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ABSTRACT 

In this paper, the quantum hydrodynamics (QHD) model is used to study the propagation of small- but finite-amplitude 
quantum electrostatic shock-wave in an inertial-less symmetric pair (ion) plasma with immobile background positive 
constituents. The dispersion due to the quantum tunneling and inertial effects as well as dissipation caused by particle 
collisions leading to the shock-like or double-layer structures are considered. Investigation of both the stationary and 
traveling-wave solutions to Kortewege-de Veries-Burgers evolution equation show that critical values exist which gov-
ern the type of collective plasma structures. Current analysis apply to diverse kind of symmetric plasmas such as labo-
ratory inertially confined or astrophysical pair-ion or electron-positron degenerate plasmas. 
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1. Introduction 

Owing to the wide applicability in miniaturization tech-
niques in electronic devices, quantum plasma has re-
ceived a great deal of attention in recent years, both from 
theoretical and experimental points of view [1-3]. Much 
of understanding of the properties of degenerate ionized 
matter under the name quantum plasma is inspired by the 
pioneering works of Bohm, Pines and Levine [4-6]. It is 
well-known that the quantum electronic transport effects 
play inevitable role in metallic and semiconductor matte-
rials as well as newly introduced concepts called nano- 
structured compounds such as quantum-wells, wires and 
dots [7] in which the electrons and holes can be regarded 
as quantum degenerate ingredients [8]. Quantum effects 
also play crucial role in nonlinear processes in compact 
astrophysical objects, such as white-dwarfs, neutron stars 
and pulsars etc. [9]. It has been pointed out [2] that com-
pact objects such as white dwarfs, in which the electron 
number-density is much higher reaching for instance 1030 
cm–1 many orders of magnitude larger than that in ordi-
nary metals, can be considered as hot fusion-like plasma. 
However, these objects still behave as cold completely 
degenerate quantum system called the Fermi gas. It has 
been shown that, in a degenerate electron-positron-ion 
plasma, unlike common sense, the annihilation rates can 
be much lower than that expected and this leaves enough 
time to consider the nonlinear effects in these plasmas. In 
quantum plasmas unlike the classical counterparts only 

the electrons/positrons with the energies within the small 
range around the Fermi-energy take part in collective 
plasma processes. Recent evaluations [10-12] show that 
the annihilation criteria can be relaxed and that in white 
dwarfs, for instance, the positrons are long lived enough 
to contribute to effective nonlinear phenomena. 

On the other hand, the creation of dense fullerene-pair 
plasma in laboratory has recently been reported [13-15] 
and verity of nonlinear waves in such environment has 
been confirmed experimentally. However, the addition of 
other charged particles such as dust particulates into pair- 
ion plasma in order to produce three component plasmas 
accommodating different types of nonlinear wave phe-
nomena may also be anticipated. Essentially, there are 
many mathematical formulations to describe the linear 
and nonlinear properties of charged particles at quantum 
levels in a dense degenerate plasma. The quantum hy-
drodynamics (QHD) model, which is based on the Schrö- 
dinger-Poisson formulations [2], has an advantage of 
being related to thermodynamic properties of system 
under investigation with the main drawback in this ap-
proach which is its deficiency in describing the Landau 
damping [16]. QHD model has been recently used to 
investigate the wave-dynamics in diverse plasma systems 
[17-26]. 

Furthermore, unlike classical fluids, quantum plasma 
exhibits dispersion instead of dissipation, which is caused 
by the quantum tunneling effects associated with the 
Bohm-potential [27]. However, dissipation may arise due  
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to the kinematic viscosity and collisions, thus, the wave 
propagation is governed by delicate interplay between 
the quantum tunneling and wave-particle interactions. In 
such dissipative plasma medium the propagation of small- 
but finite-amplitude nonlinear excitations may be ade-
quately described by the Korteweg-de Vries-Burgers 
(KdVB) equation. In this study the QHD model is ap-
plied to study the nonlinear dynamics of electrostatic (ES) 
shock waves in three component pair-plasma. Many au-
thors has recently applied the QHD model to study the 
ion-acoustic and dust-acoustic shock-wave dynamics in 
both non-relativistic [28-31] and relativistic [32] elec-
tron-positron-ion plasma in planar or non-planar geome-
tries. However, electron-positron-ion plasma is only a 
special case of pair-ion plasma in which simplifications 
can be made in QHD equation due to the small electron- 
to-ion mass ratio. In this study we use a more general 
approach including the inertia of degenerate particles 
which can be readily applied to an arbitrary mass pair-ion 
plasmas. 

