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Quantum-enhanced Doppler lidar
Maximilian Reichert 1,2✉, Roberto Di Candia 3,4, Moe Z. Win 5 and Mikel Sanz1,2,6,7✉

We propose a quantum-enhanced lidar system to estimate a target’s radial velocity, which employs squeezed and frequency-
entangled signal and idler beams. We compare its performance against a classical protocol using a coherent state with the same
pulse duration and energy, showing that quantum resources provide a precision enhancement in the estimation of the velocity of
the object. We identify three distinct parameter regimes characterized by the amount of squeezing and frequency entanglement. In
two of them, a quantum advantage exceeding the standard quantum limit is achieved assuming no photon losses. Additionally, we
show that an optimal measurement to attain these results in the lossless case is frequency-resolved photon counting. Finally, we
consider the effect of photon losses for the high-squeezing regime, which leads to a constant factor quantum advantage higher
than 3 dB in the variance of the estimator, given a roundtrip lidar-to-target-to-lidar transmissivity larger than 50%.
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INTRODUCTION
Quantum metrology exploits quantum mechanical resources, such
as entanglement and squeezing, to measure a physical parameter
with higher resolution than any strategy with classical resources.
Many quantum metrology protocols in the photonic regime1 have
been proposed such as quantum illumination (QI)2–6, quantum-
enhanced position and velocity estimation7–13, quantum phase
estimation14,15, transmission parameter estimation16–20, noise
estimation21 and estimation of separation between objects22,23,
among others. In these protocols, information about an object is
retrieved by interrogating it with a signal beam. In the most
general strategy, this signal is correlated or entangled with an idler
beam, which is retained in the lab to perform a joint measurement
at the end of the protocol. Indeed, the scheme can be seen as an
interferometer setup, in which a channel depending on the
parameter of interest is only applied to the signal mode.
Of particular interest for remote sensing applications is the QI

protocol, where the aim is to detect the presence of a weakly
reflecting target with an error probability smaller than using the
best classical strategy. Here, a quantum advantage in the error
probability exponent can be achieved by using a global
measurement (up to 6 dB)24–28, or by using local measurements
(up to 3 dB)29–31. This advantage is only achieved in a very noisy
environment, such as the case of room-temperature microwave
band, by a large bandwidth two-mode squeezed-vacuum state3.
This requires a signal with a very low photon number per mode,
which in the microwave regime is challenging to transmit open-
air. Since amplifying the signal has been shown to break the
quantum advantage32,33, QI as originally thought remains an
elusive achievement so far, even though recent progress has been
made on relaxing the requirements for quantum advantage34.
Once the presence of a target is established, properties like its

location and velocity are also of interest. These can be estimated
via signal arrival time and frequency measurement making use of
the Doppler effect. Giovannetti, Lloyd and Maccone showed in
ref. 7, that the GLM states, named after them, defined in the
frequency domain can attain the Heisenberg limit (HL), which is a

1/N scaling of the estimation error of the arrival time, where N is
the total number of photons. Equivalently, GLM states defined in
the time domain reach the HL for the estimation error of
frequency. This constitutes a quadratic improvement compared
with the standard quantum limit (SQL) achieved by the classical
protocol. In ref. 12, the simultaneous estimation of location and
radial velocity was considered using two GLM states in the
frequency and time domain, respectively, that are transformed
into two entangled signal and idler beams via a beam splitter. It
was shown that the velocity and the location can simultaneously
be estimated achieving the Heisenberg limit. This proves that
frequency entanglement lifts the Arthurs-Kelly relation35, which
states that the location and velocity of an object cannot be
estimated with arbitrary precision using unentangled light. The
work13 further extended this by addressing the simultaneous
estimation of relative location and velocity of two targets by
means of two-photon entangled states. The main drawbacks of
these previous works are the use of two-photon states, which
does not allow for a photon-number-dependent analysis, and the
use of the multiphoton GLM states, which are non-normalizable
and thus not physical. In ref. 36, a normalized version of the GLM
state was introduced for range estimation. Here, it was shown that
the Heisenberg scaling persists for the normalized version.
However, these GLM-type states are fragile in lossy channels.
The loss of a single photon renders the state useless for retrieving
information about the parameter. Although the robustness
against losses of these GLM-type states may be improved by
reducing their entanglement, this comes at the cost of decreasing
the enhancement in the scaling of the error estimation.
Furthermore, it is challenging to produce GLM states in the
laboratory for photon numbers N > 29.
In this article, we propose a protocol for a quantum Doppler

lidar, which estimates the radial velocity of a reflecting object
using quantum light. As a probe state, frequency-entangled twin-
beams are used. The signal beam is sent against the moving
object, which causes a frequency shift due to the Doppler effect.
Finally, a measurement of the returned signal and the idler is
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performed. We propose for the protocol a multimode probe state
that can be generated by a parametric downconverter. The state is
composed of photon pairs that share frequency entanglement.
This photon-pair structure is resilient against losses, since the loss
of a single photon only effects its partner, but not the other
photon pairs. This is a crucial difference with GLM states, where
the loss of a single photon means the loss of all the information
about the parameter of interest due to the global entanglement.
The quantum protocol is benchmarked against a classical protocol
shining the object with the same energy and for the same time
duration to make the comparison fair. We employ the Quantum
Fisher information (QFI) as the figure of merit in the comparison,
since it gives the maximal amount of extractable information
about the parameter of interest. Calculating the QFI for this
multimode state is challenging, but by using properties of
Gaussian states and introducing Schmidt modes, which effectively
discretizes the frequency-continuous problem, we derive an
analytical expression for the QFI. Two quantum resources can be
identified in our resource quantum state, namely, squeezing and
frequency entanglement. The performance of the quantum
protocol is studied as a function of the photon number in three
different parameter regimes, called high-frequency entanglement,
high-squeezing, and mixed regime. The latter, for which a
remarkable Heisenberg scaling can be attained, is called in this
manner because neither squeezing nor frequency entanglement
are dominant. We propose a measurement setup that attains the
QFI, consequently achieving the highest estimation accuracy of
the velocity. It is noteworthy that the measurement setup can be
performed separately in the signal and the idler, facilitating the
experimental requirements.
The paper is structured as follows. In Sections “Quantum

estimation theory” and “Gaussian states”, the fundamentals of
quantum estimation theory and Gaussian states are introduced. In
Section “Model of the moving target”, we model the moving
target as a perfectly reflective mirror boosted at a relative constant
velocity. Afterwards in sections “Classical protocol and Quantum
protocol”, we introduce the probe states employed in both the
quantum and classical protocols. As a figure of merit to bench-
mark their performance, we make use of the QFI. Then, in Section
“A fair comparison”, we discuss the different parameter regimes
obtained and study when quantum advantage exists and how it
behaves as a function of the signal photon number. In section A
loss analysis for the high-squeezing regime, the protocol is studied
in the presence of losses in the signal beam. Finally, in section A
loss analysis for the high-squeezing regime an optimal measure-
ment attaining the ultimate precision set by the quantum Cramér-
Rao bound is provided.

