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We present a framework for the quantum enhanced estimation of multiple parameters corresponding to

noncommuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all

three components of a magnetic field. We propose a probe state that surpasses the precision of estimating

the three components individually, and we discuss measurements that come close to attaining the quantum

limit. Our study also reveals that too much quantum entanglement may be detrimental to attaining the

Heisenberg scaling in the estimation of unitarily generated parameters.

DOI: 10.1103/PhysRevLett.116.030801

Introduction.—As the elementary theory of nature,
quantum mechanics sets the fundamental limit to the
precision of parameter estimation. On the flip side, quan-
tum resources enable the estimation of parameters with a
precision surpassing that set by classical physics. This is the
basis of the field of quantum enhanced sensing and
metrology, and has been studied in great depth both
theoretically and experimentally [1–4]. Although most of
these investigations have largely focused on the estimation
of a single phase parameter, some attention has recently
been cast on the quantum enhanced estimation of multiple
parameters simultaneously [5–13], and some early experi-
ments have already been performed [14].
The motivations for studying quantum enhanced multi-

parameter estimation are manifold: First, while single-
phase estimation captures a wide range of scenarios
[15], high-level applications such as microscopy, spectros-
copy, and optical, electromagnetic, or gravitational field
imaging intrinsically involve multiple parameters that
should be estimated simultaneously. Second, while the
quantum enhanced limit for individual phase estimation can
always be attained [16,17], the measurements required to
attain the quantum enhanced limit for multiple parameters
need not necessarily commute. This makes multiparameter
quantum enhanced sensing a very interesting scenario for
studying the limits of quantummeasurements [6,7]. Finally,
multiparameter quantum enhanced sensing provides a
novel paradigm for investigating the information process-
ing capabilities of multipartite or multimode quantum
correlated states and measurements.
In this Letter, we study the problem of estimating a

multidimensional field using a fixed number of particles.
We first show that for a uniform field, the quantum
enhancement to the precision of estimation is provided
entirely by the two-particle reduced density matrix of the
system, and that the attainability of the quantum enhance-
ment is solely determined by the one-body reductions of the
probe state. We apply our methods to the simultaneous
estimation of all the components of a classical magnetic
field in three dimensions, and we show that this can be

about three times better than estimating the components
individually [18–21]. Finally, we present a multipartite
quantum state achieving this advantage, and we show how
realistic measurements perform in attaining the multipara-
meter quantum limit using matrix product state techniques
[22–24].

Framework.—We consider the estimation of parameters
governed by the Hamiltonian ĤðφÞ ¼

P

d
k¼1

φkĤk. The
parameters φk ∈ R, k ¼ 1;…; d, to be estimated are the
coefficients of a set of (not necessarily commuting) gen-

erators Ĥk. We assume that the Ĥk themselves do not
depend on φ. In addition to estimating a field in multiple
dimensions simultaneously in free space, materials, or
biological samples, this problem is equivalent to quantum
enhanced Hamiltonian tomography as it allows us to
estimate unknown coefficients of the Hamiltonian in a
suitable operator decomposition [25]. We note that earlier
works have studied the estimation of parameters corre-
sponding to unitary channels from information geometry
[26–28] and representation theory [29,30] perspectives;
their estimations have shown a Heisenberg scaling.
A pureN-particle probe state jψi acquires the parameters

via the unitary transformation ÛðφÞ ¼ e−iĤðφÞ, and we
seek the best quantum strategy for the estimation of the

parameters from the evolved probe state jψφi ¼ ÛðφÞjψi.
The performance of an estimator of φ is quantified in terms
of the covariance matrix Cov½φ%. The quantum Cramér-Rao
bound [16,17] is a lower bound to the covariance matrix in
terms of the quantum Fisher information matrix (QFIM),
thus yielding an ultimate limit on the best possible
precision of any (unbiased) estimator. For every specific
set of positive operator valued measurements (POVMs)

fΠ̂ig, one finds [17]

MCov½φ% ≥ F ðφ; fΠ̂igÞ−1 ≥ IðφÞ−1; ð1Þ

where the first inequality is the classical and the second
inequality the quantum Cramér-Rao bound, respectively.
Here, M is the number of times the overall experiment
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is repeated, F k;lðφ; fΠ̂igÞ ¼
P

n∂φk
pðnjφÞ∂φl

pðnjφÞ=
pðnjφÞ, and k; l ¼ 1;…; d, denotes the Fisher information
matrix (FIM) determined by the probabilities pðnjφÞ ¼
hψφjΠ̂njψφi. Further, Ik;lðφÞ¼Re½hψφjL̂kL̂ljψφi% is the

QFIM, where, for pure probe states, the symmetric loga-

rithmic derivative (SLD) L̂k with respect to the parameter φk

is determined by L̂k ¼ 2½j∂φk
ψφihψφjþ jψφih∂φk

ψφj% for
all k ¼ 1;…; d [17].

While the classical Cramér-Rao bound can always be

saturated by, e.g., a maximum likelihood estimator [31], the

quantum limit [i.e., the second inequality in Eq. (1)] may not

be attainable in general. In a single parameter setting, the

optimal measurements saturating the quantum Cramér-Rao

bound are given by the projectors onto the eigenvectors of

the SLD. In the multiparameter setting, however, the SLDs

may not commute in general; this may lead to tradeoffs for

the precisions of the individual estimators [6,7].

Formalism.—For unitary time evolutions under the

Hamiltonians discussed above, we show in Sec. I of the

Supplemental Material [32] that the QFIM can be expressed

as the correlation matrix of the Hermitian operators

ÂkðφÞ ¼
R

1
0
dαeiαĤðφÞĤke

−iαĤðφÞ [33], leading to (sup-

pressing the parameter φ in the arguments henceforth)

Ik;l ¼ 4Re½hψ jÂkÂljψi − hψ jÂkjψihψ jÂljψi%: ð2Þ

We now restrict ourselves to the situation where the N

particles evolve under the one-particle Hamiltonian ĥ½n% ¼
P

d
k¼1 φkĥ

½n%
k for n ¼ 1;…; N (where the ĥ

½n%
k are bounded),

leading to the global Hamiltonian

ĤðφÞ ¼
X

N

n¼1

ĥ½n% ¼
X

d

k¼1

φk

X

N

n¼1

ĥ
½n%
k ≡

X

d

k¼1

φkĤk: ð3Þ

With this, we find ÂkðφÞ≡
P

N
n¼1 â

½n%
k , where â

½n%
k ¼

R

1
0
dαeiαĥ

½n%ðφÞĥ
½n%
k e−iαĥ

½n%ðφÞ are Hermitian operators acting

only on particle n.
Now, for estimating a uniform field as given by the

Hamiltonian (3), the phase parameters are identical across

the system (although they correspond to noncommuting

generators). Hence, to simplify the calculation, we restrict

ourselves to permutationally invariant quantum states, i.e.,

states that are invariant under any permutation of its

constituents: jψi ¼ P̂πjψi for all possible π, where P̂π

denotes the unitary operator for the particular permutation

π [34]. Under the restriction of permutationally invariant

states, the QFIM simplifies to (see Sec. II of the

Supplemental Material [32] for a more general derivation

and discussion without the assumption of permutationally

invariant states)

