; t)〉 =
2

∑

x=1

∞
∑

n=0

cxn(t)|x〉 ⊗ |n〉,

depends on the initial state and the external pair (aext,jext).

Thus, by varying over all possible combinations of pairs

(aext,jext), we scan through all physically allowed wave

functions starting from a given initial state. Hence, we

parametrize the relevant, i.e., physical, time-dependent wave

functions by |�0〉 and (aext,jext). Since the wave functions

have these dependencies, also all derived expressions, e.g., the

expectation values for general operators Ô

O([�0,aext,jext],t) = 〈�(t)|Ô|�(t)〉,
are determined by the initial state and the external pair

(aext,jext).

The idea of an exact effective theory such as QEDFT is

now that we identify a different set of fundamental variables,

which also allow us to label the physical wave functions (and

their respective observables), and that we have a closed set of

1To be precise, Ĵ is proportional to the dipole-moment operator, i.e.,

it is connected to the zero component Ĵ0 of the general four-current

operator Ĵμ. To highlight the analogy in structure to the general case

discussed in the later sections, we give it the units of a current and

denote it by Ĵ .
2To be precise, Â is actually proportional to the electric field as

can be seen from the derivations in Appendix E. This is because

in the course of approximations, one employs the length gauge and

thus transforms from the potential to the electric field. However, to

highlight the analogy in structure to the general case discussed in the

later sections, we give it the units of the potential and denote it by Â.
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equations for these new (functional) variables, which do not

involve the full wave functions explicitly. Such a functional-

variable change is similar to a coordinate transformation,

say from Cartesian coordinates to spherical coordinates. This

can only be done if every point in one coordinate system is

mapped uniquely to a point in the other coordinate system.

For a functional-variable change, we thus need to have a

one-to-one correspondence, i.e., bijective mapping, between

the set of (allowed) pairs (aext,jext) and some other set of

functions (while we keep the initial state fixed). To identify

the simplest new functional variables, one usually employs

arguments based on the Legendre transformation [43]. That is

why these new functional variables are often called conjugate

variables. We will consider this approach in the next sections

where we investigate general QEDFT, and also show how one

can determine the conjugate variables of this model system

from more general formulations of QEDFT. For this simple

model, we simply state that a possible pair of conjugate

variables is (J,A). In the next subsection, we show that this

functional variable-transformation is indeed allowed, i.e.,

|�([�0,J,A]; t)〉.

The main consequence of this result is that from only

knowing these three basic quantities, we can (in principle)

uniquely determine the full wave function. Accordingly, every

expectation value becomes a unique functional of |�0〉 and

(J,A). Thus, instead of trying to calculate the (numerically

expensive) wave function, it is enough to determine the

internal pair (J,A) for a given initial state. An obvious route to

then also find a closed set of equations for these new variables is

via their respective equations of motion. These equations will

at the same time be used to prove the existence of the above

change of variables, i.e., that the wave function is a unique

functional of the initial state and the internal pair (J,A).

To find appropriate equations, we first apply the Heisenberg

equation of motion once and find

i∂0Ĵ = −i
2tkineωl

�c
σ̂y,

i∂0Â = −iÊ,

where Ê = i
√

�ω
2ǫ0L3 (â − â†). Yet, these two equations are not

sufficient for our purposes: we need equations that explicitly

connect (aext ,jext) and (J,A). Therefore, we have to go to the

second order in time

(i∂0)2 Ĵ = 4t2
kin

�2c2
Ĵ − λn̂Â − n̂aext(t), (4)

(i∂0)2 Â = k2Â − μ0c

L3
(λĴ + jext(t)), (5)

where

n̂ = 4tkin(eωl)2

�2c3
σ̂x, (6)

k = ω
c

, and ǫ0 = 1
μ0c2 . Here, Eq. (4) is the discretized version

of ∂2
t n of standard TDDFT [44,45], and Eq. (5) is the

inhomogeneous Maxwell equation for one-photon mode [40].

B. Foundations of the model QEDFT

In the previous section, we have stated that (J,A) and

(aext,jext) are the possible conjugate pair of the model

Hamiltonian (3). In this section, we want to demonstrate that

indeed this holds true and that we can perform a variable

transformation from the external pair (aext,jext)
3 to the internal

pair (J,A). What we need to show is, that for a fixed initial

state |�0〉, the mapping

(aext,jext)
1:1↔ (J,A) (7)

is bijective, i.e., if (aext,jext) �= (ãext,j̃ext) then necessarily for

the corresponding expectation values (J,A) �= (J̃ ,Ã). To do

so, we first note that in the above equations of motion every

expectation value is by construction a functional of (aext,jext)

for a fixed initial state

∂2
0 J ([aext,jext]; t)

= − 4t2
kin

�2c2
J ([aext,jext]; t) + λ〈n̂Â〉([aext,jext]; t)

+ n([aext,jext]; t)aext(t), (8)

∂2
0 A([aext,jext]; t) = − k2A([aext,jext]; t)

+ μ0c

L3
[λJ ([aext,jext]; t) + jext(t)] ,

(9)

i.e., they are generated by a time propagation of |�0〉 with

a given external pair (aext,jext). Suppose now that we fix the

expectation values of the internal variables (J,A), i.e., we

do not regard them as functionals but rather as functional

variables. Then, the above Eqs. (8) and (9) become equations

for the pair (aext,jext) that produce the given internal pair (J,A)

via propagation of the initial state |�0〉, i.e.,

∂2
0 J (t) = − 4t2

kin

�2c2
J (t) + λ〈n̂Â〉([aext,jext]; t)

+ n([aext,jext]; t)aext(t), (10)

∂2
0 A(t) = − k2A(t) + μ0c

L3
[λJ (t) + jext(t)] . (11)

Obviously, these equations can only have a solution, if the

given internal variables are consistent with the initial state,

i.e.,

J (0) = 〈�0|Ĵ |�0〉, J (1) = −2tkineωl

�c
〈�0|σ̂y |�0〉, (12)

A(0) = 〈�0|Â|�0〉, A(1) = −〈�0|Ê|�0〉. (13)

3In the general case, different external pairs can be physically

equivalent, and thus one usually considers equivalence classes of

external pairs. In this model system, however, we have already fixed

these degrees of freedom. First, we have fixed the gauge of aext

(a purely time-dependent constant), since aext corresponds to the

potential difference of sites 1 and 2. Second, any freedom with respect

to the external current has been fixed since jext corresponds to the

spatial integral of the current (which makes any divergence zero). A

detailed discussion of these points can be found in Sec. III B.
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Here, we have used the definition

A(α) = ∂α
0 A(t)

∣
∣
t=0

, (14)

and every internal pair (J,A) that we consider is subject to

these boundary conditions. Thus, the mapping (7) is bijective,

if the corresponding Eqs. (10) and (11), which connect the

internal pair (J,A) with the external pair (aext,jext), allow for

one and only one solution pair.

Let us first note that for a given pair (J,A), Eq. (11) uniquely

determines4 the external current jext by

jext(t) = L3

μ0c

(

∂2
0 + k2

)

A(t) − λJ (t). (15)

Thus, the original problem reduces to the question as to

whether Eq. (10) determines aext(t) uniquely. The most general

approach to answer this question is via a fixed-point procedure

similar to Ref. [46]. In the case of a discretized Schrödinger

equation such as Eq. (3), it should also be possible to apply

a rigorous approach based on the well-established theory

of nonlinear ordinary differential equations [45]. However,

for simplicity we follow Ref. [40] and employ the standard

strategy of [47] which restricts the allowed external potentials

aext to being Taylor expandable in time, i.e.,

aext(t) =
∞
∑

α=0

a
(α)
ext

α!
(ct)α. (16)

From Eq. (10) we can find the Taylor coefficients of J (if they

exist) by

J (α+2) = − 4t2
kin

c2�2
J (α) + λ〈n̂Â〉(α) +

α
∑

β=0

(
α

β

)

n(α−β)a
(β)
ext , (17)

where the terms 〈n̂Â〉(α) and n(α) are given by their respec-

tive Heisenberg equations at t = 0 and only contain Taylor

coefficients of a
(β)
ext for β < α.

Now, assume that we have two different external potentials

aext(t) �= ãext(t). This implies, since we assumed Taylor ex-

pandability of aext and ãext, that there is a lowest order α for

which

a
(α)
ext �= ã

(α)
ext . (18)

For all orders β < α (even though the individual J (β) and J̃ (β)

might not exist), it necessarily holds that

J (β+2) − J̃ (β+2) = 0. (19)

But, for α we accordingly find that

J (α+2) − J̃ (α+2) = n(0)
(

a
(α)
ext − ã

(α)
ext

)

�= 0, (20)

provided we choose the initial state such that n(0) �= 0. Con-

sequently, J (t) �= J̃ (t) infinitesimally later for two different

external potentials aext(t) �= ãext(t). Therefore, Eq. (10) allows

4Note that due to the initial conditions A(0) and A(1), one can not add

a nonzero homogeneous solution (∂2
0 + k2)f (t) = 0 to the external

current.

only one solution and the mapping (aext,jext) → (A,J ) is

bijective.

As a consequence, since every expectation value of the

quantum system becomes a functional of the internal pair

(J,A), in the above Eqs. (10) and (11), we can perform a

change of variables and find

∂2
0 J (t) = − 4t2

kin

�2c2
J (t) + λ〈n̂Â〉([J,A]; t) + n([J,A]; t)aext(t),

(21)

∂2
0 A(t) = −k2A(t) + μ0c

L3
[λJ (t) + jext(t)] . (22)

These coupled evolution equations have unique solutions

(J,A) for the above initial conditions (12) and (13). Therefore,

we can, instead of solving for the many-body wave function,

solve these nonlinear coupled evolution equations for a given

initial state and external pair (aext,jext), and determine the

current and the potential of the combined matter-photon

system from which all observables could be computed. This

is an exact reformulation of the model in terms of the current

and the potential of the combined system only.

C. Kohn-Sham approach to the model QEDFT

In the previous section, we have derived a QEDFT refor-

mulation in terms of the current and the potential. While the

equation that determines the potential A is merely the classical

Maxwell equation, and every term is known explicitly, the

equation for the current contains implicit terms. Therefore, to

solve these coupled equations in practice, we need to give

appropriate explicit approximations for the implicit terms.

Approximations based on (J,A) directly would correspond

to a Thomas-Fermi–type approach to the model. As known

from standard density-functional theory, such approximations

are in general very crude and hard to improve upon. A more

practical scheme is based on the Kohn-Sham construction,

where an auxiliary quantum system is used to prescribe

explicit approximations. However, the numerical costs of

a Kohn-Sham approach compared to a Thomas-Fermi–type

approach are increased.

The details of the Kohn-Sham construction depend on the

actual auxiliary quantum system one wants to employ. The

only restriction of the auxiliary system is that one can control

the current and the potential by some external variables. Thus,

one could even add further (unphysical) external fields to

make approximations of the coupled quantum system easier.

However, here we only present the simplest and most natural

Kohn-Sham scheme, which is to describe the coupled quantum

system by an uncoupled quantum system. To this end, we

assume that we can find a factorized initial state

|�0〉 = |M0〉 ⊗ |EM0〉

that obeys the same initial conditions as the coupled problem

(12) and (13). Especially, if the initial state of the coupled

system is the same as in the uncoupled problem, then this

condition is trivially fulfilled. In a next step, we note that for

the uncoupled system subject to the external pair (aeff,jeff), the
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equations of motion become (since λ = 0)

∂2
0 J ([aeff,jeff]; t) = − 4t2

kin

�2c2
J ([aeff,jeff]; t)

+ n([aeff,jeff]; t)aeff(t), (23)

∂2
0 A([aeff,jeff]; t) = −k2A([aeff,jeff]; t) + μ0c

L3
jeff(t). (24)

Now, obviously if one would choose (aeff,jeff) = (aext,jext),

i.e., the external pair of the coupled problem, the uncoupled

quantum system will in general lead to a different internal

pair. However, can we find an effective pair that reproduces

the internal pair (J,A) of the coupled system? The existence

of such an effective pair can be based on equations for the

uncoupled system similar to Eqs. (10) and (11). Note that

before we were considering the question of uniqueness, i.e.,

can one have two external pairs leading to the same (J,A).

Thus, any internal pair (J,A) was a priori associated with an

external pair (aext,jext). If, on the other hand, we are given some

internal pair (J,A), say from a different (coupled) quantum

system, we do not a priori know that this internal pair can

be represented by propagation of an initial state with some

(aeff,jeff). Thus, this problem is equivalent to the existence of

a solution to

∂2
0 J (t) = − 4t2

kin

�2c2
J (t) + n([aeff,jeff]; t)aeff(t), (25)

∂2
0 A(t) = −k2A(t) + μ0c

L3
jeff(t). (26)

for a given pair (J,A) and |�0〉. As before, jeff is uniquely

determined by simply rearranging Eq. (26) as

jeff(t) = L3

μ0c

(

∂2
0 + k2

)

A(t),

while the existence of an aeff that reproduces (J,A) is less clear.

Again, the most general approach to answer this question can

rely on a fixed-point scheme similar to [46], or on mapping

the problem to a special nonlinear Schrödinger equation

[45,48,49]. Importantly, in the discretized case, certain sub-

tleties arise [49–52] that have to be treated with care [45,49].

Disregarding these more subtle points, we follow a simpler

approach based on the assumption of Taylor expandability in

time of J . Then, one can successively construct the Taylor

coefficients of the effective potential from

a
(α)
eff = 1

n(0)

⎛

⎝
4t2

kin

�2c2
J (α) + J (α+2) −

α−1
∑

β=0

(
α

β

)

n(α−β)a
(β)

eff

⎞

⎠ ,

assuming that for the initial state |�0〉 the expectation value

n(0) �= 0. Further assuming that this Taylor series converges

[44,53], we have constructed a pair

(aeff[�0,J,A],jeff[A])

that reproduces (J,A) via propagation of |�0〉.
The above defined pair (aeff[�0,J,A],jeff[A]) actually

describes the mapping

(J,A)
|�0〉
→ (aeff,jeff) .

