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Quantum-Enhanced Cluster Detection in Physical Images
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Identifying clusters in data is an important task in many fields. In this paper, we consider situations in
which data live in a physical world, so we first have to collect the images using sensors before clustering
them. Using sensors enhanced by quantum entanglement, we can image surfaces more accurately than
using purely classical strategies. However, it is not immediately obvious whether the advantage we gain
is robust enough to survive data-processing steps such as clustering. It has previously been found that
using quantum-enhanced sensors for imaging and pattern recognition can give an advantage for supervised
learning tasks, and here we demonstrate that this advantage also holds for an unsupervised learning task,
namely clustering.
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I. INTRODUCTION

Pattern recognition is an important task in the field of
data processing [1]. The goal is to recognize the presence
of a pattern—or to identify which of a number of possible
patterns are present—in data. Automated pattern recogni-
tion can be accomplished via machine learning. This could
be either supervised or unsupervised learning. In super-
vised machine learning, we have a set of data points that
fit the patterns that we are trying to recognize (labeled
by which of the patterns they fit), and the algorithm must
learn from this set how to classify previously unseen data
points (i.e., how to find the pattern most closely matched
by the unseen data). In unsupervised learning, the goal is
to identify patterns in data without the use of sample data.

Clustering is one example of an unsupervised learning
problem. The goal of clustering is to identify clusters of
similar data points in a data set. Part of the problem is
defining what constitutes a cluster in the first place [2].
Intuitively, a cluster should be a region of the parameter
space in which there is a high density of data points with
similar values, and any two clusters should be distinct from
each other. Often, there will need to be a tradeoff between
these two intuitive ideas. How this intuition is formalized
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depends on the type of algorithm used, and so different
types of algorithm can find different clusterings.

In some settings, the data will first need to be collected
before processing [3]. For instance, suppose we have a sur-
face that we wish to image and identify clusters on. In a
microscopy setting, we may wish to find clusters of similar
particles on a surface [4]. Kerr microscopy is often used
to identify domains in thin magnetic films [5], which can
be regarded as a clustering problem. In a biological set-
ting, we may want to identify structures in cells [6,7]. In
quantum reading [8], we have a data set encoded in a set of
pixels with different values, and we may want to identify
clustering or structure in the underlying data.

The improved accuracy offered by using quantum mea-
surements has previously been shown to provide an advan-
tage for supervised learning tasks [9,10]. We might there-
fore expect a similar advantage for unsupervised learning
tasks, such as clustering. In this paper we compare pro-
tocols that use classical measurements for data collection
with protocols that use quantum measurements, in order to
establish whether such an advantage exists.

We note that this is distinct from using quantum com-
puters to implement classical machine learning algorithms
[11], and the improvement that we are looking to prove
here is in accuracy, as in quantum metrology [12], rather
than a speedup in computation time [13]. If we start with
classical information, we cannot gain an accuracy advan-
tage, because any operation that can be done by a quantum
computer can be performed by a classical computer (albeit
more slowly). The aim of gaining accuracy rather than
speed is similar to that in Refs. [14,15], which consider
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clustering of quantum states, rather than using quantum
computers to speed up the clustering of classical states.

The accuracy advantage that we can gain is due to the
improved imaging possible due to using quantum probes.
Although one might intuitively expect that an improve-
ment in the data used for clustering will lead to improved
cluster detection, it is not obvious that the quantum advan-
tage in imaging is significant enough to affect the results
of a clustering algorithm, since it could be the case that a
data-processing step could reduce the advantage due to the
better data to the point of any advantage becoming negli-
gible. In this paper, we show that a quantum advantage in
imaging is robust enough to survive a clustering algorithm.

In Sec. II we outline the imaging and clustering task that
we are considering. In Sec. III we give a brief overview of
classical clustering algorithms and how clusterings can be
validated and compared. In Sec. IV we carry out a numer-
ical comparison of quantum and classical protocols for
specific clustering tasks by simulating them using MATLAB.
Section V concludes.

Some details of the numerical comparison in Sec. IV
are found in the appendices. In Appendix A we calculate
the receiver operating characteristic used in our numeri-
cal studies for both the classical and the quantum cases. In
Appendix B we explain how we calculate the mutual infor-
mation values in the numerical studies. The code used to
carry out the calculations and generate the plots is available
as Supplemental Material [16].

II. OVERVIEW OF THE TASK

Let us formalize our setting by considering a surface that
has been divided into a grid of pixels. We believe that the
surface contains some form of underlying structure (i.e.,
a global property of the surface), and we are interested in
identifying it. In Fig. 1, this ground truth is represented by
(a). The ground truth could be the positions, numbers, or
shapes of clusters of particles (in the setting of microscopy)
or could be how the surface is divided into domains (in the
setting of microscopic films), etc. It consists of everything
(and only those things) that we want to find out. In the
example shown in Fig. 1, this is the number of 2 × 3 blocks
of dark pixels.

We mathematically represent the surface as a multi-
channel, with each pixel being represented by a quantum
channel, Ci, where the label denotes the position of the
pixel [(b) in Fig. 1]. These channels represent the inter-
actions of the pixels with any probes sent at them. Each
channel is drawn from a set of possible channels (such
as a set of lossy channels with different reflectivities), and
which channel we have is determined by some underlying
classical parameter, φi. The identity of the channel enacted
by a given pixel is determined by φi, so that identifying
the channel Ci is equivalent to measuring φi. The data set
{φi} is what we call the channel pattern and is what we are

(c)

2

(a)

2

(d)

(b)

FIG. 1. (a) The ground truth, namely the number of clusters
(two, in the example shown), (b) the true channel pattern, (c) the
measurement result, and (d) the result of the classical clustering
(two). In the example shown, a cluster is a block of 2 × 3 dark
pixels (which could represent collections of particles, structures,
etc). The number of clusters (a) is the only piece of information
that we are interested in, rather than the position of the clusters
on the surface (if we were interested in the positions, that infor-
mation would also be part of the ground truth). (b) is how this
ground truth corresponds to the physical multichannel that we
probe. Here, each pixel is one of two types of channel: gray, rep-
resenting the presence of a particle, or white, representing the
absence of particles. The two clusters are outlined in blue, but
note that there are two gray pixels that are not part of either of
the clusters. These could represent, for instance, particles that do
not form part of one of the structures that we are looking for.
If we had perfect knowledge of the state of (b), we would then
carry out classical clustering algorithms in order to find the two
outlined clusters and recover the value of (a). Instead, we carry
out measurements on the multichannel in order to estimate (b),
with the result being (c), where red squares represent pixels we
believe to be gray in (b) and yellow squares represent pixels we
believe to be white. Our measurement process cannot perfectly
reproduce (b), and so some squares that are white in (b) are red
in (c) and some squares that are gray in (b) are yellow in (c).
These are the two types of misdetection that can occur in this sce-
nario. Finally, we carry out some classical clustering algorithm
on (c) in order to estimate the number of clusters, and hence (a).
This estimate is (d). Note that in this figure, the algorithm has
only found two clusters, and hence has estimated (a) correctly,
despite the extra red pixels. A different, potentially less appro-
priate, clustering algorithm might mistakenly decide that the two
red pixels in the top-right corner of (c) are part of a cluster, and
so overestimate (a).

trying to find out by imaging the surface. For instance, the
presence or absence of a particle could each correspond
to one of two possible quantum channels. In this binary
case of each pixel being one of only two possible channels,
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each φi will be drawn from the set {0, 1}. If we have more
possible channels, these could each correspond to different
types of particles being present (and we would have more
possible values of φi). Alternatively, the channel could be
continuously parameterized, corresponding to continuous
data (e.g., the magnetization vector of each pixel in a thin
magnetic film).