I ¼ 4NI ½1% þ 4NðN − 1ÞI ½2%; ð4Þ

where

I
½1%
k;l ¼ Re½Tr½ϱ̂½1%âkâl%% − Tr½ϱ̂½1%âk%Tr½ϱ̂

½1%âl% ð5Þ

only depends on the one-particle reduced density matrix

ϱ̂½1% and

I
½2%
k;l ¼ Tr½ϱ̂½2%âk ⊗ âl% − Tr½ϱ̂½1%âk%Tr½ϱ̂

½1%âl% ð6Þ

depends on the two-particle reduced density matrix ϱ̂½2%.

Equation (4) highlights several interesting physical

aspects of quantum-enhanced metrology: First, note that

I ½1% can be bounded independently of ϱ̂½1%. This immedi-

ately shows that the archetypal quadratic scaling of

quantum enhanced sensing arises solely from the two-

particle reduced terms. For instance, let the probe state be

jψi ¼ jϕi⊗N , i.e., permutationally invariant and separable.

Then, ϱ̂½2% ¼ ϱ̂½1% ⊗ ϱ̂½1% such that I ½2% ¼ 0, and the QFIM

only scales linearly in N, i.e., I ¼ NI ½1%. Thus, Eq. (4)

implies that in permutationally invariant systems quantum

correlations are necessary for achieving a quadratic scaling

in the number of probe states N—the so-called Heisenberg

scaling. Note that the latter reasoning also applies to

quantum states that are not permutationally invariant, as

can be seen by the results of Sec. II of the Supplemental

Material [32]. Further, for probe states of the form

jψi ¼ jϕi⊗N , the QFIM satisfies rank½I % ≤ 2ðD − 1Þ,
where D is the dimension of the local Hilbert space

(e.g., D ¼ 2 for two-level systems, see Sec. III of the

Supplemental Material [32] for details) such that if the

number of parameters exceeds 2ðD − 1Þ, i.e.,

d > 2ðD − 1Þ, a simultaneous estimation of all parameters

necessarily fails due to a lack of information for all

parameters in the QFIM. Finally, if both the one- and

two-particle reduced states are maximally mixed, the

Heisenberg scaling is lost. To see this, note that ϱ̂½1% ¼
12=2 (where 1k is the k × k identity matrix) implies

I ½2% ¼ Tr½ϱ̂½2%âk ⊗ âl% − Tr½âk%Tr½âl%=4, which vanishes if

ϱ̂½2% ¼ 14=4. This is an example where too much entangle-

ment harms the quantum advantage of exploiting N
particles in parallel [13,35].

Attaining the quantum limit.—Saturating the quantum

Cramér-Rao bound and attaining the QFIM is the next

important part of quantum enhanced sensing. This is

particularly interesting for multiparameter estimation since

the SLDs corresponding to the different parameters need

not commute. We show in Sec. IV of the Supplemental

Material [32] that for a purely unitary evolution, the QFIM

is saturated if (i) the QFIM is of full rank and (ii) the

expectation value of the commutator of the SLDs

vanishes for all pairs [28], i.e., hψφjL̂kL̂l − L̂lL̂kjψφi≡
8iIm½hψ jÂkÂljψi% ¼ 0. For permutation invariant systems,

this reduces to 8iNIm½Tr½ϱ̂½1%âkâl%% ¼ 0 for all k, l. It is
interesting to note that while the quantum enhanced scaling

is governed entirely by the two-particle reduced density

matrices [see Eq. (4) and Sec. II of the Supplemental

Material [32] ], the attainability of this bound is determined
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solely by the one-particle term (for a general proof, see

Sec. IVof the Supplemental Material [32]). The expectation

value vanishes, for instance, for permutationally invariant

pure probe states jψi with ϱ̂½1% ¼ 12=2. This is a sufficient
but not necessary condition for the expectation of the

commutator to vanish and gives a rather simple mathemati-

cal condition for the quantum Cramér-Rao bound to be

saturated. It is an instance of the local suppression of the

noncommutativity of the generators using quantum corre-

lations [26].

More generally, when the expectation values of all

commutators of the SLDs vanish and the QFIM is of full

rank, the eigenvectors of the d distinct SLDs lie in a

subspace of dimension dþ 1, allowing for the construction

of a POVM that saturates the quantum Cramér-Rao bound.

We prove this assertion in Sec. IV of the Supplemental

Material [32] and, further, provide a procedure for con-

structing such a POVM that saturates the quantum Cramér-

Rao bound. Note that for commuting generators,

hψ jÂkÂljψi ∈ R, such that the quantum Cramér-Rao

bound can always be saturated given the QFIM is not

rank deficient (see also [28]).

Estimating a magnetic field in three dimensions.—We

now apply our formalism to the task of estimating the

components of a magnetic field in three dimensions

simultaneously using two-level systems. Potential

systems could include trapped ions, nitrogen-vacancy

centers, or doped spins in semiconductors [36–40]. The

Hamilton operator for this system is given by ĥ ¼ μ̂ · B ¼
P

3
k¼1

μ̂kBk ¼
P

3
k¼1

ðμ=2ÞBkσ̂k ≔
P

3
k¼1

φkσ̂k (see Sec. V

of the Supplemental Material [32] for a discussion of

d > 3), where the magnetic moment μ̂k ¼ μσ̂k=2 is propor-
tional to the spin, fσ̂kg denotes the unnormalized Pauli

operators, and φk ¼ μBk=2. To develop the intuition for

estimating the magnetic field in three dimensions simulta-

neously, we start with the estimation of a magnetic field

pointing solely along one of the specific directions X, Y, or
Z. It is well known that a Greenberger-Horne-Zeilinger-

type state (see the Sec. VI of Supplemental Material [32])

jΦki ¼ ðjϕþ
k i⊗N þ jϕ−

k i⊗NÞ=
ffiffiffi

2
p

ð7Þ

achieves the quantum Cramér-Rao bound, where jϕ'
k i is the

eigenvector of the Pauli operator σ̂k corresponding to the

eigenvalue'1 (k ¼ 1, 2, 3 corresponding to the X, Y, and Z
directions). These states are permutationally invariant with