Now, in order to actually predict the physical pair (J,A) via

the Kohn-Sham system [and thus solve Eqs. (21) and (22)] we

have to connect the coupled and the auxiliary system. To do

so, we make the composite mapping

(aext,jext)
|�0〉
→ (J,A)

|�0〉
→ (aeff,jeff),

i.e., we employ the fact that (J,A) are unique functionals of the

initial state |�0〉 and (aext,jext). The definition of the resulting

Kohn-Sham potentials and currents is then found by equalizing

the functional Eqs. (21) and (22) with the corresponding

equations of the uncoupled auxiliary system. This leads to

(now also indicating the appropriate dependence on the initial

states) [40,42]

n([�0,J,A]; t)aKS(t) = λ〈n̂Â〉([�0,J,A]; t)

+ n([�0,J,A]; t)aext(t), (27)

jKS(t) =jext(t) + λJ (t). (28)

Therefore, they are functionals of the two initial states (J,A)

and (aext,jext), i.e.,

(aKS[�0,�0,J,A,aext],jKS[J,jext]) .

With these definitions, the coupled problem, starting from |�0〉
and subject to the external pair (aext,jext), can be formally

solved by the solution of an uncoupled, yet nonlinear problem

with initial state |�0〉 and the Kohn-Sham pair (aKS,jKS). The

resulting equations are

i�c∂0|M(t)〉 =
[

−tkinσ̂x − 1

c
Ĵ aKS(t)

]

|M(t)〉, (29)

(

∂2
0 + k2

)

A(t) = μ0c

L3
[λJ (t) + j (t)] . (30)

The self-consistent solutions of the Kohn-Sham equations (29)

and (30) by construction obey Eqs. (27) and (28), as well

as equations of motion similar to Eqs. (25) and (26). By

combining these equations we see that the solutions to the

Kohn-Sham equations generate the solutions to the coupled

Eqs. (21) and (22).

We point out that in the equation for the photonic mode

we do not need any approximate functional. We merely need

to solve a classical Maxwell equation. However, in practice it

might be useful, especially when calculating nontrivial pho-

tonic expectation values, that one solves an actual (uncoupled)

photon problem to have a first approximation to the photonic

wave function.

D. Numerical example for the model QEDFT

In this section, we show numerical examples for our model

system. We use the density-functional framework introduced

in the previous sections and we explicitly construct the

corresponding exact Kohn-Sham potentials. To illustrate our

QEDFT approach, we focus mainly on two different examples:

The first example treats a setup in resonance, where regular

Rabi oscillations occur. We show results in a weak-coupling

limit and in a strong-coupling limit. The second example

includes the photon field initially in a coherent state. For this

case, we study collapses and revivals of the Rabi oscillations.
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The Hamiltonian in Eq. (3) is directly connected to the

famous Jaynes-Cummings Hamiltonian and the Rabi Hamilto-

nian [54–57], which is heavily investigated in quantum optics.

It has been studied in the context of Rabi oscillations, field

fluctuations, oscillation collapses, revivals, coherences, and

entanglement (see Ref. [55] and references therein).

To directly see the connection between the two-site

Hubbard model coupled to one photon mode and the Rabi

Hamiltonian, we transform the Hamiltonian in Eq. (3) by

dividing with I = n( eωl
c

)( �c2

2ǫ0L3ω
)

1
2 , where n is an arbitrary

(dimensionless) scaling factor. Thus, we make the Hamiltonian

and the corresponding Schrödinger equation dimensionless.

The Hamiltonian of Eq. (3) can then be rewritten in a similar

form as usually found in the literature:

Ĥ (t) = − tkin

I
σ̂x + �ω

I
â†â − λ(â + â†)σ̂z

− jext(t)(â + â†) − aext(t)σ̂z, (31)

where we transformed to the dimensionless external poten-

tial 1
n

( �c2

2ǫ0L3ω
)−

1
2 aext → aext and the dimensionless external

current 1
n

( 1
eωl

)jext → jext. Further, we also transform to a

dimensionless time variable I
�
t → t . To actually perform

numerical calculations, we have to choose values for the

free parameters. Here, we choose typically used values from

the literature: tkin/I = 0.5, �ω/I = 1, λ = (0.01,0.1) and

external fields which are set to zero jext(t) = aext(t) = 0. This

set of parameters allows for a resonance situation, with no

detuning between the transition energy of the atomic levels

and the frequency of the field mode.

As discussed above, the basic variables (densities) are the

current operator Ĵ and the operator for the field potential Â.

In this two-level example, Ĵ reduces to σ̂z and Â reduces to

(â + â†).

If the rotating-wave approximation is applied to the Rabi

Hamiltonian in Eq. (31), one recovers the Jaynes-Cummings

Hamiltonian. This Hamiltonian is then analytically solv-

able. The rotating-wave approximation is only valid in the

weak-coupling limit (λ ≈ 0.01). In the strong-coupling limit

(λ � 0.1), however, the rotating-wave approximation breaks

down. Only recently, analytic results without the rotating-wave

approximation have been published [57]. Here, we emphasize

that the QEDFT approach presented in this paper is exact and

does not rely on the rotating-wave approximation and hence

also allows us to treat strong-coupling situations.

In our first example, we choose as initial state for both the

coupled many-body system and the uncoupled Kohn-Sham

problem

|�0〉 = |�0〉 = |1〉 ⊗ |0〉,

meaning the electron initially populates site one and the field

is in the vacuum state. Therefore, no photon is present in the

field initially. In Fig. 1, we show the inversion σx(t), the density

σz(t), and the corresponding exact Kohn-Sham potential aKS(t)

for the weak-coupling case. The atomic inversion σx(t) shows

regular Rabi oscillations. Rabi oscillations are also visible in

σz(t), where we observe the typical necklike features [58] at

t ≈ 150 and at later points in time.

FIG. 1. Exact results for the Rabi-Hamiltonian of Eq. (31) in

the weak-coupling limit: (a) inversion σx(t), (b) density σz(t), and

(c) exact Kohn-Sham potential aKS(t) in the case of regular Rabi

oscillations.

To determine the exact Kohn-Sham potential for this case,

we follow a fixed-point construction similar to [59]. As input

for the fixed-point construction, we use the exact many-

body densities. In addition, we also compare to an analytic

formula for the Kohn-Sham potential for a one-electron two-

site Hubbard model given in [45,50]. This expression gives

an explicit formula for the dependence of the Kohn-Sham

potential on the density. Such an explicit formula is only known

in a few cases, while the fixed-point construction is generally

valid. However, both methods yield in the present case the same

results. A detailed discussion of the fixed-point construction

for multicomponent systems of electrons and photons will be

presented in a forthcoming work [60].

We emphasize that a propagation of the uncoupled Kohn-

Sham system with the exact Kohn-Sham potential aKS(t)

obtained in Fig. 1 reproduces by construction the exact

many-body density [σz(t) in the present case]. However, as

illustrated in Sec. II C, if a Kohn-Sham propagation is used,

the numerical expenses can be drastically reduced since the

Kohn-Sham construction effectively decouples the quantum

system.

In practical calculations, the exact Kohn-Sham potentials

are normally not available and one has to rely on approx-

imations. In the present case, the simplest approximation

for vKS[�0,�0,J,A,aext] is straightforward if we assume

n[�0,J,A] ≈ n[�0,J,A] and 〈n̂Â〉 ≈ 〈n̂〉〈Â〉 = nA. Then,

from Eq. (27) we find the mean-field approximation to the

Kohn-Sham potential

aMF([A,aext]; t) = λA(t) + aext(t). (32)

The mean-field approximation is actually identical to the

Maxwell-Schödinger approach, i.e., we treat the electromag-

netic field as being essentially classical. Further, for λ → 0

and for λ → ∞, the mean-field approximation becomes

asymptotically exact. In Figs. 2 and 3, we compare exact

densities and exact Kohn-Sham potentials to densities and

potentials, which were obtained by a self-consistent mean-field

propagation. Already in the weak-coupling limit, Fig. 2,

quite sizable differences between exact results and mean-field
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FIG. 2. (Color online) Exact potentials and densities (solid black line) compared to mean-field potentials and densities (dashed red line)

in the case of regular Rabi oscillations in the weak-coupling limit: Left: (a) Kohn-Sham potential aKS(t) and (b) density σz(t). Right:

(c) Kohn-Sham potential jKS(t) and (d) density A(t).

results become visible: Already at t = 0 the exact Kohn-Sham

potential deviates from the mean-field potential. In the case

of the densities, this leads to a frequency shift, where the

mean-field density oscillates slower than the exact density.

In the strong-coupling limit shown in Fig. 3, effects beyond

the rotating-wave approximation are visible. In the exact

Kohn-Sham potential, we see a nonregular feature at t = 30,

which is also not covered by the mean-field approximation.

However, the mean-field approximation already covers at least

some dynamical features of the propagation.

For the second example in this section, we start with the field

initially in a coherent state. For a single field mode, coherent

states [61,62] can be written as follows:

|a〉 =
∞
∑

n=0

fn(α)|n〉, with fn(α) = αn

√
n!

exp

(

−1

2
|α|2

)

.

In this example, we use as initial state for the many-body

propagation and the Kohn-Sham propagation

|�0〉 = |�0〉 = |g〉 ⊗ |α〉.
Here, the atomic state |g〉 is the ground state of the electronic

Hamiltonian (|g〉 = 1√
2

(|1〉 + |2〉). For the field state we

choose |α|2 = 〈â†â〉 = 4. This example is in the spirit of the

calculation in panel 3 in Ref. [55]. Hence, as shown in Fig. 4,

we obtain a similar time evolution of the inversion σx(t) as in

Ref. [55]. We see the Cummings collapse of Rabi oscillations

at t = 250 followed by a quiescence up to t = 500 occurring.

After t = 500, we see a revival of the Rabi oscillations. We also

observe, as shown in [63], that the atomic dipole operator [here

the density σz(t)] continues to change during the interval of

quiescence after the inversion collapse. As before, we show in

the lowest panel the corresponding exact Kohn-Sham potential

obtained via fixed-point iterations.

In Fig. 5, we show a comparison of the exact Kohn-Sham

potentials and densities to the mean-field propagation. Here,

we see that the mean-field approximation performs rather

poorly. For this case, the simple ansatz in Eq. (32) is not

sufficient and more sophisticated approximations to the exact

Kohn-Sham potential are necessary to reach a better agreement

[64,65].

In summary, we have shown in this section the exact

Kohn-Sham potentials which reproduce the dynamics of

the exact many-body densities. In particular, the coherent

state example shows that there is a clear need for better

approximations to the exact Kohn-Sham potential [40] that

go beyond the mean-field level and that include correlation

contributions. One possibility along these lines is provided

by an approach based on the optimized effective potential

(OEP) method [9,10,66]. We have already implemented such

FIG. 3. (Color online) Exact potentials and densities (solid black line) compared to mean-field potentials and densities (dashed red line)

in the case of regular Rabi oscillations in the strong-coupling limit: Left: (a) Kohn-Sham potential aKS(t) and (b) density σz(t). Right: (c)

Kohn-Sham potential jKS(t) and (d) density A(t).
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FIG. 4. Exact results for the Rabi-Hamiltonian in the weak-

coupling limit: (a) Inversion σx(t), (b) density σz(t), and (c) exact

Kohn-Sham potential aKS(t) in the case of coherent states (in spirit of

panel 3 in Fig. 4 in Ref. [55]).

an OEP approach for the present model system and the

corresponding results improve quite considerably over the

mean-field approximation. The details of this general OEP

approach to QEDFT are beyond the scope of this paper and

will be presented in a separate publication [67].

III. RELATIVISTIC QEDFT

After having presented the basic concepts of a QEDFT

reformulation of a coupled matter-photon problem in a model

system, we apply the very same ideas to the full theory

of QED. While no new density-functional-type ideas have

to be introduced, the intricacies of QED make the actual

details more involved. A first subtlety is the gauge freedom

of the photon field. In this work, we choose Coulomb gauge

to fix the superfluous degrees of freedom. This gauge has

two distinct advantages over the other gauges: it reduces

the independent components of the photon field to the two

transversal (physical) polarizations, and it singles out the

classical Coulomb interaction between the charged particles.

Since we want to connect QEDFT to derived theories such

as cavity QED, where usually Coulomb-gauged photons are

employed, and condensed-matter theory, where Coulomb

interactions play a dominant role, the Coulomb gauge is for

the present purpose the natural gauge to work in. However, we

emphasize that also other gauges can be used as well [8,41,46].

We first present the standard approach to identify possible

conjugate variables and introduce the basic equations of

motions. While in the usual nonrelativistic setting this route

works just fine, in the fully relativistic situation the internal

structure of the “Dirac particles,” i.e., the electronic and

positronic degrees of freedom, give rise to certain subtleties

when performing a density functionalization. Therefore, in-

stead of using the current, we employ the polarization as a

basic fundamental variable in relativistic QEDFT.

A. Equations of quantum electrodynamics

In the following, we define the basic quantities of QED in

Coulomb gauge and derive the equations of motion for the

fundamental (functional) variables of the theory. We employ

SI units throughout since in the next section we perform the

nonrelativistic limit which is most easily done if we keep the

physical constants explicit. A detailed discussion of quantizing

QED in Coulomb gauge is given in Appendix B.

