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ABSTRACT

Theory has shown [1] that the quantum enhancements afforded by squeezed-vacuum injection (SVI) and phase-
sensitive amplification (PSA) can improve the spatial resolution of a soft-aperture, homodyne-detection laser-
radar (ladar) system. Here we show they can improve the range resolution of such a ladar system. In particular,
because an experimental PSA-enhanced system is being built whose slow photodetectors imply multi-pulse
integration, we develop range-measurement theory that encompasses its processing architecture. We allow the
target to have an arbitrary mixture of specular and speckle components, and present computer simulation results
demonstrating the range-resolution improvement that accrues from quantum enhancement with PSA.
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1. INTRODUCTION

It was shown in [1] that a coherent ladar that employs phase-sensitive amplification prior to homodyne detection
has superior transverse spatial resolution compared to one that does not. For the case of a receiver input aperture
with a soft rolloff in transmission (that may be desirable for apodizing the point-spread function of an original
hard aperture), it was also shown that the injection of squeezed-vacuum light at the soft aperture also led to
improved spatial resolution. These conclusions were subsequently found to hold even when the amplification and
squeezing parameters of the various input and injection field modes are non-uniform, and hence more faithful to
the situation in a real experiment [2]. In this paper, we show—through theory and simulation—that the use of
phase-sensitive amplification and/or squeezed-vacuum injection in a homodyne ladar receiver also improve the
longitudinal (range) resolution on a distant target by reducing the variance of the maximum-likelihood range
estimator. We do this both for specular and speckle point targets, and we allow for detectors whose integration
time is much longer than the temporal duration of the range-delay resolution bins.

In Sect. 2, we describe the coherent ladar system under study in general terms, including the ranging system
architecture. In Sect. 3, we derive formulas for the homodyne-measurement statistics using the fully-quantum
treatment necessary for describing a system that incorporates both squeezed-vacuum injection (SVI) and phase-
sensitive amplification (PSA). The special cases of PSA-only and the semiclassical baseline incorporating no
quantum enhancement whatsoever are emphasized. Our treatment applies both to specular point targets and
mixed targets with both specular and speckle reflectivity components. In Sect. 4, the maximum-likelihood
(ML) range estimator is derived, and simulation results are presented that predict quantum enhancements in
range-estimate variance for both specular and speckle targets.

2. QUANTUM-ENHANCED COHERENT LADAR: SYSTEM DESCRIPTION

Here we will describe the quantum-enhanced homodyne ladar system. In Subsect. 2.1, we obtain the form of
the homodyne-photocount operator, and in Subsect. 2.2, we obtain the operator description of our ladar system
enhanced with squeezed-vacuum injection and phase-sensitive amplification.
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2.1. Homodyne Photocount Operator

In this subsection we review the quantum description of balanced homodyne detection with a strong coherent-
state local oscillator (LO) in an arbitrary spatiotemporal mode. A detailed treatment of homodyne detection
with a continuous-wave LO from both the semiclassical and quantum viewpoints may be found in [3, 4]. The
relatively minor modification that is needed for the pulsed case is given below.

For a
√

photons m−2s−1-units detector plane space-time field operator Ê(ρ, t) being balanced-homodyne
detected against the LO coherent-state waveform ELO(ρ, t) using detectors with quantum efficiency η, the total
photocount operator N̂∗ is well approximated by

N̂ = 2η
∫
Ad×TI

dρ dt Re[Ê(ρ, t)E∗
LO(ρ, t)] + 2

√
η(1 − η)

∫
Ad×TI

dρ dt Re[Êη(ρ, t)E∗
LO(ρ, t)], (1)

where ρ denotes the transverse spatial coordinate in the the detector plane, and Êη(ρ, t) is a fictitious field
operator in the vacuum state that accounts for the sub-unity quantum efficiency of the detectors. The LO
waveform, defined on the product of the detection area Ad and time interval TI = [0, TI ] is given by

ELO(ρ, t) =
√

nT NLO χLO(ρ) ξT (t), (2)

where NLO is the average photon number in each LO pulse, χLO(ρ) is the normalized LO spatial pattern satisfying
∫
Ad

|χLO(ρ)|2dρ = 1, (3)

and ξT (t) is the normalized LO temporal pattern obeying
∫
TI

|ξT (t)|2dt = 1. (4)

The temporal mode function ξT (t) that we will be considering in this paper consists of a train of unit square-
integral flat-top pulses p(t):

p(t) =

{
1/
√

τ , for 0 ≤ t ≤ τ

0, otherwise
(5)