This data set, {φi}, will stochastically depend on the
ground truth, but may not be entirely determined by it.
There could, for instance, be unclustered particles ran-
domly distributed over the surface. In Fig. 1, (a) gives
the number of clusters, but not their positions or orien-
tations. In other words, the mapping from (a) to (b) may
not be deterministic. Any information present in (b) that is
not present in (a) is information that a classical clustering
algorithm would aim to discard.

Suppose our goal is to carry out pattern recognition on
the data set, {φi}, which corresponds to the channel pattern.
A protocol to do so would consist of two stages: carrying
out measurements to estimate the parameters φi and then
clustering the resulting data set.

We can image the surface by sending probes to interact
with each of the pixels. These probes can be regarded as
quantum states, and could consist of photons or of some
other type of particles, such as electrons (e.g., in electron
microscopy). Some measurement is then carried out on the
return states, in order to determine the quantum channels
corresponding to each pixel. In other words, we carry out
quantum channel tomography (or metrology if the param-
eterization of the possible channels is continuous) in order
to reconstruct the true channel pattern [(b) in Fig. 1] from
the measurement result [(c) in Fig. 1]. Note that if we are
able to use unlimited energy to probe the pixels, we will be
able to perfectly reconstruct the channel pattern, so there
will be no difference between (b) and (c). However, if we
limit the energy of the probes sent through each pixel, we
will (in general) have an imperfect reconstruction of (b).
This constraint could be due to our sample being sensitive,
so that an energetic measurement would be destructive. We
can then carry out classical clustering algorithms on the
measurement result to get (d), an estimate of the ground
truth (a).

We can categorize possible protocols based on the type
of probe used: specifically whether or not the probes have
a positive P-representation. We call states with a posi-
tive P-representation (such as coherent states) classical,
and all other states, such as two-mode squeezed vacu-
ums (TMSVs) and number states, quantum. Other quantum
states, with multipartite entanglement, were considered for
imaging purposes in Ref. [17].

We will therefore call protocols that probe the pixels
with classical states and then carry out clustering on the
measurement results “classical protocols” and will call
protocols that probe the pixels with quantum states and
then carry out clustering on the results “quantum-classical

protocols.” This latter choice of name is to allow for a
potential third type of fully quantum protocol (not con-
sidered in this paper) that probes the surface with some
collective quantum state—potentially with entanglement
between pixels—and then carries out a collective mea-
surement on the return state in order to extract a global
property (the ground truth), rather than probing the sur-
face pixelwise and carrying out classical clustering on the
result. However, the quantum-classical class of protocols is
more relevant from a near-term perspective, since TMSVs,
which could be used as signal-idler pairs to individually
probe the pixels, can be generated using current technol-
ogy. This may not be the case for more general states used
in fully quantum protocols.

In this paper, we will consider classical and quantum-
classical protocols that send a single probe through each
pixel, with the same energy constraint for each pixel,
and then carry out a classical clustering algorithm on the
results. Although the optimal quantum-classical protocol
cannot be worse than the optimal classical protocol at
reconstructing the channel pattern [recovering (b) from
(c)], due to the fact that classical protocols are a special
case of quantum-classical protocols, there is no guarantee
that any advantage gained at this stage will be retained
through the data processing. It is therefore worth investi-
gating whether the improved imaging capabilities afforded
by quantum states can lead to a non-negligible advantage
in clustering accuracy.

III. CLASSICAL CLUSTERING

A. Types of clustering algorithms

Two of the main, basic types of classical clustering
algorithms are centroid-based algorithms (such as k-means
[18]) and density-based algorithms (such as DBSCAN
[19]). With centroid-based algorithms, the goal is to min-
imize the sum of the distances (via some metric) of the
points to the nearest centroid, for a fixed number of cen-
troids. For density-based algorithms, we grow clusters
as areas with a high density of points (and some den-
sity cutoff). Other possible types of algorithms include
distribution-based methods, in which we fit our points to
some distribution (e.g., a sum of Gaussians) where param-
eters of the distributions are unknown. Each method may
correspond to a different scenario we may be interested in,
and the “best” type depends on the specific setting.

In k-means, we must choose the number of clusters in
advance (as k) and then we find the k centroids (points)
such that the total distance from each point to the near-
est centroid is minimized. Distance may be Euclidean,
squared Euclidean, Bures, etc. By design, the clusters will
always be roughly spherical (in terms of the distance met-
ric). k-means assigns every point to a cluster. One common
variant of k-means is k-medoids [20], which is similar
to k-means, but limits the possible centroids to the data
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points themselves (rather than allowing them to be located
anywhere in the coordinate space).

In DBSCAN, we calculate the density of points in a
region around each point (the size of the region, ε, is a
parameter for the algorithm). If this is above a cutoff, the
point is a core point of a cluster. If not, it is either a noncore
point or not in a cluster. Such algorithms find all clusters
rather than specifying the number in advance. DBSCAN
may decide that some points are not part of a cluster at all.

While both k-means and DBSCAN assign each data
point to at most a single cluster, variants exist that carry out
“fuzzy” clustering, in which data points can be assigned to
multiple clusters, with different degrees of affiliation.

Which type of algorithm is appropriate depends on our
setting and what we want to discover. This relates to the
previously mentioned question of what constitutes a clus-
ter. For supervised learning, we have a correct answer and
can calculate the error. For unsupervised learning, we only
have intuitive ideas of what a good clustering “should”
look like.

Consider Fig. 2, which compares k-means clustering and
DBSCAN for two different data sets. The top data set was
generated by picking three pairs of coordinates and then
choosing coordinates randomly from normal distributions
centered on those three points, while the bottom data set
was generated by picking a pair of coordinates and picking
points from both a normal distribution centered on it and

FIG. 2. k-means clustering (left) and DBSCAN (right) on two
different data sets. The top data set was generated as the sum of
three normal distributions with different mean values, while the
bottom data set was generated as a normal distribution with a sur-
rounding ring. k-means clustering (with three clusters) is better
than DBSCAN at identifying the three (roughly circular) clus-
ters corresponding to each of the normal distributions in the top
image, while DBSCAN is better (than k-means clustering with
two clusters) at identifying the structure of a ring with a circle
inside in the bottom image. Note that only the DBSCAN images
have unclustered points (in black).

from a ring around it. k-means clustering with three clus-
ters is able to identify three distinct, roughly circular sets
of points in the top data set, while DBSCAN groups two
of these sets together, due to their having some overlap. In
the bottom data set, DBSCAN is able to separate out the
ring and the circle in the middle and identify both as being
clusters while k-means clustering is inherently unable to
identify one cluster inside another, since both clusters have
the same center, and so simply splits the ring in two. In
each case, one of the clustering techniques correctly iden-
tifies the ground truth—the underlying distribution used to
generate the data set—while the other does not. The appro-
priate clustering algorithm depends on the data set itself
and what information we want to extract from it.