The full QED Hamiltonian in Coulomb gauge (indicating

explicit time dependence of the Hamiltonians by t) is given by

Ĥ (t) = ĤM + ĤE + ĤC(t) + Ĥext(t) + Ĥint. (33)

Here,

ĤM =
∫

d3r : ˆ̄ψ(�r)(−i�c �γ · �∇ + mc2)ψ̂(�r) : (34)

is the normal ordered (:. . .:) free Dirac Hamiltonian in the

Schrödinger picture, where ψ̂ and ˆ̄ψ denote the Dirac-field

operators and γ k the Dirac matrices (see Appendix B for

definitions). The energy of the free photon field is given by

ĤE = ǫ0

2

∫

d3r : ( �̂E2(�r) + c2 �̂B2(�r)):, (35)

where �̂E and �̂B are the (vector-valued) electric and magnetic

field operators defined as in Appendix B in terms of the

Maxwell-field operators Âk . We note that due to the Coulomb-

gauge condition �∇ · �A = 0 only the spatial components of the

Maxwell field are quantized. The time component A0 is given

by the classical Coulomb field of the total charge density,

which is the sum of the charge density of the Dirac field and

FIG. 5. (Color online) Exact densities and potentials (solid black line) compared to mean-field densities and potentials (dashed red line)

in the case of regular Rabi oscillations in the case of coherent states: Left: (a) Kohn-Sham potential aKS(t) and (b) density σz(t). Right:

(c) Kohn-Sham potential jKS(t) and (d) density A(t).
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the classical external current, and gives rise to the Coulomb

term

ĤC(t) = 1

2c2

∫
d3r d3r ′

4πǫ0|�r − �r ′|
×

(

2j 0
ext(x

′)Ĵ0(�r)+ : Ĵ 0(�r)Ĵ0(�r ′):
)

. (36)

Here, Ĵ 0 is the zero component of the Dirac current

Ĵμ(�r) = ec : ˆ̄ψ(�r)γ μψ̂(�r):, (37)

and j 0
ext is the zero component of a given external current

j
μ
ext. In the Coulomb term, the energy due to the Coulomb

interaction of the external current with itself is elided. Since

this term is purely multiplicative, i.e., it is equivalent to the

identity operator times some real number, it does not influence

the dynamics of the system and can be discarded. The rest of

the coupling to the external fields is given by

Ĥext(t) = 1

c

∫

d3r
(

Ĵμ(�r)a
μ
ext(x) − �jext(x) · �̂A(�r)

)

. (38)

Finally, the coupling between the quantized fields in Coulomb

gauge reads as

Ĥint = −1

c

∫

d3r �̂J (�r) · �̂A(�r). (39)

Comparing to the Lorentz-gauge QED Hamiltonian [42], the

main difference lies in the Coulomb term, that treats the zero

component of the photon field explicitly.

Without further refinements, the above QED Hamiltonian

is not well defined since it gives rise to infinities [1–3].

These infinities can be attributed, with the help of perturbation

theory, to three divergent types of Feynman diagrams: the

self-energy of the fermions, the self-energy of the photons

(also called vacuum polarization), and the vertex corrections.

These divergences vanish if we regularize the theory, e.g., by

introducing frequency cutoffs in the plane-wave expansions

of the fermionic as well as the bosonic field operators or

by dimensional regularization [1]. Such procedures make the

above Hamiltonian self-adjoint [68], but we have introduced a

dependence on parameters that changes the theory at smallest

and largest length scales. Perturbatively, one can remove these

dependencies by renormalizing the theory, i.e., we first identify

and then subtract the part of each of these three terms that

diverges due to these parameters. The resulting three divergent

counterterms5 can be recast as a renormalization of the mass

and the field operators of the fermions (due to the self-energy),

as a renormalization of the photonic field operators (due to

vacuum polarization) and a renormalization of the charge (due

to the vertex corrections). We can do this to any order in

perturbation theory due to the Ward-Takahashi identities [1].

Thus, the above QED Hamiltonian is at least perturbatively

renormalizable. For simplicity, we assume in the following

that one can fully renormalize the QED Hamiltonian (as

has been shown for certain limits [69]) and interpret it as a

5Note that these counterterms are defined by the vacuum expectation

value [1,8]. This allows us to compare Hamiltonians with different

external potentials and currents.

bare Hamiltonian, i.e., we use the renormalized quantities.6

That a full renormalization is possible has been shown, e.g.,

for the Nelson model of QED [70,71], where the divergent

self-energy term shifts the spectrum of the Hamiltonian to

infinity. Thus, subtracting this infinite shift, i.e., introducing

a counterterm, makes the Hamiltonian well defined (when

removing the cutoffs), provided the energy of the system is

below the pair-creation limit. The same condition, i.e., a stable

vacuum, we need to impose also on our QED considerations

as discussed in [8,41,42].

In a next step, we identify the possible conjugate (func-

tional) variables of the above QED Hamiltonian. Here, the

physical, time-dependent wave function |�(t)〉 depends on the

initial state and the external pair (aext
μ ,j ext

μ ), which is indicated

by
∣
∣�

([

�0,a
ext
μ ,j ext

μ

]

; t
)〉

.

Thus, with
∫

≡
∫ T

0
dt

∫

d3r , the (negative) QED action

[41,42]

Ã
[

�0,a
ext
μ ,j ext

μ

]

= −
∫

LQED

= − B + 1

c

∫
(

j
μ
extAμ + Jμa

μ
ext

)

(40)

becomes a functional of these variables (T corresponds to an

arbitrary time). Here, we employed the definition of the QED

Lagrangian of Eq. (B1) and defined the internal QED action

with help of Eq. (B6) by

B =
∫ T

0

dt〈�(t)|i�c∂0 − ĤM − ĤE − Ĥ ′
int(t)|�(t)〉.

Equation (40) looks like a Legendre transformation between

Jμ ↔ a
μ
ext and Aμ ↔ j

μ
ext. Since a Legendre transformation

amounts to a change of variables, this indicates (for a fixed

initial state) the possibility of transforming from (a
μ
ext,j

μ
ext)

to the conjugate variables (Jμ,Aμ).7 If these variables would

indeed be connected via a standard Legendre transformation,

the functional derivative with respect to a
μ
ext and j

μ
ext should

give the respective conjugate variables. However, following

derivations similar to [53] we find the appearance of extra

terms, i.e.,

δÃ

δa
μ
ext(x)

+ i�c

〈

�(T )

∣
∣
∣
∣

δ�(T )

δa
μ
ext(x)

〉

= 1

c
Jμ(x), (41)

δÃ

δj
μ
ext(x)

+ i�c

〈

�(T )

∣
∣
∣
∣

δ�(T )

δj
μ
ext(x)

〉

= 1

c
Aμ(x). (42)

6Note that an exhaustive discussion of renormalization is beyond

the scope of this work. Nevertheless, to connect the different

formulations of matter-photon systems, a general field-theoretical

approach is advantageous. If we want to avoid the difficulties due to

renormalization, we have to keep the cutoffs. Since we are interested

exclusively in condensed-matter systems, a physical (highest) cutoff

would be at energies that allow for pair creation.
7One should not confuse these conjugate variables with the

conjugate momenta that are used in field theory to quantize the

system. In the case of Coulomb-gauge QED, the pair of conjugate

momenta are ( �A,ψ) and (ǫ0
�E⊥,i�cψ †) [2].
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These nontrivial boundary terms are due to the fact that

variations of the external fields give rise to nonzero variations

of the wave function at the (arbitrary) upper boundary T [in

contrast to direct variations of the wave function that are

supposed to obey |δ�(T )〉 = 0] [43]. These boundary terms

are necessary to guarantee the causality of Jμ and Aμ [53].

Thus, Eqs. (41) and (42) show that a straightforward ap-

proach to demonstrate a one-to-one correspondence between

(a
μ
ext,j

μ
ext) and (Jμ,Aμ) based on a Legendre transformation

becomes difficult [42]. Nevertheless, usually these Legendre-

transformation arguments work well to identify the possible

conjugate variables.

However, in the relativistic situation, a further problem

arises: the current has an internal structure due to the electronic

and positronic degrees of freedom. The current Jμ describes

the net-charge flow of the negatively charged electrons and

the positively charged positrons [2]. Therefore, the current

expectation value can not differ between the situation of, e.g.,

the movement of two electrons and one positron or three

electrons and two positrons. This fact, which is absent in the

nonrelativistic situation, will lead to problems when employing

the ideas developed in Sec. II B.

For the moment, however, we follow the above identifica-

tion scheme and derive the basic equations of motion for Ĵμ and

Âμ. Since
∫

d3r ′ [Ĵμ(�r),Ĵ0(�r ′)]f (�r ′) = 0, where f (�r ′) is any

test function, the term ĤC commutes with Ĵμ and the equation

of motion for the four current is the same as in Lorentz gauge

[42]

i∂0Ĵ
k(�r)

= e

�
mc2 ˆ̄ψ(�r)[γ kγ 0 − γ 0γ k]ψ̂(�r)

+ ec ˆ̄ψ(�r)[γ kγ 0(−i �γ · �∇) + (−i �γ · ←
∇)γ 0γ k]ψ̂(�r)

+ e2

�

ˆ̄ψ(�r)[γ kγ 0γ l − γ lγ 0γ k]ψ̂(�r)
(

Âl(�r) + aext
l (x)

)

,

(43)

where the zero component is given by i∂0Ĵ
0 = −i �∇ · �̂J , i.e.,

the current obeys the conservation of charge. A different

equation that determines the charge current Jμ is found by the

Gordon decomposition [8], which is the evolution equation of

the polarization

P̂ μ(�r) = ec : ψ̂†(�r)γ μψ̂(�r) : ,

i∂0P̂
k(�r) = 2emc

�
Ĵ k(�r) + iec ˆ̄ψ(�r)(∂k −

←k

∂ )ψ̂(�r)

− ecǫklj∂l(
ˆ̄ψ(�r)�j ψ̂(�r))

+ 2e

�c
P̂0(�r)

(

Âk(�r) + ak
ext(x)

)

, (44)

where ǫklj is the Levi-Cevita symbol and

�k =
(

σ k 0

0 σ k

)

.

With the definition of bigger and smaller components of the

Dirac-field operators ψ̂†(�r) =
(

φ̂†(�r),χ̂ †(�r)
)

we find that the

current and the polarization are the real and imaginary parts of

the same operator:

Ĵ k(�r) = 2 Re{ec : φ̂†(�r)σ kχ̂ (�r):},
P̂ k(�r) = 2 iIm{ec : φ̂†(�r)σ kχ̂ (�r):}.

The change of gauge only affects the equation for the photon-

field operator which becomes

∂0
�̂A(x) = − �̂E(x), (45)

and accordingly

(

∂2
0 + ∂l∂

l
)

Âk(�r) − ∂k∂0

(

1

c

∫

d3r ′ j
0
ext(x

′) + Ĵ 0(�r ′)

4πǫ0|�r − �r ′|

)

= μ0c
(

j k
ext(x) + Ĵ k(�r)

)

. (46)

This is indeed the quantized Maxwell equation in Coulomb

gauge.

B. Foundations of relativistic QEDFT

In this section, we first reexamine the previous approach

to relativistic QEDFT [41,42] and identify its shortcomings.

We then show why physically the polarization is better suited

as fundamental variable of the matter part and reformulate

QED in terms of (Pμ,Aμ). Already here we point out that

both a relativistic QEDFT based on the current or on the

polarization lead to the same density-functional-type theory

in the nonrelativistic limit.

A first restriction we impose is to fix a specific gauge for the

external fields a
μ
ext. Since by construction external fields that

only differ by a gauge transformation, i.e., ã
μ
ext = a

μ
ext + ∂μ�,

lead to the same current density (and polarization),8 the de-

sired one-to-one correspondence can only hold modulo these

transformations. Thus, in principle we consider a bijective

mapping between equivalence classes, and by fixing a gauge

we take a unique representative of each class. The same type

of nonuniqueness is also found in the standard formulation of

TDDFT [47], i.e., the mapping between densities and scalar

external potentials is unique up to a spatially constant yet

time-dependent function �(t). In this case, the gauge fixing is

usually done by imposing that the scalar external potentials go

to zero for |�r| → ∞. Here, for simplicity, we impose a gauge

condition similar to [72]

a0
ext(x) = 0. (47)

In the following, any other gauge that keeps the initial state

unchanged, i.e., the gauge function has to obey �(0,�r) = 0, is

also allowed [72]. This condition is necessary for our further

investigations since we will employ that the initial state is fixed

(and thus the expectation values at t = 0), in accordance to the

derivations of Sec. II B.

8This is most easily seen by considering the commutator

[Ĵ μ;
∫

Ĵν∂
ν�] which determines the effect of a gauge on the equation

of Ĵμ, i.e., Eq. (43). By partial integration, application of the

continuity equation and the fact that [Ĵ μ; Ĵ 0] ≡ 0 this term becomes

zero and therefore has no effect on the current. The same reasoning

shows that also P̂μ is gauge independent.
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Also, with respect to j
μ
ext we have to choose a unique

representative of an equivalence class of external currents. This

freedom is due to the gauge freedom of the internal field Aμ.

Since we employ Coulomb gauge for Aμ, only the transversal

part of the external current j k
ext = ∂kυext − ǫklj∂lϒ

ext
j couples

to the photons, as can be seen from Eq. (46) and the application

of the continuity equations for the internal and external

currents. Therefore, currents that only differ in their respective

longitudinal parts can have the same (transversal) photon field

Ak . The longitudinal part of the currents only changes the

classical component A0, as can be seen from the continuity

equation in combination with Eq. (B4). We therefore find that

by fixing j 0
ext for all further considerations, we also choose

a unique representative υext for the longitudinal parts of j k
ext

by ∂0j
0
ext = �υext. As a consequence, we have also fixed the

classical component of the internal field by Eq. (B4).

In [41,42], the one-to-one correspondence was based on the

corresponding Ehrenfest equations

∂0J
k(x) = qk

kin(x) + qk
int(x) + nkl(x)aext

l (x), (48)

�Ak(x) − ∂k∂0

(
1

c

∫

d3r ′ j
0
ext(x

′) + J 0(x ′)

4πǫ0|�r − �r ′|

)

= μ0c
[

j k
ext(x) + J k(x)

]

, (49)

where

q̂k
kin(�r) = − ec ˆ̄ψ(�r)[γ kγ 0( �γ · �∇) + ( �γ · ←

∇)γ 0γ k]ψ̂(�r)

+ i
e

�
mc2 ˆ̄ψ(�r)[γ 0γ k − γ kγ 0]ψ̂(�r),

n̂kl(�r) = ie2

�

ˆ̄ψ(�r)[γ lγ 0γ k − γ kγ 0γ l]ψ̂(�r),

q̂k
int(�r) = n̂kl(�r)Âl(�r),

and the D’Alembert operator reads as � = ∂2
0 + ∂k∂

k . We can

then reexpress

n̂kl(�r) = −2e2

�
ǫklj ψ̂†(�r)�j ψ̂(�r),

and therefore

n̂kl(�r)aext
l (x) → 2e2

�
(ψ̂†(�r) ��ψ̂(�r)) × �aext(x).