The period of the pulse train is denoted T (see Fig. 1), so that

ξT (t) =
1√
nT

( ∞∑
m=0

p(t − mT )

)
, t ∈ TI . (6)

As the notation suggests, nT may be thought of as the number of pulses in the integration interval TI , viz.,

nT =
∞∑

m=0

∫
TI

dt p2(t − mT ). (7)

Note that nT need not be a whole number. However, the values of τ in the Harris Corp. GCSD experiments
[5] are ∼200 psec while the integration time in their system is TI ∼ 1 μsec, owing to the slow photodetectors
employed. Therefore, the edge effects of pulses being cut off by the integration interval are negligible.

The integrands of (1), taken together, are a good approximation for the actual photocount-rate operator
when |ELO(ρ, t)|2 � 〈Ê†(ρ, t)Ê(ρ, t)〉 [3,4]. For NLO � 1, this condition holds at those times when the LO pulse
is on. However, for the intervals in which the LO is off, the field Ê(ρ, t) contributes photocounts that are not
accounted for in (1). Nevertheless, the integrated photocount over these intervals can be shown to be much less
than that from the LO-on intervals for sufficiently high NLO values.

∗The operator N̂ is the difference of the photocount operators N̂1 and N̂2 at the two detectors.
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Figure 1. (a) The normalized LO waveform having the shape of the pulse train ξT (t) of period T is shown, along with
the normalized target-return waveform of shape ξT (t − s), where s the roundtrip propagation delay. The pulse width is
τ . (b) The overlap integral θ(t) between pair of pulses (see Eq. (30)).

For a given LO temporal pattern, we may integrate out the time variable in (1) by defining

Ê(ρ) =
∫
TI

dt Ê(ρ, t)ξ∗T (t) (8)

as the purely space-dependent field operator that is in the same time mode as the LO, and use

ELO(ρ) =
√

nT NLO χ(ρ), (9)

to reduce (1) to

N̂T = 2η
∫
Ad

dρ Re[Ê(ρ)E∗
LO(ρ)] +

√
η(1 − η)nT NLO (v̂ + v̂†), (10)

where v̂ is a single-mode annihilation operator in the vacuum state representing the vacuum noise from Êη(ρ, t).
We have labeled the photocount operator with the period T of its LO temporal waveform to allow for multiple
measurements at different values of T as required for ranging (see Sect. 4). We have not included detector dark
noise in our derivation because, in practice, it is negligible in comparison to the LO shot noise of the baseline
system, and even less significant in quantum-enhanced operation.

2.2. Quantum-enhanced Ladar System

The optical setup of the coherent ladar system under consideration is shown in Fig. 2. The input pupil-plane
transverse spatial coordinate is denoted ρ′ and the field operator in this plane corresponding to the target
return is denoted ÊR(ρ′, t). In the following, we will assume the general case of an aperture with a real-valued
transmissivity A(ρ′) that is hard limited to a disk of diameter D. A typical functional form of a soft aperture
transmissivity function is the Gaussian shape:

A(ρ′) =

{
exp

(
−2|ρ′|2/R2

)
, for |ρ′| ≤ D/2

0, |ρ′| ≥ D/2.
(11)

A detector-plane field operator Êin
SVI(ρ, t) in its vacuum state enters a squeezer that produces the squeezed

output field Êout
SVI(ρ, t) (not shown in Fig. 2) that propagates toward the target to become the pupil-plane field

operator ÊS(ρ′, t), which mixes with the target-return field ÊR(ρ′, t) according to

Ê′
R(ρ′, t) = A(ρ′) ÊR(ρ′, t) +

√
1 − A2(ρ′) ÊS(ρ′, t). (12)
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Figure 2. Schematic of optical configuration of a quantum-enhanced homodyne ladar system. ρ and ρ′ are respectively
detector-plane and pupil-plane transverse coordinates. The output Êout

PSA(ρ, t) of a detector-plane phase-sensitive amplifier
(PSA) is measured using balanced homodyne detection. If a soft aperture of real-valued transmissivity A(ρ′) is used (as
pictured), a backward-propagating squeezed vacuum field ÊS(ρ′, t) may be mixed with the target-return field ÊR(ρ′, t)
in the pupil plane.