RESULTS
Model of the moving target
We model the object of which we wish to estimate its constant
radial velocity v relative to emitter as a perfect mirror in a (1+ 1)-
dimensional spacetime. For now, we assume an absence of noise
and loss. As can be seen in Fig. 1, the quantum Doppler lidar emits
a signal beam towards the moving object, while also emitting an
idler beam which is retained in the laboratory, such that a
measurement can be performed of the returned signal and the
idler. The electromagnetic field of the signal beam obeys the wave
equation ð∂2t � c2∂2xÞϕðt; xÞ ¼ 0, where c is the speed of light and
we only consider one polarization of the field for the sake of
simplicity. The presence of the target which is modelled as a
perfect mirror imposes the boundary condition ϕ(t, xm)= 0, where
xm= vt is the location of the mirror. We assume the emitter to be
to the right of the mirror, which corresponds to its spatial
coordinate > xm. The general solution of the wave equation

satisfying the boundary condition is given by

ϕðx; tÞ ¼
Z 1

0

dωffiffiffiffiffiffiffiffiffi
4πω

p e�iωðctþxÞ � e�iωμðct�xÞ
� �

aðωÞ þ h:c: (1)

where μ= (1− v/c)/(1+ v/c) is the Doppler parameter. We choose
to estimate the parameter μ instead of v, as it naturally arises in
the Doppler effect. The estimation error of v is related to the one
of μ via the error propagation formula for the QFI
JðvÞ ¼ ð∂vμðvÞÞ2JðμðvÞÞ. The Fourier coefficients a(ω) and their
complex conjugates get promoted by canonical quantization to
annihilation and creation operators, which we denote by âðωÞ and
âyðωÞ. They satisfy the relations ½âðωÞ; âð~ωÞ� ¼ ½âyðωÞ; âyð~ωÞ� ¼ 0
and ½âðωÞ; âyð~ωÞ� ¼ δðω� ~ωÞ. The idler frequency mode is
referred to as b̂ðωÞ and satisfies the same commutation relations.
It commutes with the signal mode as both beams are spatially
separated. The first term in Eq. (1) in brackets represents the
incoming wave, while the second term is the outgoing wave
which is Doppler shifted ω→ω/μ. Now, let us derive the
Bogoliubov transformation Ûμ which maps the incoming modes
âðωÞ to the Doppler reflected outgoing modes, denoted as âð�ωÞ.
For this, a change of integration variables is performed in the
second term in Eq. (1), leading to

ϕ̂ðx; tÞ ¼
Z 1

0

dωffiffiffiffiffiffiffiffiffi
4πω

p e�iωðctþxÞâðωÞ þ e�iωðct�xÞâð�ωÞ þ h:c:
� �

;

with the operator âð�ωÞ � �μ1=2âðμωÞ. Thus, the process of
reflection is described by the unitary transformation
ÛμâðωÞÛy

μ ¼ �μ�1=2âðω=μÞ. The prefactor μ−1/2 ensures a proper
normalization and the change of sign is the π phase shift that
radiation experiences when reflected. The vacuum state 0j i, which
satisfies âðωÞ 0j i ¼ b̂ðωÞ 0j i ¼ 0, remains unchanged after Doppler
reflection, that is Uμ 0j i ¼ 0j i. In the most general framework, the
outgoing mode also picks up a phase factor expði2ωxm=ðc � vÞÞ
depending on the velocity and location xm of the object.
Therefore, this phase could in principle also be used to estimate
the velocity, but generally at the cost of an additional knowledge
about the location. Furthermore, in real world applications the
phase often is randomized due to surface properties of the object
and information about v is lost. Hence, as a first step, we will
neglect the information from the phase and we will only consider
the information about the velocity that is encoded in the
frequency spectrum of the light beams. The QFI Jq derived here
is a lower bound of the QFI in which phases are also taken into
account.

Fig. 1 Scheme of a quantum Doppler lidar. A twin-beam multi-
mode squeezed-vacuum state is produced by the transmitter on the
bottom left. The signal beam is sent towards the moving target
where it is reflected and its frequency Doppler shifted. The idler
beam does not interact with the moving target and is retained. Both
the reflected signal beam and the idler beam are measured at the
receiver on the bottom right.
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Classical protocol
In the classical protocol we take a coherent signal as the probe state.
For a continuum of frequency modes, a coherent state is defined as
ψj i ¼ exp½α R dωf ðωÞðâðωÞ � âyðωÞÞ� 0j i, where we take the dis-
placement constant α to be a real number for the sake of simplicity.
The spectral amplitude f(ω) shall be an arbitrary differentiable and
normalized function, i.e. ∫dω∣f(ω)∣2= 1. We assume that the carrier
frequency ωc= ∫ dω∣f(ω)∣2ω is much larger than the bandwidth Δω

defined as Δω2 ¼ R dωjf ðωÞj2ðω� ωcÞ2, the so-called narrow-
bandwidth approximation. This allows us to change the limits of
integration to (−∞,∞). The reflected state is given by
Ûμ ψj i ¼ ψμ

�� � ¼ exp½α R dωμ1=2f ðμωÞðâyðωÞ � âðωÞÞ� 0j i, where we

have used ÛμeÂÛ
y
μ ¼ eÛμÂÛ

y
μ ¼ eÂμ , and Â is the exponent of the

coherent state. Thus, the state is still a coherent state after the
reflection but with an amplitude f(ω)→− μ1/2f(μω). The mean
frequency is shifted to ωc/μ and the spectral bandwidth is stretched
or compressed by a factor of 1/μ, see Supplementary Note 2.
Therefore, estimating the frequency and the variance provides
information about the parameter μ. The calculation of the QFI is
straightforward, we need to compute ∂μψμ

�� �
. As ½∂μÂμ; Âμ� ¼ 0, we

can write ∂μψμ

�� � ¼ eÂμ∂μÂμ 0j i. As a consequence, it follows that

〈ψμ∣∂μψμ〉= 0 and h∂μψμj∂μψμi ¼ h0j∂μÂy
μ∂μÂμj0i. This leads to

the expression for the QFI (see Supplementary Note 2)

JcðμÞ ¼ 4α2

μ2

Z
dω

1
2
f ðωÞ þ ω∂ωf ðωÞ

� �2

: (2)

This is the general expression for the QFI. Let us now make some
approximations to gain physical insights. First, we consider small
velocities compared to the speed of light v/c≪ 1, for which the
frequency Doppler shift is approximately 2ωcv/c. Let us now
introduce the spectral amplitudes’ Fourier transform g(t)= ∫
dωf(ω)eiωt. The time duration ΔT of the pulse is given by

ΔT2 ¼ R dt t2jgðtÞj2 � R
dttjgðtÞj2

� �2
. Using the further approx-

imation ΔTΔωv/c≪ 1, which is standard in the classical litera-
ture37, we obtain (for more details see Supplementary Note 2)

JcðμÞ � 4
μ2

ω2
cNcΔT

2: (3)

We see that the classical protocol follows the SQL scaling
expected for a classical strategy. Furthermore, we note that three
parameters completely define the optimal performance of a
classical lidar, the photon number α2= Nc, the carrier frequency ωc

and the time duration ΔT of the pulse.