The organization of the article is as follows. Descrip-
tion of basic quantum plasma equations is given in Sec-
tion 2. Reductive perturbation method is applied and the 
KdVB evolution equation is obtained in Section 3. In 
Section 4 the numerical findings and discussions based 
on the numerical analysis are presented. Finally, Section 
5 devotes to the concluding remarks and summary. 

2. Description of Quantum Plasma State  

Consider a dense plasma of degenerate fermion gas of 
pair-ion or electron-positron in the presence of heavy 
background inertial positive ions. A one dimensional QHD 
plasma-model is described by continuity and momentum 
equations in addition to the Poisson’s relation. However, 
in this QHD-model we also use the degeneracy pressure 
caused by Pauli exclusion rule and the quantum tunnel-
ing due to Bohm-force, a consequence of wave-like na-
ture in quantum physics. Therefore, ignoring the classical 
pressure due to immobile ingredients a complete set of 
equations [33] describing the dynamics of this degenerate 
plasma, may be written in dimensional form as  
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where, the ± signs differentiate among pair charges. The 
quantities   and  are kinematic viscosities of plas- 
ma and the scaled Plank constant, respectively. Also, the 
subscripts  and  refer to pair and heavy constitu-
ents, correspondingly. Furthermore, we will assume  



hp

1pZ   for simplicity. It is noticed that, in a quantum 
plasmaunder the zero-temperature Fermi-gas assumption 
(with the thermal temperatures being negligible com-
pared to the Fermi-temperatures), the non-relativistic de- 
generacy pressure is ruled by Pauli exclusion principle 
and relates to the particle quantum number-density through 
the following relation  
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Here, the quantities Fv  , FE d   an FE  ote Fer- 
mi-velocity, Fermi-energy and Fermi-temperature, re-
spectively and ,0n

 den

  represents the pair equilibrium num- 
ber-density. On the other hand, by standard definitions it 
is known that, in a one-dimensional degenerate Fermi-gas 
the equilibrium quantum number-densities are related to 
Fermi-temperature via  
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In the zero-temperature Fermi-gas the collisions are 
limited due to a process called Fermi-blocking, hence, 
such systems may be nearly considered as collision-less. 
This is fairly valid for dense matter in which the Fermi- 
temperature is well above room-temperature. One should 
note that, in the fully degenerate plasma regime the so- 
called de Broglie thermal wavelength  
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than the average inter-particle distance 1 3n , hence, 
leading to quantum mechanical effects. However, the 
wave-particle interactions can be present leading to dis-
sipative effects. Furthermore, the dimension-less QHD 
equation-set may be obtained using the following scal-
ings  
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where, 2
,0 0p pe n m    and 2s B F pC k T  m   

are the characteristic plasma frequency and Fermi-speed, 
respectively. Therefore, the normalized compact set of 
degenerate plasma equations, assuming equal mass and 
charges for paired particles, becomes  
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where,  variable denotes the particle charge- 
type and 

 ,   
S


  can take the values of  for   1, 1S    

the respective charges and we have , ,p sC      .  

Moreover, the quantities u , n  and   convention-
ally refer to the velocity, density of α-charged particles 
and the electrostatic potential, respectively. A normalized 
purely quantum parameter 2p B FH k T 

H

 , known 
as quantum diffraction parameter, is introduced above is 
the ratio of plasmon-energy to the Fermi-energy of the 
paired particles. It is arguable, that in the  limit 
the classical case should be retained, however, this is not 
the case since in fact 

 

0

H  is proportional to 1   as it is 
easily confirmed by Equation (3). Also, in defining the 
QHD-model we have made use of the degeneracy pres-
sure definition (number-density) instead of the classical 
one. 

The quasi-neutrality condition, on the other hand, is 
defined through the Poisson’s relation at the thermody-
namic equilibrium state in the last equation in Equation 
(5), i.e.  
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where, hZ  and h  are the atomic number and density 
of positive background ions. 