The field operator Ê′
R(ρ′, t) subsequently propagates in free space to the image plane to become Êin

PSA(ρ, t), which
is the input to a phase-sensitive amplifier. The PSA output Êout

PSA(ρ, t) is measured using balanced homodyne
detection with the LO given by (2).

In the architecture conceived for the Harris experiments [5], the LO temporal waveform ξT (t) is the same as
the PSA pump waveform and the SVI pump waveform is advanced by the roundtrip time delay, 2Δ, between
the detector and pupil planes. Similar to Subsec. 2.1, we may define

Ê
in(out)
PSA (ρ) =

∫
TT

dt Ê
in(out)
PSA (ρ, t)ξ∗T (t), (13)

ÊR(ρ′) =
∫
TI

dt ÊR(ρ′, t)ξ∗T (t + Δ), (14)

and
Ê

in(out)
SVI (ρ) =

∫
TT

dt Ê
in(out)
SVI (ρ, t)ξ∗T (t + 2Δ). (15)

With these definitions, the input-output relations of the squeezer may be written in terms of the purely space-
dependent operators as follows:

Êout
SVI(ρ) =

∫ [
α(ρ,ρ′)Êin

SVI(ρ
′) − β(ρ,ρ′)Êin†

SVI(ρ
′)

]
dρ′, (16)

where

α(ρ,ρ′) =
∑

n

√
g′n ψn(ρ)Ψ∗

n(ρ′) (17)

β(ρ,ρ′) =
∑

n

√
g′n − 1 ψn(ρ)Ψn(ρ′), (18)

for complete orthonormal (CON) sets of spatial mode functions {ψn} and {Ψn} on the detector plane and real-
valued gain coefficients {g′n ≥ 1}. These functions describe the spatial-mode characteristics of a real squeezer,
as elaborated in [2]. Similar input-output relations hold for the PSA, namely

Êout
PSA(ρ) =

∫ [
μ(ρ,ρ′)Êin

PSA(ρ′) + ν(ρ,ρ′)Êin†
PSA(ρ′)

]
dρ′, (19)
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where

μ(ρ,ρ′) =
∑

n

√
gn φn(ρ)Φ∗

n(ρ′) (20)

ν(ρ,ρ′) =
∑

n

√
gn − 1 φn(ρ)Φn(ρ′), (21)

for CON mode sets {φn} and {Φn} and gain coefficients {gn ≥ 1} (see [2] for details). Using the relations (16)
and (19) along with the Fresnel formulas for free-space diffraction between the pupil and detector planes, we
can show that the PSA output-field operator may be written in terms of just the target-return field and SVI
input-field operators and their adjoints, i.e.,

Êout
PSA(ρ) =

∫
dρ′[A1(ρ,ρ′)ÊR(ρ′) + A2(ρ,ρ′)Ê†

R(ρ′)
]
+

∫
dω

[
B1(ρ,ω)Êin

SVI(ω) + B2(ρ,ω)Êin†
SVI(ω)

]
, (22)

where the four transformation kernels appearing above are given by

A1(ρ,ρ′) =
∫

dσ
A(ρ′)
λd

e−ikσ·ρ′/dμ(ρ,σ), (23)

A2(ρ,ρ′) =
∫

dσ
A(ρ′)
λd

eikσ·ρ′/dν(ρ,σ), (24)

B1(ρ,ω) =
1

(λd)2

∫
dσ dρ ′dτ α(τ ,ω)e−ikρ′·τ/d

√
1 − A2(ρ′) e−ikσ·ρ′/dμ(ρ,σ)

− 1
(λd)2

∫
dσ dρ′ dτ β∗(τ ,ω)eikρ′·τ/d

√
1 − A2(ρ′) eikσ·ρ′/dν(ρ,σ), (25)

and

B2(ρ,ω) = − 1
(λd)2

∫
dσ dρ′ dτ β(τ ,ω)e−ikρ′·τ/d

√
1 − A2(ρ′) e−ikσ·ρ′/dμ(ρ,σ)

+
1

(λd)2

∫
dσ dρ′ dτ α∗(τ ,ω)eikρ′·τ/d

√
1 − A2(ρ′) eikσ·ρ′/dν(ρ,σ). (26)

Here, d is the separation between the pupil and image planes, and k = 2π/λ is the wavenumber at the ladar
wavelength λ. In computing the factors coming from field propagation, we have assumed for simplicity that
all global phase factors and the phase curvature at the input to the phase-sensitive amplifier resulting from
propagation from the pupil plane to the image plane have been compensated.