one- and two-particle reduced density matrices ϱ̂
½1%
k ¼ 12=2

and ϱ̂
½2%
k ¼ ðjϕþ

k ;ϕ
þ
k ihϕþ

k ;ϕ
þ
k jþ jϕ−

k ;ϕ
−
k ihϕ−

k ;ϕ
−
k jÞ=2 ¼

ð12 ⊗ 12 þ σ̂k ⊗ σ̂kÞ=4, respectively. Now, for the simulta-

neous estimation of all three components, an obvious

candidate is

jψi ¼ N ðeiδ1 jΦ1iþ eiδ2 jΦ2iþ eiδ3 jΦ3iÞ; ð8Þ

where N is the normalization constant and fδkg are

adjustable local phases. Now, for N ¼ 2n, n ∈ N, there

are appropriate δk such that ϱ̂½1% ¼ 12=2; i.e., the quantum

Cramér-Rao bound can be achieved. For N ¼ 4n, this can
even be realized by setting δk ¼ 0 for all k. Moreover, for

N ¼ 8n (and δk ¼ 0 for all k) the two-body reduced density
matrix of jψi is an equal mixture of the GHZ-type states in

all directions and is given by

ϱ̂½2% ¼
1

3

X

3

k¼1

ϱ̂
½2%
k ¼

1

4
12 ⊗ 12 þ

1

12

X

3

k¼1

σ̂k ⊗ σ̂k: ð9Þ

For any other N, we show in Sec. VII of the Supplemental

Material [32] that the difference from the form of ϱ̂½2% in

Eq. (9) is exponentially small in N. To simplify our

calculations, we henceforth restrict ourselves without loss

of generality to states with Eq. (9) as its two-body reduced

density matrix, but note that this is no limitation of our model

as indicated by the numerical simulations presented below.

Now, for a probe state with marginals ϱ̂½1% ¼ 12=2 and

ϱ̂½2% given above, the QFIM is (see Sec. VIII of the

Supplemental Material [32] and Ref. [27], which shows

the same scaling)

Ik;l¼
4

3
NðNþ2Þ½ð1−sinc2½ξ%Þηkηlþδk;lsinc

2½ξ%%; ð10Þ

where sinc½ξ% ¼ sin½ξ%=ξ with ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ2
1 þ φ2

2 þ φ2
3

p

and

ηk ¼ φk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ2
1 þ φ2

2 þ φ2
3

p

for all k. Note that, in the limit

of φk → 0 for k ¼ 1, 2, 3, the QFIM is diagonal, i.e.,

Ik;l ¼ ð4=3ÞNðN þ 2Þδk;l. Since the QFIM in Eq. (10) is

the sum of a rank-one matrix and a rescaled identity, its

eigenvalues can be read off directly as λ1 ¼ 4NðN þ 2Þ=3
and λ2;3 ¼ 4NðN þ 2Þsinc2½ξ%=3. As for ξ ≠ kπ, k ∈ N, the

quantum Cramér-Rao bound can be saturated [41]; the

minimal total variance for estimating the three components

of the magnetic field simultaneously is given by jΔφsim
ent j2 ¼

P

3
k¼1 Δφ

2
k ¼ Tr½CovðφÞ% ¼ Tr½I−1ðφÞ% [42], leading to

jΔφsim
ent j2 ¼

3þ 6=sinc2½ξ%

4NðN þ 2Þ
; ξ ≠ kπ; k ∈ N: ð11Þ

Let us now compare three different scenarios depicted in

F. 1 for the estimation of φ: (i) A classical strategy of using

only pure product states, (ii) a quantum strategy where the

parameters are estimated individually, and (iii) the simul-

taneous estimation of the parameters with total variance

given by Eq. (11). To obtain a fair comparison among (i)–

(iii), we use exactly N particles to estimate all three cases.

For scenario (i), the strategy is to divide the set of N
particles into three blocks of length n ¼ N=3 and, on the

kth block, to prepare a product state that allows for the

estimation of φk. This is due to the impossibility of

estimating three parameters simultaneously using a pure

and permutationally invariant product state, as shown by

the singularity of the QFIM (Sec. III of the Supplemental

Material [32] shows that its rank is 2). The maximal QFI for

each block (see Sec. VI of the Supplemental Material [32])

PRL 116, 030801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

22 JANUARY 2016

030801-3



is equal to Ik¼n½λmaxðâkÞ−λminðâkÞ%
2, where λmax=minðâkÞ

denotes the maximal or minimal eigenvalue of âk such

that ½λmaxðâkÞ−λminðâkÞ%
2¼4½ð1−sinc2½ξ%Þη2kþsinc2½ξ%%

for k ¼ 1, 2, 3. Further, Δφ2
k ¼ 1=Ik and, thus, we find

for the individual estimation of all parameters using

separable states

jΔφind
sepj2 ¼

3

4N

X

3

k¼1

1=½ð1 − sinc2½ξ%Þη2k þ sinc2½ξ%%: ð12Þ

Second, for a quantum strategy exploiting entangled

states where we estimate the parameters individually, we

again divide the chain of N particles into three blocks.

Next, on the kth block, one prepares a GHZ-type state in the

âk basis. Recall that for each block, Ik ¼ n2½λmaxðâkÞ −
λminðâkÞ%

2 (see Sec. VI of the Supplemental Material [32])

such that with Δφ2
k ¼ 1=Ik one finds

jΔφind
ent j2 ¼

3

N
jΔφind

sepj2: ð13Þ

Third, for the simultaneous estimation of the parameters,
the total variance is given by Eq. (11). Because for all three
scenarios the QFI depends on the true parameter values, we
expect the advantage of simultaneously estimating the three
parameters to be a function of φ. The inset of Fig. 2 shows a
specific example suggesting that it is possible to design
quantum probes for magnetic field estimation such that
estimating the three components simultaneously may be
superior to estimating them individually. Overall,

jΔφsim
ent j2 ≤ jΔφind

ent j2 ≤ jΔφind
sepj2 for all N ≥ 3 and some

true parameter values φk. In the limit φk → 0, for all

k ¼ 1, 2, 3, with ½λmaxðâkÞ − λminðâkÞ%
2
→ 4 one finds

jΔφind
sepj2 → 9=4N (see [43] for a similar result in a

slightly different context), jΔφind
ent j2 → 27=4N2, and

jΔφsim
ent j2 → 9=4NðN þ 2Þ. This is illustrated in Fig. 2,

where the results are obtained numerically using matrix
product state techniques [22–24] (see [44] for another
application in quantum metrology) to also account for
system sizes N ≠ 8n. It is important to note that for the
considered states and operators, this representation is exact
and, hence, no approximation is made; see Sec. IX of the
Supplemental Material [32]. Further, in the limit φk → 0we
obtain a threefold improvement when estimating the
parameters simultaneously. Note that this observation is

not proven to be optimal but, in this limit, confirms the
findings of [8] for commuting generators.