B. Cluster validation

How can we assess how well clustering has been done?
There are several metrics that we can use, each of which
weights the properties that we want for our clusters differ-
ently. Methods for assessing a clustering can be broadly
divided into two categories: internal and external.

An internal metric compares a clustering to our intuitive
idea of what a cluster should be. Clusters should be com-
pact (small intracluster distances) and well separated (large
intercluster distances). One possible metric is the sum of
the distances between points and the center of their clus-
ter. By definition, this is minimized by k-means (so long
as it finds a global, rather than a local, minimum), but
there is no guarantee that clusters will be well separated.
It also performs poorly (compared to our intuitive idea
of what clusters look like) when the clusters in the data
are nonspherical. Other options include the Dunn index,
which takes into account both the intra- and the intercluster
distances, and the silhouette coefficient.

An external assessment assumes the existence of a
ground truth. In other words, there exists some objec-
tively correct clustering that we need to find. In a physical
imaging context, this will often be the case: we carry
out imaging in order to determine some real property of
interest about the surface we are imaging. To assess our
closeness to the true clustering, however, we would need to
know the ground truth beforehand. If our goal is to find the
ground truth, this can present a problem, since we would
not be able to use it to assess the validity of our clustering.
However, external validation can be of use in comparing
different imaging and clustering protocols, to see which
is better at extracting the information we want about the
underlying structure.

C. Comparing clusterings

If we want to assess how different measurement tech-
niques affect the clustering found, how can we go about
doing this? If we were to use an internal validation method,
we might find that a less good measurement method (one
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that less faithfully reconstructs {φi}) results in better clus-
tering performance than a better measurement method.
However, this would simply be telling us that the mea-
surement data produced by the worse measurement is more
clustered than the data produced by the better measure-
ment, and would not give any information about which
method is closer to the “true” clustering.

Instead, we can use an external validation method.
Specifically, we can compare the clustering resulting from
a given protocol to the ground truth clustering. We can do
this in terms of the mutual information between the ground
truth and the estimation of the ground truth that we get
from our measurement result. The mutual information is a
classical quantity that tells us how much information the
measurement result [(c) in Fig. 1] holds about the ground
truth that we are trying to discover [(a) in Fig. 1]. The
mutual information is routinely used for machine learn-
ing purposes, forms the basis of the information bottleneck
method [21], and was employed to study the generalization
and classification errors in supervised quantum classifiers
[22]. For a given protocol, we can calculate the reduc-
tion in uncertainty about the position of the clusters due
to the use of the protocol—quantified by the mutual infor-
mation—and compare this to the reduction in uncertainty
achieved by a different protocol.

Note that the best possible measurement will not nec-
essarily be one that maximizes the mutual information
between the measurement result and the channel pattern
[(b) in Fig. 1], since it could be the case that a protocol
that discards some of the information that is not relevant
to the ground truth (e.g., has a low probability of detecting
unclustered points or outliers) is better at identifying the
ground truth than one that more faithfully reproduces the
channel pattern.

IV. CLASSICAL VERSUS QUANTUM-CLASSICAL
PATTERN DETECTION

In both discrete variable and continuous variable set-
tings, we can gain a quantum advantage for channel dis-
crimination and metrology for a large variety of sets of pos-
sible channels. Since quantum probes can give a quantum
advantage in discriminating between possible channels, we
expect them to be able to better determine the ground truth.

The extent of the quantum advantage depends on the set
of possible channels that we are considering. For instance,
if we are discriminating between a Pauli Z channel and the
identity channel, an entangled state can perfectly discrim-
inate between the two options, whereas a classical state
cannot distinguish between them at all. This means that it
is not possible to make general statements about the advan-
tage offered by using quantum states, beyond the fact that
they offer an improvement.

Instead, we will consider two specific examples of prob-
lems: one involving centroid-based clustering and the other

involving density-based clustering. We will compare clas-
sical protocols and quantum-classical protocols, restricting
ourselves to one-shot, nonadaptive protocols.

The types of problem we will consider will involve
imaging surfaces divided into grids of pixels and clustering
the measurement results. In the scenarios we will consider,
imaging the pixels is a quantum reading type task—each
of the pixels has a binary value (0 or 1) and each pos-
sible value corresponds to a different lossy channel (C0
or C1) [8]. In each case, we will consider the same pair
of possible channels, but with different types of underly-
ing channel pattern and consequently different clustering
strategies after carrying out the measurements.

Since we have only two possible channels, we have two
types of error. These are the Type I error—the probability
of detecting a particle when no particle is present—and the
Type II error—the probability of not detecting a particle
that is present. The plot of the achievable Type I error for
a given Type II error, for a given detector, is called the
receiver operating characteristic (ROC).

For certain pairs of channels and energy constraints, we
can prove a quantum advantage in discriminating between
them, meaning that we can achieve a lower Type II error
for a fixed Type I error. Our aim is to show, via numer-
ical simulations (in MATLAB), that the lower Type II
errors obtained by using quantum imaging protocols can
lead to an increase in clustering accuracy, and hence that
using quantum, rather than classical, imaging protocols can
allow us to gain more information about the ground truth.

In order to numerically compare quantum and classical
protocols, we must choose some concrete parameter val-
ues. We let both channels be pure loss channels, setting the
transmissivity of C0 to 0.95 and the transmissivity of C1
to 0.4. We constrain the per-pixel probe energy to a mean
photon number of 8. This gives us the ROC in Fig. 3. See
Appendix A for details of how the ROC was found for each
case.

For each type of protocol, we choose pairs of Type I and
II errors from the ROC curve in Fig. 3, for Type I error val-
ues between 0 and 0.05, and carry out simulations using
these pairs of errors. The reason for using this range is
that for large values of the Type I error, the results become
almost entirely random, since the number of false positives
becomes comparable to the number of true positives. This
means that, for a classical protocol, the Type II error varies
between approximately 0.1899 (for a Type I error of 0.05)
and 0.3918 (for a Type I error of 0), while for a quantum
protocol, the Type II error varies between approximately
0.1107 (for a Type I error of 0.05) and 0.1424 (for a Type
I error of 0).

Note that the classical Type II errors are lower bounds
(the best possible Type II errors for fixed Type I errors),
while the quantum Type II errors are upper bounds on
the best possible Type II errors for fixed Type I errors.
Consequently, any calculated mutual information values

054031-5



PEREIRA, BANCHI, and PIRANDOLA PHYS. REV. APPLIED 19, 054031 (2023)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Type II error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Ty

pe
 I 

er
ro

r
classical lower
bound
quantum upper
bound

FIG. 3. Receiver operating characteristic for classical and
quantum protocols, each with an average photon number of 8,
discriminating between two pure loss channels, one with a trans-
missivity of 0.95 and one with a transmissivity of 0.4. The blue
line is the lower bound (LB) for classical protocols (protocols
using probes with positive P-representations), while the red line
is an achievable curve for quantum protocols [and therefore con-
stitutes an upper bound (UB) on the optimal quantum protocol].
For low Type I errors, we can prove a quantum advantage in
terms of measurement errors.

(between the ground truth and our estimate of it) that use
the classical error values will be upper bounds for clas-
sical protocols, while mutual information values that use
the quantum error values will be lower bounds on the
achievable values for optimal quantum protocols.