Quantum protocol
For the quantum protocol, we use a twin-beam multimode
squeezed-vacuum state. This state can be produced in the
laboratory by non-linear optical processes, such as spontaneous
parametric down-conversion (SPDC). In this process of SPDC, a
pump beam, which is considered to be classical, interacts with a
χ(2) non-linear optical medium. Photons of the pump field decay
into signal and idler photon pairs. The use of a waveguide for
SPDC allows for reducing the number of spatial modes to one for
each beam38–42 given by âðωÞ (signal) and b̂ð~ωÞ (idler). The
effective Hamiltonian describing the process is given by43

ĤI ¼ i_ξ
Z

dω
Z

d~ωf ðω; ~ωÞâðωÞb̂ð~ωÞ þ h:c:; (4)

where the coupling constant ξ, referred to as the squeezing
parameter, is chosen to be real for simplicity, and proportional to
the intensity of the classical pump beam and the strength of the
interaction. The normalized joint-spectral amplitude f ðω; ~ωÞ
depends on the specifics of the non-linear process and on the
pump beam. In the case of SPDC, the joint-spectral amplitude can

be in many cases approximated as a double Gaussian44 which also
simplifies analytic calculations

f ðω; ~ωÞ ¼
ffiffiffiffiffiffiffiffi
2

πσϵ

r
exp �ðωþ ~ω� ω0Þ2

2σ2

 !
´ exp �ðω� ~ωÞ2

2ϵ2

 !
:

(5)

The first exponential function in Eq. (5) with argument ωþ ~ω
comprises energy conservation of the photon decay process and it is
inherited by the frequency mode spectrum of the pump beam,
which is assumed to be Gaussian with mean frequency ω0 and
variance σ2/2. The second exponential function with argument ω� ~ω
corresponds to the phase matching condition, i.e. momentum
conservation of the photon decay process, and depends on the
spatial properties of the pump beam and the non-linear medium.
Thus, by modifying the pump beam, both functions composing
f ðω; ~ωÞ can independently be tailored42. We again assume the
narrow-bandwidth approximation ω0≫ σ and ω0≫ ϵ. The double
Gaussian can be decomposed into its Schmidt modes45 as
f ðω; ~ωÞ ¼P1

n¼0 rnψnðω� ω0=2Þψnð~ω� ω0=2Þ, where {ψn(ω)} is an
orthonormal set closely related to the Hermite functions (further
details in Supplementary Note 3). The relative weight r2n of each

individual mode is given by rn ¼ 2
ffiffiffiffi
σϵ

p
σþϵ ðσ�ϵ

σþϵÞn with
P

r2n ¼ 1. The
number of active modes is given by the Schmidt number
K ¼ ðPnr

4
nÞ�1 ¼ σ2þϵ2

2σϵ , which we interpret as a measure of frequency
entanglement within the signal and idler photon pair. For K= 1, only
one pair of modes is necessary to describe the state and the double
Gaussian factorizes, that is f ðω; ~ωÞ ¼ ψ0ðω� ω0=2Þψ0ð~ω� ω0=2Þ,
which implies no frequency entanglement. For K> 1, the state is
frequency entangled and the degree of entanglement grows
monotonically with K. In refs. 42,46, techniques were proposed to
generate Schmidt numbers in the range of K~ 400–5000, which
corresponds to an extremely high-frequency entanglement of the
photon pair. The Schmidt modes capture the spectral structure of
f ðω; ~ωÞ in a discrete manner, and thus it is natural to introduce
discrete annihilation and creation operators ân ¼

R
dωψnðω�

ω0=2ÞâðωÞ and b̂n ¼
R
dωψnðω� ω0=2Þb̂ðωÞ which are smeared

out versions of âðωÞ and b̂ð~ωÞ47. The modes satisfy the commutation

relations ½ân; âm� ¼ ½b̂n; b̂m� ¼ ½ân; b̂ym� ¼ 0 and ½ân; âym� ¼
½b̂n; b̂ym� ¼ δnm due to the orthonormality of {ψn(ω)}. The discrete
description of the problem substantially facilitates the calculation of
the QFI. The Hamiltonian in Eq. (4) is given in the discrete description
by

ĤI ¼ i_ξ
X1
n¼0

rn ânb̂n � âynb̂
y
n

� �
� i_ξ

X1
n¼0

Ĥn: (6)

As the Hamiltonians for the individual modes commute
½Ĥn; Ĥm� ¼ 0, the total squeezing operator Ŝ ¼ e�iĤI=_ of the SPDC
process can be written as a tensor product of squeezing operators
for each individual mode Ŝ¼N1

n¼0Ŝn with Ŝn ¼ eξĤn . The
squeezing parameter of the squeezer corresponding to the mode
n is given by ξrn. Finally, we are able to express the probe state of
the quantum protocol using discrete creation operators. Using the
normal ordered representation of squeezing operators48, we find
(see Supplementary Note 4 for details)

Ŝ 0j i ¼
O1
n¼0

1
coshðξrnÞ exp � tanhðξrnÞâynb̂

y
n

� �
0j i: (7)

Thus, the twin-beam multimode squeezed-vacuum state is just the
product state of independent two-mode squeezed-vacuum states.
Now, the reflected state ψμ

�� � ¼ ÛμŜ 0j i is

ψμ

�� � ¼ N exp �
X1
n¼0

tanhðξrnÞâynμb̂
y
n

 !
0j i; (8)
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where we have transformed the product in Eq. (7) into a sum in
the exponent and we have introduced the normalization constant
N ¼Qn1= coshðξrnÞ, which is independent of μ. The operator âyn
transforms into ÛμânÛ

y
μ ¼ âynμ ¼ � R dωμ1=2ψnðμω� ω0=2ÞâyðωÞ,

picking up a phase shift and a μ-dependence, whereas ξ, rn, and
the idler modes b̂n remain μ-independent. The mean frequency of
the transformed mode is given by ω0=2μ ¼ ω, as one would
expect from the Doppler effect. The bandwidth of each mode is
proportional to

ffiffiffiffiffiffiffiffiffiffi
σϵ=2

p
, and it transforms into

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σϵ=2μ

p � σ after
the reflection. In the continuous formalism, the joint-spectral
amplitude converts into f ðω; ~ωÞ ! �μ1=2f ðμω; ~ωÞ. Now, in order
to calculate the QFI, we need to first evaluate the derivative
∂μψμ

�� �
. The only component of the state that depends on μ is âynμ.

The derivative can be calculated using the properties of the
Hermite functions and we find that ∂μâ

y
nμ is a linear combination

of creation operators âynμ ranging from modes n− 2 to n+ 2. As
the derivative of the exponent in Eq. (8) commutes with the

exponent itself, we find ∂μψμ

�� � ¼ �Pn tanhðξrnÞð∂μâynÞb̂
y
nS 0j i, see

Supplementary Note 5. By using the transformation rule Ŝ
y
ânμŜ ¼

ânμ coshðξrnÞ � b̂
y
n sinhðξrnÞ and the analogous rule for the idler

mode, whose derivation is discussed in Supplementary Note 4, we
finally find the analytic expression for the QFI (see Supplementary
Note 5 for the full derivation). This splits up into frequency and
mode-bandwidth contributions as JqðμÞ ¼ ð∂μωÞ2JqðωÞ þ
ð∂μσÞ2JqðσÞ with

JqðμÞ ¼ 1
μ2

ω2
0

σϵ
Zω þ σϵ

ω2
0
Zσ

� �
; (9)

with the frequency term defined as

Zω ¼
X1
n¼0

sinh2ðξrnÞ n cosh2ðξrn�1Þ þ ðnþ 1Þcosh2ðξrnþ1Þ
	 


(10)

and the mode-bandwidth term as

Zσ ¼ P1
n¼0

sinh2ðξrnÞ nðn� 1Þcosh2ðξrn�2Þ
	

þðnþ 1Þðnþ 2Þcosh2ðξrnþ2Þ


:

(11)

The bandwidth contribution is suppressed by the factor σϵ=ω2
0 as

can be seen in Eq. (9), which is small due to the narrow-bandwidth
approximation. For a typical SPDC process in potassium dihydro-
gen phosphate crystal pumped by a frequency doubled titanium-
sapphire laser, this factor is approximately

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σϵ=ω2

0

p � 0:0149.

