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Stefano Pirandola

Computer Science and York Centre for Quantum Technologies, University of York,
York YO10 5GH, United Kingdom

(published 5 September 2018)

Quantum-enhanced measurements exploit quantum mechanical effects for increasing the sensitivity
of measurements of certain physical parameters and have great potential for both fundamental science
and concrete applications. Most of the research has so far focused on using highly entangled states,
which are, however, difficult to produce and to stabilize for a large number of constituents. In the
following alternative mechanisms are reviewed, notably the use of more general quantum correlations
such as quantum discord, identical particles, or nontrivial Hamiltonians; the estimation of
thermodynamical parameters or parameters characterizing nonequilibrium states; and the use of
quantum phase transitions. Both theoretically achievable enhancements and enhanced sensitivities not
primarily based on entanglement that have already been demonstrated experimentally and indicate
some possible future research directions are described.
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I. INTRODUCTION

A. Aim and scope

Quantum-enhanced measurements aim at improving mea-
surements of physical parameters by using quantum effects.
The improvement sought is an enhanced sensitivity for a given
amount of resources such as mean or maximum energy used,
number of probes, number of measurements, and integration
time. Ideas in this direction go back at least to the late 1960s
when the effect of quantum noise on the estimation of classical
parameters started to be studied in a systematic way using
appropriate mathematical tools (Helstrom, 1969; Holevo,
1982). In the early 1980s the first detailed proposals appeared
on how to enhance the sensitivity of gravitational wave
detectors by using squeezed light (Caves, 1980, 1981).
Nowadays, squeezed light is routinely produced in many labs
and used for instance to enhance sensitivity in gravitational
wave observatories (Aasi et al., 2013; Chua, 2015).
Quantum-enhanced measurements have the potential of

enabling many important applications, both scientific and
technological. Besides gravitational wave detection, there are
proposals or demonstrations for the improvement of time or
frequency standards, navigation, remote sensing, measurement

of very smallmagnetic fields (with applications tomedical brain
and heart imaging), measurement of the parameters of space-
time, thermometry, and many more. The literature on the topic
of quantum metrology is vast and for a general introduction
available reviews are Giovannetti, Lloyd, andMaccone (2006),
Paris (2009), Wiseman and Milburn (2009), Pezzè and Smerzi
(2014), Tóth and Apellaniz (2014), Degen, Reinhard, and
Cappellaro (2016), and Pezzè et al. (2016).
From the theoretical side, the standard tool for evaluating a

possible quantum enhancement has become the so-called
quantum Cramér-Rao bound (Helstrom, 1969; Holevo,
1982; Braunstein and Caves, 1994; Braunstein, Caves, and
Milburn, 1996). It provides a lower bound on the variance
VarðθestÞ of any unbiased estimator function θest that maps
observed data obtained from arbitrary quantum measurements
to an estimate of the parameter θ. The bound is optimized over
all possible measurements and data analysis schemes in a
sense made precise in Sec. I.B. In the limit of an infinite
number of measurements the bound can be saturated. It thus
represents a valuable benchmark that can in principle be
achieved once all technical noise problems have been solved,
such that only the unavoidable noise inherent in the quantum
state itself remains.
A standard classical method of noise reduction is to

average measurement results from N independent, identically
prepared systems. In a quantum mechanical formulation
with pure states, the situation corresponds to having the N
quantum systems in an initial product state jψi ¼⊗N

i¼1 jϕii.
Suppose that the parameter is encoded in the state through a
unitary evolution with a Hamiltonian HðθÞ ¼ θ

P
N
i¼1 hi, i.e.,

jψðθÞi ¼ exp½−iHðθÞ�jψi. Based on the quantum Cramér-
Rao bound one can show that with M final measurements the
smallest achievable variance VarðθestÞ of the estimation of θ is

VarðθestÞmin ¼
1

NMðΛ − λÞ2 ; ð1Þ

where Λ and λ are the largest and smallest eigenvalues of hi,
respectively, taken for simplicity here as identical for all
subsystems (Giovannetti, Lloyd, and Maccone, 2006). In fact,
this 1=

ffiffiffiffi
N

p
scaling can be easily understood as a consequence

of the central limit theorem in the simplest case that one
measures the systems independently. But since Eq. (1) is
optimized over all measurements of the full system, it also
implies that entangling measurements of all systems after the
parameter has been encoded in the state cannot improve the
1=

ffiffiffiffi
N

p
scaling.

Unfortunately, there is no unique definition of the standard
quantum limit (SQL) in the literature. Whereas in the
described 1=

ffiffiffiffi
N

p
scalingN refers to the number of distinguish-

able subsystems, the term standard quantum limit is used, for
example, in quantum optics typically for a scaling as 1=

ffiffiffī
n

p
with the average number of photons n̄, which in the same
mode are to be considered as indistinguishable (see Sec. III).
In this context, the 1=

ffiffiffī
n

p
scaling is also called the “shot-noise

limit,” referring to the quantum noise that arises from the fact
that the electromagnetic energy is quantized in units of
photons. Furthermore, the prefactor in these scaling behaviors
is not fixed. Quite generally, the standard quantum limit may
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be defined as the best scaling that can be achieved when
employing only “classical” resources.
While this is not yet a mathematical definition either, it

becomes precise once the classical resources are specified in
the problem at hand. This may be achieved adopting a
resource-theory framework, in which classical states of some
specific sort are identified and formalized as “free” states (i.e.,
given at no cost), and any other state is seen as possessing a
resource content which may allow us to outperform free states
in practical applications, leading specifically to quantum-
enhanced measurements beyond the standard quantum limit
scaling. For instance, separable states are the free (classical)
states in the resource theory of entanglement (Horodecki
et al., 2009), while states diagonal in a reference basis are the
free (classical) states in the resource theory of quantum
coherence (Streltsov, Adesso, and Plenio, 2017). In quantum
optics, Glauber’s coherent states and their mixtures are
regarded as the free (classical) states (Mandel and Wolf,
1965), and any other state can yield a nonclassical scaling. In
the latter example, considering the mean photon number n̄ as
an additional resource, one can fix the prefactor of the
standard quantum limit scaling, so that quantum enhance-
ments are possible not only by improving the scaling law, but
also by changing the prefactor.
However, basing our review exclusively on a resource-

theory picture would be too restrictive as cases of enhanced
sensitivity are readily available for which no resource theory
has been worked out yet [see Brandão and Gour (2015) and
references therein for a recent overview of existing resource
theories]. Examples are the use of quantum phase transitions
for which one can compare the sensitivity at the phase
transition with the sensitivities away from the phase transition,
or instances of Hamiltonian engineering, for which one can
evaluate the effect of added terms in the Hamiltonian. Rather
than developing resource theories for all these examples,
which would be beyond the scope of this review, the enhance-
ments achievable compared to the sensitivity without the use
of the mechanism under consideration will be pointed out.
Based again on the quantum Cramér-Rao bound one can

show that initially entangled states can improve the scaling to
1=N (Giovannetti, Lloyd, and Maccone, 2006), known as the
“Heisenberg limit.” Similar to the standard quantum limit,
there is no unique definition of the Heisenberg limit in the
literature (see the remarks in Sec. IV.A). Nevertheless,
achieving the Heisenberg limit has been the goal of large
experimental and theoretical efforts over the last two decades.
However, only few experiments achieved the 1=N scaling of
the Heisenberg limit and only for very small numbers of
subsystems, where the scaling advantage is still far from
allowing one to beat the best possible classical measurements.
This has several reasons: First of all, it is already very difficult
to achieve even the standard quantum limit, as all nonintrinsic
noise sources have to be eliminated. Second, resources such as
photons are cheap, such that classically one can operate with
very large photon numbers, whereas entangled states with
large photon numbers are difficult to produce. Third, and most
fundamentally, quantum-enhanced measurement schemes are
plagued by decoherence. Indeed, it has been shown that a
small amount of Markovian decoherence brings the 1=N

scaling for certain highly entangled states back to the 1=
ffiffiffiffi
N

p
scaling of the standard quantum limit (Huelga et al., 1997;
Kołodyński and Demkowicz-Dobrzański, 2010; Escher, de
Matos Filho, and Davidovich, 2011). The reduction to the
standard quantum limit also affects the estimation of noise in
programmable and teleportation-covariant channels (Laurenza
et al., 2018). Recent research has focused on finding optimal
states in the presence of decoherence, and at least for non-
Markovian noise, a certain improvement can still be obtained
from entangled states (Matsuzaki, Benjamin, and Fitzsimons,
2011; Chin, Huelga, and Plenio, 2012). Also niche applica-
tions are possible, for which the light intensity must be very
small, as in some biological applications. Nevertheless, it
appears worthwhile to think about alternative possible quan-
tum enhancement principles other than the use of highly
entangled states, and this is the focus of the present survey.
Many results have been obtained over the past years for

such alternative schemes that are worth a comprehensive and
exhaustive review that compares their usefulness with respect
to the main-stream research focused on highly entangled
states. The review is structured by different ways of breaking
the conditions that are known to lead to standard quantum
limit scaling of the sensitivity. First, by going away from pure
states, more general forms of quantum correlations such as
quantum discord become possible. These become naturally
important for estimation of loss parameters, quantum illumi-
nation problems, and other applications that typically involve
the loss of probes. Second, in the derivation of the standard
quantum limit the quantum systems are distinguished by an
index i, which supposes that they are distinguishable. Cold
atoms, on the other hand, have to be considered in general as
indistinguishable particles, and the same is true for photons,
which have been used for quantum-enhanced measurements
from the very beginning. Hence, statements about the neces-
sity of entanglement have to be reexamined for indistinguish-
able particles. It turns out that the permutational symmetry of
the quantum states required due to indistinguishability of the
particles leads immediately to the level of quantum-enhanced
sensitivity that for distinguishable particles would require to
entangle them. Third, the structure of the Hamiltonian is rather
restrictive: (a) Many Hamiltonians do not have a bound
spectrum characterized by the largest and smallest eigenvalues
Λ and λ as assumed in Eq. (1). Indeed, one of the most
common systems used in quantum metrology, the harmonic
oscillator that represents, e.g., a single mode of an electro-
magnetic field, has an unbound spectrum. And (b), the
Hamiltonian HðθÞ ¼ θ

P
N
i¼1 hi does not allow for any inter-

actions. Taking into account these freedoms opens the path to
many new forms of enhanced sensitivity. Fourth, unitary
evolutions with a Hamiltonian that depends on the parameter
are not the only way of coding a parameter in a state. In
statistical mechanics, for example, there are parameters that
describe the statistical ensemble, such as temperature or
chemical potential for systems in thermal equilibrium, but
which are not of Hamiltonian origin. The same is true for
nonequilibrium states. For many of these situations, the
corresponding quantum Cramér-Rao bounds have been
obtained only recently, and it often turned out that improve-
ments beyond the standard quantum limit should be possible.
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Furthermore, it is known even in classical statistical physics
that phase transitions can lead to diverging susceptibilities and
hence greatly enhanced sensitivities. The same is true for
quantum phase transitions, whose use for quantum-enhanced
measurements will be reviewed.
While a growing number of researchers are investigating

possibilities of breaking the standard quantum limit without
using entanglement (Tilma et al., 2010), these still appear to be a
minority. The situation is comparable to other aspects and fields
of quantum information treatment, where previously it was
thought that entanglement is necessary. For example, for a long
time entanglement has been considered as necessary for non-
locality, until it was realized that certain aspects of nonlocality
can arise without entanglement (Bennett et al., 1999). Recent
reviews of quantum-enhanced measurement schemes using
entanglement (Paris, 2009; Giovannetti, Lloyd, and Maccone,
2011; Pezzè and Smerzi, 2014; Tóth and Apellaniz, 2014;
Degen, Reinhard, and Cappellaro, 2016; Pezzè et al., 2016) are
available and the review does not survey this vast literature here,
but focus rather exclusively onquantum-enhancedmeasurement
schemes that are not essentially based on the use of entangle-
ment, hoping that our review will stimulate research in these
directions. Before reviewing these schemes, a short introduction
to parameter estimation theory and the precise definition of the
quantum Cramér-Rao bound are given. A more elaborate
pedagogical introduction to classical and quantum parameter
estimation theory can be found in Fraïsse (2017).

B. Parameter estimation theory

Consider the following task in classical statistical analysis:
Given a probability distribution pθðxÞ of a random variable x
that continuously varies as a function of a single real parameter
θ, estimate θ as precisely as possible from M samples drawn,
i.e., a set of randomvalues fxig, i ¼ 1; 2;…; M. ThisM sample
is denoted as x for short and denote the probability to find the
drawn samples in the intervals xi � � � xi þ dxi as pθðxÞdMx,
with dMx ¼ dx1 � � � dxM. For independently drawn, identically
distributed samples, pθðxÞ ¼ pθðx1Þ × � � � × pθðxMÞ, but the
formalism allows for arbitrary joint-probability distributions
pθðxÞ i.e., also correlations between different samplings of the
distribution. For simplicity, the support of x is taken to be the
real numbers.
The task is accomplished by using an estimator function

θestðx1;…; xMÞ that takes as input the drawn random values
and nothing else and outputs an estimate of the parameter θ.
Many different estimator functions are possible, some more
useful than others. Through its random arguments the esti-
mator will itself fluctuate from one sample to another. First,
one wants to have an estimator that on average gives the true
value of θ, EðθestÞ ¼ θ, where Eð� � �Þ ¼ R

dMxpθðxÞð� � �Þ is
the mean value of a quantity over the distribution. This should
hold at least in an infinitesimal interval about the true value of
θ; such an estimator is called “unbiased.” Second, one wants
the estimator to fluctuate as little as possible. The latter request
makes sense only together with the first one, as a constant
estimator of course would not reproduce the correct value of θ
in most cases. Now consider the following chain of equalities,
valid for an unbiased estimator:

1 ¼ ∂
∂θEðθestÞ ¼

Z
dMx

∂
∂θ pθðxÞθestðxÞ

¼
Z

dMxpθðxÞ
� ∂
∂θ lnpθðxÞ

�
θestðxÞ

¼
Z

dMxpθðxÞ
� ∂
∂θ lnpθðxÞ

�
½θestðxÞ − θ�

¼
�∂ lnpθ

∂θ ; θest − θ

�
: ð2Þ

The step before the last one holds because θð∂=∂θÞEð1Þ ¼ 0
due to the normalization of the probability distribution valid
for all values of θ. The scalar product in the last step is defined
for any two real functions aðxÞ and bðxÞ as ha; bi ¼R
dMxpθðxÞaðxÞbðxÞ. The Cauchy-Schwarz inequality for

this scalar product immediately implies the classical
Cramér-Rao (lower) bound for the variance of the estimator

VarðθestÞ ≥
1

JðMÞ
θ

; ð3Þ

where the classical Fisher information Jθ is defined as

JðMÞ
θ ¼

Z
dMxpθðxÞ

�∂ lnpθðxÞ
∂θ

�
2

¼
Z

dMx
1

pθðxÞ
�∂pθðxÞ

∂θ
�

2

: ð4Þ

The bound can be saturated iff the two vectors in the
scalar product are parallel, i.e., for ∂ lnpθðxÞ=∂θ ¼
AðθÞ½θestðxÞ − θ�, where AðθÞ is a possibly θ-dependent
proportionality factor. If one differentiates this condition once
more and then integrates it over with pθðxÞ, one finds that

AðθÞ ¼ JðMÞ
θ . Hence, an unbiased estimator exists iff there is a

function fðxÞ independent of θ such that ∂ lnpθ=∂θ ¼
JðMÞ
θ ½fðxÞ − θ�. In that case one can choose θestðxÞ ¼ fðxÞ.

One can show that for many (but not all) members of
the family of exponential probability distributions, i.e., dis-
tributions that can be written in the form pθðxÞ ¼
aðxÞ exp½bðθÞcðxÞ þ dðθÞ� with some functions aðxÞ, bðθÞ,
cðxÞ, and dðθÞ, this condition is satisfied, meaning that in such
cases the Cramér-Rao bound can be saturated even for finite
M. For M → ∞ and identically, independently distributed
samples, the so-called maximum-likelihood estimator satu-
rates the bound. One easily shows from Eq. (4) that the Fisher
information is additive, such that for independently drawn,

identically distributed samples JðMÞ
θ ¼ MJθ with Jθ ≡ Jð1Þθ .