If we then want to show a possible one-to-one correspondence,

we can follow the reasoning of Sec. II B and consider the

uniqueness of solutions of the functional equations

∂0J
k(x) = qk

kin

([

am
ext,j

m
ext

]

; x
)

+ qk
int

([

am
ext,j

m
ext

]

; x
)

+ nkl
([

am
ext,j

m
ext

]

; x
)

aext
l (x), (50)

�Ak(x) + ∂k

(

1

c

∫

d3r ′ �∇ ′ · �jext(x
′) + �∇ ′ · �J (x ′)

4πǫ0|�r − �r ′|

)

= μ0c
[

j k
ext(x) + J k(x)

]

, (51)

for given Jk and Ak .9 As before in Sec. II B we can construct

the external current uniquely. By defining the vector field

ζ k(x) = �Ak(x) + ∂k

(

1

c

∫

d3r ′ �∇ ′ · �J (x ′)

4πǫ0|�r − �r ′|

)

− μ0cJ
k(x),

we find from the Helmholtz decomposition of �ζ = �∇ × �� and
�jext = −�∇υext + �∇ × �ϒext, where we employ the chosen rep-

resentative υext of the equivalence class of external currents,10

that

�ϒext(x) = 1

μ0c
��(x). (52)

Thus, we need to show that for given (Jk,Ak) there can only

be a unique ak
ext. To show this, we first define

J (α)
μ (�r) = ∂α

0 Jμ(x)
∣
∣
t=0

,

formally construct the respective Taylor coefficients

J
(α+1)
k (�r) =

[

q
(α)
kin,k(�r) + q

(α)
int,k(�r)

]

+
α

∑

β=0

(
α

β

)
(

a
l (β)
ext (�r)

)(

n
(α−β)
kl (�r)

)

, (53)

and consider two external potentials ak
ext �= ãk

ext that differ at

lowest order α. Accordingly, we find in this order

�J (α+1)(�r) − �̃J (α+1)(�r) = �n(0)(�r) ×
(

�a(α)
ext (�r) − �̃a(α)

ext (�r)
)

, (54)

where

�n(0)(�r) = 2e2

�
〈�0|ψ̂†(�r) ��ψ̂(�r)|�0〉.

While before we could conclude that the difference between

the currents is necessarily nonzero provided �n(0) �= 0, here we

find that this is not sufficient. Actually, we need to restrict the

allowed potentials �aext to those that are perpendicular to �n(0).

If we do this, then Eq. (54) makes the currents necessarily

different and we can conclude that we have a one-to-one

correspondence. This aspect was not taken into account in

previous work [41,42], which is restricting effectively the

one-to-one mapping to a smaller set of potentials and currents

in these proofs. Still, it seems possible to find a different way

to show the bijectivity of the complete mapping (Jk,Ak) ↔
(ak

ext,j
k
ext). However, the true drawback of a relativistic QEDFT

based on the current is found if we try to reproduce a given

pair (Jk,Ak). If we choose a current that obeys

�J (1)(�r) = �n(0)(�r) + �q(0)
kin(�r) + �q(0)

int (�r),

then the resulting equation that defines the Taylor coefficient

of the external potential reads as, by employing Eq. (53) and

9Note that in correspondence to the freedom of the external variable

ak
ext, the freedom of the internal variable Jk is also restricted since J0

is fixed by the initial state and the continuity equation for all times.

Similarly, the freedom of the external current j k
ext is in correspondence

to the freedom of the internal field Ak as explained previously.
10We note at this point that instead of fixing j 0

ext one can equivalently

choose A0 for all times to select a unique j k
ext by the zero component

of the internal current J0 and Eq. (B3).
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following the same strategy as in Sec. II C,

�n(0)(�r) = �n(0)(�r) × �a(0)
ext(�r).

This equation does not have a solution and therefore any

current that obeys the above form can not be reproduced by

the respective quantum system. This does also call into doubt

the possibility of exactly predicting the current of a coupled

system by an uncoupled one, i.e., the Kohn-Sham construction

of [41,42]. Of course, we can remedy this problem by adding

terms to the QED Hamiltonian that break the minimal-coupling

prescription of the Lagrangian. Such procedures could then be

alternatively used to provide a Kohn-Sham scheme to describe

the fully coupled QED problem. The advantage of such an

approach is that still the equation for the vector potential is

known explicitly in terms of the internal pair (Jk,Ak). This

is not the case when we use a different basic variable for the

matter part of the QED system, as we will do in the following.

To avoid the problems with the relativistic current, we will

in the following base our considerations on the polarization Pk .

While the current describes the flow of the charge of the system

(which is conserved), the polarization depends on the actual

number of particles and antiparticles (which is not conserved).

Therefore, the polarization can actually differ between a local

current produced by, e.g., two electrons and one positron or

three electrons and two positrons, in contrast to the current. To

show now that for a fixed initial state |�0〉 we actually have

(

ak
ext,j

k
ext

)1:1↔ (Pk,Ak), (55)

we demonstrate that for a given internal pair (Pk,Ak) the two

coupled equations

∂0
�P (x) = �Qkin

([

ak
ext,j

k
ext

]

; x
)

+ �Qint

([

ak
ext,j

k
ext

]

; x
)

+ 2emc

i�
�J ([ak

ext,j
k
ext]; x)

+ 2e

i�c
P0([ak

ext,j
k
ext]; x)�aext(x), (56)

� �A(x) − μ0c
( �jext(x) + �J ([ak

ext,j
k
ext]; x)

)

= �∇
(

1

c

∫

d3r ′ �∇ ′ · �jext(x
′) + �∇ ′ · �J ([ak

ext,j
k
ext]; x

′)

4πǫ0|�r − �r ′|

)

(57)

allow only for a unique solution (ak
ext,j

k
ext). Here, we used the

definitions

Q̂k
kin(�r) = ec ˆ̄ψ(�r)(∂k −

←
∂k)ψ̂(�r) + iecǫklj∂l(

ˆ̄ψ(�r)�j ψ̂(�r)),

Q̂k
int(�r) = 2e

i�c
P̂0(�r)Âk(�r).

These coupled equations can only have a solution if the pair

(Pk,Ak) obeys the initial condition enforced by the fixed initial

state |�0〉, i.e.,

P
(0)
k (�r) = 〈�0|P̂k(�r)|�0〉, (58)

A
(0)
k (�r) = 〈�0|Âk(�r)|�0〉, A

(1)
k (�r) = −〈�0|Êk(�r)|�0〉. (59)

Since the current Jk is now a functional of (ak
ext,j

k
ext), the

previous explicit construction of j k
ext is no longer valid.

However, if we assume (ak
ext,j

k
ext) both to be Taylor expandable,

we find for the lowest order α on the one hand that

�P (α+1)(�r) − �̃P (α+1)(�r) = 2e

i�c
P

(0)
0 (�r)

(

�a(α)
ext (�r) − �̃a(α)

ext (�r)
)

�= 0,

(60)

provided P
(0)
0 (�r) = 〈�0|P̂0(�r)|�0〉 �= 0, which corresponds to

the (local) total number of particles and antiparticles. On the

other hand, we have

�A(α+2)(�r) − �̃A(α+2)(�r)

= μ0c
( �∇ × �ϒ (α)

ext (�r) − �∇ × �̃ϒ (α)
ext (�r)

)

�= 0 (61)

since all external currents have the same longitudinal compo-

nent. Thus, the mapping (55) is bijective [at least for Taylor-

expandable external pairs (ak
ext,j

k
ext)]. Therefore, we can,

instead of solving the fully coupled QED problem for the (nu-

merically infeasible) wave function |�(t)〉, determine the exact

internal pair (Pk,Ak) from the coupled nonlinear equations

∂0
�P (x) = �Qkin([Pk,Ak]; x) + �Qint([Pk,Ak]; x)

+ 2emc

i�
�J ([Pk,Ak]; x)

+ 2e

i�c
P0([Pk,Ak]; x)�aext(x), (62)

� �A(x) − �∇
(

1

c

∫

d3r ′ �∇ ′ · �jext(x
′) + �∇ ′ · �J ([Pk,Ak]; x ′)

4πǫ0|�r − �r ′|

)

= μ0c( �jext(x) + �J ([Pk,Ak]; x)) (63)

for the initial conditions (58) and (59). In order to solve these

equations simultaneously, we need to find approximations for

the unknown functionals. The only drawback in this more

general approach than the ones used in [41,42] is that now

we also have an unknown functional in the classical Maxwell

equation, i.e., �J [Pk,Ak].

We point out that the relativistic QEDFT formulation based

on the Coulomb gauge, which singles out the instantaneous

classical (longitudinal) interaction between the charged parti-

cles, by construction also contains all the retardation effects

due to the exchange of photons. To make this statement more

transparent, we can single out also other, nonlongitudinal

interactions between the charged particles explicitly. For

instance, we can identify the (frequency-independent) Breit-

interaction contribution [73] to the photon field as

Âk
Breit(x) = 1

c

∫

d3r ′ Ĵ k(�r ′)

4πǫ0|�r − �r ′|

− 1

c

∫

d3r ′ (rk − r ′k)

4π |�r − �r ′|3
∫

d3r ′′ Ĵ
l(�r ′′)(r ′

l − r ′′
l )

4πǫ0|�r ′ − �r ′′|3 .

The Breit field due to the transversal current is derived by

approximating the exchange of photons by employing the

retarded Green’s function of the D’Alembert operator � and

assuming the explicit retardation to be negligible. If we then

express the exact photon field in terms of the Breit field and a
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remainder, i.e., Âk = Âk
Breit + Âk

diff , we can explicitly identify

the Breit-interaction contributions in the basic equations of

QEDFT, i.e., Eqs. (43), (44), and (46). The usual Breit-

interaction Hamiltonian11 can then be derived by assuming
�Adiff ≈ 0 and ∂0

�ABreit ≈ 0, which allows us to formally rewrite

the total-energy contribution of the Breit field (which also

includes the interaction of the current with itself) as [73]

ĤBreit = 1

4c2

∫

d3r d3r ′
[

Ĵk(�r)Ĵ k(�r ′)

4πǫ0|�r − �r ′|

− Ĵ k(�r)(rk − r ′
k)Ĵ l(�r ′)(rl − r ′

l )

4πǫ0|�r − �r ′|3
]

.

In the nonrelativistic limit, discussed in Sec. IV, an explicit

Breit-interaction Hamiltonian would then give rise to explicit

orbit-orbit, two-electron spin-orbit, and spin-spin interaction

terms. However, since we keep the full photon field explicitly,

these terms are implicit in the coupled matter-photon

Hamiltonian.

C. Kohn-Sham approach to relativistic QEDFT

In this section, we provide the adopted Kohn-Sham con-

struction based on the internal pair (Pk,Ak) and give the

simplest approximation for the Kohn-Sham potential and

current. As in Sec. II C, we choose our auxiliary Kohn-Sham

system to be an uncoupled system. While different Kohn-Sham

constructions are possible, this approach is the numerically

least demanding.

In a first step, in accordance to Sec. II C, we first construct

an uncoupled system that can reproduce a given internal pair

(Pk,Ak) of the fully coupled QED system. To do so, we first

need an initial state |�0〉 that fulfills the initial condition (58)

and (59) of the full QED system. This allows that the coupled

equations

∂0
�P (x) = �Qkin

([

ak
eff,j

k
eff

]

; x
)

+ 2emc

i�
�J
([

ak
eff,j

k
eff

]

; x
)

+ 2e

i�c
P0

([

ak
eff,j

k
eff

]

; x
)

�aeff(x), (64)

� �A(x) − �∇
(

1

c

∫

d3r ′ �∇ ′ · �jeff(x
′)

4πǫ0|�r − �r ′|

)

= μ0c �jeff(x) (65)

can only have a unique solution. Obviously, for the case of

the uncoupled problem, we can use a construction similar to

Eq. (52) to determine the unique j k
eff . To show the existence

of a solution to Eq. (64), we perform the standard Taylor-

expansion construction and assume that the series converges

[42,44,72]. A more general approach would be to follow a

fixed-point procedure [46]. The respective Taylor coefficients

11Here, we assume for simplicity that we do not have a transversal

external current j k
ext. The inclusion of general external currents is

straightforward, i.e., Ĵ k → Ĵ k + j k
ext.

of the effective potential are given by

P
(0)
0 (�r)�a(α)

eff (�r) = i�c

2e

(

�P (α+1)(�r) − �Q(α)
kin(�r) − 2emc

i�
�J (α)(�r)

)

−
α−1
∑

β=0

(
α

β

)
(

�a(β)

eff (�r)
)(

P
(α−β)

0 (�r)
)

.

This construction makes plausible that there exists an uncou-

pled system subject to the effective external fields (ak
eff,j

k
eff)

that reproduces a given pair of a fully coupled QED problem.

The above construction actually resembles the mapping

(Pk,Ak)
|�0〉
→

(

ak
eff,j

k
eff

)

for a given pair (Pk,Ak). Now, to predict the internal pair

(Pk,Ak) of the full QED problem, we again introduce a

composite mapping

(

ak
ext,j

k
ext

) |�0〉
→ (Pk,Ak)
|�0〉
→

(

ak
eff,j

k
eff

)

.

The resulting Kohn-Sham potential and Kohn-Sham current

are then given by the functional equations

P0([�0,Pk,Ak]; x)�aKS(x)

= i�c

2e
( �Qkin([�0,Pk,Ak]; x) − �Qkin([�0,Pk,Ak]; x)

+ �Qint([�0,Pk,Ak]; x)) + mc2( �J ([�0,Pk,Ak]; x)

− �J ([�0,Pk,Ak]; x)) + P0([�0,Pk,Ak]; x)�aext(x), (66)

�jKS(x) = �jext(x) + �J ([�0,Pk,Ak]; x). (67)

This allows us to solve an uncoupled system instead of the

fully coupled QED problem. However, as also pointed out in

[42], we can only fully decouple the matter from the photon

part if also the initial state is of product form, i.e., |�0〉 =
|M0〉 ⊗ |EM0〉. And, if we further assume that |M0〉 is given in

terms of a Slater determinant we can actually map the whole

problem to solving a Dirac equation with the above Kohn-

Sham potential ak
KS and simultaneously a classical Maxwell

equation with j k
KS. The mean-field approximation recovers the

approximation introduced in [42] and reads as

�aMF(x) = �aext(x) + �A(x), (68)

�jMF(x) = �jext(x) + �J (x). (69)

Since for simplicity we used a gauge where a0
ext = 0 while

for the photon field we employed Coulomb gauge, we have

to perform an appropriate gauge transformation to have the

mean field a
μ

MF in either the one or the other gauge completely.