A fair comparison
Let us now compare the performance of the quantum and the
classical protocols and find out under which conditions quantum
advantage is achieved. For that, we examine the quantum
advantage ratio Jq/Jc, where we have omitted the dependence
on μ for the sake of readability. In the case Jq/Jc > 1, the quantum
strategy outperforms the classical one assuming that an optimal
measurement is performed and the Cramér-Rao bound is attained,
which is usually the case in the absence of thermal noise photons.
We already pointed out in Section “Classical protocol”, that the
classical lidar is solely characterized by the three parameters
photon number, carrier frequency and time duration. So to fairly
compare both protocols, we set these three parameters equal for
both signal beams. For photon number and mean frequency, this
corresponds to ωc=ω0/2 and α2 ¼Pnsinh

2ðξrnÞ. Now, let us
calculate the time duration of the quantum signal beam. For that
we introduce the time-domain version of the creation and

annihilation operators via Ê
yðtÞ ¼ R dω eiωt âyðωÞ, which is the

operator creating a photon at time t at the transmitter. The
normalized power of the signal beam is defined as

jsðtÞj2 ¼ hψjÊyðtÞÊðtÞjψi=NS. The time duration can then be
calculated and we find

ΔT2 ¼
Z

dt t2jsðtÞj2 �
Z

dttjsðtÞj2
� �2

(12)

¼ 2
σϵ

P1
n¼0 sinh

2ðξrnÞnP1
m¼0 sinh

2ðξrmÞ
þ 1
2

 !
: (13)

The detailed calculations can be found in Supplementary Note 5.
As both Jq and ΔT are given by infinite series containing
hyperbolic trigonometric functions, we will in the following study
parameter regimes in which simple analytic expression for the
respective quantities can be obtained, which helps to interpret the
results.

No frequency entanglement
Let us first study the case in which no frequency entanglement is
present between signal and idler beams. In this case, we have
K= 1, i.e. σ= ϵ. The state reduces to the well-known two-mode

squeezed-vacuum state ψμ

�� � ¼ expðξðâ0μb̂0 � ây0μb̂
y
0ÞÞ 0j i with

signal photon number NS ¼ sinh2ðξÞ. We find that

Jq
Jc

¼ 1 (14)

for all values of the squeezing parameter ξ (Supplementary Note
6). Thus, no quantum advantage is achieved with a two-mode
squeezed-vacuum state. Both protocols obey the SQL Jq, Jc ~ NS. In
similar interferometric phase estimation protocols, Heisenberg
scaling is achieved with the two-mode squeezed state. But due to
our ignorance of the target’s position xm, the information about
the velocity contained in the phase expði2ωxm=ðc � vÞÞ cannot be
accessed and thus Heisenberg scaling is not achievable in our
case. Thus, frequency entanglement K > 1 is necessary for
quantum advantage in our protocol with pure probe states given
in Eq. (7).

High-frequency-entanglement regime
Let us now consider the case in which the frequency entangle-
ment is the dominant quantum resource. We specify this regime
by the condition ξ≪ K1/2, which allows us to approximate the
hyperbolic functions as sinh2ðξrnÞ � ξ2r2n and cosh2ðξrnÞ � 1. The
number of photons in mode n is given by NSn ¼ sinh2ðξrnÞ � 1
and the total photon number can be approximated as NS ≈ ξ2,
where we have only taken the first term of the approximation into
account (Supplementary Note 7). With this, the ratio of QFIs is

Jq
Jc

� 1þ σ2 þ ϵ2

2ω2
0

1þ 1

K2 þ
1

KðK2 þ KÞ
� �

: (15)

The first term is the frequency contribution and is equal to 1. The
remaining terms correspond to the bandwidth contribution which
is small due to the narrow-bandwidth approximation. Thus, in the
high-frequency entanglement regime no quantum advantage can
be obtained, the classical and quantum protocol perform equally
well. With the further constraint ξ≪ 1, the state becomes a
superposition of the vacuum and a two-photon state, the same
state used in ref. 12,13. Even though these states yield no quantum
advantage in estimating the velocity alone, they yield advantage
in jointly estimating the position and velocity of a target.

High-squeezing regime
Let us now consider a regime in which squeezing is the dominant
quantum resource and the frequency entanglement is relatively
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weak. We specify the parameter conditions as ξ≫ K3/2 and K≳ 1.5.
These conditions helps us to put the QFI into a concise analytic
form. Additionally, by requiring K≳ 1.5, the high-squeezing regime
is sufficiently distinct from the no-entanglement regime with
K= 1. The details about the calculations performed in this
Subsection can be found in Supplementary Note 8. The fraction
of photons in the mode n is given by NSn/NS, where NSn ¼
sinh2ðξrnÞ is the photon number of the mode n of the signal
beam. By increasing ξ for a fixed K, the relative contribution of
higher modes n > 0 decreases. In the high-squeezing regime,
almost all the photons reside in the 0 mode, that is NS ≈ NS0≫
NS1≫ 1, implying a high photon number per mode but a low
number of active modes, contrary to the high-frequency
entanglement regime. With this, we arrive in the asymptotic limit
at the result

Jq
Jc

� 1
3

4NSð Þ
ffiffiffiffiffi
K�1
Kþ1

p
; (16)

where it was used that NSn ¼ sinh2ðξrnÞ � cosh2ðξrnÞ for n= 0, 1
and only terms of order NS0NS1 in Eq. (9) contribute significantly.
This is the reason why the bandwidth terms are negligible. In Fig.
2, both the normalized frequency (solid lines) and bandwidth
(dashed lines) terms are plotted against ξ for Schmidt numbers
K= 10 and K= 20, confirming our analytical results. Interestingly,
the QFI in terms of the mode photon numbers is Jq ~ NS0NS1,
which indeed indicates a scaling better than the SQL, and nearly
reaches the HL for K big enough. As a conclusion, increasing the
squeezing for a fixed K also increases the quantum advantage, so
squeezing can be seen as a sensitivity-enhancing resource of the
protocol. Up to this point, photon loss and noise has been
neglected. In section “A loss analysis” for the high-squeezing
regime, the impact of losses, but not the impact of noise, will be
examined on the high-squeezing regime.