C. Quantum parameter estimation theory

In quantum mechanics the state of a system is given by a
density matrix ρθ, i.e., a positive Hermitian operator with trace
equal to 1 that can depend on the parameter θ, which is
assumed to be a classical parameter. Random data are created
when measuring some observable of the system whose
statistics will depend on θ through the quantum state ρθ.
Again, θ must be estimated as precisely as possible based on
the measurement data (see Fig. 1).
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The most general measurements are so-called positive-
operator-valued measures (POVM). These are measurements
that generalize and include projective von Neumann mea-
surements and are relevant, in particular, when the system is
measured through an ancilla system to which it is coupled
(Peres, 1993). They consist of a set of positive operators Mx,
where x labels possible measurement outcomes and again
x ∈ R for simplicity. They obey a completeness relationR
R Mxdx ¼ I, where I is the identity operator on the
Hilbert space of the system. The probability density to find
outcome x is given by pθðxÞ ¼ trðρθMxÞ, and it is through this
equation that the contact with the classical parameter estima-
tion theory can be made: Plugging in pθðxÞ into Eq. (4) with
M ¼ 1, the Fisher information is

Jθ ¼
Z

dx
1

trðρθMxÞ
�
tr

�∂ρθ
∂θ Mx

��
2

¼
Z

dx
1

trðρθMxÞ
�
tr

�
1

2
ðρθLρθ þ LρθρθÞMx

��
2

; ð5Þ

where in the last step Lρθ is the so-called symmetric
logarithmic derivative, defined indirectly through

∂ρθ
∂θ

¼ 1

2
ðρθLρθ þ LρθρθÞ; ð6Þ

in analogy to the classical logarithmic derivative ∂ ln ρθ=∂θ.
Compared to the classical case, one has in the quantum
mechanical setting the additional freedom to choose a suitable
measurement in order to obtain a distribution pθðxÞ that
contains as much information as possible on the parameter θ.
Based on Eq. (5), one can find a similar chain of inequalities as
in the classical case based on the Cauchy-Schwarz inequality
that leads to the bound

Jθ ≤ Iθ ≡ trðρθL2
ρθÞ; ð7Þ

where Iθ is known as the “quantum Fisher information.”
Similarly as for the classical Fisher information, the

quantum Fisher information of uncorrelated states is additive
(Fujiwara and Hashizumé, 2002):

Iθ(ρðθÞ ⊗ σðθÞ) ¼ Iθ(ρðθÞ)þ Iθ(σðθÞ); ð8Þ

such that for M independent identical POVM measurements
of the same system, prepared always in the same state, the

total quantum Fisher information satisfies IðMÞ
θ ¼ MIθ with

Iθ ≡ Ið1Þθ . Inequalities (3) and (7) then lead to the so-called
quantum Cramér-Rao bound,

VarðθestÞ ≥
1

MIθ
: ð9Þ

Additivity of the quantum Fisher information also immedi-
ately implies the 1=

ffiffiffiffi
N

p
scaling in Eq. (1), as the quantum

Fisher information of the N uncorrelated subsystems is just N
times the quantum Fisher information of a single subsystem.
Inequality (7) can be saturated with a POVM that consists of
projectors onto eigenstates of Lθ (Helstrom, 1969; Holevo,
1982; Braunstein and Caves, 1994). As the quantum Cramér-
Rao bound is already optimized, no measurement of the whole
system, even if entangling the individual systems, can improve
the sensitivity when the parameter was already imprinted on a
product state.
The quantum Cramér-Rao bound has become the most

widely used quantity for establishing the ultimate sensitivity
of measurement schemes. It derives its power from the facts
that first it is already optimized over all possible data analysis
schemes (unbiased estimator functions) and all possible
(POVM) measurements, and that second it can be saturated
at least in the limit of infinitely many measurements and using
the optimal POVM consisting of projectors onto the eigen-
states of Lρθ .
Braunstein and Caves (1994) showed that Iθ is a geometric

measure on how much ρðθÞ and ρðθ þ dθÞ differ, where dθ is
an infinitesimal increment of θ. The geometric measure is
given by the Bures distance,

ds2Buresðρ; σÞ≡ 2½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; σÞ

p
�; ð10Þ

where the fidelity Fðρ; σÞ is defined as

Fðρ; σÞ ¼ kρ1=2σ1=2k21; ð11Þ

and kAk1 ≡ tr
ffiffiffiffiffiffiffiffiffi
AA†

p
denotes the trace norm (Miszczak et al.,

2009). With this Braunstein and Caves (1994) showed that

Iθ ¼ 4ds2Bures(ρðθÞ; ρðθ þ dθÞ)=dθ2; ð12Þ
unless the rank of ρðθÞ changes with θ and thus produces
removable singularities (Banchi, Braunstein, and Pirandola,
2015; Šafránek, 2017), a situation not considered in this
review. The quantum Cramér-Rao bound thus offers the
physically intuitive picture that the parameter θ can be
measured the more precisely the more strongly the state
ρðθÞ depends on it. For pure states ρðθÞ ¼ jψðθÞihψðθÞj, the
quantum Fisher information reduces to the overlap of the
derivative of the state j∂θψðθÞi with itself and the original
state (Braunstein, Caves, and Milburn, 1996; Paris, 2009),

IθðjψθijhψθjÞ ¼ 4ðh∂θψθj∂θψθi þ h∂θψθjψθi2Þ: ð13Þ

If the parameter is imprinted on a pure state via a unitary
transformation with Hermitian generator G as jψθi ¼
expðiθGÞjψi, Eq. (13) gives Iθ ¼ 4VarðGÞ≡ 4ðhψθjG2jψθi−
hψθjGjψθi2Þ. With a maximally entangled state of the N

FIG. 1. General setup of quantum parameter estimation. A
quantum measurement of a system in quantum state ρθ that
depends on a classical parameter θ is performed (general POVM
measurement) and produces data x1;…; xM. The data are ana-
lyzed with an estimator function that outputs an estimate θest of θ.
The goal is to obtain an unbiased estimate with as small as
possible statistical fluctuations.
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subsystems and a suitable measurement, one can reach a
scaling of the quantum Fisher information proportional to N2

(Giovannetti, Lloyd, and Maccone, 2006), the mentioned
Heisenberg limit. This can be seen most easily for a pure
state of the form jψi ¼ ðjΛi⊗N þ jλi⊗NÞ= ffiffiffi

2
p

, where jΛi and
jλi are two eigenstates of G to two different eigenvalues Λ
and λ.
For mixed states, the Bures distance is in general difficult to

calculate, but Iθ(ρðθÞ) is a convex function of ρðθÞ, i.e., for
two density matrices ρðθÞ and σðθÞ and 0 ≤ λ ≤ 1 (Fujiwara,
2001a)

Iθ(λρðθÞ þ ð1 − λÞσðθÞ) ≤ λIθ(ρðθÞ)þ ð1 − λÞIθ(σðθÞ):
ð14Þ

This can be used to obtain an upper bound for the quantum
Fisher information. Convexity also implies that the precision
of measurements cannot be increased by classically mixing
states with mixing probabilities independent of the parameter
(Braun, 2010).
In principle, the optimal measurement that saturates the

quantum Cramér-Rao bound can be constructed by diagonal-
izing LðθÞ. The projectors onto its eigenstates form a POVM
that yields the optimal measurement. However, such a con-
struction requires that the precise value of the parameter θ is
already known. If that were the case, one could skip the
measurement altogether and choose the estimator as θest ¼ θ,
with vanishing uncertainty, i.e., apparently violating the
quantum Cramér-Rao bound in most cases (Chapeau-
Blondeau, 2015) (note, however, that for a state that depends
on θ, the condition θest ¼ θ for an unbiased estimator cannot
be fulfilled in a whole ϵ interval about θ, such that there is no
formal contradiction). If θ is not known, the more common
approach is therefore to use the quantum Cramér-Rao bound
as a benchmark as a function of θ, and then check whether
physically motivated measurements can achieve it. More
general schemes have been proposed to mitigate the problem
of prior knowledge of the parameter. This includes the van
Trees inequality (Gill and Levit, 1995; van Trees, 2001),
Bayesian approaches (Rivas and Luis, 2012; Macieszczak,
Demkowicz-Dobrzański, and Fraas, 2014), adaptive measure-
ments (Wiseman, 1995; Berry and Wiseman, 2000, 2002,
2006, 2013; Armen et al., 2002; Fujiwara, 2006; Higgins
et al., 2009; Wheatley et al., 2010; Okamoto et al., 2012;
Serafini, 2012), and approaches specialized to particular
parameter estimation problems such as phase estimation
(Hall et al., 2012). Another point to be kept in mind is that
the quantum Cramér-Rao bound can be reached asymptoti-
cally for a large number of measurements, but not necessarily
for a finite number of measurements. The latter case is clearly
relevant for experiments and the subject of active current
research (Liu and Yuan, 2016). These limitations not with-
standing, this review is based almost exclusively on the
quantum Cramér-Rao bound (with the exception of
Sec. II.G on quantum channel discrimination and parts of
Sec. IV.B.1, where a signal-to-noise ratio is used), given that
the overwhelming majority of results have been obtained for it
and allow an in-depth comparison of different strategies. A
certain number of results have been obtained as well for the

quantum Fisher information optimized over all input states
(Fujiwara, 2001; Fujiwara and Imai, 2003), a quantity some-
times called channel quantum Fisher information. We do not
review this literature here as in this type of work sensitivity is
typically not separately optimized over entangled or non-
entangled initial states.
The Fisher information can be generalized tomultiparameter

estimation (Helstrom, 1969; Paris, 2009), θ ¼ ðθ1; θ2;…Þ. The
Bures distance between two infinitesimal close states then
reads

ds2Buresðρθ; ρθþdθÞ ¼ 2ð1 − tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρθ

p
ρθþdθ

ffiffiffiffiffi
ρθ

pq
Þ: ð15Þ

An expansion of ds2Buresðρθ; ρθþdθÞ leads to the quantum Fisher
information matrix (Sommers and Zyczkowski, 2003; Paris,
2009),

ds2Buresðρθ; ρθþdθÞ ¼
Iθk;θk0
4

dθkdθk0 ; ð16Þ

where Iθk;θk0 ¼ trρθðLθkLθk0 þ Lθ0k
LθkÞ=2, and Lθk is the sym-

metric logarithmic derivative with respect to parameter θk. The
quantum Cramér-Rao bound generalizes to a lower bound on
the covariance matrix Cov½θ� of the parameters θi (Helstrom,
1969, 1976; Paris, 2009),

Cov½θ� ≥ 1

M
½IðθÞ�−1; ð17Þ

where Cov½θ�ij ¼ hθiθji − hθiihθji, and A ≥ B means that
A − B is a positive-semidefinite matrix. Contrary to the single
parameter quantum Cramér-Rao bound, the bound (17) can in
general not be saturated, even in the limit of infinitely many
measurements. The Bures metric has also been called fidelity
susceptibility in the framework of quantum phase transitions
(Gu, 2010).

II. QUANTUM CORRELATIONS BEYOND
ENTANGLEMENT

A. Parallel versus sequential strategies in unitary quantum
metrology

One of the most typical applications of quantum metrology
is the task of unitary parameter estimation, exemplified, in
particular, by phase estimation (Giovannetti, Lloyd, and
Maccone, 2006, 2011). Let Uθ ¼ exp ð−iθHÞ be a unitary
transformation, with θ the unknown parameter to be esti-
mated, and H a self-adjoint Hamiltonian operator which
represents the generator of the transformation. The typical
estimation procedure then consists of the following steps:
(a) preparing an input probe in a state ρ, (b) propagating the
state with the unitary transformation Uθ, (c) measuring the
output state ρθ ¼ UθρU

†
θ, and (d) performing classical data

analysis to infer an estimator θest for the parameter θ.
Assume now that one has the availability of N utilizations

of the transformation Uθ. Then the use of N uncorrelated
probes in a global initial state ρ⊗N , each of which is under-
going the transformation Uθ in parallel, yields an estimator
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whose minimum variance scales as 1=N (standard quantum
limit). On the other hand, by using an initial entangled state ρ
of the N probes, and propagating each with the unitary Uθ in
parallel, one can in principle achieve the Heisenberg limit,
meaning that an optimal estimator θest can be constructed
whose asymptotic variance, in the limit N ≫ 1, scales as
1=N2. However, it is not difficult to realize that the very same
precision can be reached without the use of entanglement,
by simply preparing a single input probe in a superposition
state with respect to the eigenbasis of the generator H, and
letting the probe undergo N sequential iterations of the
transformation Uθ.
For instance, thinking of each probe as a qubit for

simplicity, and fixing the generator H to be the Pauli matrix
σz, one can consider either a parallel scheme with N input
probes in the Greenberger-Horne-Zeilinger (GHZ, or catlike)
maximally entangled state jΨi ¼ ðj00 � � � 0i þ j11 � � � 1iÞ= ffiffiffi

2
p

or a sequential scheme with a single probe in the superposition
jψi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. In the first case, the state after imprint-
ing the parameter reads U⊗N

θ jΨi ¼ ðe−iNθj00 � � � 0iþ
eiNθj11 � � � 1iÞ= ffiffiffi

2
p

, while in the second case UN
θ jψi ¼

ðe−iNθj0i þ eiNθj1iÞ= ffiffiffi
2

p
. Hence, in both schemes one

achieves an N-fold increase of the phase between two
orthogonal states, and both schemes reach the Heisenberg-
limit scaling in the estimation of the phase shift θ, meaning
that the quantum Cramér-Rao bound can be asymptotically
saturated in both cases by means of an optimal measurement,
associated with a quantum Fisher information scaling quad-
ratically with N. The equivalence between entanglement in
parallel schemes and coherence (namely, superposition in the
eigenbasis of the generator) (Baumgratz, Cramer, and Plenio,
2014; Marvian and Spekkens, 2016; Streltsov, Adesso, and
Plenio, 2017) in sequential schemes further extends to certain
schemes of quantum metrology in the presence of noise,
namely, when the unitary encoding the parameter to be
estimated and the noisy channel commute with each other
(e.g., in the case of phase estimation affected by dephasing)
(Boixo and Heunen, 2012; Demkowicz-Dobrzański and
Maccone, 2014), although in more general instances entan-
glement is shown to provide an advantage (Huelga et al.,
1997; Escher, de Matos Filho, and Davidovich, 2011;
Demkowicz-Dobrzański and Maccone, 2014). In general,
sequential schemes such that individual probes are initially
correlated with an ancilla (on which the parameter is not
imprinted) and assisted by feedback control (see Sec. IV.F.4)
can match or outperform any parallel scheme for estimation of
single or multiple parameters encoded in unitary transforma-
tions even in the presence of noise (Demkowicz-Dobrzański
and Maccone, 2014; Yuan and Fung, 2015; Huang,
Macchiavello, and Maccone, 2016; Nichols et al., 2016;
Yuan, 2016; Sekatski et al., 2017; Yousefjani et al., 2017).
While probe and ancilla typically need to be entangled for
such sequential schemes to achieve maximum quantum Fisher
information, this observation removes the need for large-scale
multiparticle entangled probes in the first place.
Similarly, in continuous-variable optical interferometry

(Caves, 1981), equivalent performances can be reached (for
unitary phase estimation) by using either a two-mode
entangled probe, such as a N00N state, or a single-mode

nonclassical state, such as a squeezed state. These are
elementary examples of quantum-enhanced measurements
achievable without entanglement, yet exploiting genuinely
quantum effects such as nonclassicality and superposition.
Such features can be understood by observing that both
optical nonclassicality in infinite-dimensional systems and
coherence (superposition) in finite-dimensional systems can
be converted to entanglement within a well-defined resource-
theoretic framework (Asbóth, Calsamiglia, and Ritsch, 2005;
Vogel and Sperling, 2014; Streltsov et al., 2015; Killoran,
Steinhoff, and Plenio, 2016), and can be thought of as
equivalent resources to entanglement for certain practical
purposes, as is evidently the case for unitary metrology.1

B. General results on the usefulness of entanglement

More generally, for unitary metrology with multipartite
probes in a parallel setting, a quite general formalism has been
developed to identify the metrologically useful correlations in
the probes in order to achieve quantum-enhanced measure-
ments (Pezzè and Smerzi, 2009) [see Pezzè and Smerzi (2014)
and Tóth and Apellaniz (2014) for recent reviews].
Specifically, let us consider an input state ρ of N qubits
and a linear interferometer with Hamiltonian generator
given by

H ¼ Jl ¼
1

2

XN
i¼1

σðiÞl ;

i.e., a component of the collective (pseudo-)angular momen-

tum of the N probes in the direction l ¼ x, y, z, with σðiÞl
denoting the lth Pauli matrix for qubit i. If ρ is k producible,
i.e., it is a convex mixture of pure states which are tensor
products of at most k-qubit states, then the quantum Fisher
information is bounded above as follows (Hyllus et al., 2012;
Tóth, 2012),

Iθðρ; JlÞ ≤ nk2 þ ðN − nkÞ2; ð18Þ

where n is the integer part of N=k. This means that genuine
multipartite entangled probes (k ¼ N) are required to reach
the maximum sensitivity, given by the Heisenberg limit
Iθ ∝ N2, even though partially entangled states can still result
in quantum-enhanced measurements beyond the standard
quantum limit.
A similar conclusion was reached by Augusiak et al. (2016)

considering the geometric measure of entanglement, which
quantifies how far ρ is from the set of fully separable (1-
producible) states according to the fidelity. Namely, for
unitary metrology with N parallel probes initialized in the
mixed state ρ, in the limit N → ∞ a nonvanishing value of the

1An additional scenario in which the quantum limit can be reached
without entanglement is when a multipartite state is used to measure
multiple parameters, where each parameter is encoded locally onto
only one subsystem—it has recently been shown that entanglement
between the subsystems is not advantageous, and can even be
detrimental, in this setting (Knott et al., 2016; Proctor, Knott, and
Dunningham, 2018).
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geometric measure of entanglement of ρ is necessary for the
exact achievement of the Heisenberg limit. However, a
sensitivity arbitrarily close to the Heisenberg limit Iθ ∝
N2−ϵ for any ϵ > 0 can still be attained even if the geometric
measure of entanglement of ρ vanishes asymptotically for
N → ∞. In deriving these results, they proved an important
continuity relation for the quantum Fisher information in
unitary dynamics (Augusiak et al., 2016).