Classical Fisher information.—We have already dis-

cussed (see Sec. IVof the Supplemental Material [32]) that

there is a POVM that achieves the multiparameter quantum

Cramér-Rao bound. The so-constructed POVM contains as

one element the projector onto the time-evolved probe

state, i.e., ÛðφÞjψi. While this set theoretically achieves the

bound, it may not be very appealing from an experimental

perspective. Hence, let us finally discuss some realistic

measurements. In particular, we consider two sets of

POVMs: Π̂
ð1Þ
k , k ¼ 1;…; 4, contains the three projectors

Π̂
ð1Þ
k ¼ jΨkihΨkjwith jΨki ¼ ðjϕþ

k i⊗N þ eiδk jϕ−
k i⊗NÞ=

ffiffiffi

2
p

together with the element guaranteeing normalization,

Π̂
ð1Þ
4 ¼ 1 −

P

3
k¼1 Π̂

ð1Þ
k . Note that for even N and appro-

priate δk, these operators indeed form a valid set of POVMs

[45]. Further, Π̂
ð2Þ
k;', k ¼ 1;…; 3, is determined solely by

expectation values of simple Pauli strings, i.e.,

Π̂
ð2Þ
k;' ¼ ð1' σ̂⊗N

k Þ=6:

Note that Π̂
ð1Þ
k are entangled measurements while Π̂

ð2Þ
k;' only

involves local operators. Again, we use matrix product state

techniques to compute the classical Fisher information for

these POVMs, see Fig. 2. Further, allowing for entangled

measurements (for the considered true parameter values

and system sizes) does not improve the scaling of the

FIG. 1. The three considered scenarios as discussed in the main

text.

FIG. 2. Log-log plot for the estimation of the three directions

of a magnetic field with parameters φ1 ¼ 10−3 and

φ2 ¼ φ3 ¼ φ1=10. We show the total variance for the three

different scenarios described in the main text, as well as the result

obtained for the FIM for the two considered POVMs. Note that

for the QFIM results we computed the total variance for all N,

while for the FIM results we made computations only for the

values of N emphasized with a marker. Inset: Total variance for

the three scenarios and fixed N ¼ 120 with respect to the true

parameter value φ1 (where, as before, we set φ2 ¼ φ3 ¼ φ1=10).
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precision, as both POVMs obey a Heisenberg scaling. This

resembles the results presented in [4] for single-parameter

metrology.

Conclusions.—We have obtained the quantum limits for

the simultaneous estimation of parameters corresponding to

noncommuting unitary generators. We applied our methods

to the simultaneous estimation of all three components of a

magnetic field in space. The results suggest that estimating

the phases simultaneously may improve the sensitivity by a

factor of d ¼ 3, in consonance with earlier results with

commuting generators [8]. Future extensions of our results

could include, among others, a combination of commuting

and noncommuting generators, and the inclusion of

decoherence. Another direction could be the search for

optimal probe states and more tractable measurements for

specific physical systems, such as trapped ions or vacancy

centers in diamond.
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I. UNITARY MULTI-PARAMETER ESTIMATION:

SLDS AND QFIM

In the first section of the Supplemental Material, we set out

to find an expression for the symmetric logarithmic deriva-

tives (SLDs) together with the quantum Fisher information

matrix (QFIM) for the setting discussed in the main text. For

this, we restrict ourselves to unitary channels where the to-be-

estimated parameters 'k 2 R, k = 1, . . . , d, are the coeffi-

cients of a set of (not necessarily commuting) generators Ĥk,

i.e., we consider unitaries of the form

Û(ϕ) = e�iĤ(ϕ) = e�i
P

d

k=1 ϕkĤk , (1)

where Ĥ
†
k = Ĥk for all k = 1, . . . , d and ϕ 2 R

d with [ϕ]k =

'k. Further, note that the Ĥk do not depend on the parameters

ϕ. For a pure probe state | i and purely unitary evolution, the

SLDs are given by [1]

L̂k = 2
⇥

|@ϕk
 ϕih ϕ|+ | ϕih@ϕk

 ϕ|
⇤

, (2)

where |@ϕk
 ϕi = [@ϕk

Û(ϕ)]| i denotes the partial deriva-

tive of | ϕi with respect to the parameter 'k. Now, recall

that [2] (see [3] for another application in quantum metrol-

ogy)

@ e�iĤ(ϕ)

@'k

=�i

Z 1

0

d↵ e�i(1�α)Ĥ(ϕ) @Ĥ(ϕ)

@'k

e�iαĤ(ϕ), (3)

i.e.,

@

@'k

| ϕi =
@

@'k

Û(ϕ)| i = Û(ϕ)Ôk(ϕ)| i (4)

with the skew-Hermitian operator

Ôk(ϕ)=�iÂk(ϕ)=�i

Z 1

0

d↵ eiαĤ(ϕ) Ĥk e
�iαĤ(ϕ) (5)

and where we defined Âk(ϕ) = iÔk(ϕ). With Eqns. (2)

and (4) one finds

L̂k = 2Û
⇥

Ôk| ih |+ | ih |Ô†
k

⇤

Û†

= 2iÛ
⇥

| ih |, Âk

⇤

Û†,
(6)

where [X̂, Ŷ ] denotes the commutator of the operators X̂ and

Ŷ , respectively. Next, let us consider the QFIM. For unitary

time evolutions it is given by [1, 4]

Ik,l(ϕ)=4Re[h@ϕk
 ϕ|@ϕl

 ϕi�h@ϕk
 ϕ| ϕih ϕ|@ϕl

 ϕi].
With this, Eqn. (4) allows us to write the QFIM in terms of the

correlation matrix of the operators {Âk(ϕ)}. One finds

Ik,l(ϕ) = 4Re
⇥

h |ÂkÂl| i�h |Âk| ih |Âl| i
⇤

. (7)

Note that we omitted the explicit dependency of the opera-

tors on the parameters ϕ. Although the process is unitary the

QFIM may depend on the parameters ϕ, i.e., I = I(ϕ). Fur-

ther, in general, we have [Âk(ϕ), Âl(ϕ)] 6= 0.