We will refer to the variable encoding our ground truth
as A, the variable encoding the channel pattern as B, the
measurement result as C, and the resulting estimate of the
ground truth as D (see also Fig. 1). A is some global prop-
erty of the surface (i.e., not a property of any particular
single pixel) that we want to find out. B is the actual pat-
tern of pixels on the surface (a matrix of 0s and 1s), which
is correlated to A. Each protocol images each pixel, using
either classical or quantum states, to get a different matrix
of 0s and 1s, and then carries out clustering on the result.
The matrix of 0s and 1s constitutes the variable C (our esti-
mation of B), while the result of the clustering algorithm
gives us the variable D (our estimation of A). We can quan-
tify how good a protocol is at obtaining the ground truth by
finding the mutual information between variables A and D.
This can be expressed as

I(A : D) = H(D) − H(D|A). (1)

The full simulation process for a given pair of Type I and
II errors is as follows. First, randomly choose a value of
the ground truth variable, A. Next, generate a true chan-
nel pattern (matrix of 0s and 1s) based on the value of

Generate a random 
value for A.

Generate a random 
matrix of 0s and 1s 

(variable B) that 
probabilis�cally 
depends on A.

Generate a random 
matrix of 0s and 1s 

(variable C) that 
probabilis�cally 
depends on B.

Carry out clustering 
on C and extract 

variable D from the 
result.

FIG. 4. Flow chart outlining the numerical simulation process
used to compare classical and quantum-classical protocols.

A. This channel pattern is the variable B, and the proba-
bilistic mapping between A and B depends on the specific
scenario. Then probabilistically generate a measurement
result, C, based on B. This is again a matrix of 0s and 1s.
If an entry in matrix B is 0, the corresponding entry in C
is 0 with probability 1 − ξ1 and is 1 with probability ξ1,
where ξ1 is the Type I error. If an entry in matrix B is 1,
the corresponding entry in C is 0 with probability ξ2 and is
1 with probability 1 − ξ2, where ξ2 is the Type II error. A
clustering algorithm is then carried out on variable C (the
choice of algorithm and the settings depend on the sce-
nario) to generate variable D. Finally, variables A and D
are recorded.

These steps are repeated a large number of times so
that the mutual information between A and D can be esti-
mated. The process for generating each sample is outlined
in Fig. 4. Note that the process is a Markov chain: the
estimation of the ground truth, D, depends only on the
measurement result, C, which depends only on the channel
pattern, B, which depends only on the ground truth, A.

A. Classical versus quantum-classical k-medoids
clustering

In our first scenario, we have a surface on which there
are a number of noninteracting particles. We divide this
surface into a d × d grid of pixels and image each pixel
to determine the presence of absence of a particle in that
pixel. We assume that a pixel can be occupied by at most
one particle, so that we have only two choices of possible
channels, which we can label as C0 (no particle) and C1
(particle present).

Suppose we know that the surface contains m attractors,
to which the particles are attracted, so that the probability
function for finding a particle near to an attractor is Gaus-
sian. Specifically, suppose the m attractors are located at
coordinates {xm, ym} and the probability of a pixel with its
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FIG. 5. Proportion of samples in which each pixel contains a
particle, for two attractors, for the scenario in Sec. IV A. The
probability of each pixel containing a particle for any given sam-
ple is given by Eq. (2) (assessed at the center of each pixel).
As can be seen, the pixels on which the attractors are centered
always contain particles, while those further out contain particles
less frequently, and those more than 4 pixels from an attractor
have a probability of containing a particle that is close to 0. The
aim of imaging the surface is to locate the two attractors.

center at position (x, y) containing a particle is given by

f (x, y) = φ

m∑

i=1

e−[(x−xm)2+(y−ym)2]/2σ 2
, (2)

where φ is some positive constant and σ 2 is some variance.
For our simulations, we will set m = 2, so that there are
always exactly two attractors. The probability of finding
a particle on each pixel of the surface, for two attractors
and a specific choice of attractor locations, is shown in
Fig. 5. The probability is high close to the attractors and
decays with distance from them. More than three standard
deviations from either attractor, the probability of a pixel
containing a particle is close to 0. If our task is to locate
the attractors, k-medoids clustering (with m clusters) is a
natural choice.

We emphasize that the task is to find the locations of the
attractors, via their effect on the distribution of particles,
rather than the locations of the particles themselves. The
grid may contain any number of particles, but will always
contain exactly two attractors. Furthermore, we are not
able to directly detect the attractors, we can only detect the
presence or absence of particles, the probability of which
(for each pixel) is affected by the positions of the attrac-
tors. The purpose of this is to relate the task to a physical
scenario in which clustering of the results is necessary. For
instance, the attractors could be electrical charges on the
surface to which the particles are attracted.

The simulation is done as per Fig. 4. The coordinates
of the attractors on the grid of pixels for each sample con-
stitute the variable A for that sample, and the positions of
all of the particles constitute the variable B. The coordi-
nates of the centroids found by the k-medoids algorithm
constitute variable D, our estimate of A.

We choose random pairs of well-separated coordinates
for each sample of A and generate the corresponding prob-
abilities for each pixel to have a value of 1 in the channel
pattern (variable B). Each value of B is a matrix of 0s and
1s, with a probability of each that is different for every
pixel and depends on A [given by Eq. (2)]. If we were to
draw a large number of sample values of B for a fixed value
of A, we would get a distribution similar to Fig. 5.

As can be seen, some pixels have a value of 0 in almost
all of the samples (corresponding to the absence of a par-
ticle in that pixel), while some almost always have a value
of 1 (corresponding to the presence of a particle). Note that
if we were to draw different values of A for each sam-
ple, we would have a roughly flat distribution (although
not entirely uniform, due to our constraints on the possible
values of A, which introduce some structure).

Each value of C is also a matrix of 0s and 1s. The prob-
ability of a pixel having each value depends on its value in
the channel pattern and the two error values. Carrying out
k-medoids clustering, with two clusters, on C results in a
pair of pair of coordinates, similar to A.

In Fig. 6, we fixed A (to be the same as for Fig. 5), then
drew B randomly 10 000 times, then drew C once for each
value of B (using a Type I error of 0.05 and a Type II error
of 0.2), and then calculated D for each value of C. This
gave us 10 000 samples of the calculated cluster centers for
a specific, fixed value of A. We then plotted the proportions
of the samples in which each pixel contained one of the
calculated cluster centers.

If the protocol were ideal, these calculated cluster cen-
ters would always be at the coordinates given by A, and
so the positions of the cluster centers would be a perfect
predictor of the positions of the attractors (the value of A).
Figure 6 shows that the actual cluster centers found are
spread over a small region around the true positions of the
attractors, meaning that D has some entropy, even for fixed
A, although the fact that most of the locations of the clus-
ter centers are close to the true positions means that the
protocol does gain some information about them. For fur-
ther details about the calculation of the mutual information
between variables A and D, see Appendix B.