Because Êout
PSA(ρ) is the field operator being detected using homodyne detection, the expression (10) applies

with Ê(ρ) replaced by Êout
PSA(ρ):

N̂T = 2η

∫
Ad

dρ Re[Êout
PSA(ρ)E∗

LO(ρ)] +
√

η(1 − η)nT NLO (v̂ + v̂†). (27)

In order to calculate any desired statistics, all that remains to be specified is the quantum state of the input
field modes ÊR(ρ′) and Êin

SVI(ρ) and the mode v̂ of (10). Conditioned on a particular value of the target speckle
reflection coefficient†, we can describe the state of the system as a joint coherent state |ψ〉 such that

ÊR(ρ′)|ψ〉 = ER(ρ′)|ψ〉, (28a)
Êin

SVI(ρ)|ψ〉 = 0, (28b)
v̂|ψ〉 = 0. (28c)

†In the case of a specular target, no conditioning in necessary as the reflection coefficient is deterministic.
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In other words, the input to the squeezer is in the vacuum state while the target-return field’s eigenfunction
ER(ρ′) is given by

ER(ρ′) = r
√

NS χ(ρ′)
∫
TI

dt

( ∞∑
m=0

p(t − mT − s)

)
ξ∗T (t) = r

√
nT NS χ(ρ′)θ(s − T ). (29)

In this expression: s = 2L/c is the roundtrip delay time for a target at range Lm from the detector plane, NS is
the average number of signal photons per transmitted pulse (the transmitted pulse train is in a coherent state);
r is the roundtrip conditional specular reflection coefficient; and χ(ρ′) is the normalized pupil-plane field pattern
produced by the target. Also, θ(t) is the overlap function between flat-top pulses separated in time by t (see
Fig. 1),

θ(t) =
∫

du p(u)p(u − t) =

{
1 − |t|/τ, for − τ ≤ t ≤ τ

0, otherwise,
, (30)

so that ∫
TI

dt

( ∞∑
m=0

p(t − mT − s)

) ( ∞∑
m′=0

p(t − m′T )

)
= (31)

∫
TI

dt

( ∞∑
m=0

p(t − mT − s)p(t − mT )

)
∼= nT θ(s − T ), (32)

neglecting edge effects.

3. RANGING PHOTOCOUNT STATISTICS
We first derive the statistics of the homodyne photocount operator N̂T of (27) conditioned on the value of the
reflectivity r. In Subsect. 3.2, we consider the general case of a target with both specular and speckle reflectivity
components.

3.1. Statistics conditioned on target reflectivity
For a given r, and a particular target delay s, we can use (22) and (28) in (27) to show that the characteristic
function of the random variable NT corresponding to the measurement outcome of the operator N̂T has a
Gaussian form. As such, NT is fully characterized by its mean μT and its variance σ2

T . The mean is given by

μT = 2ηnT

√
NLONS Re

{
r

∫
dρ′dρ χ(ρ′)

[
A1(ρ,ρ′)χ∗

LO(ρ) + A∗
2(ρ,ρ′)χLO(ρ)

]}
θ(s − T ). (33)

Even in this general form, the following features of μT may be discerned:

1. The mean is independent of the parameters of the squeezed-vacuum injection.

2. The mean’s dependence on s is in the form of the factor θ(s − T ).

The variance of NT is found to be

σ2
T = η2nT NLO

{ ∫
dρ′

∣∣∣∣
∫

dρ
[
A1(ρ,ρ′)χ∗

LO(ρ) + A∗
2(ρ,ρ′)χLO(ρ)

]∣∣∣∣
2}

+η2nT NLO

{ ∫
dω

∣∣∣∣
∫

dρ
[
B1(ρ,ω)χ∗

LO(ρ) + B∗
2(ρ,ω)χLO(ρ)

]∣∣∣∣
2}

+η(1 − η)nT NLO. (34)

We see that

1. The variance is independent of the signal field parameters, and, in particular, is independent of s.

2. The variance is a sum of terms related to the PSA, SVI, and sub-unity detector quantum efficiency.

3. The variance is proportional to the average number of LO photons, nT NLO.
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3.1.1. Spatially-broadband squeezing and amplification and the classical baseline

Various special cases of the results (33)-(34) are of interest. For the case of spatially-broadband squeezing and
amplification considered in [1], we have

α(τ ,ω) =
√

g′ δ(τ − ω), (35)

β(τ ,ω) =
√

g′ − 1 δ(τ − ω), (36)

μ(ρ,σ) =
√

g δ(ρ − σ), (37)

and
ν(ρ,σ) =

√
g − 1 δ(τ − ω). (38)

Taking g = g′ = 1 reduces this spatially-broadband special case to the classical baseline, in which there is no
SVI or PSA quantum enhancements.