II. THE QFIM FOR ONE-PARTICLE HAMILTONIANS

First, let the N particles evolve independently under the one-

particle Hamiltonian ĥ[n] =
Pd

k=1 'kĥ
[n]
k for n = 1, . . . , N

such that

Ĥ(ϕ) =

N
X

n=1

ĥ[n] =

d
X

k=1

'k

N
X

n=1

ĥ
[n]
k ⌘

d
X

k=1

'kĤk. (8)

As shown in the main text, the operators Âk(ϕ) simplify to

Âk(ϕ) =
PN

n=1 â
[n]
k with

â
[n]
k =

Z 1

0

d↵ eiαĥ
[n]

ĥ
[n]
k e�iαĥ[n]

. (9)

With this, and Eqn. (7), we find

Ik,l = 4
N
X

n,m=1

Re
h

h |â
[n]
k â

[m]
l | i � h |â

[n]
k | ih |â

[m]
l | i

i

= 4
X

n

Re
h

Tr
⇥

%̂[n]â
[n]
k â

[n]
l

⇤

�Tr
⇥

%̂[n]â
[n]
k

⇤

Tr
⇥

%̂[n]â
[n]
l

⇤

i

+4
X

n 6=m

Re
h

Tr
⇥

%̂[n,m]â
[n]
k ⌦ â

[m]
l

⇤

�Tr
⇥

%̂[n]â
[n]
k

⇤

Tr
⇥

%̂[m]â
[m]
l

⇤

i

=: 4
X

n

I
[1]
k,l

�

%̂[n]
�

+ 4
X

n 6=m

I
[2]
k,l

�

%̂[n,m]
�

, (10)



2

where I
[1]
k,l(%̂

[n]) depends only on the reduced density matrix

on sub-system n and I
[2]
k,l(%̂

[n,m]) only depends on the reduced

density matrix on sub-systems n,m.

Next, let us restrict to permutationally invariant quantum

states, i.e., states that satisfy | i = P̂π| i for all possible

permutations ⇡. Here, the unitary operator P̂π rearranges the

constituents subject to the particular permutation ⇡. For these

systems, the one- and two-particle reduced density matrices

are given by %̂[n] = %̂[1] and %̂[n,m] = %̂[2] for all n,m, respec-

tively.

With this, we obtain for the QFI for permutation invariant

states (given we consider only Hamiltonians of the form of

Eqn. (8))

Ik,l = 4
X

n

I
[1]
k,l

�

%̂[1]
�

+
X

n 6=m

I
[2]
k,l

�

%̂[2]
�

= 4NI
[1]
k,l + 4N(N � 1)I

[2]
k,l,

(11)

where

I
[1]
k,l = Re

⇥

Tr
⇥

%̂[1]âkâl
⇤⇤

� Tr
⇥

%̂[1]âk
⇤

Tr
⇥

%̂[1]âl
⇤

(12)

only depends on the one-particle reduced density matrix and

I
[2]
k,l = Tr

⇥

%̂[2]âk ⌦ âl
⇤

� Tr
⇥

%̂[1]âk
⇤

Tr
⇥

%̂[1]âl
⇤

(13)

depends on the two-particle reduced density matrix.

III. THE QFIM FOR PRODUCT PROBE STATES

In this section of the Supplemental Material, we prove an up-

per bound on the rank of the QFIM for separable probe states.

Recall

I = 4NI [1] + 4N(N � 1)I [2], (14)

where

I
[2]
k,l = Tr

⇥

%̂[2]âk ⌦ âl
⇤

� Tr
⇥

%̂[1]âl
⇤

Tr
⇥

%̂[1]âl
⇤

= 0 (15)

for product probe states, i.e., states of the form | i = |�i⌦N

where |�i 2 CD. Note that for these states %̂[1] = |�ih�| such

that

I
[1]
k,l = Re

⇥

Tr
⇥

%̂[1]âkâl
⇤⇤

� Tr
⇥

%̂[1]âk
⇤

Tr
⇥

%̂[1]âl
⇤

= Re
⇥

h�|âkâl|�i
⇤

� h�|âk|�ih�|âl|�i. (16)

Now, let =
PD

n=1 |⇠nih⇠n| where |⇠1i = |�i. With this

I
[1]
k,l =

D
X

n=2

Re
⇥

h�|âk|⇠nih⇠n|âl|�i
⇤

+Re
⇥

h�|âk|�ih�|âl|�i
⇤

� h�|âk|�ih�|âl|�i.

=
D
X

n=2

Re
⇥

h�|âk|⇠nih⇠n|âl|�i
⇤

. (17)

Next, we define vectors xn 2 CD, n = 2, . . . , D, with entries

xk
n = h�|âk|⇠ni. With this, the QFIM I = 4NI [1] reduces to

I = 4N

D
X

n=2

Re
⇥

xnx
†
n

⇤

= 2N

D
X

n=2

h

xnx
†
n +

�

xnx
†
n

�⇤
i

which is a sum of 2(D � 1) rank one matrices. Hence,

rank[I]  2(D � 1).

IV. UNITARY MULTI-PARAMETER ESTIMATION:

SATURATING THE QUANTUM CRAMÉR-RAO BOUND

Next, we prove that the quantum Cramér-Rao bound can

be saturated in the setting we are considering. In a multi-

parameter estimation setup, in general, the SLDs do not com-

mute. This is the reason why the quantum Cramér-Rao bound

may not be saturated [5, 6]. As we will see, however, if the

expectation value of the commutator vanishes, i.e.,

h ϕ|L̂kL̂l � L̂lL̂k| ϕi = 0, (18)

the bound can sill be achieved (see also [7]). One finds

h ϕ|L̂kL̂l| ϕi/4

= h |
⇣

Ôk| ih |+ | ih |Ô†
k

⌘

⇥

⇥
⇣

Ôl| ih |+ | ih |Ô†
l

⌘

| i

= h |Ôk| ih |Ôl| i+ h |Ôk| ih |Ô
†
l | i

+ h |Ô†
kÔl| i+ h |Ô†

k| ih |Ô
†
l | i.