To simplify our comparison of the protocols, we make
the following assumptions: the attractors are well separated
from each other (i.e., the distance between each attractor
and its nearest neighbor is much greater than σ ), none
of the attractors are close to the edge of the surface (i.e.,
the distance between each attractor and the nearest edge is
much greater than σ ), and the attractors are each located at
the center of a pixel. The first two conditions simplify the
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FIG. 6. Proportion of (10 000) samples in which each pixel is
predicted to contain an attractor (i.e., to be the center of a clus-
ter), for the scenario in Sec. IV A. The predicted locations follow
a distribution that has a high probability close to the true loca-
tions and a low probability elsewhere. The less spread out this
distribution, the less uncertainty we have about the locations of
the attractors, and hence the better the imaging protocol. This
measurement outcome corresponds to a Type I error of 0.05 and
a Type II error of 0.2. Note that this plot does not show the same
thing as Fig. 5; Fig. 5 shows the proportion of samples in which
each pixel contains a particle (and multiple pixels will contain a
particle in each sample), while this plot shows the proportion of
samples in which each pixel is found to be a cluster center (and
each sample contains only, and exactly, two cluster centers).

probability function, while the third allows us to use the
discrete Shannon entropy, rather than the Shannon entropy
for continuous variables. The first two conditions are likely
to hold if d � σ . We set d = 20, φ = 1, and σ 2 = 2. We
then simulate measurement results for pairs of Type I and
Type II errors and hence calculate the mutual information
for each pair of errors.

For any given Type I error, a higher Type II error means
fewer of the particles will be detected. Conversely, a higher
Type I error means pixels will be found to contain particles
when they actually do not. Both types of error are expected
to reduce the accuracy with which we can estimate the
cluster centers, since in one case we have less information
and in the other case we have misleading information. We
would therefore expect that a lower value of either error
would result in Fig. 6 having a sharper (less spread-out)
distribution.

Figure 7 shows, as expected, that by measuring the
pixels with quantum, rather than classical states, we can
achieve a higher mutual information with the ground truth,
and therefore can gain more information about the posi-
tions of the cluster centers. Recall that, for each Type I
error, the Type II error for each type of protocol is given
by the curves in Fig. 3, and that the classical Type II
error varies between approximately 0.1899 and 0.3918,
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FIG. 7. Mutual information between the ground truth and the
estimated result for a pattern detection task involving k-medoids
clustering, for both classical and quantum measurements of pix-
els. For each value of the Type I error, measurement results
are simulated for the corresponding Type II error, for each type
of measurement, and k-medoids clustering is carried out on the
results. The error bars show the variance of our estimator of the
mutual information.

while the quantum Type II error varies between approxi-
mately 0.1107 and 0.1424. Note that the mutual informa-
tion decreases as the Type I error increases, for both types
of protocol, despite the fact that the Type II error decreases
as the Type I error increases.

B. Classical versus quantum-classical DBSCAN
clustering

In the second scenario, we are again imaging a surface
that can be represented as a grid of pixels. Suppose this sur-
face has long, thin (noncircular) particles on it, that cover
multiple pixels. For simplicity, we will assume that the par-
ticles are rectangular, with integer dimensions (in terms
of pixels covered) d1 and d2, and that they are oriented
in one of two ways (vertically or horizontally). The par-
ticles are distributed randomly over the surface, with the
only constraints being that their corners lie at the corners
of pixels (so that every pixel is either completely covered
or not covered) and that they do not overlap.

Our task is to determine the number of such particles,
which is randomly chosen from a uniform distribution
between 0 and a maximum number, m. DBSCAN may be
more suitable than k-means clustering for identifying clus-
ters corresponding to the particles, due to the noncircular
shape of the particles and the fact that the number is not
fixed or known beforehand.

We again carry out the numerical simulations as per
Fig. 4. The number of particles present is variable A, the
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ground truth that we want to discover. For each sam-
ple, this is drawn randomly from the uniform distribution
between 0 and m. For a given value of A, we then randomly
place the clusters on the grid of pixels to generate vari-
able B, the channel pattern (with the constraint that no two
particles overlap). After generating a measurement result
(variable C) based on the channel pattern and the Type I
and II error values, we carry out DBSCAN on the mea-
surement result to try and identify the particles. We use
the number of clusters identified by DBSCAN as variable
D, our estimate of variable A. For further details about the
calculation of the mutual information between variables A
and D, see Appendix B.

We set the number of pixels to 50 × 50, m to 10,
and the dimensions of the particles to 2 × 5 pixels. For
the DBSCAN algorithm, we set the minimum number of

FIG. 8. Example of a measurement result for the scenario in
Sec. IV B. Every pixel has been individually imaged and found
to have a value of either 0 or 1 (each corresponding to a differ-
ent possible channel). The particles we are looking for are five
pixels long and two pixels wide. All of the pixels containing a
particle should have the value 1 and all other pixels should have
a value of 0. However, sometimes, we will determine a pixel to
have value 0 when its actual value is 1 (Type II error). Simi-
larly, sometimes we will get a value of 1 for a pixel that does
not contain a particle (Type I error). In order to find which pix-
els that we determine to have value 1 actually contain particles
and which do not, we carry out DBSCAN on the measurement
results to find clusters of 1s and only consider 1s that are part of
clusters to be real particles rather than measurement errors. All
pixels found to have a value of 0 are colored white. Pixels (found
to have a value of 1) that are determined to belong to the same
cluster are given the same (nonblack) color, while the remaining,
unclustered pixels are colored black.

points in a region surrounding a point to identify the cen-
tral point as a core point to 4, and we set the radius of
the region to

√
2, so that it includes all neighboring pixels

(including diagonal neighbors).
Figure 8 shows an example measurement result for a

Type I error of 0.05 and a Type II error of 0.2. The col-
ored pixels are those identified as being part of a cluster,
and hence as containing a particle, while the black pixels
are those that have a value of 1 in the measurement result
but are not part of a cluster (and hence are assumed to be
false positives).

In this example, we identify six clusters, and hence this
is our estimate of the number of particles. However, there
are actually only five particles; all of the pixels in the
magenta cluster at the bottom right of the image are false
positives. This shows how a high Type I error can lead
to the protocol identifying clusters that do not exist, and
hence overestimating the number of particles present. Sim-
ilarly, a high Type II error could lead to a cluster not being
identified at all, and hence to the protocol underestimat-
ing the number of clusters. Type II errors can also lead
to overestimations, if the pixels falsely detected to have a
value of 0 lie in the middle of a particle. In this case, the
two ends of the particle may be incorrectly found to be
separate clusters. Both types of error can therefore lead to
a misestimation of the number of particles, and hence will
reduce the mutual information between A and D.

Figure 9 again shows that measurements with entan-
gled states achieve a higher mutual information, and are
therefore better at determining the number of particles,

0 0.01 0.02 0.03 0.04 0.05
Type I error

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

m
ut

ua
l i

nf
or

m
at

io
n 

(b
its

)

classical
quantum

FIG. 9. Mutual information between the ground truth and the
estimated result for a pattern detection task involving DBSCAN,
for both classical and quantum measurements of pixels. For each
value of the Type I error, measurement results are obtained for
the corresponding Type II error, for each type of measurement,
and DBSCAN is carried out on the results. The error bars show
the variance of our estimator of the mutual information.
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than classical measurements. For both types of proto-
cols, the mutual information initially rises as the Type I
error increases before falling again. This is not unexpected
because the Type II error decreases as the Type I error
increases (see Fig. 3), so the increase in mutual informa-
tion is not because of the higher Type I error but because
of the lower Type II error.