C. Role of quantum discord in parameter estimation with mixed
probes

This section focuses on possible advantages stemming from
the use of quantum correlations more general than entangle-
ment in the (generally mixed) state of the input probes for a
metrological task. Such correlations are usually referred to
under the collective name of quantum discord (Henderson and
Vedral, 2001; Ollivier and Zurek, 2001), see also Modi et al.
(2012) and Adesso, Bromley, and Cianciaruso (2016) for
recent reviews. The name quantum discord originates from a
mismatch between two possible quantum generalizations of
the classical mutual information, a measure of correlations
between two (or more) variables described by a joint-
probability distribution (Ollivier and Zurek, 2001). A direct
generalization leads to the so-called quantum mutual infor-
mation IðρÞ ¼ SðTrAρÞ þ SðTrBρÞ − SðρÞ that quantifies total
correlations in the state ρ of a bipartite system AB, with
SðρÞ ¼ −Trðρ log ρÞ being the von Neumann entropy.
An alternative generalization leads instead to JðAÞðρÞ ¼
supfΠAgIðΠA½ρ�Þ, a measure of one-sided classical correlations
that quantifies how much the marginal entropy of, say,
subsystem B is decreased (i.e., how much additional infor-
mation is acquired) by performing a minimally disturbing
measurement on subsystem A described by a POVM fΠAg,
with ΠA½ρ� being the conditional state of the system AB after
such measurement (Henderson and Vedral, 2001). The differ-
ence between the former and the latter quantity is precisely the
quantum discord

DðAÞðρÞ ¼ IðρÞ − JðρÞ ð19Þ

that quantifies therefore just the quantum portion of the total
correlations in the state ρ from the perspective of subsystem A.
It is clear from this definition that the state ρ of a bipartite
system AB has nonzero discord (from the point of view of A) if
and only if it is altered by all possible local measurements
performed on subsystem A: disturbance by measurement is a
genuine quantum feature which is captured by the concept of
discord; see Modi et al. (2012) and Adesso, Bromley, and
Cianciaruso (2016) for more details. Every entangled state is
also discordant, but the converse is not true; in fact, almost all
separable states still exhibit nonzero discord (Ferraro et al.,
2010). The only bipartite states with zero discord, from the
point of view of subsystem A, are so-called classical-quantum
states, which take the form

χðAÞ ¼
X
i

pijiihijA ⊗ τBi ; ð20Þ

where the states fjiiAg form an orthonormal basis for
subsystem A, and fτBi g denote a set of arbitrary states for
subsystem B, while fpig stands for a probability distribution.
These states are left invariant by measuring A in the basis
fjiiAg, which entails that DðAÞðχðAÞÞ ¼ 0.
In a multipartite setting, one can define fully classical states

as the states with zero discord with respect to all possible
subsystems, or alternatively as the stateswhich are left invariant
by a set of local measurements performed on all subsystems.
Such states take the form χ ¼ P

i1;…;iNpi1;…;iN ji1ihi1jA1 ⊗
� � � ⊗ jiNihiN jAN for an N-particle system A1 � � �AN ; i.e., they
are diagonal in a local product basis. One can think of these
states as the only ones which are completely classically
correlated, that is, completely described by a classical multi-
variate probability distribution fpi1;…;iNg, embedded into a
density matrix formalism. An alternative way to quantify
discord in a (generally multipartite) state ρ is then by taking
the distance between ρ and the set of classically correlated
states, according to a suitable (quasi)distance function. For
instance, the relative entropy of discord (Modi et al., 2010) is
defined as

DRðρÞ ¼ inf
χ
SðρkχÞ; ð21Þ

where the minimization is over all classically correlated states
χ, and SðρkχÞ ¼ Trðρ log ρ − ρ log χÞ denotes the quantum
relative entropy. For a dedicated review on different measures
of discord-type quantum correlations see Adesso, Bromley,
and Cianciaruso (2016).
Regarding the role of quantum discord in metrological

contexts, Modi et al. (2011) investigated the estimation of a
unitary phase θ applied to each of N qubit probes, initially
prepared in mixed states with either (a) no correlations,
(b) only classical correlations, or (c) quantum correlations
(discord and/or entanglement). All the considered families of
N-qubit probe states were chosen with the same spectrum, i.e.,
in particular, the same degree of mixedness (which is a
meaningful assumption if one is performing a metrology
experiment in an environment with a fixed common temper-
ature), and were selected due to their relevance in recent
nuclear magnetic resonance (NMR) experiments (Jones et al.,
2009). In particular, given an initial thermal state

ρ0ðpÞ ¼
�
1þ p
2

j0ih0j þ 1 − p
2

j1ih1j
�

for each single qubit (with purity parameter 0 ≤ p ≤ 1),

the product states ρðaÞN ðpÞ ¼ ½Hρ0ðpÞH�⊗N were considered

for case (a), and the GHZ-diagonal states ρðcÞN ðpÞ ¼
CH1Cρ0ðpÞ⊗NCH1C were considered for case (c), with H
denoting the single-qubit Hadamard gate (acting on each qubit
in the first case, and only on the first qubit in the second case),
and C ¼⊗N

j¼2 C-NOT1j a series of CONTROL-NOT operations
acting on pairs of qubits 1 and j. These two classes of states

give rise to quantum Fisher information IðaÞθ ¼ p2N and

IðcÞθ ⪆p2N2, respectively. By comparing the two cases, Modi
et al. (2011) concluded that a quantum enhancement, scaling
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as IðcÞθ =IðaÞθ ≈ N, is possible using pairs of mixed probe states
with arbitrary (even infinitesimally small) degree of purity.
This advantage persists even when the states in strategy (c) are
fully separable, which occurs for p ≲ aþ b=N (with a and b
determined numerically for each value of N), in which case
both strategies are unable to beat the standard quantum limit,
yet the quadratic enhancement of (c) over (a) is maintained,
being independent of p. They then argued that multipartite
quantum discord, which increases with N according to the
relative entropy measure of Eq. (21) and vanishes only at
p ¼ 0, may be responsible for this enhancement. Notice that,
even though the quantum Fisher information is convex (which
means that for every separable but discordant mixed state there
exists a pure product state with a higher or equal quantum
Fisher information), the analysis in Modi et al. (2011) was
performed at fixed spectrum (and thus degree of purity) of the
input probes, a constraint which allowed them to still identify
an advantage in using correlations weaker than entanglement,
as opposed to no correlations. However, it is presently unclear
whether these conclusions are special to the selected classes of
states or whether they can be further extended to more general
settings, including noisy metrology.
In a more recent work, Cable, Gu, and Modi (2016)

analyzed a model of unitary quantum metrology inspired
by the computational algorithm known as deterministic
quantum computation with one quantum bit (DQC1) or
“power of one qubit” (Knill and Laflamme, 1998). Using
only one pure qubit supplemented by a register of lmaximally
mixed qubits, all individually subject to a local unitary phase
shift Uθ, their model was shown to achieve the standard
quantum limit for the estimation of θ, which can be conven-
tionally obtained using the same number of qubits in pure
uncorrelated states. They found that the standard quantum
limit can be exceeded by using one additional qubit, which
contributes only a small degree of extra purity, which,
however, for any finite amount of extra purity leads to an
entangled state at the stage of parameter encoding. In this
model, incidentally, the output state after the unitary encoding
was found to be always separable but discordant, with its
discord vanishing only in the limit of vanishing variance of the
estimator for the parameter θ. It is not quite clear if and how
the discord in the final state can be interpreted in terms of a
resource for metrology, but the achievement of the standard
quantum limit with all but one probes in a fully mixed state
was identified as a quantum enhancement without the use of
entanglement. This suggests that further investigation on the
role of quantum discord (as well as state purity) in metro-
logical algorithms with vanishing entanglement may be in
order. The protocol for multiparameter estimation using
DQC1 was studied by Boixo and Somma (2008), although
the resource role of correlations was not discussed there.
MacCormick et al. (2016) made a detailed investigation of a
DQC1-based protocol based on coherently controlled
Rydberg interactions between a single atom and an atomic
ensemble containing N atoms. The protocol allows one to
estimate a phase shift assumed identical for all atoms in the
atomic ensemble with a sensitivity that interpolates smoothly
between the standard quantum limit and the Heisenberg limit
when the purity of the atomic ensemble increases from a fully

mixed state to pure states. It leads to a cumulative phase shift
proportional to N, and the scheme can in fact also be seen
as an implementation of “coherent averaging,” with the
control qubit playing the role of the “quantum bus” (see
Sec. IV.F.3).

D. Black-box metrology and the interferometric power

As explicitly discussed in Sec. II.A, for unitary parameter
estimation, if one has full prior information on the generatorH
of the unitary transformation Uθ imprinting the parameter θ,
then no correlations are required whatsoever, and probe states
with coherence in the eigenbasis of H suffice to achieve
quantum-enhanced measurements in a sequential scheme.
Recently, Girolami, Tufarelli, and Adesso (2013), Adesso
(2014), and Girolami et al. (2014) investigated quantum
metrology in a so-called black-box paradigm, according to
which the generator H is assumed not fully known a priori. In
such a case, suppose one selects a fixed (but arbitrary) input
single-particle probe ρ, then it is impossible to guarantee a
precision in the estimation of θ for all possible nontrivial
choices of H. This is because, in the worst case scenario, the
black-box unitary transformation may be generated by a H
which commutes with the input state ρ, resulting in no
information imprinted on the probe, hence in a vanishing
quantum Fisher information. It is clear then that, to be able to
estimate parameters independently of the choice of the
generator, one needs an ancillary system correlated with
the probe. But what type of correlations are needed? It is
in this context that discord-type correlations, rather than
entanglement or classical correlations, are found to play a
key resource role.
Consider a standard two-arm interferometric configura-

tion, and let us retrace the steps of parameter estimation in
the black-box scenario (Girolami et al., 2014): (a) an input
state ρ of two particles, the probe A and the ancilla B, is
prepared; (b) particle B is transmitted with no interaction,
while particle A enters a black box where it undergoes a
unitary transformation Uθ ¼ expð−iθHÞ generated by a
Hamiltonian H, whose spectrum is known but whose
eigenbasis is unknown at this stage; (c) the agent controlling
the black box announces the full specifics of the generator
H, so that parties A and B can jointly perform the best
possible measurement on the two-particle output state
ρθ ¼ ðUθ ⊗ IÞρðUθ ⊗ IÞ†; and (d) the whole process is
iterated N times, and an optimal unbiased estimator θest
is eventually constructed for the parameter θ. In the limit
N ≫ 1, for any specific black-box setting H, the corre-
sponding quantum Fisher information Iθðρ; HÞ determines
the maximal precision enabled by the input state ρ in
estimating the parameter θ generated by H, as prescribed
by the quantum Cramér-Rao bound.
One can then introduce a figure of merit quantifying the

worst case precision guaranteed by the state ρ for the
estimation of θ in this black-box protocol. This is done
naturally by minimizing the quantum Fisher information over
all generators H within the given spectral class (the spectrum
is assumed nondegenerate, with a canonical choice being
that of equispaced eigenvalues) (Girolami, Tufarelli, and
Adesso, 2013; Girolami et al., 2014). This defines (up to a
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normalization constant) the interferometric power of the
bipartite state ρ with respect to the probing system A,

PðAÞðρÞ ¼ 1
4
min
H

Iθðρ; HÞ: ð22Þ

Remarkably, as proven by Girolami et al. (2014), the
interferometric power turns out to be a measure of discord-
type correlations in the input state ρ. In particular, it vanishes
if and only if ρ takes the form of a classical-quantum state,
Eq. (20). This entails that states with zero discord cannot
guarantee a precision in parameter estimation in the worst case
scenario, while any other bipartite state (entangled or sepa-
rable) with nonzero discord is suitable for estimating param-
eters encoded by a unitary transformation (acting on one
subsystem) no matter the generator, with minimum guaranteed
precision quantified by the interferometric power of the state.
This conclusion holds both for parameter estimation in finite-
dimensional systems (Girolami et al., 2014) and for continu-
ous-variable optical interferometry (Adesso, 2014). Recently,
it was shown more formally that entanglement accounts only
for a portion of the quantum correlations relevant for bipartite
quantum interferometry. In particular, the interferometric
power, which is by definition a lower bound to the quantum
Fisher information (for any fixed generator H), is itself
bounded from below in bipartite systems of any dimension
by a measure of entanglement aptly named the interferometric
entanglement, which simply reduces to the squared concur-
rence for two-qubit states (Bromley et al., 2017). The
interferometric power can be evaluated in closed form,
analytically solving the minimization in Eq. (22), for all
finite-dimensional states such that subsystem A is a qubit
(Girolami et al., 2014), and for all two-mode Gaussian states
when the minimization is restricted to Gaussian unitaries
(Adesso, 2014). An experimental demonstration of black-box
quantum-enhanced measurements relying on discordant states
as opposed to classically correlated states has been reported
using a two-qubit NMR ensemble realized in chloroform
(Girolami et al., 2014).
Notice finally that, while quantum correlations with an

ancilla are required to achieve a nonzero worst case precision
when minimizing the quantum Fisher information over the
choice of the generatorH within a fixed spectral class, as in the
scenario considered here, single-probe (nonmaximally mixed)
states may however suffice to be useful resources in the
arguably more practical case in which the average precision,
rather than the minimal, is considered instead as a figure of
merit. This scenario is further discussed in Sec. II.H.