The preceding expressions for the spatially-broadband case lead to

A1(ρ,ρ′) =
√

gA(ρ,ρ′), (39)

and
A2(ρ,ρ′) =

√
g − 1 A(ρ,ρ′), (40)

where

A(ρ,ρ′) =
A(ρ′)
λd

e−ikρ·ρ′/d. (41)

They also give
B1(ρ,ω) =

√
gg′ B(ρ,ω) −

√
(g − 1)(g′ − 1)B∗(ρ,ω), (42)

and
B2(ρ,ω) = −

√
g(g′ − 1)B(ρ,ω) +

√
(g − 1)(g′)B∗(ρ,ω), (43)

where
B(ρ,ω) =

1
(λd)2

∫
dρ′ e−ik(ρ+ω)·ρ′/d

√
1 − A2(ρ′). (44)

It turns out to be convenient to define the image-plane function

χg(ρ) =
√

g χLO(ρ) +
√

g − 1 χ∗
LO(ρ), (45)

with which notation the mean μT , for the spatially-broadband case, is found to be

μT = 2ηnT

√
NLONS Re

{
r

∫
dρ

[ ∫
dρ′ χ(ρ′)A(ρ,ρ′)

]
χ∗

g(ρ)
}

θ(s − T ) (46)

= 2ηnT

√
NLONS Re

{
r

∫
dρFA[χ](ρ)χ∗

g(ρ)
}

θ(s − T ), (47)

where we see from the definition of A(ρ,ρ′) that FA[χ](ρ) is exactly χ(ρ′) propagated from the pupil plane
through the soft aperture and to the image plane. Hence the second line contains the overlap integral between
the image-plane target return and χg(ρ). In particular, for the baseline case of g = 1, we have χg(ρ) = χLO(ρ),
so that the integral is the overlap between the target-return mode and the LO mode on the detector plane.

Similarly, the variance σ2
T for the spatially-broadband case is found to be

σ2
T = η2nT NLO

∫
dρ′

∣∣∣∣BA[χ∗
g](ρ

′)
∣∣∣∣
2

+ η2nT NLO

∫
dω

∣∣∣∣
∫

dρ
[√

g′ B(ρ,ω) −
√

g′ − 1 B∗(ρ,ω)
]
χ∗

g(ρ)
∣∣∣∣
2

+ η(1 − η)nT NLO, (48)
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where BA[χ∗
g](ρ

′) is the pupil-plane field resulting from propagating χ∗
g(ρ) backwards from the image plane and

through the soft aperture, i.e.,

BA[χ∗
g](ρ

′) =
∫

dρ A(ρ,ρ′)χ∗
g(ρ). (49)

Examining (44) shows that B(ρ,ω) is the kernel for propagation of χ∗
g(ρ) from the image to the pupil plane

followed by reflection at the soft aperture and propagation back to the image plane. In the case of no SVI, i.e.,
g′ = 1, we see that the integral in the second term of our σ2

T formula is the integrated squared-magnitude in
this returned waveform, which by the unitarity of propagation is equal to the integrated squared-magnitude just
after reflection at the soft aperture. When added to the integral in the first term, the result is the integrated
squared-magnitude of χg(ρ), so that

σ2
T [no SVI] = η2nT NLO

∫
dρ

∣∣χg(ρ)
∣∣2 + η(1 − η)nT NLO. (50)

For baseline operation, χg(ρ) = χLO(ρ) has unit integrated squared-magnitude, and the classical homodyne-
detection variance is recovered:

σ2
T [baseline] = ηnTNLO. (51)

3.1.2. PSA only (no SVI)

When PSA is the only quantum enhancement that is employed, the input field to the amplifier, Êin
PSA(ρ), is in

a coherent state with eigenfunction

EPSA(σ) = r
√

nT NS FA[χ](σ)θ(s − T ). (52)

We then have from
Êout

PSA(ρ) =
∫

dσ Êin
PSA(σ)μ(ρ,σ) +

∫
dσ Êin

PSA(σ)†ν(ρ,σ), (53)

that

N̂T = η
√

nT NLO

{ ∫
dρ dσ

[
μ(ρ,σ)χ∗

LO(ρ) + ν∗(ρ,σ)χLO(ρ)
]
ÊR(σ)

