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Abstract: The optical properties of thin gold �lms with

thickness varying from 2.5 nm to 30 nm are investigated.

Due to the quantum size e�ect, the optical constants of the

thin gold �lm deviate from the Drudemodel for bulkmate-

rial as �lm thickness decreases, especially around 2.5 nm,

where the electron energy level becomes discrete. A theory

based on the self-consistent solution of the Schrödinger

equation and the Poisson equation is proposed and its pre-

dictions agree well with experimental results.

Keywords: ultrathin gold �lm; quantum plasmonics;

metal quantum well; optical property

1 Introduction

Plasmonics, which utilizes the interaction of light and

charged particles, such as electrons in metals, has been

an area of interest for decades. It has led to many fasci-

nating applications, such as super-resolution imaging that

breaks the di�raction limit [1, 2], new kinds of biosensors

with enhanced performance [3, 4], nanolasers [5], and op-

tical metamaterials that can manipulate light–matter in-

teraction in a unknown degree of freedom [6, 7]. With

the development of nanofabrication techniques, the di-

mensions of the plasmonic device have been shrunk to
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the nanoscale [8]. To understand and explore the physics

within such small plasmonic devices, quantum con�ne-

ment e�ects need to be considered. In this context, the

�eld of quantum plasmonics, which combines quantum

mechanics with plasmonics, has emerged and drawn

much attention recently [9, 10]. There have been several

approaches to deal with quantum plasmonics, for exam-

ple, nanoparticles with quantum sizemodel [11], quantum

correlated model [12], and nonlocal model [13, 14]. Here,

we choose the ultrathin metal �lm as a platform to study

quantum plasmonics and focus on the optical properties

of the nanoscale gold �lm.We experimentallymeasure the

re�ection and transmission (RT) of thin gold �lms with

thicknesses varying from30nm to 2.5 nm, and then extract

the optical constants. It is found that the optical proper-

ties of thin gold �lm show signi�cant di�erence when the

�lm thickness decreases, especially around 2.5 nm. With

such small thickness, a metal quantum well with discrete

energy levels is formed, and the behavior of the electrons

inside would mainly be governed by quantum physics.

Although the quantum behavior has been extensively

explored with various theoretical models in the context

of semiconductor quantum wells [15], these models can-

not be directly applied to metals, due to the large electron

density and di�erent band structures. Thin metal �lms

had previously drawn wide research interest in the con-

text of quantum physics [16–19], and recent e�ort has

been focused on the optical properties of ultrathin metal

�lms with thickness of a few nanometers [20–26]. Besides

the classical Drude model [27], several new theoretical

methods have been proposed, such as the quantum size

model [11, 21] and density function theory [26]. The agree-

ment between those theoretical models and experimen-

tal result, however, is only qualitative, and a more accu-

rate model is still not available according to our knowl-

edge. Therefore, we propose a new model, which we call

the quantum electrostatic model (QEM) to study elec-

tron dynamics within a metal quantum well. More speci�-

cally, a theory based on the self-consistent solution of the

Schrödinger equation and the Poisson equation is applied

to thin gold �lms, and its predictions agree well with ex-

perimental results.
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Figure 1: A metal quantum well structure is formed based on an ul-

trathin gold �lm sandwiched between the quartz substrate and air

on top. The �rst three lowest energy levels and their corresponding

wave functions are also sketched. The shape deformation of the well

bottom indicates the impact of electron distribution.
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Figure 2: Atomic-force microscopy image of one of the 2.5 nm thin

gold �lms, showing the �lm edge on the substrate. The upper inset

shows the averaged height on both sides across the edge (the mean

thickness), indicating themean thickness of the �lm is about 2.5 nm.

The lower inset shows the surface roughness is around 0.5 nm.

2 Results And Discussion

Thin gold �lm is grown (see Supplementary Material for

fabrication details) on top of a quartz substrate. The quan-

tum con�nement e�ects become pronounced when the

thickness of the �lm is comparable to the de Broglie wave-

length of the electron. For ultrasmall thickness, a quantum

well would be formed by the potential barrier from air and

quartz on two sides of the gold, and the initial continuum

energy levels of the free electrons become discrete in the

quantum well. The band structure of the metal quantum

well, and the three lowest eigen energy levels togetherwith

their wave functions are schematically sketched in Fig-

ure 1. The optical properties of such quantum sized metal

�lms represent an overall collective e�ect of the dynamics

of the quantized electrons within the quantum well, and

hence would be drastically di�erent from the free electron

gas model applied in bulk metals.