The mixed regime
Now, let us study the intermediate parameter regime K1/2≪ ξ≪
K3/2. Under these conditions, multiple modes are active like in the
high-frequency entanglement regime and the photon number per
mode is high NSn≫ 1 like in the high-squeezing regime, hence the

name mixed regime. Using these conditions, we can derive in the
asymptotic limit an analytic expression of the QFI

Jq
Jc

� ξ

21=2K3=2
þ σϵ

4ω2
0

� �
NS; (17)

where the first term is again the frequency contribution and the
second term the bandwidth contribution, following both a
Heisenberg scaling Jq � N2

S . For details about the calculations in
this Subsection, see Supplementary Note 9. The factor ξ/21/2K3/2 is
smaller than 1, but we still have (ξ/21/2K3/2)NS≫ 1 thus guarantee-
ing quantum advantage. Since both terms σϵ=4ω2

0 and ξ/21/2K3/2

are smaller than 1, we cannot generally decide which contribution
is dominant. For instance, in the experimental setup referred to in
section “Quantum protocol”, we had that

ffiffiffiffiffiffiffiffi
σϵ=

p
ω0 � 0:01, the

bandwidth can be safely neglected in the mixed regime, at least
for values of ξ and K up to 100 as can be seen in Supplementary
Note 9. Therefore, we will neglect the bandwidth contribution
from this point on.
In Fig. 3, the ratio 2μ2σϵ

ω2
0
Jq=N2

S � 2Zω=N
2
S is plotted for both ξ

and K up to the values of 100. Three distinct regions
corresponding to the three parameter regimes can be appre-
ciated. In the white area, which corresponds to a value of 1 for
the ratio, we observe a behaviour of Jq � N2

S for the QFI and thus
Heisenberg scaling. The red area is the high-frequency entangle-
ment regime and the blue area is the high-squeezing regime.
Curiously, quantum advantage is achieved in the two regimes
with high photon number per mode, and not in the high-
frequency entanglement regime with a low photon number per
mode. This in contrast to the quantum illumination protocol,
where a small photon number per mode is necessary to achieve
quantum advantage. The parameter conditions of the three
regimes and their corresponding quantum advantages are
summerized in Table 1.

Fig. 2 The frequency and bandwidth contribution in the high-
squeezing regime. The normalized frequency (solid lines) and

bandwidth (dashed lines) contributions 8Zω;σ=ð4NSÞ
ffiffiffiffiffi
K�1
Kþ1

p
are plotted

against the squeezing parameter ξ for Schmidt numbers K= 10 and
K= 20. The normalized QFI approaches 1, which indicates a scaling
above the SQL in the limit K3/2≪ ξ. The normalized bandwidth
contribution is much smaller and goes to 0 for K3/2≪ ξ. It is even
further suppressed by the factor σϵ=ω2

0.

Fig. 3 The three parameter regimes. We plot the normalized QFI
2 μ2σϵ

ω2
0
Jq=N2

S , not to be confused with the quantum advantage ratio.

The plot shows the three parameter regimes and their correspond-
ing borders given by the contours ξ= K1/2 and ξ= K3/2. The mixed
regime is characterized by the value of 1, depicted as white, and
thus shows Heisenberg scaling and validates our analytical
expression for the QFI. The high-squeezing regime, in which
quantum advantage above the SQL is achieved, is depicted as blue
with values below 1. The red area is the high-entanglement regime,
where the values range far above 2 but were cut off. In this regime,
no quantum advantage is achieved.
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A loss analysis for the high-squeezing regime
So far we have considered the ideal scenario in which no photons are
lost and the returned state is pure. In realistic scenarios, the probe
state at the receiver will be mixed due to photon loss and thermal
noise. In ref. 11, time-of-flight estimation in the microwave regime was
studied, in which the thermal photon number per mode is much
larger than 1. A similar state was used, a continuous wave squeezed
state, and a considerable quantum advantage was proved at a certain
threshold of the signal-to-noise ratio. This so-called threshold effect
arises only in the presence of thermal noise and requires an analysis
that goes beyond the calculation of the QFI. In our protocol, we
assume operation in the optical regime, in which thermal noise can be
neglected and solely relying on the QFI suffices. Photon loss, however,
has to be considered to assess if the protocol shows quantum
advantage in more realistic scenarios. Because photon loss mixes the
state, the calculation of the QFI is significantly more complicated.
Thus, we will only study the high-squeezing regime in which the state
can be described sufficiently well by only a couple of Schmidt modes
and thus allows us to derive analytical expressions. We assume no
losses in the idler beam. Photon loss in the signal beam can occur on
the way to and from the target and/or during the interaction with the
object (which generalizes the protocol to non-perfectly reflecting
objects). The probability of losing a signal photon is assumed to be
frequency-independent and it is modelled by a beam splitter

ÛBâðωÞÛy
B ¼

ffiffiffi
η

p
âðωÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
ĉðωÞ; (18)

where ĉðωÞ is an auxiliary mode which cannot be accessed by the
experimenter and will be traced out at the end. In this framework,
the beam splitter commutes with the Doppler reflection opera-
tion, so only one beam splitter with effective transmissivity η is
required for the lidar-to-target-to-lidar roundtrip. We choose to
apply this beam splitter operation after the reflection at the
receiver level. The final state is a Gaussian state. Gaussian states
are fully described by their first two moments d and Σ, the
definitions and an introduction to Gaussian states can be found in
section “Gaussian states” and ref. 50. As we discussed in section
“High-squeezing regime”, only the first two pairs of modes â0μ; â1μ
and b̂0; b̂1 are populated with a significant amount of photons.
This allows us to omit the rest of the modes by tracing them out
and thus derive a lower bound for the QFI. Alternatively, we could
justify the neglect of the higher modes by tailoring the joint-
spectral amplitude f ðω; ~ωÞ, such that only the first two modes are
active. To use the formula for the QFI of Gaussian states given in
ref. 50, we need to change the basis (i.e. the modes â0μ and â1μ) to
make it parameter independent. To do so, we assume that a prior
estimate μ0 of the parameter is known and we only want to
estimate the small deviation δ with μ= μ0+ δ, which is standard
in most parameter estimation protocols. We expand the Schmidt
modes around μ0 up to the first order and find

â0μ � â0μ0 � δ
ω0

2μ
ffiffiffiffiffi
σϵ

p â1μ0 (19)

â1μ � â1μ0 þ δ
ω0

2μ
ffiffiffiffiffi
σϵ

p â0μ0 �
ffiffiffi
2

p
â2μ0

� �
; (20)

where we have neglected the terms corresponding to the
bandwidth contribution, as they are small in this regime, which
we have previously established in section “High-squeezing regime”.
Now, we have the modes â0μ0 ; â1μ0 ; â2μ0 ; b̂0; b̂1; ĉ0μ0 ; ĉ1μ0 ; ĉ2μ0 ,

where ĉnμ0 ¼
R
dωμ1=20 ψnðμ0ω� ω0=2ÞĉðωÞ are the auxiliary

Schmidt modes. The resulting covariance matrix and QFI are
calculated in Supplementary Note 10. We recover the result from
Eq. (16) for the lossless case η= 1, which confirms the validity of
our approach and our approximations. To make a fair comparison,
we also have to consider the classical protocol under the effect of
photon loss. The QFI of the classical strategy is simply reduced by
the factor η, that is Jc � ηω2

0NSΔT2=μ2. We arrive at the ratio

Jq
Jc

� 1
1� η

; (21)

where we assumed NS1(1− η)≫ 1 to obtain a compact result. This
assumption causes the divergence in Eq. (21) since, as η→ 1, we
have NS1→∞. Without this assumption, we recover the result of
the lossless scenario in the limit of η→ 1. The quantum advantage
ratio in Eq. (21) does not depend on the photon number, and thus,
photon loss destroys the near HL scaling and brings it down to the
SQL, that is Jq ~ NS. A constant factor quantum advantage is
achieved for all values of η, but this factor becomes insignificant
for small path transmissivities η≪ 1. For transmissivities η ≥ 50%,
the quantum advantage factor is Jq/Jc ≥ 2 ≈ 3dB. This makes our
protocol promising for short-range applications where the path
losses are small, such as Doppler microscopy for biologicals.