+
∫

dρ dσ
[
μ∗(ρ,σ)χLO(ρ) + ν(ρ,σ)χ∗

LO(ρ)
]
ÊR(σ)†

}
+

√
η(1 − η)nT NLO (v̂ + v̂†). (54)

The following expressions for μT and σ2
T follow from (54):

μT = 2ηnT

√
NSNLO Re

[
r

∫
dσ dρ

[
μ∗(ρ,σ)χLO(ρ) + ν(ρ,σ)χ∗

LO(ρ)
]
FA[χ](σ)

]
θ(s − T ), (55)

and

σ2
T = η2nT NLO

∫
dσ

∣∣∣∣
∫

dρ
[
μ∗(ρ,σ)χLO(ρ) + ν(ρ,σ)χ∗

LO(ρ)
]∣∣∣∣

2

+ η(1 − η)nT NLO. (56)

3.2. Target with mixed reflectivity

We now consider the general case of a target whose reflectivity during the mth pulse of the T -sec-period signal
train is given by

R
(m)
T = ρ + r

′(m)
T . (57)

Here, ρ is the reflectivity’s specular component, which is independent of the pulse number and T value. Each
speckle coefficient r

′(m)
T is a circular-symmetric, zero-mean, complex-valued Gaussian random variable with

quadrature variance γ
(m)
T /2 < 1/2. The total average intensity-reflection coefficient during the mth pulse is

therefore |ρ|2 + γ
(m)
T . Depending on the speckle’s temporal behavior, correlations may exist among the different

r
′(m)
T .
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Because our slow photodetectors integrate over nT pulses, the total photocount random variable is

NT =
nT∑

m=1

N
(m)
T , (58)

where N
(m)
T is the photocount registered by the mth pulse. Conditioned on R

(m)
T , the theory of Sect. 3.1 applies

to the random variables N
(m)
T with r = R

(m)
T and the caveat that in the formulas (33), (34) for the means and

variances, we set the number of pulses nT = 1.

We will use I to denote the integral

I =
∫

dρ′ dρ χ(ρ′)
[
A1(ρ,ρ′)χ∗

LO(ρ) + A∗
2(ρ,ρ′)χLO(ρ)

]
(59)

appearing in (33). It is convenient to split each N
(m)
T into its specular, speckle, and quantum-noise contributions

according to
N

(m)
T = 2η

√
NLONS θ(s − T ) Re(ρI) + 2η

√
NLONS θ(s − T ) r

(m)
T |I| + Q

(m)
T , (60)

where r
(m)
T is a real-valued, zero-mean γ

(m)
T /2-variance Gaussian random variable, and Q

(m)
T is the zero-mean

Gaussian-distributed quantum noise whose variance is given by (34) with nT = 1. The different Q
(m)
T are

statistically independent and also independent of the r
(m)
T .

We now calculate the unconditional statistics of NT . It is clear that NT is still a Gaussian random variable,
although its variance will differ from (34) unless the target is specular. As we will see in Sect. 4.1, ranging requires
that we obtain a set of homodyne photocounts {NT } collected over a sequence of TI -sec-long measurement
intervals as T is stepped from Tmin to Tmax. For a target whose reflectivity contains a speckle component, two
such photocounts, NT and NT ′ , may be correlated.

The unconditional mean of NT for a mixed target is

μT = 2ηnT

√
NLONS θ(s − T ) Re(ρI), (61)

and is thus a function of the specular reflectivity alone. The unconditional covariance,

KTT ′ = 〈(NT − μT )(NT ′ − μT ′)〉, (62)

between two homodyne photocounts is

KTT ′ = 4η2NLONS |I|2θ(s − T ) θ(s − T ′)
nT∑

m=1

n′
T∑

m′=1

〈r(m)
T r

(m′)
T ′ 〉 + σ2

T δTT ′ , (63)

where σ2
T is given by (34), and δTT ′ is the Kronecker delta function. It is apparent that the covariance depends

on the speckle’s temporal behavior. The following special cases span the behaviors that might be encountered
in real applications:

1. Fast-varying speckle: If the target’s speckle characteristics change on a time scale faster than T seconds,
we may set 〈r(m)

T r
(m′)
T ′ 〉 = (γ(m)