In particular, for low values of the Type I error, we have
a clear quantum advantage (for a Type I error of 0, the
advantage is more than one bit). The large gap between
the protocols, relative to their absolute values, shows that
the advantage in the misdetection probability due to using
quantum probes can lead to improvements in clustering
accuracy for certain unsupervised learning tasks. Note that
low values of the Type I error correspond to larger dif-
ferences in the Type II error between the two types of
protocols (see Fig. 3), although there was no guarantee
that this would translate to a higher quantum advantage for
lower values of the Type I error.

V. CONCLUSION

Quantum states can often give an advantage over clas-
sical states when it comes to quantum imaging tasks. In
this paper we have shown that this advantage can translate
to an improvement in clustering accuracy when classi-
cal clustering algorithms are performed on the results of
a measurement. We demonstrated this advantage numeri-
cally for both a scenario involving the k-medoids algorithm
(a centroid-based algorithm) and one involving DBSCAN
(a density-based method). In both cases, using a quan-
tum measurement, and therefore achieving a lower Type II
error for the same Type I error, resulted in a higher mutual
information between the ground truth that we wanted to
know and our estimation of the ground truth based on the
measurement protocol.

While this result is intuitive, a small advantage in mis-
detection probability could easily have been lost or made
negligible during the data-processing stage. It is therefore
encouraging that the quantum advantage for measurements
is robust enough to survive the clustering algorithms. This
complements existing results showing that imaging using
quantum states can give improved results for supervised
learning.

Moreover, we found that different clustering algorithms
and different scenarios result in different levels of quantum
advantage, even for the same pairs of possible channels.
Comparing Figs. 7 and 9 shows that the same quantum
advantage in measurements can lead to different quantum
advantages in clustering accuracy when applied to dif-
ferent problems involving different clustering techniques.
Indeed, the two graphs are qualitatively different, as well as
quantitatively: in Fig. 7, the mutual information decreases
as the Type I error increases for both the classical and
the quantum-classical cases, while in Fig. 9, both mutual

informations initially peak before decreasing again. This
demonstrates that the question raised in this paper is
nontrivial.

Since ground truths such as the number of clusters on a
surface are global properties of the entire surface, future
research could consider the possibility that fully quan-
tum protocols that collectively probe the pixel pattern as
a whole, rather than individually probing each pixel, could
give a further advantage over quantum-classical protocols.

Another possible consideration is protocols that involve
multiple rounds of sending probes through the pixels to
image them before the clustering stage. Such protocols
could potentially also be adaptive, meaning that the probes
used in subsequent rounds could depend on the results of
measuring the return states from previous rounds. Adap-
tivity is known to provide an advantage for certain channel
discrimination problems.

Further research could also consider situations in which
there is a global constraint on the energy used to probe
the entire surface, but no firm constraint on the per-pixel
energy used (i.e., the sum of the energies of all of the
probes is fixed, but not the distribution over the pixels).
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APPENDIX A: CALCULATING THE RECEIVER
OPERATING CHARACTERISTIC

Suppose we want to discriminate between a pair of pure
loss channels, L1 and L2, with transmissions of τ1 and
τ2 respectively, by probing the target channel with either
a classical probe or a quantum probe. In both cases, we
require that the average photon number of the part of the
state that passes through the channel is at most m. For the
classical case, we will optimize over all classical mixtures
of coherent states, and therefore find the exact optimum
ROC. For the quantum case, we will consider a TMSV
probe, and will therefore find an achievable upper bound
on the optimum.

1. Classical ROC

First, let us consider the output of a single coherent state
sent through a pure loss channel with a transmission of
τ . Let

∣∣√n
〉

be a coherent state with an average photon
number of n. To fully specify such a state, we should also
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give a phase, but the phase is not important for our cal-
culations. Sending such a state through the channel results
in the pure output state

∣∣√τn
〉
. The fidelity between the

outputs of channels L1 and L2 is [23]

Fcoh = χn, χ = exp
[
−1

2
|√τ1 − √

τ2|2
]

. (A1)

Classical states can be expressed as classical mixtures of
coherent states. From the linearity of quantum channels
and the joint concavity of the fidelity, we can write

Fmix ≥ f (p(n)) =
∫ ∞

n=0
p(n)2χndn, (A2)

where p(n)2 is the probability density function for input
states with an average photon number of n [and we have
squared p(n) to enforce non-negativity]. We would like to
minimize the functional f (p) subject to the normalization
condition

∫ ∞

n=0
p(n)2dn = 1, (A3)

and the energy constraint

∫ ∞

n=0
p(n)2ndn = m. (A4)

We define the Lagrangian functional

L(p(n), μ, λ) =
∫ ∞

n=0
L(p , μ, λ)dn − (μ + λm), (A5)

L(p(n), μ, λ) = p(n)2(χn + μ + λn), (A6)

where μ and λ are Lagrange multipliers. For a function to
be a minimum of the constrained optimization, it must be
a stationary point of the Lagrangian functional [a point is
here defined as a specific choice of p(n), μ, and λ].

The stationary points of a functional are those functions
for which the functional derivative is 0. The functional
derivative of L is

∂L
∂p(n)

= 2p(n)(χn + μ + λn). (A7)

Since μ and λ are numbers, rather than functions of n, we
can only set χn + μ + λn = 0 for at most two different val-
ues of n (since it is a continuous function of n with at most
one turning point). To set dL/dp(n) = 0, we must have
p(n) = 0 for all but two (or fewer) values of n (except in
the trivial case of τ1 = τ2). Applying the continuity condi-
tion and the energy constraint, the candidate solutions take

the form

pn0,p0(n)2 = p0δn,n0 + (1 − p0)δn,n0+�(n0,p0),

�(n0, p0) = m − n0

1 − p0
, 0 ≤ p0 < 1, 0 ≤ n0 ≤ m,

(A8)

where δ is the Kronecker delta function.
We now minimize f (p) over our candidate solutions.

We calculate

f (pn0,p0) = χn0
(
p0 + (1 − p0)χ

�(n0,p0)
)

, (A9)

and partially differentiating with respect to n0, we get

∂f
∂n0

= p0 ln[χ ]χn0
(
1 − χ�(n0,p0)

)
. (A10)

This is always negative if p0 > 0 and n0 < m, so to
minimize we can set n0 = m. The minimum fidelity can
therefore be achieved by using a pure coherent state with
an average photon number of m. The minimum fidelity
between output states for a classical probe is

Fclass = χm. (A11)

Finally, for discriminating between pure states with a
fidelity of F , the minimum Type I error, α, for a given
Type II error, β, is given by [24]

α = β − 2βF2 + F
(

F − 2
√

(1 − β)β(1 − F2)
)

.