(19)

With this,

h ϕ|L̂kL̂l � L̂lL̂k| ϕi

= 8i
h

Im[h |Ôk| ih |Ô
†
l | i] + Im[h |Ô†

kÔl| i]
i

= 8i Im
h

h |ÂkÂl| i
i

,

(20)

where Ôk = �iÂk and h |Âk| i 2 R as Âk = Â†
k. For

Âk =
PN

n=1 â
[n]
k this expectation value reduces to

8i
X

n 6=m

Im
h

Tr
⇥

%̂[n,m]â
[n]
k ⌦â

[m]
l

⇤

i

+8i
X

n

Im
h

Tr
⇥

%̂[n]â
[n]
k â

[n]
l

⇤

i

= 8i
X

n

Im
h

Tr
⇥

%̂[n]â
[n]
k â

[n]
l

⇤

i

= 8iN Im
h

Tr
⇥

%̂[1]âkâl
⇤

i

, (21)

since Tr[%̂[n,m]â
[n]
k ⌦ â

[m]
l ] 2 R for n 6= m and the last equa-

tion is valid for permutational invariant systems.

Next, we prove that

Im
h

h |ÂkÂl| i
i

= 0 (22)



3

is a sufficient condition for the Cramér-Rao bound to be satu-

rated. First, note that each SLD L̂k (see Eqn. (6)) is of rank 2
where the non-zero eigenvalues are given by

λ±
k = ±2

q

hψ|Â2
k|ψi � hψ|Âk|ψi2 (23)

with the corresponding eigenvectors

|φ±
k i = akÛ Âk|ψi+ b±k Û |ψi, (24)

where

ak =
1

q

2hψ|Â2
k|ψi

,

b±k = �
hψ|Âk|ψi± i

q

hψ|Â2
k|ψi � hψ|Âk|ψi2

q

2hψ|Â2
k|ψi

.

Hence, the eigenspaces of {L̂k} are spanned by the d + 1
vectors

|ξ0i = Û |ψi, |ξki = Û Âk|ψi for k = 1, . . . , d. (25)

Secondly, we show that these vectors are linearly independent,

i.e., the subspace resulting by combining the eigenspaces of

the SLDs is of dimension d + 1. To prove this assertion, let

G 2 R
(d+1)×(d+1) be the Gramian matrix of the vectors given

in Eqn. (25), i.e., Gk,l = hξk|ξli. One finds

G=

0

B

B

B

@

1 hψ|Â1|ψi . . . hψ|Âd|ψi
hψ|Â1|ψi hψ|Â1Â1|ψi . . . hψ|Â1Âd|ψi

...
. . .

...

hψ|Âd|ψi hψ|ÂdÂ1|ψi . . . hψ|ÂdÂd|ψi

1

C

C

C

A

, (26)

where, of course, the probe state |ψi is normalised. It remains

to show that the Gramian matrix has full rank. For this, recall

that for every Hermitian matrix M that can be partitioned as

M =

✓

A B
B† C

◆

, (27)

where A and C are square matrices, it holds that [8]

M > 0 , A > 0 and C �B†A−1B > 0, (28)

where M > 0 denotes positive definiteness, i.e., hx|M |xi > 0
for all |xi. Note that S = C � B†A−1B is called the

Schur complement of block A of M . Now, let A = 1,

Bk = hψ|Âk|ψi, and Ck,l = hψ|ÂkÂl|ψi. Obviously, A > 0.

Further, the Schur complement is given by

Sk,l = hψ|ÂkÂl|ψi � hψ|Âk|ψihψ|Âl|ψi, (29)

i.e., S = I(ϕ)/4 given that the expectation values of all com-

mutators of the SLDs vanish, i.e., Im[hψ|ÂkÂl|ψi] = 0, see

Eqns. (7) and (22). As we assume that the QFIM has full

rank (with positive eigenvalues), we have S > 0. Thus, the

Gramian matrix is positive definite and, hence, has full rank

such that the set of vectors given in Eqn. (25) is linearly in-

dependent. Hence, one can find an orthogonal basis of the

subspace spanned by the eigenvectors of all SLDs by a Gram-

Schmidt orthogonalisation procedure starting with the vector

|ξ0i = Û |ψi. The d + 1 projectors onto these orthogonal

vectors, together with one element that accounts for the nor-

malisation, form a set of POVMs of cardinality d + 2. As

one element of this POVM is the projector onto the time-

evolved probe state, the results of Ref. [4] prove that this set

of POVMs saturates the quantum Cramér-Rao bound.

V. d > 3

Let us restrict to two-level systems and come back to the set-

ting where the task is to estimate the three components of a

magnetic field pointing in an arbitrary direction, i.e., the evo-

lution under the Hamiltonian

ĥ = µ̂B =

3
X

k=1

µ̂kBk =

3
X

k=1

µ

2
Bkσ̂k :=

3
X

k=1

ϕkσ̂k. (30)

It is worth mentioning that d = 3 is the maximal number

of to-be-estimated parameters given the Hamiltonian acts on

each site independently. Assume that

ĥ =

d
X

k=1

ϕkĥk (31)

for a d > 3. We can always decompose each ĥk in the (nor-

malised) Pauli basis {P̂i} with P̂1 = σ̂1/
p
2, P̂2 = σ̂2/

p
2,

P̂3 = σ̂3/
p
2, and P̂4 = /

p
2. One finds

ĥ =

4
X

l=1

 

d
X

k=1

ϕk tr[P̂lĥk]

!

P̂l =

4
X

l=1

clP̂l (32)

such that, in fact, {cl} are the independent parameters (and

the parameters {ϕk} are determined by the {ck}). Fur-

ther, any contribution that is proportional to the identity can

be neglected as this would result in an unobservable global

phase. Hence, estimating these three phases can be interpreted

as single-particle Hamiltonian tomography at the Heisenberg

limit.

VI. SINGLE-PARAMETER ESTIMATION AND

MULTI-PARAMETER ESTIMATION WITH COMMUTING

GENERATORS

Let us first review the results for single-parameter estima-

tion [9] in the framework discussed in the main text. For this,

let the single particle Hamiltonian governing the time evolu-

tion be given by ĥ = ϕĥ1+ ĥ2 where the Hermitian operators

ĥ1 and ĥ2 do not necessarily commute. Note that this includes

the estimation of one direction of a magnetic field pointing

in an arbitrary direction where the remaining directions are

kept constant, e.g., ĥ = ϕxσ̂x + ĥ2 with tr[σ̂xĥ2] = 0 and
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[�̂x, ĥ2] 6= 0. As we allow to probe the magnetic field with N
particles simultaneously, the unitary evolution is given by

Û =

N
O

n=1

e−iĥ[n]

=

N
Y

n=1

e−i(ϕĥ
[n]
1 +ĥ

[n]
2 ) = e−iϕĤ (33)

with Ĥ =
PN

n=1('ĥ
[n]
1 + ĥ2) the N -particle Hamiltonian.