N

3. Perturbation and KdVB Solution 

Assuming a wave-like perturbation moving with a phase- 
speed  , to find stationary solutions, we can use stre- 
tching technique with new variables defined as below   
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The corresponding reduced state-equations introduced 
into the new coordinate will be in the following forms  
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Here, the smallness parameter  , characterizes the 
nonlinearity strength and is a very small positive and real 
number proportional to the perturbation amplitude. Con-
sequently, the asymptotic expansion of plasma variables 
away from thermodynamics equilibrium can be done 
using the following orderings [34]  
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in Equation (9
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fined in Equation (10) ) and isolating dis-
tinct perturbation-orders, in the leading approximation, 
we get the following relations through plasma quantities  
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components read as  
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In such perturbed plasma approximation the nonlinear 
dispersion relation is also obtained, which in a compact 
form reads as  

,0

2 2
,0

0
n

n


 



 .             (22) 

Linear dispersion l
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 dissipation-less approximation, can be found in Ref. 

[10]. The compatibility requirement leads to the phase- 
speed of waves in terms of fractional particles density  
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By making use of dispersion relation to eliminate the 
common terms from Equation (15), we may obtain the 
KdVB evolution equation describing the first-order non- 
linear evolution of the shock-like nonlinear wave ampli-
tude  
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where, the coefficients of KdVB equation read as  
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tion (Equation (16)), employing “tanh” method [35,36], 
reads as  
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Simple evaluation of the coefficients of KdVB equa-
tion reveals that the dissipative coefficient solely depends 
on the normalized kinematic viscosity parameter of plas- 
ma and is independent from fractional number-density of 
pair or quantum diffraction parameter. However,
persive term is governed by the fractional pair num
density as well as the quantum diffraction parameter. It is 
further noticed that, the dispersive term vanishes

   (30) 
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Only at this critical value of, crH , which is solely de-
termined by the fractional pair number-density,  , the 
plasma becomes dispersion-less. In terms of KdVB -
ficients and the fractional pair concentration, we ma

 coef
y 

also express the maximum shock-amplitude in the fol-
lowing forms  
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As it is clearly observed, this value diverges at crH  
point. It is also remarked that the shock-wave type can 
either compressive or rarefactive depending of the sign 
of the dispersion coefficient in Equation (27). 

On the other hand, the traveling-wave soluti
Equation (27) can be obtained solving the governin
duced equation, transformed by

be 

on of 
g re-

 u     and inte-
grated once with appropriate boundary conditions, de-
fined below  
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the particular solution [37] of which, in bounded form, 
reads as  
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However, it is remarked that in this solution 
amplitude vanishes as 

the wave 
  , as it should. 

erical scheme we may use values given in [38] 
for a typical white dwarf, namely, –3

and  cm–3. These values 

4. Numerical Analysis and Discussions 

In this num
28

0 0, 10e pn n 
result in para

 cm  
meter 27

0 10in 
H  of order of unity. Some other values of 0.5 0H   
has been employed in [39] for a quantum electron-posi- 
tron-ion plasma. How e value of thiever, th s parameter 
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t room can be even larger for the metallic electrons a
temperature, e.g. in the range of metallic6 2H   as 
noted in Ref. [33]. On the other hand, it is noted that for 
heavier ions as pair the Fermi-temperature may be within 
few thousandth degrees of kelvins resulting in H-values 
much less [38] than that for ordinary electrons in metals 

( 0.01 0H  ). To base our analysis for a wider range 
of H  parameter we consider its value in the range  
1 0H   without loss of generality. 

Figures 1(a) and 1(b) shows the shock-wave (com-
pr refactive) profiles for different values of 
frac nal positive to negative pair-concentration, 

essive and ra
tio   
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(e)                                        (f) 

Figure 1. Depicts the profiles and variations of compressive and rarefactive quantum electrostatic shock-wave amplitudes 
with respect to fractional positive to negative particle concentration, β, quantum diffraction parameter, H and scaled plasma 
kinematic viscosity, η0 in stationary (Figures 1(a)-1(d)) and traveling wave (Figures 1(e) and 1(f)) frames zes in 
each plot are arranged to appropriately er.  

. The dash si
 represent the relative values of varied paramet
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and for two fixed value of quantum diffraction parameter, 
H . As it is clear, the decrease in relative concentration 
of positive inertiall-less particles leads to an increase in 
the shock-wave hight for 0.2H   (compressive) in the 
stationary-wave reference frame. However, for 1H   
(rarefactive) the shock hight first increases and then de-
creases with decrease of fractional positive to negative 
pair-concentration,  , for a fixed value of normalized 
plasma viscosity, 0 . Also, Figures 1(c) and 1(d) reveal 
that the shock-wave hight increases as the normalized 
kinematic-viscosity increases (for both compressive and 
rarefactive shock p files) in the stationary-wave refer-
ence frame for a fixed value of 

ro
 , regardless of the 

value of H . 
On the other hand, Figures 1(e) and 1(f) show the 

shock-wave profiles in the traveling-wave frame. It is 
evident that with decrease in the alue of normalized 
kin

v
ematic-viscosity, 0 , the shock profile transforms 

1(f) indicates the effect of quantum diffraction parameter, 

into the bell-shaped soliton profile (Figure 1(e)). This is 
very similar to ion-acoustics shock behavior reported for 
electron-positron-ion plasma [40]. Furthermore, Figure 