(A12)

2. Quantum ROC

For a TMSV probe, the initial covariance matrix of the
probe (before one mode is sent through the channel) is

Vin =
(

(2m + 1)I 2
√

m(m + 1)Z
2
√

m(m + 1)Z (2m + 1)I

)
, (A13)

where m is the average photon number of each of the
modes. The covariance matrix of the return state is

Vout
(i) =

(
(2m + 1)I 2

√
τim(m + 1)Z

2
√

τim(m + 1)Z (2mτ + 1)I

)
, (A14)

where i depends on the identity of the channel. This covari-
ance matrix can be diagonalized by a two-mode squeezing
(unitary) operation, with the squeezing parameter depend-
ing on τi. The resulting state is the tensor product of a
vacuum state and a thermal state, with average photon
number n̄i (which again depends on τi). Let us call the
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channel output ρ ′
i , and let us call the diagonalizing unitary

for that output state Ui. Then

Uiρ
′
iU

†
i = |0〉〈0| ⊗ σi,

σi =
∞∑

n=0

n̄n
i

(n̄i + 1)n+1
|n〉〈n| .

(A15)

Consequently, we can apply U1 to our output state, defining
ρi = U1ρ

′
iU

†
1, such that

ρ1 = |0〉〈0| ⊗ σ1,

ρ2 = U†(|0〉〈0| ⊗ σ2)U, U = U2U†
1.

(A16)

Note that, as a composition of two-mode squeezing oper-
ations, U is also a two-mode squeezing operation, and so
can be written as [25]

U(r) = exp
[
r(âb̂ − â†b̂†)

]
. (A17)

Now, suppose we carried out a photon counting measure-
ment on the first mode of state ρi. If i = 1, we always get
a result of 0 (a Type I error of 0). On the other hand, if
i = 2, we get a result of 0 with some nonzero probability (a
nonzero Type II error). This is one possible measurement
scheme.

Suppose, on the other hand, we carried out a photon-
counting measurement on the first mode of state UρiU†

(i.e., apply the two-mode squeezing unitary, U, prior to the
measurement). Now, if i = 1, we get a result of 0 some of
the time, but if i = 2, we always get a result of 0. In this
case, therefore, we get a nonzero Type I error and a Type
II error of 0. This defines another possible measurement
scheme. Note that in both schemes, we only care about
whether the result is 0 or not 0 (not the actual number),
so this is more akin to a click detector.

On a plot of Type I error against Type II error (ROC),
we can draw a straight line between these two points,
and achieve any pair of errors along this line. This could
be achieved by carrying out the first measurement with
probability a and the second measurement with probability
1 − a. Suppose we want a better than linear interpolation
between the two points. How might we go about designing
a measurement to achieve this?

One possibility, instead of choosing one measurement
or the other with some classical probability, might be to
control which measurement is carried out using a quantum
state. Suppose we apply a controlled unitary to the state ρi,
so that if the control qubit is |0〉, we apply the identity to
ρi, and if the control qubit is |1〉, we apply U. Let us denote

the resulting channel as U , and write

U : |a〉〈a| ⊗ ρi → a |0〉〈0| ⊗ ρ +
√

a(1 − a)

× (|0〉〈1| ⊗ ρiU† + |1〉〈0| ⊗ Uρi
)

+ (1 − a) |1〉〈1| ⊗ UρU†, (A18)

where |a〉 = √
a |0〉 + √

1 − a |1〉 is a control qubit.
If we now measured the control qubit and then the

first mode, this would reduce to the classical combina-
tion of measurements, but by retaining the off-diagonal
components, we may be able to do better. To reduce the
complexity of the problem, let us apply the following chan-
nel to the return state (and the identity to the control qubit),
mapping it from a continuous variable (CV) state to a dis-
crete variable (DV) state, while retaining the superposition
of measurements:

CCV→DV[ρ] =
∑

k

KkρK†
k , (A19)

{Kk} = {|00〉〈00| , |01〉〈0i| , |10〉〈i0| , |11〉〈ij |}, (A20)

where i and j both run from 1 to ∞. In other words, this
channel, when applied to a two-mode Gaussian state, maps
it to a two-qubit state by mapping all of the nonvacuum
components to the single outcome |1〉. Note that, by doing
this, we lose some information, but not all of it, and that
we have not traced over the second mode, even though the
original two protocols trace over it (by only carrying out
photon counting on the first mode). The reason we do not
simply trace over the second mode is to retain as much
information as possible, while still having a state that is
easier to work with.

Let us calculate the resulting three-qubit states, ρout
i =

(I ⊗ CCV→DV) · U [|a〉〈a| ⊗ ρi]. We will do this component
by component and state by state. Let us start with

CCV→DV[ρ1] = 〈0|σ1|0〉 |00〉〈00|
+ (1 − 〈0|σ1|0〉) |01〉〈01|

= x1 |00〉〈00| + (1 − x1) |01〉〈01| , (A21)

where we define xi = (n̄i + 1)−1.
Next, we will calculate CCV→DV[Uρ1], using the Fock

basis expansion of σ1 in Eq. (A15):

CCV→DV[Uρ1] = CCV→DV

[ ∞∑

m=0

n̄m
1 U |0m〉〈0m|
(n̄1 + 1)m+1

]
. (A22)

The key quantity we need to calculate here is

〈i, j |U|0, m〉〈0, m|i, j 〉 = δi0δjm 〈0, m|U|0, m〉 . (A23)
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We can decompose U as [26]

U(r) = cosh(r)−1 exp
[
− tanh(r)â†b̂†

]

× exp
[
− ln(cosh(r))(â†â + b̂†b̂)

]

× exp
[
tanh(r)âb̂

]
, (A24)

which is much simpler to use, since we apply the lowering
and raising operators in a fixed order, rather than in every
possible sequence. The resultant state is [27]

U(r) |0, m〉 = cosh(r)−(m+1)

×
∞∑

k=0

[(
k + m

m

)1/2

(− tanh(r))k |k〉 |k + m〉
]

.

(A25)

Consequently,

〈i, j |U|0, m〉 〈0, m|i, j 〉 = δi0δjm cosh(r)−(m+1), (A26)

and so

CCV→DV[Uρ1] = x1y |00〉〈00| + (1 − x1)x1y2

1 − (1 − x1)y
|01〉〈01| ,

(A27)

where y = cosh(r)−1.
We now calculate CCV→DV[Uρ1U†], again making use

of Eq. (A25). We can write

〈ij |U|0m〉 〈0m
∣∣U†

∣∣ij
〉

= δj −i,m cosh(r)−2(m+1) tanh(r)2i
(

i + m
m

)
. (A28)

Then, setting i = 0 and j = 0, we get
〈
00
∣∣UρU†

∣∣00
〉 = x1y2. (A29)

Setting i = 0 and instead summing over j , we get

∞∑

j =1

〈
0j
∣∣UρU†

∣∣0j
〉 = (1 − x1)x1y4

1 − (1 − x1)y2 . (A30)

Finally, noting that, if i �= 0 and j = 0, the right-hand side
of Eq. (A28) goes to 0, we can write

∞∑

i,j =1

〈
ij
∣∣UρU†

∣∣ij
〉

= 1 − 〈
00
∣∣UρU†

∣∣00
〉−

∞∑

j =1

〈
0j
∣∣UρU†

∣∣0j
〉

= 1 − y2

1 − (1 − x1)y2 . (A31)

Therefore, our expression for CCV→DV[Uρ1U†] is

CCV→DV[Uρ1U†] = x1y2 |00〉〈00|

+ (1 − x1)x1y4

1 − (1 − x1)y2
|01〉〈01|

+ 1 − y2

1 − (1 − x1)y2
|11〉〈11| . (A32)

Putting all of these elements together, we can write the
three-qubit state

ρout
1,a = diag

[
ax1, a(1 − x1), 0, 0, (1 − a)x1y2,

(1 − a)(1 − x1)x1y4

1 − (1 − x1)y2 , 0,
(1 − a)(1 − y2)

1 − (1 − x1)y2

]

+
(

04 ω1
ω1 04

)
, (A33)

where 04 is the 4 × 4 zero matrix and we define

ωi =

⎛

⎜⎜⎜⎜⎝

√
a(1 − a)xiy 0 0 0

0
√

a(1−a)(1−xi)xiy2

1−(1−xi)y
0 0

0 0 0 0
0 0 0 0

⎞

⎟⎟⎟⎟⎠
.