E. Quantum estimation of bosonic loss

Any quantum optical communication, from fiber-based to
free-space implementations, is inevitably affected by energy
dissipation. The fundamental model to describe this scenario
is the lossy channel. This attenuates an incoming bosonic
mode by transmitting a fraction η ≤ 1 of the input photons,
while sending the other fraction 1 − η into the environment.
The maximum number of bits per channel use at which we can
transmit quantum information, distribute entanglement, or
generate secret keys through such a lossy channel are all equal

to − logð1 − ηÞ (Pirandola et al., 2017), a fundamental rate-
loss tradeoff that only quantum repeaters may surpass
(Pirandola, 2016). For these and other implications to quan-
tum communication, it is of paramount importance to estimate
the transmissivity of a lossy channel in the best possible way.
Quantum estimation of bosonic loss was first studied by

Monras and Paris (2007) by using single-mode pure Gaussian
states [see also Pinel et al. (2013)]. In this setting, the
performance of the coherent state probes at fixed input energy
provides the shot-noise limit or classical benchmark, which
has to be beaten by truly quantum probes. Let us denote by n̄
the mean number of input photons, then the shot-noise limit is
equal to Iη ≃ η−1n̄ (Monras and Paris, 2007; Pinel et al.,
2013). The use of squeezing can beat this limit, following the
original intuition for phase estimation of Caves (1981). In fact,
Monras and Paris (2007) showed that, in the regime of small
loss η ≃ 1 and small energy n̄ ≃ 0, a squeezed vacuum state
can beat the standard quantum limit. The use of squeezing for
estimating the interaction parameter in bilinear bosonic
Hamiltonians (including beam-splitter interactions) was also
discussed by Gaiba and Paris (2009), showing that unen-
tangled single-mode squeezed probes offer equivalent perfor-
mance to entangled two-mode squeezed probes for practical
purposes.
The optimal scaling Iη ≃ ½ηð1 − ηÞ�−1n̄ can be achieved by

using Fock states at the input (Adesso et al., 2009). Note that,
because Fock states can be used only when the input energy
corresponds to integer photon numbers, in all the other cases
one needs to engineer superpositions, e.g., between the
vacuum and the one-photon Fock state if we want to explore
the low-energy regime n̄≲ 1. Non-Gaussian qutrit and quartet
states can be designed to beat the best Gaussian probes
(Adesso et al., 2009). It is still an open question to determine
the optimal probes for estimating loss at any energy regime. It
is certainly known that the bound Iη ≤ ½ηð1 − ηÞ�−1n̄ holds for
any n̄, as it can be proven by dilating the lossy channel into a
beam-splitter unitary and then performing parameter estima-
tion (Monras and Paris, 2007). Note that this bound is
computed by considering N uncorrelated probes in parallel.
It is therefore an open question to find the best performance
that is achievable by the most general (adaptive) strategies.
Interestingly, the problem of estimating the loss parameters

of a pair of lossy bosonic channels has been proven formally
equivalent to the problem of estimating the separation of two
incoherent optical pointlike sources (Lupo and Pirandola,
2016). In this context Tsang, Nair, and Lu (2016) showed that
a pair of weak thermal sources can be resolved independently
from their separation if one adopts quantum measurements
based on photon counting, instead of standard intensity
measurements. Thus, quantum detection strategies enable
one to beat the so-called “Rayleigh’s curse” which affects
classical imaging (Tsang, Nair, and Lu, 2016). This curse is
reinstated in the classical limit of very bright thermal sources
(Lupo and Pirandola, 2016; Nair and Tsang, 2016). On the
other hand, Lupo and Pirandola (2016) showed that quantum-
correlated sources can be superresolved at the sub-Rayleigh
scale. In fact, it is possible to engineer quantum-correlated
pointlike sources that are not entangled (but discordant) which
displays superresolution, so that the closer the sources are the
better their distance can be estimated.
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The estimation of loss becomes complicated in the presence
of decoherence, such as thermal noise in the environment and
nonunit efficiency of the detectors. From this point of view,
Spedalieri et al. (2016) considered a very general model of
Gaussian decoherence which also includes the potential
presence of non-Markovian memory effects. In such a
scenario, Spedalieri et al. (2016) showed the utility of
asymmetrically correlated thermal states (i.e., with largely
different photon numbers in the two modes), fully based on
discord and void of entanglement. These states can be used to
estimate bosonic loss with a sensitivity that approaches the
shot noise limit and may also surpass it in the presence of
correlated noise and memory effects in the environment. This
kind of thermal quantum metrology has potential applications
for practical optical instruments (e.g., photometers) or at
different wavelengths (e.g., far infrared, microwave or
x ray) for which the generation of quantum features, such
as coherence, number states, squeezing, or entanglement, may
be challenging.

F. Gaussian quantum metrology

Clearly one may also consider the estimation of other
parameters beyond loss. In general, Gaussian quantum met-
rology aims at estimating any parameter or multiple param-
eters encoded in a bosonic Gaussian channel. As shown by
Pirandola and Lupo (2017), the most general adaptive
estimation of noise parameters (such as thermal or additive
noise) cannot beat the standard quantum limit. This is because
Gaussian channels are teleportation covariant, i.e., they
suitably commute with the random operations induced by
quantum teleportation, a property which is shared by a large
class of quantum channels at any dimension (Pirandola et al.,
2017). The joint estimation of specific combinations of
parameters, such as loss and thermal noise, or the two real
components of a displacement, has been widely studied in the
literature (Bellomo et al., 2009, 2010a, 2010b; Monras and
Illuminati, 2011; Genoni et al., 2013; Gao and Lee, 2014;
Gagatsos, Branford, and Datta, 2016; Duivenvoorden, Terhal,
and Weigand, 2017), but the ultimate performance achievable
by adaptive (i.e., feedback-assisted) schemes is still unknown.
If one employs Gaussian states at the input of a Gaussian

channel, then one has Gaussian states at the output and one
may exploit closed formulas for the quantum Fisher informa-
tion. These formulas can be derived by direct evaluation of the
symmetric logarithmic derivative (Monras, 2013; Jiang, 2014;
Šafránek, Lee, and Fuentes, 2015; Nichols et al., 2017) or by
considering the infinitesimal expression of the quantum
fidelity (Pinel et al., 2012, 2013; Banchi, Braunstein, and
Pirandola, 2015). The latter approach may exploit general and
handy formulas. In fact, for two arbitrary multimode Gaussian
states ρ1 and ρ2 with mean values u1 and u2, and covariance
matrices V1 and V2, one may write their quantum fidelity
(Banchi, Braunstein, and Pirandola, 2015)

Fðρ1; ρ2Þ ¼
Ftote−ð1=2Þðu2−u1Þ

TðV1þV2Þ−1ðu2−u1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðV1 þ V2Þ

p ; ð23Þ

F2
tot ¼ det

�
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðVauxΩÞ−2

4

r
þ 1

�
Vaux

�
; ð24Þ

where Vaux ≔ ΩTðV1 þ V2Þ−1ðΩ=4þ V2ΩV1Þ with Ω being
the symplectic form. Specific expressions for the fidelity were
previously given for single-mode Gaussian states (Scutaru,
1998), two-mode Gaussian states (Marian and Marian, 2012),
multimode Gaussian states assuming that one of the states is
pure (Spedalieri, Weedbrook, and Pirandola, 2013), and
multimode thermal states with vanishing first moments
(Paraoanu and Scutaru, 2000).
From Eq. (23) one may derive the Bures metric ds2Bures. In

fact, consider two infinitesimally close Gaussian states ρ, with
statistical moments u and V, and ρþ dρ, with statistical
moments uþ du and V þ dV. Expanding at the second order
in du and dV, one finds (Banchi, Braunstein, and Pirandola,
2015)

ds2Bures ¼ 2½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; ρþ dρÞ

p
� ¼ duTV−1du

4
þ δ

8
; ð25Þ

where δ ≔ 4Tr½dVð4LV þ LΩÞ−1dV�, LAX ≔ AXA, and the
inverse of the superoperator 4LV þ LΩ refers to the pseu-
doinverse. A similar expression was also computed by Monras
(2013) using the symmetric logarithmic derivative, with
further refinements in Šafránek, Lee, and Fuentes (2015).
From the Bures metric in Eq. (25) one may derive the quantum
Fisher information [see Eq. (12)] for the estimation of any
parameter encoded in a multimode (pure or mixed) Gaussian
state directly in terms of the statistical moments. Equation (25)
is written in a compact basis-independent and parametriza-
tion-independent form, valid for any multimode Gaussian
state. For an explicit parametrization via multiple parameters
θ ¼ ðθ1; θ2;…Þ, one can expand the differential and write
dV ¼ P

k∂θkVdθk, and similarly for du. In this way, ds2Bures ¼P
k;k0 ð1=4ÞIθk;θk0dθkdθk0 as in Eq. (16), with

Iθk;θk0 ¼ ð∂θku
TÞV−1ð∂θk0uÞ

þ 2Tr½ð∂θkVÞð4LV þ LΩÞ−1ð∂θk0VÞ�: ð26Þ

Equations (25) and (26) have been derived following Eq. (12),
namely, explicitly computing the fidelity function for the two
most general multimode Gaussian states, and then taking the
limit of two infinitesimally close states. A similar approach
was used for fermionic Gaussian states in Banchi, Giorda, and
Zanardi (2014).
An alternative derivation of the bosonic quantum Fisher

information for multimode Gaussian states, based on the use
of the symmetric logarithmic derivative, was recently obtained
by Nichols et al. (2017). Furthermore, Nichols et al. (2017)
derived a necessary and sufficient compatibility condition
such that the quantum Cramér-Rao bound Eq. (17) is
asymptotically achievable in multiparameter Gaussian quan-
tum metrology, meaning that a single optimal measurement
exists which is able to extract the maximal information on all
the parameters simultaneously. For any pair of parameters θk,
θk0 ∈ θ, in terms of the symmetric logarithmic derivatives Lρθk
and Lρθk0

, the corresponding quantum Fisher information

matrix element is defined as Iθk;θk0 ≡ Re½TrðρθLρθk
Lρθk0

Þ�,
while the measurement compatibility condition amounts to
Yθk;θk0 ≡ Im½TrðρθLρθk

Lρθk0
Þ� ¼ 0 (Ragy, Jarzyna, and
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Demkowicz-Dobrzański, 2016). In terms of the first and
second statistical moments u and V of a m-mode Gaussian
state ρθ, we then have (Nichols et al., 2017)

Iθk;θk0 ¼ ð∂θku
TÞV−1ð∂θk0uÞ þ 2Trð∂θk0VKθkÞ; ð27Þ

Yθk;θk0 ¼ 1
2
ð∂θku

TÞV−1ΩV−1ð∂θk0uÞ þ 16TrðΩKθk0VKθkÞ;
ð28Þ

with

Kθ ¼
Xm
i;j¼1

X3
l¼0

ðaθÞijl
νiνj − ð−1Þl S

T−1Mij
l S

−1;

where ðaθÞijl ¼ TrðS−1∂θVST−1M
ij
l Þ, fνig are the symplectic

eigenvalues of the covariance matrix V, S−1 is the symplectic
transformation that brings V into its diagonal form,

S−1VST−1 ¼ ⨁
m

i¼1

νi1, and the set of matrices Mij
l have all zero

entries except for the 2 × 2 block in position ij which is given
by fðMÞijl gl∈f0;…;3g ¼ ð1= ffiffiffi

2
p Þfiσy; σz; 1; σxg. Note that

Eq. (27) can also be obtained from (25) by explicitly writing
all the operators in the basis in which V is diagonal, observing
that ð4LV þ LΩÞ−1ð∂θVÞ ¼ Kθ. On the other hand, Eq. (28)
cannot be obtained from the limit of the fidelity formula.
In the context of this review, Pinel et al. (2012) studied, in

particular, the quantum Cramér-Rao bound for estimating a
parameter θ which is encoded in a pure multimode Gaussian
state. It was realized that, in the limit of large photon
number, no entanglement nor correlations between different
modes are necessary for obtaining the optimal sensitivity.
Rather, a detection mode can be used based on the derivative
of the mean photon field with respect to the parameter θ, into
which all the resources in terms of photons and squeezing
should be put. The mean photon field is defined as āθðr; tÞ ¼
hψθjaðr; tÞjψθi, with all parameter dependence in the
pure Gaussian quantum state jψiθ, aðr; tÞ ¼ P

iaiviðr; tÞ,
where viðr; tÞ are orthonormal mode functions found from
solving Maxwell’s equation with appropriate boundary
conditions, ai is the annihilation operators of mode i, and
the sum is over all modes. The mean field can be normal-
ized, uθ ¼ āθðr; tÞ=kāθk, where the norm kfðr; tÞk ¼
½R jfðr; tÞj2d2rdt�1=2 contains spatial integration over a sur-
face perpendicular to the light beam propagation and
temporal integration over the detection time. The detection
mode is then defined as

ṽ1ðr; tÞ ¼
ā0θðr; tÞ
kā0θk

;

where the prime means derivative with respect to θ. The
detection mode can be complemented by other, orthonormal
modes to obtain a full basis, but these other modes need not
be excited for achieving maximum quantum Fisher infor-
mation. The quantum Fisher information reads then

Iθ ¼ Nθ

�
4ku0θk2 þ

�
N0

θ

Nθ

�
2
�
V−1
θ;½1;1�; ð29Þ

where Nθ is the mean photon number, and V−1
θ;½1;1� the matrix

element of the inverse covariance matrix of the Gaussian
state corresponding to the detection mode ṽ1ðr; tÞ. All other
modes are chosen orthonormal to it. The standard quantum
limit corresponds to a quantum Fisher information of a
coherent state, in which case V−1

θ;½1;1� ¼ 1. Hence, an

improvement over the standard quantum limit is possible
with pure Gaussian states by squeezing the detection mode.
The scaling with Nθ can be modified if V−1

θ;½1;1� depends on

Nθ. For a fixed total energy a scaling Iθ ∝ N3=2
θ can be

achieved. This was proposed by Barnett, Fabre, and Maître
(2003) for measuring a beam displacement. The quantum
Cramér-Rao bound in Eq. (29) can be reached by homodyne
detection with the local oscillator in this detection mode.
By using compact expressions of the quantum Fisher

information for multimode Gaussian states, Šafránek and
Fuentes (2016) developed a practical method to find optimal
Gaussian probe states for the estimation of parameters
encoded by Gaussian unitary channels. Applications of the
method to the estimation of relevant parameters in single-
mode and two-mode unitary channels, such as phase, single-
mode squeezing, two-mode squeezing, and transmissivity of a
beam splitter, confirmed that separable probes can achieve
exactly the same precision as entangled probes, leading
Šafránek and Fuentes (2016) to remark how entanglement
does not play any significant role in achieving the Heisenberg
limit for unitary Gaussian quantum metrology.
The same conclusion has been reached by considering the

estimation of any small parameter θ encoded in Bogoliubov
transformations, i.e., Gaussian unitary channels correspond-
ing to arbitrary linear transformations of a set of n canonical
mode operators (Friis et al., 2015). In the limit of infinitesimal
transformations (θ ≪ 1), and considering an arbitrary
(Gaussian or not) pure n-mode probe state with input mean
photon number Nθ, Friis et al. (2015) showed by means of a
perturbative analysis that the maximal achievable quantum
Fisher information scales as Iθ ∝ N2

θ, that is, at the Heisenberg
limit. Remarkably, such a quantum-enhanced scaling requires
nonclassical (e.g., squeezed) but not necessarily entangled
states.
Further results on the use of bosonic probes and the role of

mode entanglement in Gaussian and non-Gaussian quantum
metrology are presented in Sec. III.B.