H , on the wave profile, where its increase changes the 
wave profile from compressive bell-shape soliton to 
shock-wave and then further increase changes the shock 
profile into a rarefactive bell-shape soliton, leaving the 
initial wave-hight unchanged. 

As it was mentioned in previous section there exist a 
critical H  value for which the amplitude of stationary 
shock-wave solution diverges, when the dispersion coef-
fic

 

ient in Equation (16) vanishes. For values below this 
critical quantum diffraction parameter, as it is observed 
from Figure 2(a) the shock-wave shapes are compressive 
and rarefactive otherwise. It is further observed from 
Figure 2(a) that for a fixed value of relative dust con-
centration and normalized kinematic-viscosity the shock  
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(c)                                        (d) 

Figure 2. (a) Shows the variations of compressive and rarefactive quantum electrostatic shock-wave amplitudes in stationary 
frame with respect to quantum diffraction parameter H for fixed values of scaled plasma viscosity, η0 and fractional positive 
to negative particle concentration, β; (b ctive (white) shock-wave occurrence 
regions in H-β plane (in stationary fra ofile from rarefactive to compressive 

) Depicts the compressive (grey) and rarefa
me); (c) Shows the transitions of shock wave pr

and viceversa in stationary frame for values of quantum diffraction parameter below the critical value, Hcr; (d) Shows the 
variation rarefactive shock-wave amplitude in stationary frame with respect to relative concentration of dust for different 
values of quantum diffraction parameter H above critical value (Hcr) and fixed normalized plasma viscosity. The dash sizes in 
each plot are arranged to represent the values of varied parameter, appropriately.  
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wave-hight increase (decreases) with increase of the 
quantum diffraction parameter value, H , for compres-
sive (rarefactive) shock profile. For very high values of 
quantum diffraction parameters, however, the shock-wave 
is washed-out ( 10H   in Figure 2(a) and Figure 2(d)). 

Figure 2(b) shows the grey (white) region in H-β 
plane for which the shock profile is compressive (rare-
factive). It is noted that bellow the maximum value of 
Hcr-max 0.67  which corresponds to the value of  

0.28  , for every given fixed nonzero value of quan-
tum diffraction parameter by going from 0   to 

1   two critical points for   are encountered for 
e shock-wave amplitude becomes infinite and 

consequently the shape of shock profile is changed from 
either compressive to rarefactive or viceversa. This fea-
ture is more clearly depicted in Figures 2(c) and 2(d) for 
different values of 

which th

H . By approaching these critical 
β-values (Equation (20)) from either sides one observes 
that shock-wave become more steep and it becomes 
higher in altitude. 

On the other hand, for values of quantum diffraction 
parameters larger than the critical-value ( 0.67H  ), the 
shock-wave profile is always rarefactive amplitude of 
which increases with increase of fractional positive to 
negative concentration up to a maximum value and then 
decreases by further decrease in fractional positive to 
negative pair-concentration. Therefore, it is generally 
concluded that, the type of shock profile is determined 
solely by the values of quantum diffraction parameter 
and the fractional positive to negative pair-concentration, 
 , for 0.67 H  and is always rarefactive for  

0.67H  , in the stationary shock-wave. 

5. Conclusion 

l- but finite-amplitude quantuThe smal m shock-wave
propagation was studied in the framework of quantum

 using reductive perturbation me- 

 
 

hydrodynamics model
thod in both stationary and traveling-wave reference 
frames. It was shown that in stationary reference frame a 
critical quantum diffraction parameter value ( crH ) exists 
bellow/above which the shock profile is compressive/ 
rarefactive for fixed values of scaled kinematic-viscosity 
and dust concentration. It was also found that, in travel-
ing-wave frame the wave profile can change from shock 
profile to bell-shaped soliton profile with decrease in the 
value of scaled kinematic-viscosity or it can change from 
compressive bell-shape to rarefactive bell-shaped soliton 
profile depending on the value of quantum diffraction 
parameter. 
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