T /2) δmm′δTT ′ to get

KTT ′ = 2η2NLONS

( nT∑
m=1

γ
(m)
T

)
|I|2θ2(s − T ) δTT ′ + σ2

T δTT ′ . (64)

2. Moderately-fast-varying speckle: If the target’s speckle characteristics do not change appreciably
within the nT T -sec duration of a single homodyne-photocount measurement, but are independent across
the different homodyne-photocount measurements, we have 〈r(m)

T r
(m′)
T ′ 〉 ≈ (γT /2) δTT ′ from which we get

KTT ′ = 2η2NLONSn2
T γT |I|2θ2(s − T ) δTT ′ + σ2

T δTT ′ . (65)
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3. Temporally-constant speckle: If the target reflectivity is unchanged throughout the entire sequence of
homodyne-photocount measurements, we have 〈r(m)

T r
(m′)
T ′ 〉 = γ/2. For a stationary target and probe beam,

this is expected to be the relevant case. The N
(m)
T are now correlated across different pulse-repetition

periods, with covariance given by

KTT ′ = 2η2NLONSnT nT ′γ|I|2θ(s − T ) θ(s − T ′) + σ2
T δTT ′ . (66)

4. MAXIMUM-LIKELIHOOD RANGE ESTIMATION AND SIMULATION RESULTS

Suppose that s is known to be in the interval [smin, smax]. For example, a laboratory-range target that may be 9
-to-15 m away from the ladar will have a range delay that lies in the 60-to-100 ns interval. Further suppose that
the pulse-repetition period T is chosen to lie in [smin−τ, smax +τ ], and measurements of NT are taken at different
values of T varying between Tmin = smin − τ and Tmax = smax + τ . Then it is guaranteed that the (m + 1)st LO
pulse will overlap the mth target-return pulse at some T and moves through it as T is varied from Tmin to Tmax.
Range estimation then proceeds by measuring homodyne photocounts of the target at a set of K different values
of T to obtain a count vector

N =
[

N1 N2 · · · NK

]T ≡
[

NT1 NT2 · · · NTK

]T (67)

followed by the maximum-likelihood processing described below.

4.1. Maximum-likelihood range estimation

The probability density function for N given the value of s is Gaussian, and fully characterized by the mean
vector

μs =
[

μ1 μ2 · · · μK

]T ≡
[

μT1 μT2 · · · μTK

]T
, (68)

and the covariance matrix K̃, whose kk′th element is Kkk′ ≡ KTkTk′ , where the means are given by (61) and the
covariances by (63). The probability density function for an observation N = n, given s, is therefore

p(n | s ) =
1

(2π)K/2|K̃|1/2
e−(n−μs)T K̃−1(n−μs)/2, (69)

which, as a function of s, is the likelihood function for range estimation. In particular, the maximum-likelihood
(ML) range estimate ŝML when N = n is observed is

sML = arg max
s

p(n | s ), (70)

and is computed using a numerical-maximization routine.

4.2. Simulation results

We now discuss simulation results corroborating the theory developed above. For simplicity, we will confine
ourselves to the most common case of a hard aperture of diameter D, so that

A(ρ′) =

{
1, for |ρ′| ≤ D/2

0, |ρ′| ≥ D/2.
(71)

From (12), it is apparent that the field operator ÊS(ρ′, t) which contains the SVI component does not contribute
to the post-aperture pupil-plane field operator ÊR(ρ′, t) and hence the measured statistics. It follows that PSA-
only operation is sufficient for quantum enhancement of a hard-aperture homodyne ladar. We will consider only
the spatially-broadband case of uniform gain coefficients gn ≡ g from Subsect. 3.1.1, with

GPSA ≡ (
√

g +
√

g − 1)2. (72)
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We will, however, consider both the specular and mixed-target cases. In the following, we consider a hard
aperture of diameter D = 2 mm, operating wavelength λ = 1.5μm, a 1 ns pulse width, and a target at range
L = 1 km from the detector plane.

We first consider a specular target of effective reflection coefficient r = 0.5. We will assume NS = 103,
NLO = 106 for the average number of signal and LO photons per pulse, and take nT = 1 in the integration
interval. (Note that increasing nT scales both the mean and variance by a factor of nT .) Figure (3a) plots the
squared mean and the variance as a function of the detection quantum efficiency η for both the baseline (dashed
curves) and PSA-enhanced operation (solid curves) with GPSA = 11.4 dB. Figure (3b) shows the signal-to-noise
ratio (SNR) defined as

SNR =
μ2

T

σ2
T

(73)

as a function of η. It is evident that PSA provides an SNR improvement when η < 1 that could potentially
improve range resolution.