G. Quantum channel discrimination

A fundamental protocol which is closely related to quantum
metrology is quantum channel discrimination (Childs,
Preskill, and Renes, 2000; Acin, 2001; Sacchi, 2005;
Lloyd, 2008; Tan et al., 2008; Invernizzi, Paris, and
Pirandola, 2011; Pirandola, 2011), which may be seen as a
sort of digitalized version of quantum metrology. Its basic
formulation is binary and involves the task of distinguishing
between two quantum channels E0 or E1 associated with two
a priori probabilities π0 ≔ π and π1 ¼ 1 − π. During the

Daniel Braun et al.: Quantum-enhanced measurements without …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035006-12



encoding phase, one of such channels is picked by Alice and
stored in a box which is then passed to Bob. In the decoding
phase, Bob uses a suitable state at the input of the box and
performs a quantum measurement of its output. Bob may also
use ancillary systems which are quantum correlated with the
input probes and are directly sent to the measurement. For the
specific tasks of discriminating bosonic channels, the input is
assumed to be constrained in energy, so that we fix the mean
number of photons n̄ per input probe, or, more strongly, the
mean total number of photons which are globally irradiated
through the box (Weedbrook et al., 2012).
Quantum channel discrimination is an open problem in

general. However, when one fixes the input state, it is
translated into an easier problem to solve, i.e., the quantum
discrimination of the output states. In the binary case, this
conditional problem has been fully solved by the so-called
Helstrom bound which provides the minimum mean error
probability p̄ in the discrimination of any two states ρ0 and ρ1.
Assuming equiprobable states (π ¼ 1=2), this bound is simply
given by their trace distance D, i.e., we have (Helstrom, 1976)

p̄ ¼ 1
2
½1 −Dðρ0; ρ1Þ�: ð30Þ

In the case of multicopy discrimination, in which one
probes the box N times and one aims to distinguish the two
outputs ρ⊗N

0 and ρ⊗N
1 , the mean error probability p̄ðNÞmay be

not so easy to compute and, therefore, one resorts to suitable
bounds. Using the quantum fidelity Fðρ0; ρ1Þ from Eq. (11),
and setting

Qðρ0; ρ1Þ ≔ inf
0≤s≤1

Trðρs0ρ1−s1 Þ; ð31Þ

one may then write (Fuchs and de Graaf, 1999; Audenaert
et al., 2007; Banchi, Braunstein, and Pirandola, 2015)

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðρ0; ρ1ÞN

p
2

≤ p̄ðNÞ ≤ QNðρ0; ρ1Þ
2

; ð32Þ

where QNðρ0; ρ1Þ=2 is the quantum Chernoff bound (QCB)
(Audenaert et al., 2007). In particular, the QCB is asymp-
totically tight for large N. Furthermore, it can be easily
computed for arbitrary multimode Gaussian states
(Pirandola and Lloyd, 2008).
Since the conditional output states can be optimally dis-

tinguished, the nontrivial part in quantum channel discrimi-
nation is the optimization of the mean error probability p̄ over
the input states. For this reason, it is an extremely rich problem
and depending on the types of quantum channels, quantum
correlations may play an important role or not. In the
following, some specific cases are discussed in more detail.
Quantum channel discrimination has various practical

applications. One which is very well known is quantum
illumination (Lloyd, 2008; Tan et al., 2008) which forms
the basis for a “quantum radar” (Barzanjeh et al., 2015).
Despite the fact that entanglement is used at the input between
the signal (sent to probe a potential target) and the idler (kept
at the radar state for joint detection), entanglement is com-
pletely absent at the output between reflected and idler
photons. Nevertheless the scheme assures a superior

performance with respect to the use of coherent states; in
particular, an increase by a factor of 4 of the exponent
−½lnPðeÞ�=M of the asymptotic error probability PðeÞ (where
M is the number of transmissions) (Tan et al., 2008). For this
reason, the quantum illumination advantage has been studied
in relation to the consumption of other discord-type quantum
correlations beyond entanglement (Bradshaw et al., 2016;
Weedbrook et al., 2016). More precisely, the enhanced
performance of quantum illumination (with respect to signal
probing not assisted by an idler) may be connected to the
amount of discord which is expended to resolve the target (i.e.,
to encode the information about its presence or absence).
Quantum illumination was demonstrated experimentally by
Lopaeva et al. (2013) and Zhang et al. (2013, 2015).
Another application of quantum channel discrimination is

quantum reading (Pirandola, 2011). Here the basic aim is to
discriminate between two different channels which are used to
encode an information bit in a cell of a classical memory. In an
optical setting, this means to discriminate between two
different reflectivities, generally assuming the presence of
decoherence effects, such as background stray photons. The
maximum amount of bits per cell that can be read is called
“quantum reading capacity” (Pirandola et al., 2011). This
model has also been studied in the presence of thermal and
correlated decoherence, as that arising from optical diffraction
(Lupo et al., 2013). In all cases, the classical benchmark
associated with coherent states can be largely beaten by
nonclassical states, as long as the mean number of photons
hitting the memory cells is suitably low.
Depending on the regime, one may choose a different type

of nonclassical states. In the presence of thermal decoherence
induced by background photon scattering, two-mode
squeezed vacuum states between signal modes (reading the
cells) and idler modes (kept for detection) are nearly optimal.
However, in the absence of decoherence, the sequential
readout of an ideal memory (where one of the reflectivities
is exactly 100%) is optimized by number states at the input
(Nair, 2011). Roga, Buono, and Illuminati (2015) showed that,
in specific regimes, the quantum advantage can be related to a
particular type of quantum correlations, the discord of
response, which is defined as the trace, or Hellinger, or
Bures minimum distance from the set of unitarily perturbed
states (Roga, Giampaolo, and Illuminati, 2014). Roga, Buono,
and Illuminati (2015) also identified particular regimes in
which strongly discordant states are able to outperform pure
entangled transmitters.
Consider the specific case of unitary channel discrimina-

tion. Suppose that the task is to decide whether a unitary Uθ

was applied or not to a probing subsystem A of a joint system
ðA; BÞ. In other words, the aim is to discriminate between the
two possible output states ρθ ¼ ðUθ ⊗ IÞρðUθ ⊗ IÞ† (when
the unitary Uθ has acted on A) or ρ (equal to the input, when
the identity has acted on A instead). In the limit of an
asymptotically large number N ≫ 1 of copies of ρ, the
minimal probability of error in distinguishing between ρθ
and ρ, using an optimal discrimination strategy scales approx-
imately as the QCB Qðρ; ρθÞN=2.
It is clear that the quantity 1 −Qðρ; ρθÞ plays a similar role

in the present discrimination context as the quantum Fisher
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information in the parameter estimation scheme. One can
therefore introduce an analogous figure of merit quantifying
the worst case ability to discriminate, guaranteed by the state
ρ. The discriminating strength of the bipartite state ρ with
respect to the probing system A is then defined as (Farace
et al., 2014)

DðAÞðρÞ ¼ min
H

½1 −Qðρ; ρθÞ�; ð33Þ

where the minimization is performed once more over all
generators H within a given nondegenerate spectrum.
As proven by Farace et al. (2014), the discriminating

strength is another measure of discord-type correlations in
the input state ρ, which vanishes if and only if ρ is a classical-
quantum state as in Eq. (20). The discriminating strength is
also computable in closed form for all finite-dimensional
states such that subsystem A is a qubit. In the latter case, the
discriminating strength turns out to be proportional to the local
quantum uncertainty (Girolami, Tufarelli, and Adesso, 2013),
a further measure of discord-type correlations defined as in
Eq. (22), but with the quantum Fisher information replaced by
the Wigner-Yanase skew information (Girolami, Tufarelli, and
Adesso, 2013). The discriminating strength has also been
extended to continuous-variable systems and evaluated for
special families of two-mode Gaussian states restricting the
minimization in Eq. (33) to Gaussianity-preserving generators
(i.e., quadratic Hamiltonians) (Rigovacca et al., 2015).
Finally, note that the presence and use of quantum corre-

lations beyond entanglement has also been investigated in
other tasks related to metrology and illumination, such as
ghost imaging with (unentangled) thermal source beams
(Ragy and Adesso, 2012). Adopting a coarse-grained two-
mode description of the beams, quantum discord was found to
be relevant for the implementation of ghost imaging in the
regime of low illumination, while more generally total
correlations in the thermal source beams were shown to
determine the quality of the imaging, as quantified by the
signal-to-noise ratio.

H. Average precision in black-box settings

The results reviewed so far in this section highlight a clear
resource role for quantum discord, specifically measured by
operational quantifiers such as the interferometric power and
the discriminating strength, in black-box metrology settings,
elucidating, in particular, how quantum correlations beyond
entanglement manifest themselves as coherence in all local
bases for the probing subsystem. Discordant states, i.e., all
states but those of Eq. (20), are not only disturbed by all
possible local measurements on A, but are also modified by—
hence sensitive to—all nontrivial unitary evolutions on sub-
system A. This is exactly the ingredient needed for the
estimation and discrimination tasks.
In practice, however, one might want to assess the general

purpose performance of probe states, rather than their worst
case scenario only. One can then introduce alternative figures
of merit quantifying how suitable a state is, on average, for
estimation or discrimination of unitary transformations, when
the average is performed over all generators of a fixed spectral

class. This can be done by replacing the minimum with an
average according to the Haar measure, in Eqs. (22) and (33),
respectively. Such a study has been carried out by Farace et al.
(2016) by defining the local average Wigner-Yanase skew
information, which corresponds to the average version of the
discriminating strength in case the probing subsystem A is a
qubit (Farace et al., 2014).
Unlike the minimum, the average skew information is

found to not be a measure of discord anymore. In particular,
it vanishes only on states of the form IA=dA ⊗ τB, that is,
tensor product states between a maximally mixed state on A,
and an arbitrary state on B (Farace et al., 2016). This entails
that, to ensure a reliable discrimination of local unitaries on
average, the input states need to have either one of these two
(typically competing) ingredients: nonzero local purity of the
probing subsystem, or nonzero correlations (of any nature)
with the ancilla. The interplay between the average perfor-
mance and the minimum one, which instead relies on discord,
as well as a study of the role of entanglement, is detailed by
Farace et al. (2016). A similar study was recently performed in
continuous-variable systems, in which the average quantum
Fisher information for estimating the amount of squeezing
applied to an input single-mode probe, without previous
knowledge on the phase of the applied squeezing, was
investigated with and without the use of a correlated ancilla
(Rigovacca et al., 2017).

III. IDENTICAL PARTICLES

Measuring devices and sensors operating with many-body
systems are among the most promising instances for which
quantum-enhanced measurements can be actually experi-
mented; indeed, their large numbers of elementary constitu-
ents play the role of resources according to which the accuracy
of parameter estimation can be scaled. Typical instances in
which the quantum-enhanced measurement paradigm has
been studied are in fact interferometers based on ultracold
atoms confined in optical lattices (Leggett, 2001, 2006,
Pitaevskii and Stringari, 2003; Pethick and Smith, 2004;
Gerry and Knight, 2005; Haroche and Raimond, 2006;
Inguscio, 2006; Köhl and Esslinger, 2006; Giorgini,
Pitaevskii, and Stringari, 2008; Cronin, Schmiedmayer, and
Pritchard, 2009); Yukalov, 2009), where a precise control on
the state preparation and the dynamics can nowadays be
obtained. These systems are made of spatially confined
bosons or fermions, i.e., of constituents behaving as identical
particles, a fact that has not been properly taken into account
in most of the literature.
In systems of distinguishable particles, the notion of

separability and entanglement is well established
(Horodecki et al., 2009): it is strictly associated with the
natural tensor product structure of the multiparticle Hilbert
space and expresses the fact that one is able to identify each
one of the constituent subsystems with their corresponding
single-particle Hilbert spaces. On the contrary, in order to
describe identical particles one must extract from the tensor
product structure of the whole Hilbert space either the
symmetric (bosonic) or the antisymmetric (fermionic) sector
(Feynman, 1994; Sakurai, 1994). This fact demands a
more general approach to the notions of nonlocality and
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entanglement based not on the particle aspect proper for first
quantization, but rather on the mode description typical of
second quantization (Summers and Werner, 1985, 1987a,
1987b; Narnhofer, 2003; Barnum et al., 2004, 2005; Zanardi,
Lidar, and Lloyd, 2004; Benatti, Floreanini, and Marzolino,
2010a, 2011, 2012a, 2012b, 2014; Argentieri et al., 2011;
Marzolino, 2013; Benatti and Floreanini, 2014; Benatti,
Floreanini, and Titimbo, 2014; Benatti et al., 2017).
The notion of entanglement in many-body systems was

already addressed and discussed in the literature: for instance,
see Li et al. (2001), Paskauskas and You (2001), Schliemann
et al. (2001), Eckert et al. (2002), Ghirardi, Marinatto, and
Weber (2002), Hines, McKenzie, and Milburn (2003), Micheli
et al. (2003), Wiseman and Vaccaro (2003), Schuch,
Verstraete, and Cirac (2004), Shi (2004), Dowling, Doherty,
and Wiseman (2006), Banuls, Cirac, and Wolf (2007),
Lewenstein et al. (2007), Amico et al. (2008), Bloch,
Dalibard, and Zwerger (2008), Kraus et al. (2009),
Grabowski, Kuś, and Marmo (2011), Calabrese, Mintchev,
and Vicari (2012), Modi et al. (2012), Song et al. (2012),
Balachandran et al. (2013), and Tichy et al. (2013) and
references therein. Nevertheless, only limited results actually
apply to the case of identical particles and their applications to
quantum-enhanced measurements. From the existing litera-
ture on possible metrological uses of identical particles, there
emerges as a controversial issue the distinction between
particle and mode entanglement. Before illustrating the gen-
eral approach developed by Benatti, Floreanini, and
Marzolino (2010a, 2012a, 2014) within which this matter
can be settled, we shortly overview the main aspects of the
problem. Readers who feel that the discussion whether the
states in question are to be considered as entangled or not is
rather academic may be reassured by the very pragmatical
result that independently of this discussion, systems of
indistinguishable bosons offer a metrological advantage over
distinguishable particles, in the sense that for certain mea-
surements one would have to massively entangle the latter for
obtaining the same sensitivity as one obtains “for free” from
the symmetrized states of the former. This we show explicitly
in Sec. III.B.
Entanglement based on the particle description proper for

first quantization was discussed for pure states by Li et al.
(2001), Paskauskas and You (2001), and Schliemann et al.
(2001). In the fermionic case, Slater determinants are iden-
tified as the only nonentangled fermionic pure states, for, due
to the Pauli exclusion principle, they are the least correlated
many-particle states. In the case of bosons, two inequivalent
notions of particle entanglement have been put forward:
Paskauskas and You (2001) declared a pure bosonic state is
nonentangled if and only if all particles are prepared in the
same single-particle state, thus leading to a bosonic product
state. Li et al. (2001) identified bosonic nonentangled pure
states as those corresponding to permanents (the bosonic
analog of Slater determinants); in other words, a pure bosonic
state is nonentangled not only when, as in the first approach
mentioned, it is a product state, but also when all bosons are
prepared in pairwise orthogonal single-particle states. The
particle-based entanglement was then studied by Eckert et al.
(2002) for both bosons and fermions, and then generalized

within a more mathematical and abstract setting in Grabowski,
Kuś, and Marmo (2011, 2012).
From the point of view of particle description, a different

perspective was provided by Ghirardi, Marinatto, and Weber
(2002, 2004), based on the fact that nonentangled pure states
should possess a complete set of local properties, identifiable
by local measurements. For a more recent nonstandard
approach, still based on the particle description, see
Lo Franco and Compagno (2016).
In all these approaches, only bipartite systems consisting of

two identical particles are discussed; however, in the fer-
mionic case, simple necessary and sufficient criteria of many
particle entanglement, based on the single-particle reduced
density matrix, have been elaborated by Plastino, Manzano,
and Dehesa (2009).
A change of perspective occurred in Vedral (2003), Barnum

et al. (2004, 2005), and Zanardi, Lidar, and Lloyd (2004)
where the focus moved from particles to orthonormal modes;
within this approach, states that are not mode entangled are
characterized by correlations that can be explained in terms of
joint classical occupation probabilities of the modes. It then
follows that entanglement and nonlocality depend on the
mode description which has been chosen. In all cases,
however, identical-particle states represented by fermionic
Slater determinants or bosonic permanents are neither particle
nor mode entangled in direct conflict with claims that these
states are particle entangled and hence metrologically useful
(Demkowicz-Dobrzański, Jarzyna, and Kołodiński, 2015). In
an attempt to resolve the conflict, Killoran, Cramer, and Plenio
(2014) showed that such a pseudo or “fluffy-bunny” entan-
glement as called in Wiseman, Bartlett, and Vaccaro (2004)
and Beenakker (2006), which is due to bosonic state symmet-
rization, can be turned into the entanglement of distinguish-
able, and thus metrologically accessible, modes; however, the
operations needed for such a transformation are nonlocal in
the mode picture and thus ultimately responsible for the
achieved sub-shot-noise accuracies.
The variety of approaches regarding entanglement in

identical-particle systems and their use in metrological appli-
cations, in particular, whether entanglement is necessary or
not to achieve sub-shot-noise accuracies, can be looked at
from the unifying point of view provided by the algebraic
approach to quantum many-body systems proper to second
quantization (Strocchi, 1985; Bratteli and Robinson, 1987).
Within this scheme, we first address the relations between
mode and particle entanglement. Then we focus on specific
quantum metrological issues and show that neither entangled
states nor preliminary state preparation such as spin squeezing
is necessary in order to achieve sub-shot-noise accuracies
using systems of identical particles.

A. Particle and mode entanglement

In quantum mechanics, indistinguishable particles cannot
be identified by specific labels, whence their states must be
either completely symmetrized (bosons) or antisymmetrized
(fermions). This makes second quantization a most suited
approach to deal with them, while the particle representation is
proper for first quantization results to be too restrictive for a
consistent treatment of entangled identical particles.

Daniel Braun et al.: Quantum-enhanced measurements without …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035006-15



As a simple example of the consequences of indistinguish-
ability, consider two qubits, each of them described by the
Hilbert space H ¼ C2, where we select the orthonormal basis
fj0i; j1ig of eigenvectors of σz: σzj0i ¼ j0i, σzj1i ¼ −j1i. If
the two qubits describe distinguishable particles, the tensor
product structure of the common Hilbert space C4 ¼ C2 ⊗ C2

exhibits the fact that one knows which is qubit 1 and which
one is qubit 2. Instead, if the two qubits are indistinguishable,
the corresponding Hilbert space loses its tensor product
structure and becomes, in the bosonic case, the three-dimen-
sional subspace C3 spanned by the orthogonal two-particle

symmetric vectors j00i, j11i, and jψ ð2Þ
þ i ≔ ðj01i þ j10iÞ= ffiffiffi

2
p

,
whereas in the fermionic case it reduces to the antisymmetric
two-particle vector jψ ð2Þ

− i ≔ ðj01i − j10iÞ= ffiffiffi
2

p
.