Figure 2 shows the atomic-forcemicroscopy (AFM) im-

age of a 2.5 nm gold �lm sample. As can be seen, although

the �lm is not perfectly �at as indicated by the surface �uc-

tuations, it is not broken at the 2.5 nm thickness level. (A

better resolution scanning for a small area is shown in Fig-

ure S1 in Supplementary Material). The averaged height

shown in the upper inset indicates that the average thick-

ness of the �lm is about 2.5 nm. Also shown in the lower

inset is the statistics of the �lm thickness variations,where

we can see the surface roughness (rootmean square) of the

�lm thickness is about0.5nm,which is also the typical sur-

face roughness for thicker �lms.

To characterize the optical properties of our thin �lm

samples, RT measurements are performed using the com-

mercialized spectrophotometer Lambda 1050 system with

di�erent incident angles and polarizations for di�erent

�lm thicknesses. The measured RT curves with 45 degree

incident angle and P-polarization for 2.5 nm, 7 nm, and

30 nm �lms are plotted in Figure 3(a) and 3(b), respec-

tively. (Experimental data for di�erent incident angles and

polarizations is provided in Section 5 in Supplementary

Material). As can be seen from Figure 3(b), the transmis-

sion curves for 7 and 30 nm thick samples behave quite

similarly and they decrease monotonically as wavelength

increases. The 2.5 nm thick sample, however, exhibits a

distinct behavior: its transmission increases slightly with

wavelength. Re�ection curves of the 2.5 nm�lmsalso show

signi�cantly di�erent behavior compared with the thicker

ones, as shown in Figure 3(a).

Optical constants for these thin �lm samples can be

extracted from the measured RT curves in Figure 3(a)

and 3(b). In order to extract the refractive index n and ex-

tinction coe�cient k, an extraction strategy is developed,

which combines a multilayer transfer matrix method [28]

and a two-dimensionalNewton iterationmethod.More de-

tails of this strategy are provided in Supplementary Ma-

terial. The corresponding extracted n and k values for

�lms with di�erent thicknesses are plotted in Figure 3(c)

and 3(d), respectively. Also the n and k values for bulk gold

from John and Christy [27] are plotted using black dashed

curves. Both n and k values for 7 nm and 30 nm are quite

similar and converge to bulk values, which is expected.

The case of the 2.5 nm �lm is quite di�erent: the refractive

index n is signi�cantly larger, while the extinction coe�-

cient k is much smaller than the bulk value. The increase

of n and the decrease of k make the 2.5 nm gold �lm less

like a metal. Moreover, unlike the n and k for thicker �lms

(where both increasewithwavelength), n decreases, while
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he starting point is the Schrödinger equation:

          
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Figure 3: Reflection (a) and transmission (b) with refractive index n (c) and extinction coe�cient k (d) for the 2.5 nm, 7 nm, and 30 nm samples.

Optical constants of the thin �lm samples are extracted from RT data. n and k for 7 nm and 30 nm are very similar, and converge to bulk values

(dashed line, tabulated data from John and Christy [27]). The behavior for the 2.5 nm sample is signi�cantly di�erent from those for 7 and

30 nm samples, indicating the impact of quantum size e�ect. Predictions from our QEM are also plotted, all showing good agreement with

the experimental result.

k increases with wavelength for 2.5 nm �lm in the 1 to 2 µm

wavelength range.

Clearly, such a distinct behavior of the optical con-

stants is related to the change in �lm thickness. In order

to investigate the optical properties of our metal quantum

well samples, we propose a QEM to characterize the elec-

tron dynamics within thin metal �lms, in which the start-

ing point is the Schrödinger equation:

1

2m

[−̂→
p +

e

c

−→
A
]2

|φ⟩ + V(−→r ) |φ⟩ + ϕ(−→r ) |φ⟩ = E |φ⟩ , (1)

wherem and e are the e�ectivemass and charge of the free

electrons, ^⃗p is the momentum operator, c is the speed of

light in vacuum, A⃗ and ϕ
(−→
r
)
are the vector and scalar po-

tentials associated with the applied electromagnetic �eld,

which are set to be zero in our case, and V
(−→
r
)
is the po-

tential determined by the quantum well structure.

The solution from the Schrödinger equation alone,

however, is not self-consistent because the potential

V
(−→
r
)
is modi�ed by the electron distribution inside the

quantum well. To account for this e�ect, the Poisson

equation needs to be included. The coupled Schrödinger–

Poisson equation approach has been considered in a study

for semiconductor quantum wires [29], but this method

cannot be directly applied to metal, because of hard con-

vergence induced by the larger electron density with dif-

ferent band structures. For this purpose, a modi�ed iter-

ation scheme for the coupled Schrödinger–Poisson equa-

tion is developed here for metal quantum wells. (See Sup-

plementary Material for iteration method details.) First,

the Schrödinger equation is solvedwith an initial value for

the potential V
(−→
r
)
from the shape of the quantum well.