A similar caveat holds for the external current. This approxi-

mation is similar to the Maxwell-Schrödinger approach, that

assumes the photon field to behave essentially classically.

IV. NONRELATIVISTIC QEDFT

While for the sake of generality we have been considering

the full QED problem in the previous section, we are actually

mainly interested in the behavior of condensed-matter systems

or atoms and molecules that interact with photons. In such

situations, the external fields are usually small compared to
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the Schwinger limit, i.e., we do not have pair production

in such situations. Further, we want to investigate systems,

where the quantum nature of the photons becomes important.

Most prominently this happens for the case of a cavity, where

different boundary conditions for the Maxwell field have to be

considered. These quantum-optical situations also naturally

restrict the available photonic modes. Such physical situations

are then well described by models of nonrelativistic particles

interacting with a quantized electromagnetic field, such as

the Pauli-Fierz Hamiltonian (see, e.g., [74,75]) or the Nelson

model [70,71]. In the lowest order of approximations we

find the situation of a two-level system interacting with one

photonic mode, similar to the one presented in Sec. II. This

simplest of models is the prime example of a quantum-optical

problem.

We realize at this point that all the conditions we had

to impose in order to make our starting QED Hamiltonian

well defined are naturally met in the situations we aim at

investigating. Actually, we even do not need to adopt a

field-theoretical treatment for the particles in the first place

and usually only need to take into account a few photonic

modes. Such an approach would avoid a lot of unpleasant

problems in connection with renormalization and regular-

ization of these theories. However, one would then need to

introduce a new QEDFT approach for every new type of model

Hamiltonian. Therefore, in this section we want to demonstrate

how naturally all lower-lying QEDFT reformulations are

just approximations to the fully relativistic QEDFT that we

presented in the previous sections. In lowest order, we then

recover the two-site Hubbard model coupled to one mode of

Sec. II.

A. Equations of motion in the nonrelativistic limit

In this section, we derive the nonrelativistic limit of the

basic equations of motion, on which the QEDFT reformula-

tions are based. We show how approximations in the Hamil-

tonian correspond to approximations in the basic equations of

the corresponding QEDFT approaches.

Let us first start with the nonrelativistic limit of the fully

coupled QED Hamiltonian in Coulomb gauge. From the

Heisenberg equation of motion, defining

Âk
tot(x) = Âk(x) + ak

ext(x),

A0
tot(x) = a0

ext(x) + 1

c

∫

d3r ′ j 0
ext(x

′)

4πǫ0|�r − �r ′| ,

and αk = γ 0γ k , we find the quantized Dirac equation (in the

Heisenberg picture)

i�c∂0ψ̂(x)

= [αk(−i�c∂k + eÂtot
k (x)) + γ 0mc2 + eAtot

0 (x)]ψ̂(x)

+ e2

∫

d3r ′ : ψ̂
†(x ′)ψ̂(x ′) :

4πǫ0|�r − �r ′| ψ̂(x), (70)

and accordingly for ψ̂†. We see that the electronic components

φ̂ of the four-spinor are mixed with the positronic components

χ̂ . Of course, for small energies only the electronic component

of the four-spinor is important, and therefore we would like to

find an equation based solely on φ̂. So, naturally we would

like to decouple the upper component φ̂ from the lower

component χ̂ . A possible way would be to find a unitary

transformation of the Dirac Hamiltonian that does this, at

least perturbatively. A possible expansion parameter for such

a perturbative transformation would be (mc2)−1 since we

know that the energies involved in nonrelativistic processes

are small compared to the rest-mass energy. This energy

also represents the spectral gap between the electronic and

positronic degrees of freedom, which effectively decouples

the dynamics of the particles and antiparticles for small

enough energies. The resulting unitary transformations are

known as the Foldy-Wouthuysen transformations [76] and are

routinely used to generate the nonrelativistic limits of the Dirac

equation to any order desired. Here, we employ an equivalent

but different procedure to decouple the electronic from the

positronic degrees of freedom. To do so, we first rewrite

Eq. (70) componentwise

(D̂(x) − mc2)φ̂(x) = �σ · (−i�c �∇ − e �̂Atot(x))χ̂ (x),

(D̂(x) + mc2)χ̂(x) = �σ · (−i�c �∇ − e �̂Atot(x))φ̂(x), (71)

where we defined

D̂(x) =
(

i�c∂0 − eAtot
0 (x)

− e2

∫

d3r ′ : φ̂†(x ′)φ̂(x ′) + χ̂ †(x ′)χ̂(x ′) :

4πǫ0|�r − �r ′|

)

.

And thus we (formally) find that

χ̂ (x) = [D̂(x) + mc2]−1 �σ · (−i�c �∇ − e �̂Atot(x))φ̂(x).

If we assume nonrelativistic energies, the main contribution

to the energy of the system stems from mc2, i.e., i�c∂0 ≈
mc2. Accordingly, from the Neumann series of the resulting

operator we find the inverse operator to lowest order as

[D̂(x) + mc2]−1 ≈ 1/2mc2, and consequently

χ̂(x) ≈ �σ
2mc2

· (−i�c �∇ − e �̂Atot(x))φ̂(x). (72)

At this level of approximation to the full QED problem we

find the Pauli-Fierz Hamiltonian (already transformed back to

the Schrödinger picture)

Ĥ (t) = ĤM + ĤEM + ĤC − 1

c

∫

d3r �̂J (x) · �̂A(�r)

+ 1

c

∫

d3rĴ0(�r)

(

A0
tot(x) − e

2mc2
�̂A2

tot(�r)

)

− 1

c

∫

d3r( �̂J (x) · �aext(x) + �̂A(�r) · �jext(x)), (73)

where the nonrelativistic kinetic energy reads as

ĤM =
∫

d3r φ̂†(�r)

(

− �
2

2m
�∇2

)

φ̂(�r),

the energy of the electromagnetic field is given as before, the

Coulomb energy is given by

ĤC = e2

2

∫

d3rd3r ′ φ̂†(�r)φ̂†(�r ′)φ̂(�r ′)φ̂(�r)

4πǫ0|�r − �r ′| ,
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(a) HQED(t)

HPF(t)

ĤQED(t)

ĤPF(t)

[Âk, Êl]{ψ̂†, ψ̂}

[Âk, Êl] {φ̂†, φ̂}

ETCR

ETCR

NR O( 1
mc2) O( 1

mc2) NR

(b) ĴQED
μ ( )

ĴPF
μ ( )

∂0Ĵ
QED
μ ( )

∂0Ĵ
PF
μ ( )

[ĴQED, ĤQED]

[ĴPF, ĤPF]

EOM

EOM

NR O( 1
mc2) O( 1

mc2) NR

FIG. 6. The nonrelativistic (NR) limits do not depend on the order of operations. First performing the limit and then quantizing with the

equal-time (anti)commutation relations (ETCR) leads to the same (Pauli-Fierz) Hamiltonian as the opposite ordering [see (a)]. Further, first

performing the limit in the current and then calculating the equations of motion (EOM) leads to the same result as performing the limit directly

on the relativistic EOM [see (b)].

and the nonrelativistic current is defined by

Ĵ k(x) = 2ec Re

{

φ̂†(�r)
�σ

2mc2
· (−i�c �∇ − e �̂Atot(x))φ̂(�r)

}

= Ĵ k
p (�r) − ǫklj∂lM̂j (�r) − e

mc2
Ĵ0(�r)Âk

tot(x). (74)

Here, we used the definition of the paramagnetic current

Ĵ k
p (�r) = e�

2mi
[(∂kφ̂†(�r))φ̂(�r) − φ̂†(�r)∂kφ̂(�r)],

the magnetization density

M̂k(�r) = e�

2m
φ̂†(�r)σ kφ̂(�r),

and the zero component of the current

Ĵ0(�r) = ecφ̂†(�r)φ̂(�r).

By construction, the current obeys the continuity equation

∂0Ĵ0(x) = −�∇ · �̂J (x). We note here that due to the nonrela-

tivistic limit the physical current defined in Eq. (74) becomes

explicitly time dependent [5]. Further, we point out that the

result of the above (formal) derivations is the same as the

result obtained by first performing the nonrelativistic limit

of the classical Hamiltonian HQED(t) [constructed from the

classical Lagrangian density of Eq. (B1)] and then canonically

quantizing the Schrödinger field, as shown in Fig. 6(a).

In the nonrelativistic limit, the resulting Hamiltonian

commutes with the particle-number operator N̂ =
∫

d3r φ̂†(�r)φ̂(�r), as can be seen directly from the continuity

equation. Accordingly, we do not need to employ a

field-theoretical description for the electrons and all matter

operators can be expressed in first-quantized notation (while

still being a many-particle problem). Nevertheless, we can

still encounter infinities due to the interaction between the

nonrelativistic particles and the quantized Maxwell field

[74,75]. While we do no longer have vacuum polarization (no

electron-positron pairs are possible) and vertex corrections,

we still have an infinite self-energy [74]. To first order in

the coupling, the ground-state energy (for �aext = �jext = 0)

diverges as

E0 ∼ 2e

π
[� − ln(1 + �)] ,

where � is the ultraviolet cutoff for the photon modes.

By subtracting the infinite self-energy of the ground state,

which is equivalent to introducing a renormalized mass,

we can renormalize the Hamiltonian perturbatively. In the

following, we assume that the Pauli-Fierz Hamiltonian can

be fully renormalized. For instance, in the limit of only scalar

photons (the Nelson model), we know that we can perform

a full renormalization of the Hamiltonian by subtracting the

self-energy (provided that the kinetic energy of the problem is

smaller than mc2) [70,71]. Therefore, we interpret the electron

mass in the Hamiltonian as a bare mass, i.e., we subtract the

infinite self-energy.

Now, the equation of motion for Ĵk can be either found

by the Heisenberg equation with the Pauli-Fierz Hamiltonian

or by the nonrelativistic limit of Eq. (43) (see Appendix C).

We have explicitly checked both ways of performing the

nonrelativistic limit as schematically indicated in Fig. 6(b).

After some calculation, we find (omitting the spatial and

temporal dependencies)

i∂0Ĵk = − i

{

∂ l T̂kl − Ŵk − e

mc2
∂lÂ

l
totĴ

p

k − e

mc2

(

∂kÂ
l
tot

)

Ĵ
p

k + e

mc2

(

∂k∂lÂ
tot
m

)

ǫlmnM̂n − e

mc2

[

∂k

(
1

2mc2
Â2

tot + Atot
0

)]

Ĵ0

}

− ǫklj∂
l

{

− e�
3

4m2
φ̂†(

←
∂

n←
∂ nσ

j − σ j∂n∂n)φ̂ + ie

mc2
∂nÂ

n
totM̂

j − ie

2mc2

[(

∂j Âtot
n

)

−
(

∂nÂ
j
tot

)]

M̂n

}

− 1

mc2

{
(

i∂0Â
tot
k

)

Ĵ0 + Âtot
k

(
ie

mc2
∂lÂ

l
totĴ0 − i∂ l Ĵ

p

l

)}

, (75)

012508-16



QUANTUM-ELECTRODYNAMICAL DENSITY-FUNCTIONAL . . . PHYSICAL REVIEW A 90, 012508 (2014)

where

T̂kl = e�
2

2m2c

[

(∂kφ̂
†)∂lφ̂ + (∂lφ̂

†)∂kφ̂ − 1

2
∂k∂lφ̂

†φ̂

]

is the usual momentum-stress tensor and

Ŵk(�r) = e3

mc

∫

d3r ′ φ̂†(�r)

(

∂k

φ̂†(�r ′)φ̂(�r ′)

4πǫ0|�r − �r ′|

)

φ̂(�r)

is the interaction-stress force (the divergence of the interaction-

stress tensor) [5,9,77]. If we would have started with an

uncoupled problem, we would find a similar equation with the

replacement �̂Atot → �aext and Ŵk → 0. Further, the equation

for the electromagnetic field does not change, except that

we now have to employ the nonrelativistic current (see

Appendix C).

In a next step, we perform the nonrelativistic limit for the

equation of motion of the polarization, i.e., Eq. (44). We find

to order 1/mc2

i∂0P̂
k ≈ 2emc

�
Ĵ k − 2emc

�

(

Ĵ k
p − ǫklj∂lM̂j − e

mc2
Ĵ0Â

k
tot

)

= 0. (76)

Thus, at this level of approximation the polarization does not

change in time.

B. QEDFT for the Pauli-Fierz Hamiltonian

In this section, we derive the basic formulation of non-

relativistic QEDFT for the full Pauli-Fierz Hamiltonian. We

show how the Gordon decomposition, i.e., the equation of

motion for the polarization Pk , makes the current Jk a unique

functional of (ak
ext,j

k
ext) and thus becomes the basic variable

for the matter part in this limit. Further, we demonstrate how

the nonrelativistic limit of the above Kohn-Sham construction

produces the Kohn-Sham construction for the Pauli-Fierz

Hamiltonian. A comparison of this level of approximation with

relativistic QEDFT and with other approximations is presented

schematically in Appendix F.

We start by performing the nonrelativistic limit of Eq. (60).