Optimal measurement
As we are estimating only the velocity of the object, there
always exists at least one optimal measurement saturating the
QFI, but it is not necessarily unique. Quantum estimation
theory provides techniques to construct some of these
observables, in particular the one related to the symmetric
logarithmic derivative (SLD) Ôμ ¼ 1μþ L̂μ=JðμÞ. However, its
implementation in a realistic experimental setup is a highly
non-trivial task. In the case of a pure-state manifold, the SLD L̂μ
can be written as L̂μ ¼ ∂μψμ

�� �
ψμ

� ��þ ψμ

�� �
∂μψμ

� ��51. Thus, only
∂μψμ

�� �
needs to be calculated, which has been done for the

calculation of the QFI and it can be found in Supplementary
Note 5. However, a construction of this observable in a lab in
an optical setup is far from trivial. Furthermore, it depends on
the parameter μ itself, and we would like to have a
measurement working on the whole range of velocities if
possible. Otherwise, an adaptive measurement strategy could
be followed52. In the Gaussian formalism, the SLD can be
written as a sum of terms that are at most quadratic in the
modes50. In Supplementary Note 10 we have given the explicit
expression for the SLD derived in the limit of NS ≫ 1 in the
high-squeezing regime under photon loss.
Let us analyze a measurement based on frequency-resolved

photon counting of signal and idler photons for the lossless
scenario, which is discussed in detail in Supplementary Note 11.
This measurement corresponds to a projection onto the frequency
eigenstates ω; ~ωj i � ω1; ¼ ;ωn; ~ω1; ¼ ~ωmj i � 1ffiffiffiffiffiffiffi

n!m!
p �n

i¼1�m
j¼1a

y

ðωiÞbyð~ωjÞ 0j i, where n;m 2 N are the signal and idler photon
numbers and ωi ; ~ωj 2 R > 0 are the respective frequencies of each
photon. The corresponding set of POVM operators are
f ω; ~ωj i ω; ~ωh jjn;m 2 N; ωi; ~ωj 2 R > 0g. We calculate the Fisher
information (FI), ~Fq , corresponding to this measurement for a
generalization ~ψμ

�� �
of the probe state ψμ

�� �
given in Eq. (8). This

generalized probe state contains phase factors depending on the
kinetic properties of the target and a complex squeezing
parameter, which were previously omitted in our analysis. We
can show that the measurement outcomes do not depend on

Table 1. Listed are the quantum advantages for the different
parameter regimes.

Regime 1 Regime 2 Regime 3

ξ≪ K1/2 ξ≫ K3/2 K1/2≪ ξ≪ K3/2

Jq
Jc
� 1 Jq

Jc
� N

ffiffiffiffiffi
K�1
Kþ1

p
S

Jq
Jc
� ξ

K3=2 NS

Regime 1, 2 and 3 correspond to the high-frequency entanglement, the
high-squeezing and the mixed regime, respectively. Here, the contribu-
tions due to the bandwidth shift are neglected.
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these phases. Indeed, both states ~ψμ

�� �
and ψμ

�� �
give rise to the

same probability distribution of measurement outcomes. Thus, the
POVM f ω; ~ωj i ω; ~ωh jg is actually phase insensitive. Finally, we prove
that ~Fq ¼ Jq, so this measurement also saturates the QFI in section
“Quantum protocol”. Let us remark that this measurement does
not depend on the parameter μ, so it can be used for saturating
the QFI for any velocity. Also, it could in principle be experimentally
feasible by using diffraction gratings that map frequency
components to distinct locations where photon counters are
placed53,54. We note, that the POVM is a separate measurement of
the signal and idler beams, which further facilitates the experi-
mental implementation. This also indicates that the idler, and thus
the entanglement, solely serves as a state preparation tool. For
example, one can check that the idlerless Fock state

� ðây0Þ
NS0ðây1Þ

NS1
0j i, which has no frequency entanglement and

could be approximately heralded with our probe state, beats the
SQL and shows the same behaviour under loss as in Eq. (21) for the
limit NS≫ 1.

Further perspectives
Lastly, we want to emphasize that the protocol can be easily
adapted to different frequency and/or bandwidth estimating
protocols. Also, the target’s trajectory can be generalized to an
accelerating one via a Bogoliubov transformation55,56, but with an
additional complication due to the presence of Casimir radiation.
For stationary targets, the protocol can be adapted to estimate the
location, which boils down to the estimation of arrival times of the
signal beam. The probe state written in the time domain has
exactly the same structure as in the frequency domain, where
the variances of the double Gaussian change as σ2/2→ 2σ2 and
ϵ2/2→ 2ϵ2. The Schmidt number remains unaltered under this
transformation. Thus, the estimation of time arrival of signal
photons is analogous to the estimation of mean frequency of the
signal photons. Analogously, a measurement that attains the
optimal performance is the measurement of photon arrival times.

DISCUSSION
We have proposed a protocol for a quantum Doppler lidar that
estimates the radial velocity of a reflecting moving target using a
twin beam with frequency entanglement and squeezing as
quantum resources. This quantum protocol was benchmarked
against a classical one by calculating the QFIs for both strategies.
We have identified three different parameter regimes, achieving
quantum advantage in two of them. In the high-squeezing
regime, where the frequency entanglement becomes less relevant
compared to squeezing, the quantum protocol exceeds the
standard quantum limit. In the mixed regime, where both
quantum resources are comparable, the quantum protocol follows
the Heisenberg limit. We have found that frequency-resolved
photon counting of signal and idler beam is an optimal
measurement in the lossless case. The effect of losses on the
performance of the protocol was studied in the high-squeezing
regime by modelling the loss channel as a frequency-independent
reflectivity beam splitter. A constant factor quantum advantage
≥3 dB in the variance of the estimator is achieved given a path
transmissivity ≥50%.

METHODS
Quantum estimation theory
The objective of quantum estimation theory is to find the ultimate
precision limit for the estimation of a parameter μ that is encoded
in a quantum system. In our scenario, the probe state ρ that is
emitted by the lidar acquires information about μ during the
reflection off the moving target, which transforms the state as

ρ→ ρμ. The classical Fisher information (FI) F(μ) is a measure of the
information about the parameter μ that can be extracted by a
given measurement corresponding to the positive operator-
valued measure (POVM) {Πz} with

R
dz Πz ¼ 1. The FI is given by

FðμÞ ¼
Z

dz
1

pμðzÞ
∂μpμðzÞ
	 
2

; (22)

where pμðzÞ ¼ TrðΠzρμÞ is the probability of having the measure-
ment outcome z given the parameter μ. The Cramér-Rao bound is
given by51

VarðμÞ⩾ 1
MFðμÞ ; (23)

where μ is an unbiased estimator that maps the measurement
data of the M experiment repetitions to an estimate of the
parameter μ. The bound can be saturated using the maximum
likelihood estimator in the limit of large M57. Maximizing the FI
over all POVMs {Πz} yields the quantum Fisher information
J(μ)⩾ F(μ). The Eq. (23) for the QFI is called the quantum
Cramér-Rao bound which sets the absolute precision limit for
the estimation of μ. In the case of a pure-state manifold, i.e. when
ρ̂μ ¼ ψμ

�� �
ψμ

� �� for any μ, the QFI is given by51

JðμÞ ¼ 4 h∂μψμj∂μψμi � jhψμj∂μψμij2
� �

: (24)

To prove a quantum advantage, we calculate the QFIs Jq and Jc of
both the quantum and classical strategy. A quantum advantage is
achieved, if the ratio is Jq/Jc > 1 assuming both strategies
illuminate the object with the same energy and an optimal
measurement is performed. An observable corresponding to the
optimal measurement is given by Ôμ ¼ 1μþ L̂μ=JðμÞ, where L̂μ is
the symmetric logarithmic derivative (SLD), which satisfies
L̂μρ̂μ þ ρ̂μL̂μ ¼ 2∂μρ̂μ . As the optimal observable generally
depends on the parameter itself, a prior guess about the
parameter is required to construct the measurement. The
measurement can then be adaptively optimized52.