An important consequence of this fact is that generic mixed
states of indistinguishable particles must be represented by
density matrices that arise from convex linear combinations of
projectors onto symmetrized or antisymmetrized pure states.
Indeed, while operators must be symmetrized in order to
comply with particle indistinguishability, by symmetrizing
density matrices of distinguishable particles, say sending ρ ¼
ρ1 ⊗ ρ2 into ðρ1 ⊗ ρ2 þ ρ2 ⊗ ρ1Þ=2 one cannot in general
obtain an appropriate bosonic or fermionic state, unlike
sometimes stated in the literature (Demkowicz-Dobrzański,
Jarzyna, and Kołodiński, 2015). For instance, the two qubit
symmetric mixed state ρ ⊗ ρ cannot be a fermionic density
matrix since the only fermionic state is jψ ð2Þ

− ihψ ð2Þ
− j. On the

other hand, in the bosonic case, ρ ⊗ ρ can be a bona fide
bosonic state only if ρ is pure. Indeed, as ρ ⊗ ρjψ ð2Þ

− i ¼
detðρÞjψ ð2Þ

− i, if the determinant of the density matrix
detðρÞ ≠ 0, then ρ ⊗ ρ has support also in the antisymmetric
component of the Hilbert space. A careful discussion of the
relationship between permutationally invariant density matri-
ces and symmetric and antisymmetric states can be found in
Damanet, Braun, and Martin (2016).
Instead of the standard particle picture, second quantization

is based on the so-called mode picture. In general, a mode is
any of the normalized vectors jψi of the same single-particle
Hilbert space H that is used to describe each one of a system
of identical particles. In practice, one fixes an orthonormal
basis fjψ iig inH and populates the ith mode by acting on the
so-called vacuum vector with powers of the creation operator
a†i , a

†
i j0i ¼ jψ ii, while the adjoint operators ai annihilate the

vacuum aij0i ¼ 0. For bosons, ½ai; a†j � ¼ aia
†
j − a†jai ¼ δij

and one can find arbitrarily many particles in a given mode,
while for fermions fai; a†jg ¼ aia

†
j þ a†jai ¼ δij and each

mode can be occupied by one fermion at most.
Typical modes are given by the eigenvectors of a given

single-particle Hamiltonian, orthogonal polarization direc-
tions, the left and right positions in a double-well potential,
or the atomic positions in an optical lattice. In the case of free
photons, typical modes are plane waves labeled by wave
vector and polarization, arising from the quantization of
classical electrodynamics in terms of independent harmonic
oscillators. Within this picture, saying that there are n photons
in a certain energy mode can also be interpreted as a quantum
oscillator being promoted to its nth excited state.

In dealing with distinguishable particles, quantum entan-
glement (Horodecki et al., 2009) is basically approached by
referring to the tensor product structure of the total Hilbert
space which embodies the fact that particles can be identified.
From the previous discussion, it follows that, in the case of
identical particles, one ought to consider the entanglement of
modes rather than the entanglement of particles. The relations
between the two approaches have been studied in detail by
Benatti, Floreanini, and Titimbo (2014); here we briefly
compare them in the case of two two-mode indistinguishable
bosons associated with orthogonal single-particle pure states
jψ1;2i ∈ H, as, for instance, orthogonal polarization states,
described by creation and annihilation operators ai, a†i ,
i ¼ 1; 2. The pure state

j1; 1i ¼ a†1a
†
2j0i ð34Þ

belongs to the two-particle sector of the symmetric Fock space
and represents a pure state with one boson in each mode. In the
particle picture of first quantization, the same state corre-
sponds to the symmetrized vector

jψþi ¼
1ffiffiffi
2

p ðjψ1i ⊗ jψ2i þ jψ2i ⊗ jψ1iÞ; ð35Þ

which describes a balanced superposition of two states: one
with the first particle in the state jψ1i and the second particle
in the state jψ2i, the other with the two states exchanged. The
net result is that, given the state (35), we can say only that one
particle is surely in the state jψ1i and that the other one is
surely in the state jψ2i, but we cannot attribute a specific state
to a specific particle.
As an example of the misunderstandings that can result

from sticking to the particle picture when dealing with
identical particles, state (35) is often referred to as entangled:
actually, it is only formally so in the particle picture, while, as
we shall show, it is separable in the mode picture. Indeed,
Eq. (35) would clearly display particle entanglement as the
state cannot be written as a tensor product of single-particle
states. Instead, in Eq. (34), the same state is expressed as the
action on the vacuum state of two independent creation
operators and thus should correspond to a mode-separable
state under whichever a meaningful definition of mode
entanglement one should adopt. We later give solid ground
to this latter statement, but first we show that, while for
distinguishable particles the state (35) is the prototype of an
entangled pure state, it is nevertheless separable in the sense
specified next.

1. Particle entanglement

For distinguishable particles, bipartite observables are
termed local if they are tensor products O12 ¼ O1 ⊗ O2 of
single-particle observables O1 ⊗ I pertaining to particle 1 and
I ⊗ O2 pertaining to particle 2, where I denotes the identity
operator, namely, if they address each particle independently.
Consequently, in such a context, locality is associated with the
addressability of single particles and referred to as particle
locality in the following. Then a bipartite pure state jψ12i is
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separable if and only if the expectation values hO12i12 ¼
hψ12jO1 ⊗ O2jψ12i of all local observables factorize

hO12i12 ¼ hO1 ⊗ Ii12hI ⊗ O2i12: ð36Þ

Indeed, if jψ12i ¼ jψ1i ⊗ jψ2i the equality (36) clearly holds.
On the other hand, if the equality holds, by using the Schmidt

decomposition of jψ12i ¼
P

iλijϕð1Þ
i i ⊗ jϕð2Þ

i i and choosing

O1 ¼ jϕð1Þ
i ihϕð1Þ

i j, O2 ¼ jϕð2Þ
j ihϕð2Þ

j j one finds that only one
Schmidt coefficient can be different from zero. Instead, for
distinguishable particles, the state jψþi in Eq. (35) violates the
equality for O1 ¼ jψ1ihψ1j and O2 ¼ jψ2ihψ2j and is thus
entangled.
If the two particles are identical, they cannot be addressed

individually; one has thus to refer to observables that specify
properties attributable to single particles without specifying to
which one of them. It therefore follows that, in the case of two
identical particles, appropriate single-particle observables
cannot be of the form O ⊗ I or I ⊗ O, but of the symmetrized
form

O ⊗ I þ I ⊗ O: ð37Þ

Consider the single-particle property described by the one-
dimensional projector jψihψ j; for two indistinguishable par-
ticles the property “one particle is in the state jψi,” must then
be represented by the symmetric projection (Ghirardi,
Marinatto, and Weber, 2002, 2004)

Eψ ¼ jψihψ j ⊗ ðI − jψihψ jÞ þ ðI − jψihψ jÞ ⊗ jψihψ j
þ jψihψ j ⊗ jψihψ j: ð38Þ

Similarly, the projector corresponding to the two qubits
possessing two different properties jψ1;2ihψ1;2j must be
Psymm
12 ¼ jψ1ihψ1j ⊗ jψ2ihψ2j þ jψ2ihψ2j ⊗ jψ1ihψ1j. If

hψ1jψ2i ¼ 0, then Psymm
12 ¼ Eψ1

Eψ2
. It then follows that,

despite the formal entanglement of jψþi, the factorization
of mean values as in Eq. (36) still holds; indeed,

hψþjEψ1
jψþi ¼ hψþjEψ2

jψþi ¼ hψþjPsym
12 jψþi ¼ 1: ð39Þ

Therefore, from the particle point of view, namely, of
attributable properties, the formally entangled state jψþi is
indeed separable.

2. Mode entanglement

Based on the attribution of properties to identical particles,
the previous discussion is developed in first quantization
terms, namely, using symmetrized states and observables.
From the point of view of second quantization, separability
and entanglement are instead to be related to the algebraic
structure of Bose and Fermi systems rather than to the
possibility of attributing individual properties: this is the
point of view usually adopted in the analysis of many-body
systems, for which the primary object of investigation is the
algebras of operators rather than their representations on
particular Hilbert spaces (Emch, 1972; Strocchi, 1985,
2008a, 2008b, 2012Bratteli and Robinson, 1987; Haag,
1992; Thirring, 2002).

In order to appropriately formulate the notion of entangle-
ment and nonlocality in systems made of identical particles,
the leading intuition is that there is no a priori given tensor
product structure, reminiscent of particle identification, nei-
ther in the Hilbert space nor in the algebra of observables.
Therefore, questions about entanglement and separability are
meaningful only with reference to specific classes of observ-
ables. Within this broader context, entanglement becomes a
caption for nonlocal quantum correlations between observ-
ables exhibited by certain quantum states [the original dis-
cussion can be found in Summers and Werner (1985, 1987a,
1987b); further developments can be found in Halvorson
and Clifton (2000), Clifton and Halvorson (2001), Keyl,
Schlingemann, and Werner (2003), Verch and Werner
(2005), Keyl et al. (2006), and Moriya (2006)].
Polynomials in creation and annihilation operators can be

used to generate bosonic and fermionic algebras A contain-
ing all physically relevant many-body observables. Quite in
general, physical states are given by positive and normalized
linear functionals ω∶A → C associating with any operator
A ∈ A its mean value ωðAÞ, such that positive observables
A ≥ 0 are mapped to positive numbers ωðAÞ ≥ 0 and
ωðIÞ ¼ 1. Typical instances of states are the standard
expectations obtained by tracing with respect to a given
density matrix ρ, ωðAÞ ¼ TrðρAÞ; note, however, that in the
presence of infinitely many degrees of freedom, not all
physically meaningful states, such as, for instance, the
thermal ones, can be represented by density matrices
(Narnhofer, 2003).
Within such an algebraic approach, one can study the

entanglement between observables ofA with respect to a state
ω by considering algebraic bipartitions (Benatti, Floreanini,
and Marzolino, 2010a, 2014), namely, any couple of sub-
algebras ðA1;A2Þ of A, having only the identity in common
A1 ∩ A2 ¼ I, such that the linear span of products of their
operators generates the entire algebra A and

(1) ½A1; A2� ¼ 0 for all A1 ∈ A1 and A2 ∈ A2 in the
bosonic case;

(2) ½Ae
1; A2� ¼ 0 for all even elements Ae

1 ∈ Ae
1 and for all

A2 ∈ A2, and, similarly, ½A1; Ae
2� ¼ 0 for all even

elements Ae
2 ∈ Ae

2 and for all A1 ∈ A1, in the fer-
mionic case,

where the even elements Ae
1;2 ∈ A1;2 are those remaining

invariant under the transformation of creation and annihilation
operators ϑða†i Þ ¼ −a†i and similarly for ai. They generate the
so-called even subalgebras Ae

1;2 ⊂ A which contain the only
fermionic operators accessible to experiments.
These desiderata embody the notion of algebraic inde-

pendence and generalize the tensor product structure typical
of the particle picture. Within this more general context, an
operator O is called ðA1;A2Þ local if of the form O ¼ A1A2,
A1 ∈ A1, and A2 ∈ A2. Furthermore, a state ω is called
ðA1;A2Þ separable if the expectation values of all ðA1;A2Þ
local operators can be decomposed into convex combinations
of expectations:

ωðA1A2Þ ¼
X
i

λkω
ð1Þ
k ðA1Þωð2Þ

k ðA2Þ; ð40Þ
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in terms of other states ωð1Þ
i , ωð2Þ

i with λk > 0,
P

iλk ¼ 1;
otherwise, ω is called ðA1;A2Þ entangled.2

In the standard case of bipartite entanglement for pairs of
distinguishable particles (Horodecki et al., 2009), entangled
states are all density matrices ρ which cannot be written in the
form

ρ ¼
X
k

λkρ
ð1Þ
k ⊗ ρð2Þk ; λk ≥ 0;

X
k

λk ¼ 1; ð41Þ

with ρð1Þk and ρð2Þk density matrices of the two parties. That the
algebraic definition reduces to the standard one becomes
apparent in the case of two qubits by choosing the algebraic
bipartitionA1 ¼ A2 ¼ M2, whereM2 is the algebra of 2 × 2

complex matrices and the expectation value ωðA1A2Þ ¼
TrðρA1 ⊗ A2Þ.
Henceforth, we shall focus on many-body systems, whose

elementary constituents can be found in M different states or
modes described by a discrete set of annihilation and creation
operators fai; a†i gi∈I; this is a very general framework, useful
for the description of physical systems in quantum optics, in
atomic, and in condensed matter physics. A bipartition of the
M-mode algebra A associated with the system can then be
easily obtained by considering two disjoint sets fai; a†i ji ¼
1; 2;…; mg and faj; a†j jj ¼ mþ 1; mþ 2;…;Mg, M being
possibly infinite. The two sets form subalgebras A1;2 that
indeed constitute an algebraic bipartition ofA; in practice, it is
determined by the integer 0 < m < M.
As for distinguishable particles, the case of pure states is

easier. Pure states in the algebraic context3 correspond to those
expectations on A that cannot be written as convex combi-
nations of other expectations. For them the separability
condition (40) simplifies: one can indeed prove (Benatti
and Floreanini, 2016) that pure states ω on A are separable
with respect to a given bipartition ðA1;A2Þ if and only if

ωðA1A2Þ ¼ ωðA1ÞωðA2Þ; ð42Þ

for all local operators A1A2. In other terms, separable pure
states are just product states satisfying the factorization
property (36) that holds for pure states of bipartite systems
of distinguishable particles.

B. Mode entanglement and metrology: Bosons

The differences between mode entanglement and standard
entanglement are best appreciated in the case of N bosons that
can occupyM different modes; this is a very general situation
encountered, for instance, in ultracold gases consisting of
bosonic atoms confined in a multiple site optical lattices.

These systems turn out to be a unique laboratory for studying
quantum effects in many-body physics, e.g., in quantum phase
transition and matter interference phenomena, and also for
applications in quantum information (Pitaevskii and Stringari,
2003; Pethick and Smith, 2004; Gerry and Knight, 2005;
Haroche and Raimond, 2006; Inguscio, 2006; Köhl and
Esslinger, 2006; Leggett, 2006; Giorgini, Pitaevskii, and
Stringari, 2008; Cronin, Schmiedmayer, and Pritchard,
2009; Yukalov, 2009).
The algebra A is in this case generated by creation and

annihilation operators a†i ; ai, i ¼ 1; 2;…;M, obeying the
commutation relations ½ai; a†j � ¼ δij. The reference state ω is
given by the expectations with respect to the vacuum state j0i,
aij0i ¼ 0 for all 1 ≤ i ≤ M, so that the natural states whose
entanglement properties need be studied are vectors in the Fock
Hilbert space H spanned by the many-body Fock states

jn1; n2;…; nMi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!n2! � � � nM!

p ða†1Þn1ða†2Þn2 � � � ða†MÞnM j0i; ð43Þ

or density matrices acting on it.
Given a bipartition ðA1;A2Þ defined by two disjoint groups

of creation and annihilation operators, any element A1 ∈ A1

commutes with any element A2 ∈ A2, i.e., ½A1;A2� ¼ 0.
In this framework, a necessary and sufficient condition for

pure states jψi to be separable with respect to a given
bipartition ðA1;A2Þ is that they be generated by acting on
the vacuum state with ðA1;A2Þ local operators (Benatti,
Floreanini, and Marzolino, 2012a),

jψi ¼ Pða†1;…; a†mÞ ·Qða†mþ1;…; a†MÞj0i; ð44Þ
where P and Q are polynomials in the creation operators
relative to the first m modes and the last M −m modes,
respectively. Pure states that cannot be cast in this form are
thus ðA1;A2Þ entangled.
When the state of the bosonic many-body system is not pure,

it can be described by a density matrix ρ in general not diagonal
with respect to the Fock basis (43); since density matrices form
a convex set whose extremal points are projectors onto pure
states, one deduces that generic mixed states ρ can be
ðA1;A2Þ separable if and only if they are convex combinations
of ðA1;A2Þ separable one-dimensional projections.
An interesting application of these general considerations is

given by a system of N bosons that can be found in just two
modes M ¼ 2. In the Bose-Hubbard approximation, N ultra-
cold bosonic atoms confined in a double-well potential can be
effectively described in this way. The two creation operators
a†1 and a

†
2 generate out of the vacuum bosons in the two wells,

so that the Fock basis (43) can be conveniently relabeled in
terms of the integer k counting the number of bosons in the
first well:

jk; N − ki ¼ ða†1Þkða†2ÞN−kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k!ðN − kÞ!p j0i; 0 ≤ k ≤ N: ð45Þ

Furthermore, a1, a†1, respectively, a2, a†2, generate two
commuting subalgebras A1 and A2 that together in turn

2This generalized definition of separability can be easily extended
to the case of more than two partitions; for instance, in the case
of an n partition, Eq. (40) would extend to ωðA1A2 � � �AnÞ ¼P

kλkω
ð1Þ
k ðA1Þωð2Þ

k ðA2Þ � � �ωðnÞ
k ðAnÞ.