Irrespective of the difference between �aext and �̃aext (note, that

we again employ the a0
ext = 0 gauge for the external potentials

as explained in Sec. III B), the equation in this limit is always

zero. However, by employing Eq. (76) we can rearrange the

nonrelativistic limit to

�J (α)(�r) − �̃J (α)(�r) = −J
(0)
0 (�r)

mc2

(

�a(α)
ext (�r) − �̃a(α)

ext (�r)
)

�= 0, (77)

which is nonzero provided the density obeys J
(0)
0 �= 0. The

form of Eq. (61) does not change and thus we have in the

nonrelativistic limit that
(

ak
ext,j

k
ext

)1:1↔ (Jk,Ak). (78)

Accordingly, we can label all physical wave functions by

the nonrelativistic internal pair (Jk,Ak). Since Jk no longer

has an internal structure (no positronic degrees of freedom),

our approach of Sec. III A to determine the conjugate pairs

based on a Legendre-transformation argument now works

just fine. The Pauli-Fierz Lagrangian [determined from the

Pauli-Fierz Hamiltonian of Eq. (73)] has a similar structure

as the full QED Lagrangian of Eq. (40) and thus allows

us to identify the conjugate pairs. Indeed, the Legendre-

transformation argument holds for all further nonrelativistic

approximations, especially for our model system of Sec. II.

Now, we can, instead of solving for the wave function, solve

the coupled equations

i∂0
�J (x) = �qp

([

Jk,Ak,a
k
ext

]

; x
)

+ �qM([Jk,Ak,a
k
ext]; x)

+ �q0

([

Jk,Ak,a
k
ext

]

; x
)

, (79)

� �A(x) − �∇
(

1

c

∫

d3r ′ �∇ ′ · �jext(x
′) + �∇ ′ · �J (x ′)

4πǫ0|�r − �r ′|

)

= μ0c( �jext(x) + �J (x)) (80)

for a fixed initial state and external pair (ak
ext,j

k
ext), where q̂k

p is

the first term on the right-hand side of Eq. (75), q̂k
M corresponds

to the second term, and q̂k
0 corresponds to the third. The

initial state and the fixed external pair (ak
ext,j

k
ext) determine

the initial conditions for the above coupled equations. The

explicit appearance of the external potential in several terms

in the equation of motion and in the initial condition is due to

the nonrelativistic limit. The main advantage of this limit is that

we no longer need an explicit approximation for functionals

in the Maxwell equation since we now consider the current

directly.

In a next step, we can then perform the nonrelativistic limit

of the Kohn-Sham scheme of Eqs. (66) and (67) which leads

to

J0([�0,Jn,An]; x)ak
KS(x)

= J0([�0,Jn,An]; x)ak
ext(x) + 〈Âk Ĵ0〉([�0,Jn,An]; x)

+ mc

e

(

J k
p ([�0,Jn,An]; x) − J k

p ([�0,Jn,An]; x)
)

+ mc

e
ǫklj∂l(Mj ([�0,Jn,An]; x) − Mj ([�0,Jn,An]; x)),

j k
KS(x) = j k

ext(x) + J k(x).

If we then further assume that the different initial states fulfill

〈�0|Ĵ0(�r)|�0〉 = 〈�0|Ĵ0(�r)|�0〉
(due to the continuity equations the zero components stay

equivalent) we can define the so-called Hartree-exchange-

correlation (Hxc) potential by

�aKS

[

�0,�0,Jk,Ak,a
k
ext

]

= �aext + �aHxc[�0,�0,Jk,Ak],

and we end up with

J0(x)ak
Hxc(x)

= 〈Âk Ĵ0〉([�0,Jn,An]; x)

+ mc

e

(

J k
p ([�0,Jn,An]; x) − J k

p ([�0,Jn,An]; x)
)

+ mc

e
ǫklj∂l(Mj ([�0,Jn,An]; x) − Mj ([�0,Jn,An]; x)).

Thus, assuming that we have given an appropriate initial state

of the form |�0〉 = |M0〉 ⊗ |EM0〉 that has the same initial
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current, initial potential, and electric field (corresponding

to the first time derivative of the potential), we can solve

simultaneously

i�c∂0|M(t)〉 =
[

ĤM − 1

c

∫

d3r �̂J (x) · �aKS(x)

− e

2mc3

∫

d3r Ĵ0(�r)�a2
KS(x)

]

|M(t)〉, (81)

�Ak(x) + ∂k

(

1

c

∫

d3r ′ �∇ ′ · �jext(x
′) + �∇ ′ · �J (x ′)

4πǫ0|�r − �r ′|

)

= μ0c
[

j k
ext(x) + J k(x)

]

. (82)

If we further assume that the initial state |M0〉 is given as

a Slater determinant of orbitals ϕ(�r), we can solve single-

orbital Kohn-Sham equations. The simplest approximate Hxc

potential is just the nonrelativistic limit of the mean-field

approximation of Eq. (68), i.e.,

�aHxc(x) = �A(x).

Note again that without a further gauge transformation we now

also have a scalar potential in the Kohn-Sham Hamiltonian due

to A0.

We point out that we could alternatively use Eq. (75)

directly to show the one-to-one correspondence between the

external pair (ak
ext,j

k
ext) and the nonrelativistic internal pair

(Jk,Ak) [72]. However, aside from being more involved, also

the connection to relativistic QEDFT becomes less clear.

Nevertheless, for the construction of approximations to the

Kohn-Sham potential, Eq. (75) seems better suited since it is

a more explicit equation.

C. QEDFT for approximate nonrelativistic theories

In this section, we show how, by introducing further ap-

proximations, we can find a family of nonrelativistic QEDFTs,

which in the lowest-order approximation leads to the model

QEDFT of Sec. II.

As pointed out before, in the nonrelativistic situation

the initial guess for the conjugate pairs, i.e., by identifying

a Legendre-type transformation in the Lagrangian of the

problem, holds true. Thus, we can now derive all sorts of

approximate QEDFTs by investigating different conserved

currents and restrictions to the photonic degrees of freedom.

In the currents this holds since approximating the conserved

current Jk implies approximating the Hamiltonian in Eq. (73)

accordingly. Thus, e.g., by assuming a negligible magnetic

density Ml(x) ≈ 0, i.e.,

Ĵk(x) = Ĵ
p

k (�r) − 1

mc2
Ĵ0(�r)Âtot

k (x),

the corresponding Hamiltonian as well as the defining Eqs. (75)

and (76) change. Actually, all terms M̂l and q̂M
l vanish in these

equations for this approximation. We again find due to the

corresponding Eq. (77) that we have

(

ak
ext,j

k
ext

) 1:1↔ (Jk,Ak), (83)

and we can consider the corresponding coupled Eqs. (79)

and (80). The Kohn-Sham current becomes accordingly

j k
KS = j k

ext + J k and the Hxc potential in this limit reduces

to

J0(x)ak
Hxc(x)

= 〈Âk Ĵ0〉([�0,Jk,Ak]; x)

+ mc

e

(

J k
p ([�0,Jk,Ak]; x) − J k

p ([�0,Jk,Ak]; x)
)

.

On the other hand, we can also restrict the allowed photonic

modes. For instance, we can assume a perfect cubic cavity

(zero-boundary conditions) of length L.12 Then, with the

allowed wave vectors �k�n = �n(π/L) and the corresponding

dimensionless creation and annihilation operators â
†
�n,λ

and â�n,λ

(see Appendix E for more details) we find

Âk(�r) =
√

�c2

ǫ0

∑

�n,λ

ǫk(�n,λ)√
2ωn

[â�n,λ + â
†
�n,λ

]S(�n · �r),

where the mode function S is given in Eq. (D1). If we further

restrict the modes by introducing a square-summable regu-

larization function fEM(�n),13 e.g., fEM = 1 for |�n| < mcL/

(2π�) (energy smaller than rest-mass energy) and 0 otherwise,

the resulting regularized field

Âk(�r) =
√

�c2

ǫ0

∑

�n,λ

fEM(�n)
ǫk(�n,λ)√

2ωn

[â�n,λ + â
†
�n,λ

]S(�n · �r) (84)

makes the coupled Pauli-Fierz Hamiltonian self-adjoint with-

out any further renormalization procedure [75]. Such a

restriction is assumed in the following. These approximations

are then directly reflected in the Hamiltonian and the derived

equations of motion. While the basic Eq. (76) does not change,

and thus Jk is the basic matter variable, the basic equation of

motion for the potential Ak has to reflect the restriction to

specific modes. By multiplying Eq. (80) from the left by

ǫk(�n,λ)S(�n · �r)

and integrating, we find the mode expansions
√

�c2

ǫ0

fEM(�n)√
2ωn

(

∂2
0 + �k2

�n
)

q�n,λ(t)

= μ0c
[

j ext
�n,λ(t) + J�n,λ(t)

]

, (85)

where q̂�n,λ = â�n,λ + â
†
�n,λ

and we use the definition

j ext
�n,λ(t) =

∫

d3r �ǫ(�n,λ) · �jext(x)S(�n · �r).

The Coulomb part vanishes since we employ a partial

integration and the fact that �ǫ(�n,λ) · �n = 0. Of course, one

finds the same equations by a straightforward calculation of

the Heisenberg equation of motion for the Maxwell field (84)

with the corresponding Pauli-Fierz Hamiltonian (73). From

12Actually, also other boundaries are possible, but then the

expansion in accordance to the Coulomb-gauge condition in the

eigenfunctions of the Laplacian becomes more involved.
13In the case of continuous frequencies, one accordingly uses a

square-integrable function.
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the restriction to specific modes, the field Ak is restricted in its

spatial form and therefore the photonic variable changes from

Ak to the set of mode expectation values

Ak(x) → {A�n,λ(t)}.
This change in basic variable is also reflected in the conjugate

external variable which is given via Eq. (85) as

j ext
�n,λ(t) = fEM(�n)ǫ0√

2�ωn

(

∂2
0 + �k2

�n
)

q�n,λ(t) − J�n,λ(t).

Thus, we accordingly find

j k
ext(x) →

{

j ext
�n,λ(t)

}

,

and the conjugate pairs become

(

ak
ext,

{

j ext
�n,λ

}) 1:1↔ (Jk,{A�n,λ}).
Thus, we have to solve the mode Eq. (85) together with the as-

sociated equation of motion for the current. Correspondingly,

also the Kohn-Sham scheme and the mean-field approximation

for �aHxc change to its mode equivalents.

If we then also employ the dipole approximation, i.e.,

we assume that the extension of our matter system is small

compared to the wavelengths of the allowed photonic modes,

we find

Âk =
√

�c2

L3ǫ0

∑

�n,λ

fEM(�n)
ǫk(�n,λ)√

2ωn

[â�n,λ + â
†
�n,λ

]. (86)

This only changes the definition of effective currents that

couple to the modes, i.e.,

j ext
�n,λ(t) =

∫
d3r

L3/2
�ǫ(�n,λ) · �jext(x),

but leaves the structure of the QEDFT reformulation otherwise

unchanged. If we assume the magnetization density Ml to be

negligible, we have from first principles rederived the QEDFT

formulation presented in [40]. In this work, the situation of

only scalar external potentials, i.e., �aext = 0 and a0
ext �= 0, has

been considered as a second case. In this situation, the gauge

freedom is only up to a spatial constant, which is usually

fixed by choosing a0
ext → 0 for |�r| → ∞. Since a0

ext couples

to the zero component of the current, i.e., the density Ĵ0, the

conjugate pair becomes

(

a0
ext,

{

j ext
�n,λ

}) 1:1↔ (J0,{A�n,λ}).
To demonstrate this mapping, the first time derivative of Ĵ0

is obviously not enough since this amounts to the continuity

equation and no direct connection between the two conjugate

variables of the matter part of the quantum system is found.

Therefore, one has to go to the second time derivative of Ĵ0

[40]. If we then further simplify this physical situation (see

Appendix E for a detailed derivation), we find the model

Hamiltonian of Sec. II. In a similar manner, by imposing the

restrictions on the corresponding equations of motion, we can

rederive the model QEDFT of Sec. II B.14 Finally, for a simple

14We note that one could have also derived the model QEDFT

by employing the gauge of Eq. (47) for the external potentials. By

overview, we have collected the different QEDFTs that we

have explicitly considered in this work in Appendix F.

V. CONCLUSION AND OUTLOOK

In this work, we have shown how one can extend the ideas of

TDDFT to quantized coupled matter-photon systems. We have

first explained the basic ideas of QEDFT for a model system

of a two-site Hubbard model coupled to a single photonic

mode. By rewriting the problem in terms of an effective theory

for a pair of internal functional variables and proving the

uniqueness of solutions for the resulting nonlinear coupled

equations, we have demonstrated how an explicit solution

for the coupled photon-matter wave function can be avoided.

Further, we have discussed how an auxiliary quantum system,

the so-called Kohn-Sham system, can be used to construct

approximations for the implicit functionals appearing in the

effective equations. The Kohn-Sham construction gives rise

to effective fields and effective currents, which are termed

Kohn-Sham potential and Kohn-Sham current, respectively.

By numerically constructing the exact Kohn-Sham potential

and Kohn-Sham currents, we have illustrated the capability

of this approach to exactly describe the dynamics of coupled

matter-photon systems and contrasted these exact fields with

the mean-field approximation.

In the following, instead of reformulating every possible

approximate treatment of coupled matter-photon systems

separately, we have shown how these QEDFTs for approxi-

mate Hamiltonians are merely approximations to relativistic

QEDFT, which itself is based on QED. To avoid problems

with the Kohn-Sham construction, we have based relativistic

QEDFT on the expectation value of the polarization and the

vector potential of the quantum system. By then performing

the nonrelativistic limit of QEDFT, we have demonstrated that

the resulting theory is the QEDFT reformulation of the Pauli-

Fierz Hamiltonian. The nonrelativistic limit automatically

makes the (nonrelativistic) current the basic variable for the

matter system. Accordingly, the nonrelativistic limit of the

Kohn-Sham potentials and currents leads to the corresponding

Kohn-Sham fields for the Pauli-Fierz Hamiltonian. By per-

forming further approximations for nonrelativistic QEDFT,

e.g., assuming the magnetic density negligible, we have

shown how other QEDFTs (that reformulate the corresponding

approximate Hamiltonians) can be derived. Depending on the

level of approximation, the basic internal functional variables

change, e.g., if we confine the electromagnetic field with a

cavity, the (allowed) mode expectation values become the new

internal variable of the photons. In a final step, we restricted

to a two-site model coupled to only one mode, recovering the

model QEDFT of the beginning.

We point out that at every level of QEDFT, we recover the

corresponding (standard) time-dependent density-functional

reformulations [47,72] if we assume the quantized nature

of the photons negligible, i.e., the charged particles interact

applying the dipole approximation also to the external vector poten-

tial, the conjugate variable becomes the density (dipole moment).