Gaussian states
A Gaussian state is fully defined by its first two moments d and Σ.
Their components are defined as

dm ¼ tr ρ̂R̂m
� 


; (25)

and

Σnm ¼ tr ρ̂fΔR̂m;ΔR̂
y
ng

h i
; (26)

where R̂ ¼ ðâ0; ây0; â1; ây1; ¼ ÞT and ΔR̂ ¼ R̂� d̂. Gaussian uni-
taries that transform the state as ρ̂0 ¼ Ûρ̂Û

y
transform the first

moments as

d0 ¼ Gdþ b; (27)

and

Σ0 ¼ GΣGy; (28)

where G is the corresponding symplectic matrix, see ref. 50 for
more information on how G and b relate to the Gaussian unitary
Û. A formula for the QFI of a Gaussian state is given by

JðμÞ ¼ lim
κ!1

1
2
vec½∂μΣ�yM�1

κ vec½∂μΣ� þ 2∂μd
yΣ�1∂μd; (29)

where Mκ ¼ κΣy � Σ� K � K with the symplectic form K=
diag(1,− 1, 1,− 1,…). The operation vec[⋅] turns a matrix into a
vector as

vec
a b

c d

� �� �
¼

a

b

c

d

0
BBB@

1
CCCA: (30)

M. Reichert et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2022)   147 



We can also calculate the SLD in this formalism. It is given by

L̂μ ¼ ΔR̂
yAμΔR̂� 1

2
tr½ΣAμ� þ 2ΔR̂

y
Σ�1∂μd; (31)

where vec½Aμ� ¼ lim
κ!1

M�1
κ vec½∂μΣ�.

DATA AVAILABILITY
The authors declare that all data supporting the findings of this study are available
within the article and its Supplementary Material.

Received: 7 July 2022; Accepted: 30 November 2022;

REFERENCES
1. Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in

photonic quantum sensing. Nat. Photonics 12, 724–733 (2018).
2. Lloyd, S. Enhanced sensitivity of photodetection via Quantum Illumination. Sci-

ence 321, 1463–1465 (2008).
3. Tan, S.-H. et al. Quantum illumination with Gaussian states. Phys. Rev. Lett. 101,

253601 (2008).
4. Barzanjeh, S. et al. Microwave quantum illumination. Phys. Rev. Lett. 114, 080503

(2015).
5. Casariego, M., Omar, Y. & Sanz, M. Bi-frequency illumination: a quantum-

enhanced protocol. Adv. Quantum Technol. 5, 2100051 (2022).
6. Zhuang, Q., Zhang, Z. & Shapiro, J. H. Quantum illumination for enhanced

detection of Rayleigh-fading targets. Phys. Rev. A 96, 020302(R) (2017).
7. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced positioning and clock

synchronization. Nature 412, 417–419 (2001).
8. Liu, H. et al. Enhancing lidar performance metrics using continuous-wave photon-

pair sources. Optica 6, 1349–1355 (2019).
9. Maccone, L. & Ren, C. Quantum radar. Phys. Rev. Lett. 124, 200503 (2020).
10. Zhuang, Q. Quantum ranging with Gaussian entanglement. Phys. Rev. Lett. 126,

240501 (2021).
11. Zhuang, Q. & Shapiro, J. H. Ultimate accuracy limit of quantum pulse-

compression ranging. Phys. Rev. Lett. 128, 010501 (2022).
12. Zhuang, Q., Zhang, Z. & Shapiro, J. H. Entanglement-enhanced lidars for simul-

taneous range and velocity measurements. Phys. Rev. A 96, 040304(R) (2017).
13. Huang, Z., Lupo, C. & Kok, P. Quantum-limited estimation of range and velocity.

PRX Quantum 2, 030303 (2021).
14. Huang, Z., Macchiavello, C. & Maccone, L. Usefulness of entanglement-assisted

quantum metrology. Phys. Rev. A 94, 012101 (2016).
15. Heras, U. L. et al. Quantum illumination reveals phase-shift inducing cloaking. Sci.

Rep. 7, 9333 (2017).
16. Woodworth, T. S., Hermann-Avigliano, C., Chan, K. W. C. & Marino, A. M.

Transmission estimation at the Cramér-Rao bound for squeezed states of light
in the presence of loss and imperfect detection. Phys. Rev. A 102, 052603
(2022).

17. Woodworth, T. S., Hermann-Avigliano, C., Chan, K. W. C. & Marino, A. M. Trans-
mission Estimation at the Fundamental Quantum Cramér-Rao Bound with Mac-
roscopic Quantum Light. Preprint at https://arxiv.org/abs/2201.08902 (2022).

18. Spedalieri, G., Lupo, C., Braunstein, S. L. & Pirandola, S. Thermal quantum
metrology in memoryless and correlated environments. Quantum Sci. Technol. 4,
015008 (2018).

19. Spedalieri, G., Piersimoni, L., Laurino, O., Braunstein, S. L. & Pirandola, S. Detecting
and tracking bacteria with quantum light. Phys. Rev. Res. 2, 043260 (2020).

20. Shi, H., Zhang, Z., Pirandola, S. & Zhuang, Q. Entanglement-assisted absorption
spectroscopy. Phys. Rev. Lett. 125, 180502 (2020).

21. Pirandola, S. & Lupo, C. Ultimate precision of adaptive noise estimation. Phys. Rev.
Lett. 118, 100502 (2017).

22. Lupo, C. & Pirandola, S. Ultimate precision bound of quantum and sub-
wavelength imaging. Phys. Rev. Lett. 117, 190802 (2016).

23. Köse, E., Adesso, G. & Braun, D. Quantum-enhanced passive remote sensing. Phys.
Rev. A 106, 012601 (2022).

24. Zhuang, Q., Zhang, Z. & Shapiro, J. H. Optimum mixed-state discrimination for
noisy entanglement-enhanced sensing. Phys. Rev. Lett. 118, 040801 (2017).

25. Nair, R. & Gu, M. Fundamental limits of quantum illumination. Optica 7, 771–774
(2020).

26. Di Candia, R., Yiğitler, H., Paraoanu, G. S. & Jäntti, R. Two-way covert quantum
communication in the microwave regime. PRX Quantum 2, 020316 (2021).

27. Pirandola, S., Laurenza, R., Lupo, C. & Pereira, J. L. Fundamental limits to quantum
channel discrimination. npj Quantum Inf. 5, 50 (2019).

28. Zhuang, Q. & Pirandola, S. Ultimate limits for multiple quantum channel dis-
crimination. Phys. Rev. Lett. 125, 080505 (2020).