3In the algebraic description, Hilbert spaces are a by-product of the
algebraic structure and of the expectation functional (state) defined
on it (Bratteli and Robinson, 1987).
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generate the whole algebra A; it is the simplest bipartition of
the system one can obtain by means of the operators a1, a

†
1 and

a2, a
†
2.

Then the states jk; N − ki are separable: this agrees with the
fact that they are created by the local operators ða†1Þkða†2ÞN−k.
Indeed, for any polynomial operator P1 ∈ A1 and P2 ∈ A2,
the expectation value of the product P1P2 is such that
[compare with Eq. (42)]

hk; N − kjP1P2jk; N − ki

¼ 1

k!ðN − kÞ! h0ja
k
1P1ða†1Þkj0ih0jaN−k

2 P2ða†2ÞN−kj0i

¼ hkjP1jkihN − kjP2jN − ki; ð46Þ

where jki and jN − ki are single-mode Fock states.
Consequently, mixed spearable states must be diagonal with
respect to the Fock basis (45), i.e., density matrices of the form
(Benatti, Floreanini, and Marzolino, 2010a)

ρ ¼
XN
k¼0

pkjk; N − kihk; N − kj; pk ≥ 0;
XN
k¼0

pk ¼ 1:

ð47Þ

Unlike P1P2, most observables of physical interest are
nonlocal with respect to the bipartition ðA1;A2Þ, i.e., they are
not of the form O ¼ A1A2, with A1 ∈ A1 and A2 ∈ A2.
Prominent among them are those used in phase estimation
protocols based on ultracold atoms trapped in double-well
interferometers. Consider the generators of the rotations
satisfying the suð2Þ algebraic relations ½Ji; Jj� ¼ iεijkJk, i,
j, k ¼ x, y, z. Among their possible representations in terms of
two-mode creation and annihilation operators, let us focus
upon the following:

Jx ¼ 1
2
ða†1a2 þ a1a

†
2Þ; ð48Þ

Jy ¼
1

2i
ða†1a2 − a1a

†
2Þ; ð49Þ

Jz ¼ 1
2
ða†1a1 − a†2a2Þ: ð50Þ

Note that, although the operators in Eq. (48), as well as the
exponentials eiθJx and eiθJy , are nonlocal with respect to the
bipartition ðA1;A2Þ, θ ∈ ½0; 2π�, the exponential of Jz turns
out to be local:

eiθJz ¼ eiθa
†
1
a1=2e−iθa

†
2
a2=2; ð51Þ

with eiθa
†
1
a1=2 ∈ A1 and e−iθa

†
2
a2=2 ∈ A2. By a linear trans-

formation, one can always pass to new annihilation operators

b1 ¼
a1 þ a2ffiffiffi

2
p ; b2 ¼

a1 − a2ffiffiffi
2

p ; ð52Þ

and corresponding creation operators b†1;2, and rewrite the
three operators in Eq. (48) as

Jx ¼ 1
2
ðb†1b1 − b†2b2Þ; ð53Þ

Jy ¼
1

2i
ðb1b†2 − b†1b2Þ; ð54Þ

Jz ¼ 1
2
ðb1b†2 þ b†1b2Þ. ð55Þ

To bi, b
†
i , i ¼ 1, 2 one associates the bipartition ðB1;B2Þ of A

consisting of the subalgebras generated by b1, b
†
1, respectively,

b2, b
†
2: with respect to it, the exponential of Jx becomes

eiθJx ¼ eiθb
†
1
b1=2e−iθb

†
2
b2=2; ð56Þ

with eiθb
†
1
b1=2 ∈ B1 and e−iθb

†
2
b2=2 ∈ B2. This explicitly shows

that an operator, local with respect to a given bipartition, can
become nonlocal if a different algebraic bipartition is chosen.
These considerations are relevant for metrological applica-

tions (Caves, 1981; Yurke, 1986; Yurke, McCall, and Klauder,
1986; Holland and Burnett, 1993; Kitagawa and Ueda, 1993;
Wineland et al., 1994; Sanders and Milburn, 1995; Bollinger
et al., 1996; Bouyer andKasevich, 1997; Dowling, 1998, 2008;
Sørensen et al., 2001; Dunningham, Buenett, and Barnett,
2002; Holland, Kok, and Dowling, 2002; Wang and Sanders,
2003; Giovannetti, Lloyd, and Maccone, 2004, 2011; Korbicz,
Cirac, and Lewenstein, 2005; Higgins et al., 2007; Uys and
Meystre, 2007; Boixo et al., 2009; Dorner et al., 2009; Pezzè
and Smerzi, 2009; Tóth et al., 2009; Kacprowicz et al., 2010).
In fact, ultracold atoms trapped in a double-well optical
potential realize a very accurate interferometric device: state
preparation and beam splitting can be precisely achieved by
tuning the interatomic interaction and by acting on the height of
the potential barrier. The combination of standard Mach-
Zehnder–type interferometric operations, i.e., state prepara-
tion, beam splitting, phase shift, and subsequent beam recom-
bination, can be effectively described as a suitable rotation of
the initial state ρin by a unitary transformation (Yurke, McCall,
and Klauder, 1986; Sanders and Milburn, 1995):

ρin ↦ ρθ ¼ UθρinU
†
θ; Uθ ¼ eiθJn : ð57Þ

The phase change is induced precisely by the operators in
Eq. (48) through the combination

Jn ≡ nxJx þ nyJy þ nzJz; n2x þ n2y þ n2z ¼ 1: ð58Þ

In practice, the state transformation ρin ↦ ρθ inside the
interferometer can be effectively modeled as a pseudospin
rotation along the unit vector n ¼ ðnx; ny; nzÞ, whose choice
depends on the specific realization of the interferometric
apparatus and of the adopted measurement procedure.
As discussed in Sec. I, in the case of distinguishable

particles, for any separable state ρsep the quantum Fisher
information is bounded by Iθ½ρin; Jn� ≤ cN where c is a
constant independent of N that can be taken as the maximum
quantum Fisher information of a single system in all compo-
nents of the mixed separable state [see Eq. (8)] (Fujiwara and
Hashizumé, 2002; Giovannetti, Lloyd, and Maccone, 2006;
Pezzè and Smerzi, 2009). Then entangled initial states of
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distinguishable particles are needed in order to obtain sub-
shot-noise accuracies. A corresponding statement was proven
by Benatti and Braun (2013) for a system of N indistinguish-
able bosons: The quantum Fisher information with respect
to a parameter θ imprinted onto a ðA;BÞ separable state
via a ðA;BÞ local unitary operator of the form UðθÞ ¼
expfiθ½Aða; a†Þ þ Bðb; b†Þ�g, where A (B) are Hermitian
functions of a; a† (b; b†), strictly vanishes. Hence, in order
to be able to estimate θ at all (and even more so to beat the
standard quantum limit in terms of the total number of
bosons), the separability of the input state or the locality of
the unitary operator that imprints θ on the state needs to be
broken. Fortunately, mode nonlocality is easily achieved, e.g.,
in quantum optics with a simple beam-splitter, without any
particle interactions (see later).
In the case of the double-well system previously introduced,

the operator algebras defined by a†1, a1 and a†2, a2, are the
natural ones. With respect to them, a balanced Fock number
state as in Eq. (45) of the form ρN=2 ¼ jN=2; N=2ihN=2; N=2j
is separable. By choosing thevectorn in the plane orthogonal to
the z direction one computes Iθ½ρN=2; Jn� ¼ N2=2þ N, thus
approaching the Heisenberg limit.
As a concrete example (Benatti and Braun, 2013), consider

the action of a beam splitter described by the unitary
UBSðαÞ ¼ expðαa†1a2 − α�a1a

†
2Þ involving two modes. If

the complex transparency parameter α ¼ iθ=2, with θ real,
then UBSðαÞ ¼ expðiθJxÞ. In the case of N distinguishable
qubits, a state as the balanced Fock number state jN=2; N=2i
has half qubits in the state j0i and half in the state j1i such that
σzjii ¼ ð−Þijii, i ¼ 0, 1. Then Ji ¼

P
N
j¼1 σ

ðjÞ
i =2 with i ∈

fx; y; zg have zero mean values, while the purity of ρN=2 yields
Iθ½ρN=2; Jx� ¼ 4hJ2xi ¼ N, since

J2x ¼
N
4
þ 1

4

XN
j≠k¼1

σðjÞx σðkÞx : ð59Þ

Instead, in the case of indistinguishable bosonic qubits, the
mean values of Ji for all i ∈ fx; y; zg in Eq. (48) vanish, while
using Eq. (48), Iθ½ρN; Jx� ¼ 4hJ2xi ¼ N2=2þ N.
Unlike in the case of distinguishable particles, the quantum

Fisher information can thus attain a value greater than N even
with initial states such as ρN=2 that are separable with respect
to the given bipartition. As mentioned before, the rotation
operated by the beam splitter is not around the z axis and is
thus nonlocal with respect to the chosen bipartition. From the
point of view of mode entanglement, it is thus not the
entanglement of the states fed into the beam splitter that
helps overcoming the shot-noise limit in the transparency
parameter θ estimation accuracy; rather, the nonlocal character
of the rotations operated by the apparatus on initially
separable states allows σðθestÞ to be smaller than 1=

ffiffiffiffi
N

p
, with

the possibility of eventually reaching the Heisenberg 1=N
limit (Benatti, Floreanini, and Marzolino, 2011; Benatti and
Braun, 2013). Note that, if one does not take into account the
identity of particles, the beam-splitter action in Eq. (56) is
particle local according to the discussion at the beginning of
Sec. I.A; indeed,

eiθJx ¼ ⊗
N

j¼1
eiθσ

ðjÞ
x =2: ð60Þ

Thus, a prior massive entanglement of the input state

j0i ⊗ � � � j0i ⊗ j1i ⊗ � � � j1i ð61Þ

with k spins up, σzj0i ¼ j0i, and N − k spins down,
σzj1i ¼ −j1i, is needed.
Instead, if particle identity is considered, then the operator

in Eq. (60) is not particle local since it cannot be written as a
product of symmetrized single-particle operators [see Eq. (37)
for the case N ¼ 2]. Furthermore, in the formalism of first
quantization, a Fock number state as in Eq. (45) is represented
in the symmetrized form (Benatti and Braun, 2013)

1

N

X
π

j0πð1Þi ⊗ � � � j0πðkÞi ⊗ j1πðkþ1Þi ⊗ � � � j1πðNÞi; ð62Þ

where the sum is over all possible permutations π of the N
indices and N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N!k!ðN − kÞ!p
. Despite its formally

entangled structure, such a state is the symmetrization of a
tensor product state with the first k particles in the state j0i and
the second N − k particles in the state j1i. Generalizing the
argument briefly sketched in Sec. I.A in the case of two
identical particles, individual properties can then be attributed
to each of its constituents. Therefore, the state in Eq. (62)
carries no particle entanglement, particle nonlocality being
instead provided by the particle nonlocal operator in Eq. (60).
Of course, returning to the second quantization formalism,

by changing bipartition from ðA1;A2Þ to ðB1;B2Þ via
Eqs. (52), the action of the beam splitter, as outlined in
Eq. (56), is local. In this bipartition, the nonlocality necessary
for enhancing the sensitivity completely resides in the state.
Therefore, the mode description leaves the freedom to locate
the resources necessary to accuracy enhancing either in the
entanglement of the state or in the nonlocality of the
operations performed on it.
Benatti and Braun (2013) considered the paradigmatic case

of phase estimation in a Mach-Zehnder interferometer with
similar results: in the mode bipartition corresponding to the
two modes after the first beam splitter, the phase shift
operation in one arm is a local operator. Hence, at that stage
the state must be mode entangled to allow estimating the phase
shift with an accuracy better than the shot-noise limit.
However, under certain conditions the first beam splitter
can generate enough mode entanglement from a mode-
separable state fed into the two input ports of the interfer-
ometer to beat the standard quantum limit. For more general
settings, the question of what scaling of the quantum Fisher
information can be achieved with the number of indistin-
guishable bosons is still open. Nonlocality is partially attrib-
uted to operations such as beam splitting instead of entirely to
states, even in cases when fluffy-bunny entanglement is turned
into useful entanglement as discussed by Killoran, Cramer,
and Plenio (2014).
For massive bosons one might think that the tensor product

of Fock states is a very natural state: As the boson number is
conserved at the energies considered, one cannot make
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coherent superpositions of different numbers of atoms.
However, in typical experiments, one needs to average
over many runs, and the real difficulty exists in controlling
the atom number with single-atom precision from run to run
(Demkowicz-Dobrzański, Jarzyna, and Kołodiński, 2015).
One has therefore effectively a mixed state with a distribution
of different atom numbers. So far the best experimentally
demonstrated approximations to Fock states with massive
bosons are number-squeezed states with a few dB of squeez-
ing (Esteve et al., 2008; Gross et al., 2010; Riedel et al.,
2010). One can hope that novel measurement techniques such
as the quantum gas microscope (Bakr et al., 2009) may enable
precise knowledge of boson numbers in the future and thus the
preparation of Fock states with a large number of atoms at
least in a postselected fashion.
Recently, Oszmaniec et al. (2016) used the concentration of

measure techniques to investigate the usefulness of randomly
sampled probe states for unitary quantum metrology. They
showed that random pure states drawn from theHilbert space of
distinguishable particles typically do not lead to superclassical
scaling of precision. However, random states from the sym-
metric subspace, i.e., bosonic states, typically achieve the
Heisenberg limit, even for very mixed isospectral states.
Moreover, the quantum enhancement is typically robust against
the loss of particles, in contrast to, e.g., GHZ states. It remains to
be seen how entangled these states are in the sense of mode
entanglement, but independently of the outcome of such an
assessment, these results are in line with the finding that the
naturally symmetrized pure states of bosons are a useful
resource for quantum metrology. The fact that certain bosonic
states can lead to theHeisenberg limit whilemode entanglement
does not play any significant role was also recently emphasized
by Friis et al. (2015) and Šafránek and Fuentes (2016).
There are also metrological advantages achievable with

bosons that are beyond the context of “standard quantum
limit” versus Heisenberg limit scaling: Duivenvoorden,
Terhal, and Weigand (2017) showed that by using a grid
state (Gottesman, Kitaev, and Preskill, 2001) of a single
bosonic mode, one can determine both amplitude and phase of
a Fourier component of a small driving field that adds at most
π=2 photons, or, equivalently, both quadrature components of
the displacement operator of the state. Slightly biased estima-
tors were found whose sum of mean square deviations from
the true values scales as 1=

ffiffiffi
n

p
with the average number of

photons n in the probe state. A “compass state” was proposed
by Zurek (2001) that achieves similar sensitivity for small
displacements up to the order of 1=

ffiffiffi
n

p
. These results should

be contrasted with the lower bound for any single-mode
Gaussian state as a probe state that is of the order of 1,
independent of n, and regardless of the amount of squeezing.
With two-mode Gaussian states one can beat this constant
lower bound, but then the two modes must be necessarily
entangled (Genoni et al., 2013). It is possible that the result by
Duivenvoorden, Terhal, and Weigand (2017) may still be
improved upon with other states, as in Duivenvoorden, Terhal,
and Weigand (2017) also a lower bound for all single-mode
probe states was found that scales as 1=ð2nþ 1Þ. This is the
same lower bound as for arbitrary (in particular, entangled)
two-mode Gaussian states (Genoni et al., 2013).