Figure 3. (a) Squared-mean and variance of NT plotted versus detection efficiency η for baseline and PSA-only operation
with GPSA = 4, NS = 103, NLO = 106, and nT = 1. (b) Signal-to-noise ratio (SNR) versus η. PSA improves SNR when
η < 1. Both (a) and (b) are for a specular target with reflectivity r = 0.5 at distance L = 1 km. The operating wavelength
is λ = 1.5 μm and the pulse duration is τ = 1 ns. In both (a) and (b) the solid curves are for PSA-enhanced operation
and the dashed curves are for baseline operation.

Figure 4 depicts how the ML range estimate is obtained. It corresponds to baseline operation with the same
specular target from Fig. 3. A total of 30 NT observations were simulated at T values spaced 0.2 ns apart that
were centered on the target’s range delay s; the points in Fig. 4 are these simulated photocounts. For a specular
target, the different NT are statistically independent so that the likelihood function (69) (plotted as the blue
(light) curve) has the simple form specified in the figure. For this data set, the ML range-delay estimate satisfies
sML − s = −0.1 ns; target range is then estimated from LML = csML/2 where c is the speed of light.

For the chosen system and target parameters, we made 1000 Monte Carlo runs of the ML estimator, in order
to assess the variance of sML. These simulations were repeated for PSA-enhanced situations with various values
of GPSA. As shown in Fig. 5, the variance of the ML estimate decreases from the baseline case with increasing
PSA gain but saturates when GPSA � 1/η. This behavior can be understood qualitatively as follows. According
to (50), the photocount variance is the sum of a PSA-gain-dependent term and a detector efficiency term. The
mean (47) is, like the variance, a function of the gain through χg(ρ) of (45). For high gains, the first term of
the variance dominates. However, further increasing the gain has little effect on the SNR, as both the squared
mean and the variance increase at the same rate once the detector efficiency noise has been overcome.

Finally, we consider a mixed target example with ρ = 0.5 and speckle characteristic γT = 0.08. We assume
moderately-fast-varying speckle for the photocount measurements at different T values, so that (65) applies
for the covariance matrix K̃ of the observations. Figure 6 shows the root-mean-square error of the ML range
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Figure 4. Baseline homodyne-photocount simulations for different T -values, shown as points. The likelihood function,
shown as the continuous blue curve, is obtained from these observations. The ML range-delay estimate is the maximum
value of this likelihood function. The triangular curve is the pulse overlap function θ(T − s).
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Figure 5. The root-mean-square (RMS) error of the ML estimator sML as a function of GPSA. The RMS error decreases
until GPSA � 1/η, after which it saturates.
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Figure 6. The root-mean-square (RMS) error of the ML estimator sML as a function of η for a purely specular (black
curves) and a mixed (gray curves) target. The mixed-target performance is worse for both baseline and PSA-enhanced
operation.

estimator computed using Monte Carlo simulations for both the specular-target case considered earlier, and the
mixed-target case. As might have been foretold, the increased uncertainty in reflectivity of the mixed target
results in degradation of range-estimation performance for all η values in both the baseline and PSA-enhanced
cases. However, the root-mean-square error of the PSA-enhanced case degrades much more gracefully than the
baseline case as the detector quantum efficiency decreases from unity.

5. CONCLUSION

We considered the problem of maximum-likelihood range estimation in a homodyne ladar system with or without
quantum enhancements from squeezed-vacuum injection (SVI) and phase-sensitive amplification (PSA). For both
purely specular and specular-plus-speckle reflectivity targets, general formulas were derived for the Gaussian-
distributed photocount statistics for pulsed ladar operation in which ranging is performed by stepping the
transmitted and LO pulse periods through a sequence of values and processing the resultant vector of photocounts.
The photodetectors were assumed to be slow, so that a large number of pulses are integrated in every photocount
observation. Simulation results were presented for the case of a hard aperture with and without spatially-
broadband PSA enhancement. In general, the effect of PSA is to mitigate the SNR degradation due to sub-unity
detector quantum efficiency. The variance of the range estimate was concomitantly shown to be improved,
both in the specular and mixed-target cases, by application of the PSA enhancement. For a given soft-aperture
baseline system, the use of SVI in addition to PSA is expected to yield further range-estimation improvement.
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