29. Guha, S. & Erkmen, B. I. Gaussian-state quantum-illumination receivers for target
detection. Phys. Rev. A 80, 052310 (2009).

30. Sanz, M., Las Heras, U., García-Ripoll, J. J., Solano, E. & Di Candia, R. Quantum
estimation methods for quantum illumination. Phys. Rev. Lett. 118, 070803 (2017).

31. Jonsson, R. & Di Candia, R. Gaussian quantum estimation of the loss parameter in
a thermal environment. J. Phys. A Math. Theor. 55, 385301 (2022).

32. Shapiro, J. H. The quantum illumination story. IEEE Aerosp. Electron. Syst. Mag. 35,
8–20 (2020).

33. Jonsson, R., Di Candia, R., Ankel, M., Ström, A. & Johansson, G. A comparison
between quantum and classical noise radar sources. In 2020 IEEE Radar Con-
ference (RadarConf20) 1–6 (2020).

34. Shi, H., Zhang, B. & Zhuang, Q. Fulfilling entanglement’s benefit via converting
correlation to coherence. Preprint at https://arxiv.org/abs/2207.06609 (2022).

35. Arthurs, E. & Kelly, J. L. On the simultaneous measurement of a pair of conjugate
observables. Bell Syst. Tech. J. 44, 725–729 (1965).

36. Shapiro, J. H. Quantum pulse compression laser radar. Proc. SPIE Int. Soc. Opt. Eng.
6603, 660306 (2007).

37. Van Trees, H. L. Detection, Estimation, and Modulation theory, Part III: Radar-Sonar
Signal Processing and Gaussian Signals in Noise (Wiley, 2001).

38. Mosley, P. J., Christ, A., Eckstein, A. & Silberhorn, C. Direct measurement of the
spatial-spectral structure of waveguided parametric down-conversion. Phys. Rev.
Lett. 103, 233901 (2009).

39. Christ, A. et al. Spatial modes in waveguided parametric down-conversion. Phys.
Rev. A 80, 033829 (2009).

40. Christ, A., Laiho, K., Eckstein, A., Cassemiro, K. N. & Silberhorn, C. Probing multi-
mode squeezing with correlation functions. N. J. Phys. 13, 033027 (2011).

41. Horn, R. et al. Monolithic source of photon pairs. Phys. Rev. Lett. 108, 153605
(2012).

42. Francesconi, S. et al. Engineering two-photon wavefunction and exchange sta-
tistics in a semiconductor chip. Optica 7, 316–322 (2020).

43. Eckstein, A., Christ, A., Mosley, P. J. & Silberhorn, C. Highly efficient single-pass
source of pulsed single-mode twin beams of light. Phys. Rev. Lett. 106, 013603
(2011).

44. Merkouche, S., Thiel, V. & Smith, B. J. Spectrally resolved four-photon interference
of time-frequency-entangled photons. Phys. Rev. A 105, 023708 (2022).

45. Fedorov, M., Mikhailova, Y. M. & Volkov, P. Gaussian modelling and Schmidt
modes of SPDC biphoton states. J. Phys. B 42, 175503 (2009).

46. Xie, Z. et al. Harnessing high-dimensional hyperentanglement through a bipho-
ton frequency comb. Nat. Photonics 9, 536–542 (2015).

47. Blow, K. J., Loudon, R., Phoenix, S. J. D. & Shepherd, T. J. Continuum fields in
quantum optics. Phys. Rev. A 42, 4102 (1990).

48. Barnett, S. & Radmore, P. M. Methods in Theoretical Quantum Optics (Oxford
University Press, 2002)

49. Davis, A. O., Saulnier, P. M., Karpiński, M. & Smith, B. J. Pulsed single-photon
spectrometer by frequency-to-time mapping using chirped fiber bragg gratings.
Opt. Express 25, 12804 (2017).

50. Šafranék, D. Estimation of Gaussian quantum states. J. Phys. A Math. Theor. 52,
035304 (2019).

51. Paris, M. G. Quantum estimation for quantum technology. Int. J. Quantum Inf. 7,
125–137 (2009).

52. Liu, J., Yuan, H., Lu, X.-M. & Wang, X. Quantum Fisher information matrix and
multiparameter estimation. J. Phys. A Math. Theor. 53, 023001 (2019).

53. Gianani, I., Sbroscia, M. & Barbieri, M. Measuring the time-frequency properties of
photon pairs: a short review. AVS Quantum Sci. 2, 011701 (2020).

54. Davis, A. O., Thiel, V. & Smith, B. J. Measuring the quantum state of a photon pair
entangled in frequency and time. Optica 7, 1317 (2020).

55. Gianfelici, G. & Mancini, S. Quantum channels from reflections on moving mirrors.
Sci. Rep. 7, 115747 (2017).

56. Good, M. R. R., Anderson, P. R. & Evans, C. R. Time dependence of particle creation
from accelerating mirrors. Phys. Rev. D. 88, 025023 (2013).

57. Fisher, R. A. Theory of statistical estimation. Math. Proc. Camb. Philos. Soc. 22,
700–725 (1925).

ACKNOWLEDGEMENTS
We thank Robert Jonsson, Göran Johansson and Benjamin Huard for insightful
discussions. We acknowledge financial support from Basque Government QUANTEK
project from ELKARTEK program (KK-2021/00070) and the Basque Government
project IT1470-22, Spanish Ramón y Cajal Grant RYC-2020-030503-I and the project
grant PID2021-125823NA-I00 funded by MCIN/AEI/10.13039/501100011033 and by
“ERDF A way of making Europe” and “ERDF Invest in your Future”, as well as from
QMiCS (820505) and OpenSuperQ (820363) projects of the EU Flagship on Quantum
Technologies, and the EU FET-Open projects Quromorphic (828826) and EPIQUS

M. Reichert et al.

8

npj Quantum Information (2022)   147 Published in partnership with The University of New South Wales

https://arxiv.org/abs/2201.08902
https://arxiv.org/abs/2207.06609


(899368). M.R. acknowledges support from UPV/EHU PhD Grant PIF21/289. M.W.
acknowledges support from the National Science Foundation under Grant CCF-
1956211. R.D.C. acknowledges support from the Marie Skłodowska Curie fellowship
number 891517 (MSC-IF Green- MIQUEC), the Alexander von Humboldt Foundation,
the Knut and Alice Wallenberg Foundation through the Wallenberg Centre for
Quantum Technology (WACQT), and the Academy of Finland, grants nos. 353832,
349199.

AUTHOR CONTRIBUTIONS
M.R. developed the theoretical formalism and performed the analytic calculations.
M.S. suggested the seminal idea and supervised the project throughout all stages.
M.R., M.S., R.D.C. and M.W. contributed to the interpretation and improvement of the
results. M.R. took the lead in writing the manuscript and all authors provided critical
feedback.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41534-022-00662-9.

Correspondence and requests for materials should be addressed to Maximilian
Reichert or Mikel Sanz.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

M. Reichert et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2022)   147 

https://doi.org/10.1038/s41534-022-00662-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Quantum-enhanced Doppler lidar
	Introduction
	Results
	Model of the moving target
	Classical protocol
	Quantum protocol
	A fair comparison
	No frequency entanglement
	High-frequency-entanglement regime
	High-squeezing regime
	The mixed regime
	A loss analysis for the high-squeezing regime
	Optimal measurement
	Further perspectives

	Discussion
	Methods
	Quantum estimation theory
	Gaussian states

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