Electron density is then obtained from the eigen energies

Ek and wave functions φk following

ρ(z) =
∑

k=1

∣∣φk(z)
∣∣2 m

πℏ2

∞∫

Ek

dE

1 + e(E−µ)/kBT
, (2)

where µ is the Fermi energy, ℏ is the reduced Planck con-

stant, kB is theBoltzmann constant, T is the kelvin temper-

ature, and we assume the quantum well is in the z direc-

tion. The Poisson equation is then solved to �nd the new

potential V
(⃗
r
)
based on the electron density calculated

from Eq. (2):

∇
[
ε0εstatic∇V(z)

]
= −ρ(z), (3)

where ε0 is the vacuum permittivity and εstatic is the rel-

ative static permittivity of the gold �lm. The updated po-

tential V (z) is then substituted back into the Schrödinger

equation to solve for the new eigen energies and wave

functions. This iteration process is repeated until �nally

a self-consistent electron density ρ (z) and potential V (z)

are obtained.
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Table 1: Simulation parameters for the 2.5 nm, 7 nm, and 30 nm thick thin �lms.

Thickness (nm) m τ (fs) εstatic

2.5 ~0.36me ~4.54 ~−1300

7 ~0.81me ~7.05 ~−7000

30 ~me ~10 ~−15000

9 

 

METHOD

Figure 4: Comparison between reflection (top) and transmission (bottom) for 2.5 nm (a and c) and 7 nm (b and d) gold �lms for which the

refractive index n and k are from the Drudemodel, nonlocalmodel, quantum sizemodel, and quantumelectrostaticmodel. The corresponding

experimental results are marked by red triangles.

Once the eigen energy En and eigen wave function

|φn⟩ are solved from the iteration process, the permittiv-

ity of the metal quantum well can be calculated using the

following expression [11]:

ε = 1 −
ω2
p

ω2
−

8πe2

Ωm2ω2

∑

ij

fiEij

∣∣∣
〈
i
∣∣∣−̂→p

∣∣∣ j
〉∣∣∣

2

E2ij − ℏ2ω2
, (4)

where the plasma frequency ωp is determined by the elec-

tron density ρe through ω2
p = ρee

2/mε0, Ω is the volume

of the quantumwell, Eij = Ei − Ej is the di�erence in eigen

energies, and fi = 1/(1 + e(Ei−µ)/kBT) is the Fermi–Dirac oc-

cupation factor for the ith state.

The above iteration assumes a quantum well from a

perfect metal �lm, where the relaxation process of elec-

trons is neglected. In reality, electrons are a�ected by the

relaxation process due to either lattice vibration (thermal

excitations), or static imperfections (such as impurities) or

the impact of boundaries [30]. So it is necessary to include

this e�ect as well. An electron relaxation time τ is used to

quantify the strength of this e�ect. Such an e�ect cannot

be included simply by replacingωwithω+i/τ in Eq. (4) be-

cause it fails to conserve the local electron number [31]. In

order to account for the relaxation process, we adopted the

model from Mermin [31], and the permittivity is obtained

in the following form:

εcorr(ω) = 1 +
(1 + i/ωτ)(ε − 1)

1 + (i/ωτ)(ε − 1)/(εstatic − 1)
. (5)

The refractive index n and extinction coe�cient k are �-

nally obtained as: n = Re{√εcorr} and k = Im{√εcorr}.
Numerical simulations based on the QEM are per-

formed for our thin metal �lms with di�erent thicknesses.

The corresponding RT curves for the calculated n and k

values are plotted in Figure 3, where theoretical predic-

tions match quite well with experimental results for all

three di�erent thickness samples from the bulk property

metal to the metal quantum well. This clearly shows that

QEM is valid in describing the electron dynamics inside

a metal quantum well. The reason for such di�erent be-

havior for the 2.5 nm thin �lm as compared to the thicker

ones (7 nm and 15 nm) is themodi�cation of the quantum-

corrected term (the last term on the right-hand side of

Eq. (4)) to the material property. In the limit of the bulk

gold �lm, the energy states of the “free” electrons are a

continuumand thewave functions are planewaves,which

leads the quantum-corrected term to go to zero. The contri-

bution from this term is no longer zero in the quantum re-
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gion,where the “free” electrons are quantized. The quanti-

zationmakes thismaterial systembehave less like ametal,

which can also be found from the permittivity of the 2.5 nm

�lm (see Figure S5 in Supplementary Material).