For clarity of presentation, though, we have chosen to start from the

scalar-potential case.
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via the classical Coulomb interaction only. This will be the

case in most standard situations of condensed matter theory,

e.g., when investigating dynamics of atoms or molecules

in free space. However, we expect that interesting effects

happen when the boundary conditions for the Maxwell field

are changed, e.g., for atoms in a cavity. Thus, we have a

potential tool that can treat complex electronic systems in the

setting of quantum optics. Also, we can investigate the explicit

interplay of photons with molecules or nanostructures, e.g., in

nanoplasmonics. However, for this theory to be practical, we

are in need of reliable approximations to the basic functionals.

In [67], functionals based on an optimized effective potential

approach [9,10] are constructed, which provide good results

even in the situation of strongly coupled systems. Although

the currently available approximations have only been tested

for simple model systems, the hierarchy of QEDFT approxi-

mations allows us to simply scale up these functionals to more

complex situations. Thus, we can develop approximations for

simple systems, e.g., only one mode couples to the matter

system, and then extend these approximations to more involved

problems, e.g., considering more modes. In this way, we

can easily control the validity of our approximations. In

this respect, we are also working on a fixed-point approach

in the spirit of [46,59], which allows us to construct the

exact Kohn-Sham potentials and compare the approximate

potentials to the (numerically) exact expressions. Details of

this approach will be part of a forthcoming publication [60]. On

the other hand, the fixed-point approach is also a way to extend

the validity of QEDFT beyond Taylor-expandable fields. A

different way, especially for discretized matter systems, is

the nonlinear Schrödinger equation approach introduced in

[45,49]. Certain theoretical and mathematical details of the

model QEDFT of Sec. II, that are beyond the scope of this

paper, will be discussed in [78].

Finally, since we are aiming at investigating quantum

optical settings, we also need to discuss the cavity and the

problem of open quantum systems. In this work, we focused

on closed systems and on a perfect (cubic) cavity. It is

straightforward (but tedious) to extend this work to an arbitrary

shape of the perfect cavity. We have to use an expansion

of the photon field in the corresponding eigenfunctions of

the cavity, such that these modes obey the Coulomb-gauge

condition. However, in actual quantum optical experiments,

the cavities are not perfect but rather an open quantum

system, which allows for an exchange with the environment.

To take care of this channel of decoherence and dissipation,

there are several possible ways. One can employ the current

formulation of QEDFT and derive a master equation, as has

also been done for standard TDDFT [79,80]. Also, extensions

to stochastic equations [81–83] are possible. On the other

hand, one can couple further bosonic degrees of freedom

to the system and prescribe a bath spectral density, making

these degrees of freedom a bath for the system [40]. Since

the present framework allows for a consistent treatment of

interacting fermionic and bosonic particles, the inclusion of

a bath and coupling to other fields, e.g., phonons, will be the

subject of future work. Furthermore, a detailed investigation

of the QEDFT framework in the linear-response regime

(and possible extensions to open quantum systems [84]) is

intended.
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APPENDIX A: CONVENTIONS

In this work, we employ the standard covariant notation

xμ = (ct,�r) with Greek letters indicating four vectors, e.g.,

μ ∈ {0,1,2,3}, and Roman letters indicating spatial vectors,

i.e., k ∈ {1,2,3}. To lower (or raise) the indices, i.e., going

from contravariant vectors to covariant vectors (or vice versa),

we adopt the convention

gμν =

⎛

⎜
⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞

⎟
⎠

for the Minkowski metric. We denote spatial (contravari-

ant) vectors with the vector symbol, i.e., Ak ≡ �A, and the

derivatives with respect to the space-time vectors xμ by

∂μ = ∂/∂xμ. With these definitions, the divergence can be

written as ∂kA
k = �∇ · �A, where we also adopt the Einstein

summation convention. Further, we note that JkA
k = − �J · �A.

With the help of the Levi-Civita symbol ǫijk , we can write

the curl as ǫijk∂jAk ≡ −�∇ × �A and the multiplication of

Pauli matrices becomes σ kσ l = (1/2)({σ k,σ l} + [σ k,σ l]) =
−gkl − iǫklmσm.

Further, for notational simplicity we only point out in the

text (when necessary), whether we are in the Schrödinger or

Heisenberg picture, and do not explicitly indicate the picture

used in the operators. In the Schrödinger picture, operators

which are not explicitly time dependent only carry a purely

spatial dependence, e.g., Âk(�r). We indicate explicit time

dependence in the Schrödinger picture by either carrying the

full space-time dependence, e.g., Ĵ k(x) (for the Pauli-Fierz

current density) of Eq. (74), or by a dependence on t , e.g.,

Ĥ (t) in Eq. (73). In the Heisenberg picture, every operator

also depends on time, e.g., ψ̂(x) in Eq. (70).

APPENDIX B: QUANTUM ELECTRODYNAMICS

IN COULOMB GAUGE

In this appendix, we give a detailed derivation of QED

in Coulomb gauge. We start from the (classical) coupled

QED Lagrangian with external fields aext
μ (x) and j ext

μ (x)

given by [2]

LQED(x) = LM(x) − 1

c
Jμ(x)aext

μ (x)

+LE(x) − 1

c

[

Jμ(x) + j ext
μ (x)

]

Aμ(x). (B1)
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Here, we use the standard definitions for the (classical) Dirac

fields, i.e.,

LM(x) = ψ̄(x)(i�cγ μ∂u − mc2)ψ(x),

where

ψ(x) =
(

φ(x)

χ (x)

)

is a Dirac four-spinor with the two-component (spin) functions

φ(x) and χ (x), the gamma matrices are given by

γ i =
(

0 σ i

−σ i 0

)

, γ 0 =
(

1 0

0 −1
)

,

with σ i the usual Pauli matrices, ψ̄ = ψ†γ 0, and

Jμ(x) = ecψ̄(x)γμψ(x)

is the conserved (Noether) current. Further, we use the

Minkowski metric gμν = (+, − , − ,−) to raise and lower the

indices. For the (classical) Maxwell field we have

LE(x) = −ǫ0

4
Fμν(x)Fμν(x), (B2)

where Fμν(x) = ∂μAν(x) − ∂νAμ(x) is the electric field tensor

and Aμ(x) is the vector potential.

Now, we employ the Coulomb gauge condition for the

Maxwell field, i.e., �∇ · �A(x) = 0. Then, it holds that

−�A0(x) = 1

ǫ0c

[

J 0(x) + j 0
ext(x)

]

, (B3)

where � is the Laplacian. If we impose square integrability

on all of R
3,15 the Green’s function of the Laplacian becomes

�−1 = −1/(4π |�r − �r ′|) and therefore

A0(x) = 1

c

∫

d3r ′ J 0(x ′) + j 0
ext(x

′)

4πǫ0|�r − �r ′| . (B4)

Since the zero component of the four-potential Aμ(x) is given

in terms of the full current, it is not subject to quantization.

The conjugate momenta of the photon field (that need to be

quantized) are the same as in the current-free theory and thus

the usual canonical quantization procedure applies [2], i.e.,

[Âk(�r),ǫ0Êl(�r ′)] = −i�cδ⊥
kl(�r − �r ′), (B5)

where Êk is the electric field operator, δ⊥
kl(�r − �r ′) = (δkl −

∂k�
−1∂l)δ

3(�r − �r ′) is the transverse delta function, and k,l

are spatial coordinates only. Equivalently, we can define these

15If we consider the situation of a finite volume, e.g., due to a perfect

cavity, the boundary conditions change. These different boundary

conditions, in principle, change the Green’s function of the Laplacian

and thus the instantaneous interaction. We ignore these deviations

from the Coulomb interaction in this work for simplicity.

operators by their respective plane-wave expansions

�̂A(�r) =
√

�c2

ǫ0

∫
d3k

√

2ωk(2π )3

2
∑

λ=1

�ǫ(�k,λ)

× [â�k,λe
i�k·�r + â

†
�k,λ

e−i�k·�r ],

�̂E(�r) =
√

�

ǫ0

∫
d3k iωk

√

2ωk(2π )3

2
∑

λ=1

�ǫ(�k,λ)

× [â�k,λe
i�k·�r − â

†
�k,λ

e−i�k·�r ],

where ωk = ck, �ǫ(�k,λ) is the transverse-polarization vector

[2], and the annihilation and creation operators obey

[â�k′,λ′ ,â
†
�k,λ

] = δ3(�k − �k′)δλλ′ .

If we further define the magnetic field operator by c �̂B = �∇ × �̂A,

the Hamiltonian corresponding to LE is given in Eq. (35). We

used normal ordering, i.e., rearranging the annihilation parts

of the operators to the right, to get rid of the infinite zero-

point energy in this expression. Also, for the Dirac field, the

coupling does not change the conjugate momenta. Therefore,

we can perform the usual canonical quantization procedure

for fermions which leads to the (equal-time) anticommutation

relations [2]

{ψ̂α(�r), ˆ̄ψβ(�r ′)} = γ 0
αβδ3(�r − �r ′).

The Hamiltonian corresponding to LM thus becomes the one

of Eq. (34), where we used �r · �y = −xky
k .

It is straightforward to give the missing terms of the QED

Hamiltonian due to the coupling to the external fields as well

as due to the coupling between the quantized fields. If we

apply the definition of the quantized current Ĵμ of Eq. (37) to

Eq. (B4), we find (using normal ordering)

:
[

J0(�r) + j ext
0 (x)

]

A0(x) :

= 1

2c

∫
d3r d3r ′

4πǫ0|�r − �r ′|
(

j ext
0 (x)j 0

ext(x
′)

+ 2Ĵ0(�r)j 0
ext(x

′)+ : Ĵ 0(�r)Ĵ0(�r ′) :
)

.

Here, if we disregard the purely multiplicative first term on

the right-hand side, we arrive at Eq. (36). The rest is given in

Eqs. (38) and (39). Alternatively, with the definition of A0 in

Eq. (B4) and

Ĥ ′
int(t) = Ĥint + 1

c

∫

d3r : Ĵ0(�r)A0(x) :

the full QED Hamiltonian can also be written as

Ĥ (t) = ĤM + ĤE + Ĥ ′
int(t)

+ 1

c

∫

d3x
(

Ĵμ(�r)a
μ
ext(x) + Âμ(�r)j

μ
ext(x)

)

. (B6)
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APPENDIX C: NONRELATIVISTIC EQUATIONS OF MOTION

To find the nonrelativistic limit of Eq. (43), we can not straightaway apply the decoupling to Eq. (72). Since we have to apply

the decoupling consistently to the Hamiltonian as well as the current we need to rewrite the equation of motion. We start (in the

Heisenberg picture) by

i∂0[ecψ̂†γ 0γ kψ̂] = 2emc2

�
[χ̂ †σ kφ̂ − φ̂†σ kχ̂ ] − iec[φ̂†(σ kσ l∂l +

←
∂ lσ

lσ k)φ̂ + χ̂ †(σ kσ l∂l +
←
∂ lσ

lσ k)χ̂]

− 2ie2

�
ǫklj Âtot

l [φ̂†σj φ̂ + χ̂ †σj χ̂].

This leads with σ lσ k = −glk − iǫlkjσj and Im{φ̂†Âk
totφ̂} ≡ 0 to

i�∂0Ĵ
k = 2 Im{−2emc2χ̂ †σ kφ̂ + e2Âtot

l [φ̂†σ kσ lφ̂ − χ̂ †σ lσ kχ̂ ] − ie�cχ̂ †
←
∂ lσ

lσ kχ̂ − ie�cφ̂†σ kσ l∂lφ̂}.
Adding and subtracting on the right-hand side the term eφ̂†σ k(i�c∂0 − D̂)χ̂ and employing Eq. (71), we find

i�∂0Ĵ
k = 2e Im

{[

χ̂ †(−i�c
←
∇ +e �̂Atot) · �σ − φ̂†eAtot

0 − φ̂†e2

∫

d3r ′ : φ̂
†(x ′)φ̂(x ′) + χ̂ †(x ′)χ̂(x ′) :

4πǫ0|�r − �r ′| − mc2φ̂†

]

σ kχ̂

+ cφ̂†σ ki�c∂0χ̂

}

.

With the help of the definition [. . .] = [D̂ + mc2]−1, this can be rewritten as

i�∂0Ĵ
k = 2e Im

{[

− φ̂†(i�c
←
∇ −e �̂Atot) · �σ [. . .]†(i�c

←
∇ −e �̂Atot) · �σ − φ̂†eAtot

0

− φ̂†e2

∫

d3r ′ : φ̂
†(x ′)φ̂(x ′) + χ̂ †(x ′)χ̂(x ′) :

4πǫ0|�r − �r ′| − mc2φ̂†

]

σ k[. . .]�σ · (−i�c �∇ − e �̂Atot)φ̂

+ φ̂†σ k[i�c∂0[. . .]�σ · (−i�c �∇ − e �̂Atot)]φ̂ + φ̂†σ k[. . .]�σ · (−i�c �∇ − e �̂Atot)

×
[

�σ · (−i�c �∇ − e �̂Atot)[. . .]�σ · (−i�c �∇ − e �̂Atot) + eAtot
0 − e2

∫

d3r ′ : φ̂
†(x ′)φ̂(x ′) + χ̂ †(x ′)χ̂(x ′) :

4πǫ0|�r − �r ′| − mc2

]

φ̂

}

.

Now, if we employ the approximation [. . .] ≈ 1/2mc2 (also in

the Coulomb terms) we end up with

i�∂0Ĵ
k ≈ i�∂02ec Re

{

φ̂†σ k �σ
2mc2

· (−i�c �∇ − e �̂Atot)φ̂

}

,

which is just the equation of motion for the nonrelativistic

current (74) with the Pauli-Fierz Hamiltonian.

For the Maxwell field, the nonrelativistic limit of Eq. (49) is

with the help of Eq. (74) straightforward. It is only important

to see that this does agree with the equation of motion for Âk

due to the Pauli-Fierz Hamiltonian (73). The main difference

to the fully relativistic derivation is that now we have a term

of the form

e

2mc2

∫

d3r Ĵ0(x)
(

Âk(x) + ak
ext(x)

) (

Âk(x) + aext
k (x)

)

.