(A34)

Similarly, we can write

ρout
2,a = diag

[
ax2y2,

a(1 − x2)x2y4

1 − (1 − x2)y2 , 0,
a(1 − y2)

1 − (1 − x2)y2 ,

(1 − a)x2, (1 − a)(1 − x2), 0, 0
]

+
(

04 ω2
ω2 04

)
. (A35)

Thus, we have reduced a two-mode continuous variable
system to a sparse (nine-element), three-qubit state, for
which the optimal errors can be more easily calculated. For
a given value of the parameter a, we can calculate optimal
values of the Type I and II errors using

α(a, b) = Tr[(1 − �a,b)ρ
out
1,a ], (A36)

β(a, b) = Tr[�a,bρ
out
2,a ], (A37)

�a,b = {(1 − b)ρout
2,a − bρout

1,a }−, (A38)

where {X }− is the projector onto the negative eigenspace
of X .

Even for our reduced system, it is still difficult to ana-
lytically find the ROC by optimizing over parameter a for
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each value of b. Instead, we numerically sample a large
number of a and b values to get a large number of pairs
{α(a, b), β(a, b)}, then join up the bottom of this set of
values to approximate the ROC curve.

APPENDIX B: CALCULATION OF THE MUTUAL
INFORMATION

In both scenarios, our aim is to calculate the mutual
information between the ground truth (variable A) and the
estimate of the ground truth (variable D). For both sce-
narios, variables A and D are the same size: in Sec. IV A,
they are pairs of coordinates (A is composed of the true
locations of the two attractors and D is composed of the
locations of the two cluster centers as found by the cluster-
ing algorithm), and in Sec. IV B, they are integers between
0 and 10 (A is the number of particles on the surface and
D is the number of clusters found by DBSCAN). Note that
DBSCAN may find more than 10 clusters; in this case we
replace the actual number of clusters found with 10, since
we know this is the maximum number of particles.

Let us first discuss how we can determine the entropy of
a probability distribution over a finite number of outcomes
by sampling the distribution a large number of times. If
we (independently) sample the distribution a large number
of times, we can approximate the true probability distri-
bution using the number of occurrences of each outcome
(i.e., the probability of an outcome is approximately the
number of occurrences divided by the total number of
samples). We call this approximated probability distribu-
tion the sample distribution. We can then calculate the
entropy of the sample distribution (the sample entropy) in
order to approximate the entropy of the true probability
distribution. This method is called the plugin estimator.

In the asymptotic limit of N � P samples, where P
is the number of possible outcomes, the value we calcu-
late will be normally distributed around an expected value.
This expected value is not the same as the true value of the
entropy, since our estimator is biased: for any finite N , the
expected value of the plugin estimator is less than the true
entropy. We have the following conditions for the variance
and bias of the estimator [28,29]:

var(ĤN ) ≤ log2
2 N

N
, (B1)

E[ĤN ] = H − P − 1
2N

log2 e + O[N−2], (B2)

where H is the true entropy and ĤN is the sample entropy
for N samples.

We first consider the scenario in Sec. IV B. Here, we
generate N samples according to the flow chart in Fig. 4,
recording variables A and D for each. We then calculate
the sample entropy, ĤN (D), and the sample conditional

entropy, ĤN (D|A). The conditional entropy is given by

H(D|A) =
∑

a

p(A = a)H(D|A = a), (B3)

and so, recalling that A has a uniform probability over all
outcomes, we can write

ĤN (D|A) = 1
m + 1

m∑

a=0

ĤN/(m+1)(D|A = a), (B4)

where m is the maximum number of clusters. Note that
H(D|A = a) is the entropy conditioned on a particular
outcome of A, and therefore is calculated using only
1/(m + 1) of the total number of samples.

The plugin estimator of the conditional entropy is a sum
of independent normal distributions and therefore has the
following conditions on its variance and bias:

var(ĤN (D|A)) ≤ (m + 1) log2
2[N/(m + 1)]
N

, (B5)

E[ĤN (D|A)] = H(D|A) − m(m + 1)

2N
log2 e + O[N−2].

(B6)

The plugin estimator of the mutual information is given by

ÎN (A : D) = ĤN (D) − ĤN (D|A), (B7)

and so has the following conditions on its variance and
bias:

var(ÎN (A : D)) ≤ log2
2 N + (m + 1) log2

2[N/(m + 1)]
N

,

(B8)

E[ÎN (A : D)] = I(A : D) + m2

2N
log2 e + O[N−2]. (B9)

Recalling that m = 10, and setting the number of samples,
N , to 20 000, we find that the variance of our estimator is
less than or equal to approximately 0.0126 bits and the bias
is approximately −0.0004 bits.

Next, let us consider how to calculate the entropy for
the scenario in Sec. IV A. The difficulty in this scenario
is that both A and D are sets of m coordinates in a d × d
grid. This means that the dimension of each is the number
of unique choices of m positions out of d2, which is the
binomial coefficient

(d2

m

)
. For a 20 × 20 grid and two clus-

ters, this means that A and D each have 79 800 possible
outcomes. This is a lot more than the 11 possible outcomes
for A and D for the scenario in Sec. IV B, and so we need a
lot more samples for the plugin estimator, ĤN (D), to be
in the asymptotic regime (N � P). In order to estimate
the conditional entropy in the same way, we would need
roughly 80 000 times more samples than even this, because
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we would be sampling the entropy of D for each possible
outcome of A.

Instead, we make an assumption about the conditional
entropy in order to simplify the calculations. We assume
that the entropy of D conditioned on a single value of A,
H(D|A = a), is approximately the same for all permitted
values of A. This assumption is justified by the conditions
we imposed, which state that the attractors are well sep-
arated from each other and are not close to the edge of
the grid, so the distributions due to each of the attractors
should not interfere with each other.

As a result, we estimate the entropy of D for a small
number (5) of randomly chosen fixed values of A, and use
the mean value of these to approximate the conditional
entropy, H(D|A). We then assume that the variance of the
values we get is approximately the variance of H(D|A =
a), that is, the variance of the entropy of D conditioned on
specific values of A. Note that the variance of our estima-
tor of H(D|A = a) follows Eq. (B1), and so is negligible
in the asymptotic regime (we take 800 000 samples, so that
P/N < 1/10).

We estimate H(D) in the normal way, by randomly
choosing values of A for each sample and calculating cor-
responding values for D. Since we use the same number
of samples for our estimation of each H(D|A = a) as we
do for our estimation of H(D), the biases cancel out, so
we have an unbiased estimator of the mutual informa-
tion, whose variance is approximately the variance of our
estimated values of H(D|A = a).
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