Hence, Â =
PN

n=1 â
[n] where

â[n] =

Z 1

0

d↵ eiα(ϕĥ
[n]
1 +ĥ

[n]
2 ) ĥ

[n]
1 e−iα(ϕĥ

[n]
1 +ĥ

[n]
2 ), (34)

such that

I(') = 4(h |Â2| i � h |Â| i2). (35)

Now, for product probe states of the form | i = NN

n=1 |�ni,
one finds

I = 4

N
X

n=1

⇣

h�n|
�

â[n]
�2
|�ni � h�n|â[n]|�ni2

⌘

(36)

which reduces to

I = 4N
�

h�|â2|�i � h�|â|�i2
�

(37)

given that |�ni = |�i for all n = 1, . . . , N . The latter is

maximised by states of the form |�i = (|�maxi+ |�mini)/
p
2

where {|�mini, |�maxi} are the eigenstates of â corresponding

to the minimal �min(â) and maximal �max(â) eigenvalue. With

this,

I = N(�max(â)� �min(â))
2. (38)

Allowing for entangled probe states | i, it is well known that

the maximal quantum Fisher information is obtained by using

GHZ-type states [9], i.e.,

|Φâi = [|�maxi⊗N + |�mini⊗N ]/
p
2. (39)

Note that {|�maxi⊗N , |�mini⊗N} are the eigenstates of Â
corresponding to its maximal and minimal eigenvalue, i.e.,

{N�max(â), N�min(â)}. With this,

I = N2(�max(â)� �min(â))
2. (40)

Moreover, the Cramér-Rao bound can always be attained

yielding the quantum advantage of a Heisenberg scaling in

contrast to the shot noise limit with respect to the precision of

the parameter '. Note that for ĥ2 = 0 and ĥ1 = �̂k, with

either k = 1, 2, or 3, this reduces to the scenario of estimat-

ing the magnetic field when the direction (here X, Y, or Z) is

known.

Next, let us discuss a setting for multi-parameter estimation

where the generators {Ĥk} of the unitary time evolution com-

mute, i.e., where

Û = e−iĤ with Ĥ(ϕ) =
d

X

k=1

'kĤk (41)

and [Ĥk, Ĥl] = 0 for all k, l = 1, . . . , d. For this, we review

the results obtained in [4] in the framework discussed in the

main text. Recall that in [4] the task is to estimate d phases

in a d + 1-mode interferometer. Each phase is independently

imprinted on the probe state in one mode of the interferometer,

whereas the remaining mode serves as a reference. This is

done via the generators Ĥk = N̂k where N̂k is the number

operator for mode k. With this

Û(ϕ) = e−i
P

d

k=1 ϕkN̂k . (42)

Further, as [N̂k, N̂l] = 0, one finds Âk(ϕ) = N̂k such that the

quantum Fisher information matrix is given by

Ik,l = 4Re
h

h |N̂kN̂l| i � h |N̂k| ih |N̂l| i
i

. (43)

The probe state for this QFIM presented in [4] results from

the same intuition as the probe state discussed in the main

text for the magnetic field estimation: | i is a superposition

of the states that yield a quantum advantage when estimating

the parameters individually. While we cannot present a proof

that this intuition is optimal, it seems a good first guess when

considering simultaneous multi-parameter estimation.

Finally, as the generators {N̂k} commute, one finds

h |N̂kN̂l| i∗ = h |N̂kN̂l| i such that Im
⇥

h |N̂kN̂l| i
⇤

=
0 and the Cramér-Rao bound can be saturated.

VII. REDUCED DENSITY MATRICES OF THE PROBE

STATE

In this section of the Supplemental Material, we discuss the

reduced density matrices of the probe state given by

| i = N (|Φ1i+ |Φ2i+ |Φ3i)
= M

p
2 (|Φ1i+ |Φ2i+ |Φ3i)

= M ( |�+1 i⊗N+|�−1 i⊗N

+ |�+2 i⊗N+|�−2 i⊗N+|�+3 i⊗N+|�−3 i⊗N ) ,

(44)

where |�±k i is the eigenvector of the Pauli operator �̂k cor-

responding to the eigenvalue ±1 for all k = 1, 2, 3 and we

defined |Φki =
�

|�+k i⊗N + |�−k i⊗N
�

/
p
2. First, note that the

normalisation constant is determined via

1= M2

"

6 + 4

✓

1 + i

2

◆N

+ 4

✓

1� i

2

◆N

(45)

+ 10

✓

1p
2

◆N

+ 2

✓�1p
2

◆N

+ 2

✓

ip
2

◆N

+ 2

✓ �ip
2

◆N
#

.

Hence, M ! 1/
p
6 for N ! 1. Next, let us analyse the

two-body reduced density matrix. First, note that

%̂
[2]
k = tr\2 [|ΦkihΦk|]

=
1

2

�

|�+k ,�
+
k ih�+k ,�+k |+|�−k ,�

−

k ih�−k ,�−k |
�

=
1

4
( 2 ⌦ 2 + �̂k ⌦ �̂k)

(46)
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for all k. Moreover, terms like tr\2 [|ΦkihΦl|] scale as 1/2N/2

such that for N ! 1 they vanish. Hence, in the limit N !
1, the two-body marginal of the probe state converges to

%̂[2] = tr\2 [|�ih�|] !
1

3

3
X

k=1

%̂
[2]
k . (47)

Finally, let us note that for N = 8n, n 2 N, this is exact, i.e.,

%̂[2] ⌘ P3
k=1 %̂

[2]
k /3.

VIII. DERIVATION OF THE QFIM

Here, we calculate the QFIM for the probe state given in

Eqn. (44) with one- and two-body reduced density matrices

%̂[1] = 2/2 and %̂[2] = 2⌦ 2/4+
P3

k=1 �̂k⌦�̂k/12, respec-

tively. We begin by noting that Tr[âk] = 0, 8k, since Pauli op-

erators are traceless and, hence, I
[1]
k,l(ϕ) = Tr [âkâl] /2. With

this

I
[2]
k,l(ϕ) = Tr

⇥

%̂[2]âk ⌦ âl
⇤

� Tr
⇥

%̂[1]âl
⇤

Tr
⇥

%̂[1]âl
⇤

=
1

12

3
X

m=1

Tr [(�̂m ⌦ �̂m)(âk ⌦ âl)]

=
1

6
Tr

"

3
X

m=1

Tr
h

P̂mâk

i

P̂mâl

#

=
1

6
Tr [âkâl]

as P̂k = �̂k/
p
2, k = 1, 2, 3, together with P̂4 = /

p
2 is an

orthonormal basis and the contribution proportional to P̂4 for

the operator âk is zero. Thus,

I
[2]
k,l(ϕ)=

1

3
Tr

h

%̂[1]âkâl

i

=
1

3
I
[1]
k,l(ϕ). (48)

Hence, the QFIM is

Ik,l(ϕ)=
4N(N + 2)