It is important to note that our model characterizes

the behavior of free electrons under the impact of quan-

tum size e�ect. It can be applied to materials as long

as their electron properties can be approximated by the

free electron model, and can be very easily generalized

to other metallic quantum structures, such as quantum

wires and quantum dots. Other e�ects that are related to

the band structure of the gold atom itself, such as the in-

terband transition and exciton absorption, are not covered

in this model, but can be included by adding the addi-

tional terms. For example, the interband transition can be

included through ε = εcorr + εIB, where the εIB represents

the interband transition [32]. Full n, k data from 500 nm

to 2 µm and further discussion on the impact of interband

tranisition [27] for thewavlength range below 1 µmarepro-

vided in Supplementary Material.

The parameters used in our numerical simulations for

the 30 nm, 7 nm, and 2.5 nm thick �lms are summarized

in Table 1. As shown in Table 1, the parameters of 30 nm

samples are almost identical to those of the bulk mate-

rial, which is expected. As �lm thickness is reduced, the

electron e�ective mass m, relaxation time τ, and the ab-

solute value of static permittivity εstatic all decrease. The

reduction of the relaxation time agrees with previous in-

vestigation [30, 33], and can be understood from the fact

that the impact of boundaries and imperfection from thick-

ness variation becomes more and more important as �lm

thickness is reduced. The e�ective mass of thin gold �lm

was experimentally measured to be smaller than its bulk

value previously [34, 35]. The static permittivity has been

investigated for thin �lms and was also found to decrease

as thickness is reduced [36, 37]. All parameters are in a rea-

sonable range and agree with previous �ndings.

As a �nal comparison, we plot the calculated RT

curves from the Drude model, nonlocal model, quantum

size model, and QEM with 2.5 nm and 7 nm gold �lms,

together with the measured experimental curves in Fig-

ure 4. For the Drude model, we use a plasma frequency

ωp = 1.38 × 10
16 rad/s and relaxation time τ = 9.3 fs, which

are the typical values for gold. For the nonlocal model, we

adopt the model from Ref. [13] and use the parameters for

gold provided therein. For the quantum sizemodel, we use

the model from Ref. [11] and the same parameters listed in

Table 1. As can be seen from Figure 4, the Drudemodel can

give reasonably good predictions of RT curves for the 7 nm

sample, where the quantum e�ect is not so pronounced.

As the thickness reducesdown to 2.5 nm, clear discrepancy

can be seen between theDrudemodel and the experiment.

Also, it is found that the ultrathin gold �lm has a quite

weak nonlocal e�ect, and the nonlocal calculation shows

negligible di�erence as compared to the Drude model. For

the quantum size model, good prediction has been found

in the long wavelength region (λ > 1.4 µm), but consider-

able disagreement shows up at shorter wavelengths for a

2.5 nm thin�lm. Instead, ourQEMhas excellent agreement

with experimental results for both 7 nm and 2.5 nm sam-

ples in a broad range of wavelengths. Figure 4 clearly im-

plies thatQEM,which considers the quantumcon�nement

e�ect together with the impact of self-consistent electron

redistribution, should be used for the case of metal quan-

tum well structures.

3 Conclusion

To summarize, we have proposed an iterative quantum

model to dealwith electron dynamicswithin ametal quan-

tum well. We investigate this quantum plasmonic e�ect

by studying the impact of quantum size e�ects on the op-

tical properties of thin metal �lms. Re�ection and trans-

mission curves are measured; refractive index n and ex-

tinction coe�cient k are extracted for �lms with di�erent

thicknesses. Our QEM can explain the experimental re-

sults quite well. Such a theory can also be generalized to

other quantum structures, and would be very useful in the

�eld of quantum plasmonics.

4 Method

Fabrication methods

The commercial sputtering machine AJA International is

used for thin gold �lm growth and the qualities of the thin

gold �lm samples are calibrated by two kinds of methods.

For the 30 nm gold �lm, we use X-ray di�raction (XRD) for

calibration. For the 2.5 nm thin gold �lm, AFM is needed

for obtaining the information regarding the surface rough-

ness and �lm thickness.

Measurement system

Re�ection and transmissionmeasurements are performed

using the commercialized spectrophotometer Lambda

1050 system with di�erent incident angles and polariza-

tions for di�erent �lm thicknesses.
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