This term does not change anything in the first-order equation,

i.e., ∂0Âk = −Êk . In the second order, we find due to Eq. (B5)

that
∫

d3r ′[Êk(x); Âl(x ′)Âl(x
′)]Ĵ0(x ′)

= 2
i�c

ǫ0

Âl(x)Ĵ0(x) − 2
i�c

ǫ0

∂k�−1∂ lÂl(x)Ĵ0(x)

and

2

∫

d3r ′[Êk(x); Âl(x ′)]aext
l (x ′)Ĵ0(x ′)

= 2
i�c

ǫ0

al
ext(x)Ĵ0(x) − 2

i�c

ǫ0

∂k�−1∂ laext
l (x)Ĵ0(x).

Now, with the above definition for �−1 used in Eq. (B4), we

find that these commutators lead to the terms

− ∂k

(
1

c

∫

d3r ′
�∇ ′ · �̂Atot(x ′) e

mc2 Ĵ0(x ′)

4πǫ0|�r − �r ′|

)

+ μ0c

(

Âk
tot(x)

e

mc2
Ĵ0(x)

)

of the equation of motion for the Maxwell field in the

nonrelativistic limit. The rest of the derivation is similar to

the relativistic situation.

APPENDIX D: MODE EXPANSION

If we restrict the allowed space for the photonic modes, we

also need to impose appropriate boundary conditions. Let us

first start with a cubic cavity of length L with periodic boundary
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condition. We then find with the allowed wave vectors �kn =
�n(2π/L) and the corresponding dimensionless creation and

annihilation operators â
†
�n,λ

and â�n,λ, which are connected to

their continuous counterparts by

L3/2â�n,λ → â�k,λ,

that

Âk(�r) =
√

�c2

ǫ0L3

∑

�n,λ

ǫk(�n,λ)√
2ωn

[â�n,λe
i�kn·�r + â

†
�n,λ

e−i�kn·�r ].

Here, ωn = c|�n|(2π/L). If we change the conditions at the

boundaries to zero-boundary conditions, then the allowed

wave vectors change to �kn = �n(π/L) and the discrete operators

obey

(2L)3/2iâ
†
�n,λ

→ â
†
�k,λ

.

With the normalized mode functions

S(�n · �r) =
(

2

L

)3/2 3
∏

i=1

sin

(
πni

L
ri

)

, (D1)

the field operator therefore reads as

Âk(�r) =
√

�c2

ǫ0

∑

�n,λ

ǫk(�n,λ)√
2ωn

[â�n,λ + â
†
�n,λ

]S(�n · �r).

Here, ωn = c|�n|(π/L).

APPENDIX E: DERIVATION OF

THE MODEL HAMILTONIAN

We start with the nonrelativistic Hamiltonian of Eq. (73)

where we assume that the magnetization density Mk is

negligible. We further assume a perfect cubic cavity of length

L and employ the dipole approximation, i.e., e±i�kn·�r ≈ 1. Thus,

we find a Maxwell field defined by Eq. (86). At this level of

approximation, our starting point coincides with that adopted

in [40].

In a next step, we allow only scalar external potentials. In

the following, we present a detailed derivation of the length-

gauge Hamiltonian employed in [40] for the formulation of

the electron-photon TDDFT. For simplicity, we restrict our

derivations to the case of one mode and one particle. The case

of several modes and particles works analogously and leads to

the Hamiltonian (13) of Ref. [40].

With the definition of the dimensionless photon coordinate

q and the conjugate momentum id/dq, the single-mode vector

potential is given by

�̂A = C
q�ǫ√
ω

, (E1)

where we use the definition

C =
(

�c2

ǫ0L3

)1/2

,

and assume fEM = 1. The resulting Hamiltonian in first

quantized notation reads as

Ĥ (t) = 1

2m

(

i� �∇ + e

c
�̂A
)2

− �ω

2

d2

dq2
+ �ω

2
q2

+ ea0
ext(x) − 1

c
�jext(t) · �̂A, (E2)

since at this level of approximation �∇ · �jext = 0 due to the

expansion in Coulomb-gauged eigenmodes. In Eq. (E2) we

introduced the notation

�jext(t) =
∫

d3r

L3/2
�jext(x).

In a next step, we transform the Hamiltonian into its length-

gauge form [85] by the unitary transformation

Û = exp

[
i

�

(
Ce

c

�ǫ · �r√
ω

q

)]

.

If we then perform a canonical variable transformation of the

photon coordinate id/dq → p and q → −id/dp (leaving the

commutation relations unchanged), we find

Ĥ (t) = − �
2

2m
�∇2 − �ω

2

d2

dp2
+ �ω

2

(

p − Ce

�c

�ǫ · �r√
ω

)2

+ ea0
ext(x) + iC

c
√

ω
�ǫ · �jext(t)

d

dp
. (E3)

Then, we perform yet another time-dependent gauge

transformation

Û (t) = exp

[
iC

�cω
3
2

(

jext(t)p − C

2c
√

ω

∫ t

0

j 2
ext(t

′)dt ′
)]

,

where jext(t) = �ǫ · �jext(t) is the projection of the external

current on the direction of the photon polarization. The

above transformation is aimed at eliminating the linear in

p-derivative term in Eq. (E3). Using the general transformation

rule H 
→ −i�Û †∂t Û + Û †Ĥ Û , we obtain

Ĥ (t) = − �
2

2m
�∇2 − �ω

2

d2

dp2
+ �ω

2

(

p − Ce

�c

�ǫ · �r√
ω

)2

+ ea0
ext(x) − 1

ωc

C√
ω

p ∂tjext(t). (E4)

Here, we see that the photonic variable p is coupled to

the dipole moment e�r , which indicates that p is actually

proportional to the electric field.

In a last step, we then discretize the matter part of the

problem and employ a two-site approximation such that

− �
2

2m
�∇2 → −tkinσ̂x,

eω�ǫ · �r → eω�ǫ · �lσ̂z ≡ eĴ ,

ea0
ext(x) → ea0

ext(t)σ̂z,

where tkin is the kinetic (hopping) energy, �l is the vector

connecting two sites, and a0
ext(t) corresponds to the potential

difference between the sites. To highlight the general structure

of the photon-matter Hamiltonian (and bring it to the form used
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TABLE I. Here we present an overview of different QEDFTs and their respective Kohn-Sham constructions based on an uncoupled auxiliary

system (denoted with superscript s) with initial state |�0〉 = |M0〉 ⊗ |EM0〉.

Level of External and Kohn-Sham Kohn-Sham Initial

approximation internal variables fields equations conditions

QED (ak
ext,j

k
ext) P s

0 �aKS = i�c
2e

( �Qkin − �Qs
kin + �Qint) + mc2( �J − �J s) + P0 �aext i�∂t |M〉 = [ĤM − 1

c

∫ �̂J · �aKS]|M〉 P
(0)
k

(Sec. III)
�P = ec 〈: ψ̂† �γ ψ̂ :〉
�A = 〈 �̂A〉

�jKS = �jext + ec〈: ˆ̄ψ �γ ψ̂ :〉
︸ ︷︷ ︸

:= �J s

+( �J − �J s) � �A − �∇( 1
c

∫ �∇′· �jKS
4πǫ0 |�r−�r′ | ) = μ0 c �jKS (A

(0)
k ,A

(1)
k )

NR limit (ak
ext,j

k
ext) J s

0 �aHxc = 〈 �̂AĴ0〉 + mc
e

( �Jp − �J s
p ) − mc

e
�∇ × ( �M − �Ms) i�∂t |M〉 = [ĤM − 1

c

∫ �̂J · �aKS − e

2mc3

∫

Ĵ0 �a2
KS]|M〉 (J

(0)
0 ,J

(0)
k )

(Sec. IV B)
�J = �Jp + �∇ × �M − e

mc2 〈Ĵ0
�̂Atot〉

�A = 〈 �̂A〉
�jKS = �jext + �J s

p + �∇ × �Ms − e

mc2 J s
0 (�aext + �aHxc)
︸ ︷︷ ︸

�aKS

� �A − �∇( 1
c

∫ �∇′· �jKS
4πǫ0 |�r−�r′ | ) = μ0 c �jKS (A

(0)
k ,A

(1)
k )

No Mag (ak
ext,j

k
ext) J s

0 �aHxc = 〈 �̂AĴ0〉 + mc
e

( �Jp − �J s
p

)

i�∂t |M〉 = [ĤM − 1
c

∫ �̂J · �aKS − e

2mc3

∫

Ĵ0 �a2
KS]|M〉 (J

(0)
0 ,J

(0)
k )

(Sec. IV C)
�J = �Jp − e

mc2 〈Ĵ0
�̂Atot〉

�A = 〈 �̂A〉
�jKS = �jext + �J s

p − e

mc2 J s
0 (�aext + �aHxc)
︸ ︷︷ ︸

�aKS

� �A − �∇( 1
c

∫ �∇′· �jKS
4πǫ0 |�r−�r′ | ) = μ0 c �jKS (A

(0)
k ,A

(1)
k )

Cavity (ak
ext,{j ext

�n,λ
}) J s

0 �aHxc = 〈 �̂AĴ0〉 + mc
e

( �Jp − �J s
p

)

i�∂t |M〉 = [ĤM − 1
c

∫ �̂J · �aKS − e

2mc3

∫

Ĵ0 �a2
KS]|M〉 (J

(0)
0 ,J

(0)
k )

(Sec. IV C)

�J = �Jp − e

mc2 〈Ĵ0
�̂Atot〉

A�n,λ =
√

�c2

ǫ0

fEM√
2ωn

q�n,λ

jKS
�n,λ

= j ext
�n,λ

+ (J s
p )�n,λ − e

mc2 (J s
0 (�aext + �aHxc)
︸ ︷︷ ︸

�aKS

)�n,λ
fEM√

2ωn
(∂2

0 + �k2
�n)q�n,λ(t) =

√
μ0

�c2 jKS
�n,λ

{A(0)

�n,λ
,A

(1)

�n,λ
}

Dipole (ak
ext,{j ext

�n,λ
}) J s

0 �aHxc = 〈 �̂AĴ0〉 + mc
e

( �Jp − �J s
p

)

i�∂t |M〉 = [ĤM − 1
c

∫ �̂J · �aKS − e

2mc3

∫

Ĵ0 �a2
KS]|M〉 (J

(0)
0 ,J

(0)
k )

(Sec. IV C)

�J = �Jk − e

mc2 〈Ĵ0
�̂Atot〉

A�n,λ =
√

�c2

L3ǫ0

fEM√
2ωn

q�n,λ

jKS
�n,λ

= j ext
�n,λ

+
(

J s
p

)

�n,λ
− e

mc2

(

J s
0 (�aext + �aHxc)
︸ ︷︷ ︸

�aKS

)

�n,λ

fEM√
2ωn

(∂2
0 + �k2

�n)q�n,λ(t) =
√

L3μ0

�c2 jKS
�n,λ

{A(0)

�n,λ
,A

(1)

�n,λ
}

Model (aext,jext) nsaKS = λ〈n̂Â〉 + naext(t) i�∂t |M〉 = [−tkinσ̂x − 1
c
Ĵ aKS]|M〉 (J (0),J (1))

(Sec. II)

J = eωlσz

A =
√

�c2

ǫ0L3
q√
2ω

jKS = jext + λJ
(

∂2
0 + k2

)

A = μ0c

L3 jKS (A(0),A(1))

in Sec. II), we also redefine the external current, the external

potential, and the photon field as follows:

∂tjext(t) → ωj̃ext(t),

ea0
ext(t)σ̂z → −1

c
aext(t)Ĵ ,

C√
ω

p → Â = C√
2ω

(â† + â).

After implementing the above redefinitions in Eq. (E4) and

neglecting irrelevant constant terms we arrive at the following

Hamiltonian:

Ĥ (t) = − tkinσ̂x + �ωâ†â − 1

c
Ĵ Â − 1

c
aext(t)Ĵ

− 1

c
j̃ext(t)Â. (E5)

With the choice of an appropriate dimensionless coupling

constant λ, Eq. (E5) reduces to the simple model Hamiltonian

of Eq. (3).

We note that the same model Hamiltonian could have

been derived by assuming an external vector potential in a

gauge such that a0
ext = 0 and �aext �= 0. Then, by the dipole

approximation the corresponding Hamiltonian to Eq. (E2) we

would have terms of the form �aext · �∇, �a2
ext and mixed terms

of internal and external vector potential. By going into length

gauge also for the external potential and performing the same

steps as above, one ends up with the same two-site one-mode

Hamiltonian.

APPENDIX F: OVERVIEW OF QEDFTs

In Table I, we give an overview of the different QEDFTs
that we have discussed explicitly. We employ for the Kohn-
Sham scheme an uncoupled auxiliary quantum system with an
initial state |�0〉 = |M0〉 ⊗ |EM0〉. For the different levels of
approximation, the prerequisites for this initial state change,
i.e., we might have different initial conditions that have to be
fulfilled. Further, we use the notational convention that the
superindex s refers to the (uncoupled) Kohn-Sham quantity,
e.g., P0[�0,Pk,Ak] = P s

0 .

We point out, that due to the change of the physical current �J
through out the hierachy of QEDFTs also the inhomogeneity in
the associated Maxwell equations change. This inhomogeneity
describes how the photons are coupled to the charged quantum
particles, which effectively also leads to a coupling between
the photons. This can be most easily seen in the nonrelativistic
limit, where the inhomogeneity contains terms such as 〈Ĵ0Âk〉.
Since the current of the auxiliary Kohn-Sham system is
by construction equal to the exact current (at least for the
nonrelativistic limit), this coupling between the photons is also
present in the Kohn-Sham Maxwell equation. The term J s

0 �aHxc

of the Kohn-Sham current contains these nontrivial couplings
as functionals of the initial states and internal pair. When
restricting the photons to a cavity, the Kohn-Sham current is
then responsible to couple the different photon modes. The
coupling terms in the Kohn-Sham current are specifically
relevant in the context of, e.g., nanoplasmonics, where the
electromagnetic fields are enhanced due to the presence of the
plasmons, or in the optical control of currents in solids [86].
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