3
I
[1]
k,l =

2N(N + 2)

3
Tr [âkâl] . (49)

Using the definition of the operators {âk}, see the main text,

we have

Tr [âkâl] =

Z 1

0

d↵ d� Tr
h

eiαĥ �̂k e
�iαĥ eiβĥ �̂l e

�iβĥ
i

=

Z 1

0

d↵ d� Tr
h

�̂l e
i(α�β)ĥ �̂k e

�i(α�β)ĥ
i

= Tr
h

�̂lŴk

i

(50)

such that the entries of I(ϕ) are given in terms of the entries

of the operators

Ŵk =

Z 1

0

d↵ d� ei(α�β)ĥ �̂k e
�i(α�β)ĥ (51)

in the Pauli basis. To find analytic expression of these opera-

tors, recall that with knk2 = 1 one has

e�iθ(
P

3

k=1
nkσ̂k) = cos[✓] � i sin[✓]

3
X

k=1

nk�̂k. (52)

Now, let

⇠ =
q

'2
1 + '2

2 + '2
3 and ⌘k =

'k
p

'2
1 + '2

2 + '2
3

(53)

for all k = 1, 2, 3 (corresponding to X,Y und Z). We find for

the operators Ŵk

Ŵ1 =�̂1
⇥

1 + sinc2[⇠] + (1� sinc2[⇠])(⌘21 � ⌘22 � ⌘23)
⇤

/2

+�̂2
⇥

1� sinc2[⇠]
⇤

⌘1⌘2

+�̂3
⇥

1� sinc2[⇠]
⇤

⌘1⌘3,

where sinc[⇠] = sin[⇠]/⇠. Further,

Ŵ2 =�̂1
⇥

1� sinc2[⇠]
⇤

⌘1⌘2

+�̂2
⇥

1 + sinc2[⇠] + (1� sinc2[⇠])(�⌘21 + ⌘22 � ⌘23)
⇤

/2

+�̂3
⇥

1� sinc2[⇠]
⇤

⌘2⌘3,

and

Ŵ3 =�̂1
⇥

1� sinc2[⇠]
⇤

⌘1⌘3

+�̂2
⇥

1� sinc2[⇠]
⇤

⌘2⌘3

+�̂3
⇥

1 + sinc2[⇠] + (1� sinc2[⇠])(�⌘21 � ⌘22 + ⌘23)
⇤

/2.

With this, the QFIM simplifies to

Ik,l=
4

3
N(N + 2)

⇥

(1�sinc2[⇠])⌘k⌘l + �k,l sinc
2[⇠]

⇤

. (54)

IX. CALCULATION OF THE FIM AND QFIM IN TERMS

OF MATRIX PRODUCT STATE AND OPERATOR

REPRESENTATIONS

In this section of the appendix, we restrict to the setting where

the unitary transformation is given in terms of a one-body

Hamiltonian as presented in Eqn. (8). First, we discuss that

the QFIM can be computed exactly in terms of matrix product

states for the considered probe state | i. Recall that | i is

given by

| i = N
�

eiδ1 |Φ1i+ eiδ2 |Φ2i+ eiδ3 |Φ3i
�

, (55)

where

|Φki =
�

|�+k i⌦N + |��k i⌦N
�

/
p
2 (56)

and |�±k i is the eigenvector of the Pauli operator �̂k corre-

sponding to the eigenvalue ±1 for k = 1, 2, 3. Note that

|�±k i⌦N is a product state and, hence, a matrix product state

with bond-dimension D|φ±

k
i⊗N = 1. As the probe state | i is

the superposition of 6 product states, the matrix product state

representation of | i has bond-dimension D|ψi  6. This

representation is exact and no approximation. Hence the one-

and two-body reduced density matrices can be computed ef-

ficiently. This allows us to find the QFIM via Eqn. (11) for

large N .
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Next, let us analyse the FIM F(ϕ, {Π̂i}). Recall that

Fk,l(ϕ, {Π̂i}) =
X

n

∂ϕk
p(n|ϕ)∂ϕl

p(n|ϕ)

p(n|ϕ)
(57)

with p(n|ϕ) = hψϕ|Π̂n|ψϕi. Now, with Eqn. (4), i.e.,

∂ϕk
|ψϕi = �iÛ(ϕ)Âk(ϕ)|ψi, we find

∂ϕk
p(n|ϕ) = ∂ϕk

hψϕ|Π̂n|ψϕi

= ihψ|
⇥

Âk(ϕ), Û
†(ϕ)Π̂nÛ(ϕ)

⇤

|ψi.
(58)

Hence, the FIM is given by

Fk,l(ϕ, {Π̂i})

=�
X

n

hψ|
⇥

Âk, Û
†
Π̂nÛ

⇤

|ψi·hψ|
⇥

Âl, Û
†
Π̂nÛ

⇤

|ψi

hψ|Û †Π̂nÛ |ψi
.

(59)

It remains to show that all operators are matrix product opera-

tors of low bond-dimension. First, for a Hamiltonian given

by Eqn. (8), the unitary transformation can be written as

Û(ϕ) = û[1](ϕ) ⌦ . . . ⌦ û[1](ϕ) with û[n](ϕ) = e�iĥ[n]

.

Hence, Û(ϕ) can be represented as a matrix product operator

with bond-dimension D
Û
= 1.

Secondly, we require a matrix product operator representation

for the operators Âk(ϕ) =
PN

n=1 â
[n]
k , k = 1, 2, 3. Note that

these operators obey the form of a one-body Hamiltonian and,

hence, can be represented as a matrix product operator with

bond-dimension D
Âk

= 2.

Thirdly, let us analyse the two sets of POVMs. Note that Π̂
(1)
k ,

k = 1, 2, 3, are projectors onto matrix product states |Ψki
with bond-dimension D|Ψki = 2. Consequently, the matrix

product operator representation of these projectors have bond-

dimension D
Π̂

(1)
k

 4 for k = 1, 2, 3. For the fourth element

of this set, i.e., Π̂
(1)
4 = �

P3
k=1 Π̂

(1)
k , note that is a matrix

product operator of bond-dimension D = 1. Hence, this

POVM element has bond-dimension D
Π̂

(1)
4

 13 as it is the

sum of one matrix product operators with bond-dimension 1
and three matrix product operators of bond-dimension 4.

Finally, all matrix product state and operator representations

are exact with low bond-dimensions which are independent of

the system size N . Hence, the FIM elements can be computed

efficiently for large N without relying on any approximation.
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