C. Mode entanglement and metrology: Fermions

As in the case of bosonic systems, we shall consider generic
fermionic many-body systems made of N elementary con-
stituents that can occupyM different states or modes N < M.
The creation a†i and annihilation ai operators for mode i obey
now the anticommutation relations fai; a†jg ¼ δij and gen-
erate the fermion algebra A, i.e., the norm closure of all
polynomials in these operators. As already specified, a
bipartition ðA1;A2Þ of this algebra is the splitting of the
collection of creation and annihilation operators into two
disjoint sets. The Hilbert space H of the system is again
generated out of the vacuum state j0i by the action of the
creation operators; it is spanned by the many-body Fock
states,

jn1; n2;…; nMi ¼ ða†1Þn1ða†2Þn2 � � � ða†MÞnM j0i; ð63Þ

where the integers n1; n2;…; nM are the occupation numbers
of the different modes, with

P
ini ¼ N; they can now take

only the two values 0 or 1.
As already clear from the definition of fermionic algebraic

bipartitions, because of the anticommutation relations, in
dealing with fermions, one must distinguish between even
and odd operators. While the even component Ae of A
consists of elements Ae ∈ A such that ϑðAeÞ ¼ Ae, the odd
component Ao of A consists of those elements Ao ∈ A such
that ϑðAoÞ ¼ −Ao. Even elements of A commute with all
other elements, while odd elements commute only with
even ones.
The anticommuting character of the fermion algebraA puts

stringent constraints on the form of the fermion states that can
be represented as product of other states, such as the ones
appearing in the decomposition (40) that defines separable
states. Specifically, as a consequence of the result in Araki and

Moriya (2003), any product ωð1Þ
k ðA1Þωð2Þ

k ðA2Þ vanishes when-
ever A1 and A2 both belong to the odd components of their
respective subalgebras. Then given a mode bipartition
ðA1;A2Þ of the fermionic algebra A, i.e., a decomposition
of A in the subalgebra A1 generated by the first m modes and
the subalgebraA2, generated by the remainingM −m ones, it
follows that the decomposition (40) is meaningful only for
local operators A1A2 for which ½A1; A2� ¼ 0, so that the
definition of separability it encodes is completely equivalent
to the one adopted for bosonic systems.
As a further consequence of the result in Araki and Moriya

(2003), one derives that if a state ω is nonvanishing on a local
operator Ao

1A
o
2, with the two components Ao

1 ∈ Ao
1 , A

o
2 ∈ Ao

2

both belonging to the odd part of the two subalgebras, then ω
is entangled with respect to the bipartition ðA1;A2Þ. Indeed, if
ωðAo

1A
o
2Þ ≠ 0, then ω cannot be written as in Eq. (40) and

therefore cannot be separable.
Using these results, as for the bosonic case, one shows that

(Benatti, Floreanini, and Marzolino, 2014), given a bipartition
of the fermionic algebraA determined by the integerm, a pure
state jψi results separable if and only if it can be written in the
form (44). Examples of pure separable states of N fermions
are the Fock states in Eq. (63); indeed, they can be recast in the
form
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jk1;…; km;pmþ1;…; pMi
¼ ½ðâ†1Þk1 � � � ðâ†mÞkm �½ðâ†mþ1Þpmþ1 � � � ðâ†MÞpM �j0i; ð64Þ

where the P and Q appearing in Eq. (44) are now monomials
in the creation operators of the two partitions.
Concerning the metrological use of fermionic systems, the

situation may appear more problematic than with bosons, for
each mode can accommodate at most one fermion; therefore,
the scaling with N of the sensitivity in the estimation of
physical parameters may worsen. Indeed, while a two-mode
bosonic apparatus, as a double-well interferometer, filled with
N particles is sufficient to reach sub-shot-noise sensitivities,
with fermions, a multimode interferometer is needed in order
to reach comparable sensitivities [for the use of multimode
interferometers see, for instance, D’Ariano and Paris (1997),
D’Ariano, Macchiavello, and Sacchi (1998), Söderholm et al.
(2003), Vourdas and Dunningham (2005), and Cooper,
Hallwood, and Dunningham (2009), and Cooper et al.
(2012) in the fermionic case]. As an example, consider a
system ofN fermions inMmodes, withM even, and let us fix
the balanced bipartition ðM=2;M=2Þ, in which each of the
two parts contains m ¼ M=2 modes, taking for simplicity
N ≤ m. As generator of the unitary transformation ρ → ρθ
inside the measuring apparatus let us take the following
operator:

J ¼ 1

2

Xm
k¼1

ωkða†kamþk þ a†mþkakÞ; ð65Þ

where ωk is a given spectral function ωk ≃ kp, with p positive.
The apparatus implementing this state transformation is
nonlocal with respect to the chosen bipartition: eiθJ cannot
be written as the product A1A2 of two components made of
operators A1 and A2 belonging only to the first and second
partitions, respectively. It represents a generalized, multimode
beam splitter, and the whole measuring device behaves as a
multimode interferometer.
Let us feed the interferometer with a pure initial state

ρ ¼ jψihψ j,

jψi ¼ j1;…; 1|fflfflffl{zfflfflffl}
N

; 0;…; 0|fflfflffl{zfflfflffl}
m−N

; 0;…; 0|fflfflffl{zfflfflffl}
m

i ¼ a†1a
†
2 � � � a†N j0i; ð66Þ

where the fermions occupy the first N modes of the first
partition; jψi is a Fock state and therefore it is separable, as
already discussed. The quantum Fisher information can easily
be computed (Benatti, Floreanini, and Marzolino, 2014)

Iθ½ρ;J � ¼
XN
k¼1

ω2
k: ð67Þ

Unless ωk is k independent, Iθ½ρ;J � is larger than N and
therefore the interferometric apparatus can beat the shot-noise
limit in the θ estimation, even starting with a separable state.
Actually, for ωk ≃ kp, one gets Iθ½ρ;J � ≃ N2pþ1, reaching
sub-Heisenberg sensitivities with a linear device. Note that
this result and the ability to go beyond the Heisenberg limit is

not a “geometrical” phenomenon attributable to a phase
accumulation even on empty modes (D’Ariano and Paris,
1997); rather, it is a genuine quantum effect that scales as a
function of the number of fermions, the resource available in
the measure.
Again, as in the bosonic case, it is not the entanglement of

the initial state that helps to overcome the shot-noise limit in
the phase estimation; rather, it is the nonlocal character of the
rotations operated by the apparatus on an initially separable
state that allows one to beat the shot-noise limit.

IV. MORE GENERAL HAMILTONIANS

A. Nonlinear Hamiltonians

Most discussions of quantum-enhanced measurements
consider, implicitly or explicitly, evolution under a
Hamiltonian that is linear in a collective variable of the
system. For illustration, consider Ramsey spectroscopy on
a collection of N atoms with ground and excited states jgi and
jei, respectively. If these have energies �ℏω=2, then the
Hamiltonian giving rise to the Ramsey oscillation is

H ¼ ℏωSz ≡ ℏω
XN
i¼1

sðiÞz ; ð68Þ

where sz ≡ ð1=2Þðjeihej − jgihgjÞ is a pseudospin-1=2 oper-
ator describing the transition and the superscript ðiÞ indicates
the ith atom. This Hamiltonian is manifestly linear in Sz and

can be trivially decomposed into micro-Hamiltonians H ¼P
ih

ðiÞ ≡P
iℏωs

ðiÞ
z that describe the uncoupled precession of

each atom in the ensemble. For a single Ramsey sequence of
duration T, so that the unknown parameter is θ ¼ ωT,
the standard quantum limit and Heisenberg-limit sensiti-
vities are as described in Sec. I, VarðθestÞSQL ¼ N−1 and
VarðθestÞHL ¼ N−2. The assumption of uncoupled particles is
often physically reasonable, for example, when describing
photons in a linear interferometer or low-density atomic gases
for which collisional interactions can be neglected. In other
systems, including Bose-Einstein condensates (Gross et al.,
2010; Riedel et al., 2010), laser interferometers at high power
(The LIGO Scientific Collaboration, 2011; Aasi et al., 2013),
high-density atomic magnetometers (Kominis et al., 2003;
Dang, Maloof, and Romalis, 2010; Shah, Vasilakis, and
Romalis, 2010; Vasilakis, Shah, and Romalis, 2011) and
high-density atomic clocks (Deutsch et al., 2010), the
assumption of uncoupled particles is unwarranted. This
motivates the study of nonlinear Hamiltonians.
The unusual features of nonlinear Hamiltonians are well

illustrated in the following example (Boixo, Datta, Flammia

et al., 2008). First, define the collective operator S0≡P
is

ðiÞ
0 ≡P

i1
ðiÞ, where 1 indicates the identity operator. S0 is clearly

the total number of particles. Now consider the nonlinear
Hamiltonian

H ¼ ℏΩS0Sz ¼ ℏΩ
XN
i¼1

XN
j¼1

sðiÞ0 sðjÞz : ð69Þ
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This is linear in the unknown Ω, but of second order in the
collective variables S. At the microscopic level, the
Hamiltonian describes a pairwise interaction, with energy

ℏΩsðiÞ0 sðjÞz , between each pair of particles ði; jÞ.
For a system with a fixed number N of particles, the

consequence for the dynamics of the system is very simple:
the operator S0 can be replaced by its eigenvalue N leading to
an effective Hamiltonian

HN ¼ ℏNΩSz: ð70Þ

Estimation of the product NΩT ¼ NΘ now gives the same
uncertainties that we saw earlier in the estimation of θ. That is,
VarðNΘestÞSQL ¼ N−1 so that VarðΘestÞSQL ¼ N−3. Similarly,
VarðΘestÞHL ¼ N−4. More generally, a nonlinear Hamiltonian
containing k-order products of collective variables will con-
tain Nk microscopic interaction terms that contribute to the
Hamiltonian and thus to the rate of change of an observable
such as Sz under time evolution. In contrast, the variance of
such a macroscopic observable, e.g., VarðSzÞ, scales as N1

(standard quantum limit) or N0 (Heisenberg limit). This
allows signal-to-noise ratios scaling as N2k−1 (standard
quantum limit) and as N2k (Heisenberg limit) (Boixo et al.,
2007). These noise terms depend only on the size of the
system and nature of the initial state and not on the
Hamiltonian (Boixo et al., 2007).
That nonlinearities lead to improved scaling of the sensi-

tivity appears to have been independently discovered by Luis
(2004, 2007) and Beltrán and Luis (2005) and by Boixo et al.
(2007), Boixo, Datta, Davis et al. (2008), Boixo, Datta,
Flammia et al. (2008), and Datta and Shaji (2012). A related
proposal using interactions to give a scaling σðθestÞ ∝ 2−N is
described by Roy and Braunstein (2008).
Prior to the appearance of these results, the term Heisenberg

limit, which was introduced in the literature by Holland and
Burnett (1993) in the context of interferometric phase esti-
mation with the definition σðϕestÞ ¼ 1=N, had been used,
often indiscriminately, to describe (1) the sensitivity
σðϕestÞ ¼ 1=N, (2) the scaling σðϕestÞ ∝ 1=N, (3) the best
possible sensitivity with N particles, and (4) the best possible
scaling with N particles (Giovannetti, Lloyd, and Maccone,
2004, 2006, 2011). These multiple definitions are not all
compatible in a scenario with a nonlinear Hamiltonian. Taking
as a definition “error… bounded by the inverse of the physical
resources,” and implicitly considering scaling, Zwierz, Pérez-
Delgado, and Kok (2010) [see also Zwierz, Pérez-Delgado,
and Kok (2011)] showed that an appropriate definition for a
“physical resource” is the query complexity of the system
viewed as a quantum network.
For the simplest optical nonlinearity, θ ∝ N2 and quadrature

detection, it has been shown that quadrature squeezed states
are near optimal (Maldonado-Mundo and Luis, 2009).
Considering the same nonlinearity and limiting to classical
inputs, i.e., coherent states and mixtures thereof, it was argued
by Rivas and Luis (2010) that nonlinear strategies can out-
perform linear ones by concentrating the available particles in
a small number of high-intensity probes. Tilma et al. (2010)
analyzed a variety of entangled coherent states for nonlinear
interferometry of varying orders and found that in most cases

entanglement degraded the sensitivity for high-order non-
linearities. Berrada (2013) considered the use of two-mode
squeezed states as inputs to a nonlinear interferometer,
including the effects of loss, and showed a robust advantage
for such states.
As already mentioned in Sec. I.C, these results concern

local measures implying some prior knowledge of the
parameter being estimated. The situation for global measures
without prior information was considered by Hall and
Wiseman (2012).

B. Proposed experimental realizations

A number of physical systems have been proposed for
nonlinear quantum-enhanced measurements: Propagation
through nonlinear optical materials (Luis, 2004, 2007;
Beltrán and Luis, 2005), collisional interactions in Bose-
Einstein condensates (Boixo et al., 2009), Duffing nonlinear-
ity in nanomechanical resonators (Woolley, Milburn, and
Caves, 2008), and nonlinear Faraday rotation probing of an
atomic ensemble (Napolitano and Mitchell, 2010).

1. Nonlinear optics

The first proposals concerned nonlinear optics (Luis, 2004,
2007; Beltrán and Luis, 2005), in which a nonlinear optical
susceptibility is directly responsible for a phase shift θ ∝ Nk,
where k is the order of the nonlinear contribution to the
refractive index. In the simplest example, Beltrán and Luis
(2005) showed that an input coherent state jαi, experiencing a
Kerr-type nonlinearity described by the unitary exp½iΘða†aÞ2�,
and detected in quadrature X ¼ ð1= ffiffiffi

2
p Þðaþ a†Þ, gives an

outcome distribution

PðX ¼ xjΘÞ ¼ jhxjeiΘða†aÞ2 jαij2: ð71Þ

If we consider the case of smallΘ, imaginary α ¼ i
ffiffiffiffiffiffiffiffihNip

, and
the estimator Θest ¼ X̄=j∂X̄=∂θj, where X̄ ≡P

M
i¼1 Xi is the

mean of the observed quadratures, we find the standard
deviation

σðΘestÞ ¼
σðXÞffiffiffiffiffi

M
p jdhXi=dΘj ¼

σðXÞffiffiffiffiffi
M

p jh½X; ða†aÞ2�ij ð72Þ

¼ 1

4M1=2N−3=2 : ð73Þ

Here we used σðXÞ ¼ 1=
ffiffiffi
2

p
for the quantum mechanical

uncertainty of X in the initial state, and which up to
corrections of order Θ2 holds also for the evolved state when
Θ is small. For large N, this strategy saturates the quantum
Cramér-Rao bound; the quantum Fisher information is
straightforwardly calculated to be IΘ ¼ 4N þ 24N2 þ 16N3.

2. Ultracold atoms

Coherent interaction-based processes are well developed in
Bose-Einstein condensates and have been used extensively for
squeezing generation. For example, a confined two-species
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Bose-Einstein condensate experiences collisional energy
shifts described by an effective Hamiltonian

Heff ∝ a11n1ðn1 − 1Þ þ 2a12n1n2 þ a22n2ðn2 − 1Þ ð74Þ
¼ ða11 − 2a12 þ a22ÞS2z þ 2ða11 − a22ÞSzS0
þ terms in Sz; S0; ð75Þ

where Sz ≡ ð1=2Þðn1 − n2Þ and S0 ≡ ð1=2Þðn1 þ n2Þ are
pseudospin operators, n1 and n2 are the number of atoms
of species 1 and 2, respectively, and aij are the collisional
scattering lengths. In 87Rb, and with j1i≡ jF ¼ 1; m ¼ −1i,
j2i≡ jF ¼ 2; m ¼ 1i, the scattering lengths (near zero mag-
netic field) have the ratio a11∶a12∶a22 ¼ 1.03∶1∶0.97. A
proven method to generate spin squeezing in this system is
to increase a12 using a Feshbach resonance to give the single-
axis twisting Hamiltonian Heff ∝ S2z (Muessel et al., 2014),
plus terms proportional to Sz and S0, which induce a global
rotation and a global phase shift, respectively.
Boixo, Datta, Davis et al. (2008) observed that the zero-

field scattering lengths naturally give a11 − 2a12 þ a22 ≈ 0,
making small the coefficient of S2z and leaving the S0Sz term
as the dominant nonlinear contribution. Detailed analyses of
the Bose-Einstein condensate physics beyond the simplified
single-mode treatment here are given by Boixo, Datta,
Flammia et al. (2008), Boixo et al. (2009), and Tacla and
Caves (2013). The strategy gives N−3=2 scaling for estimation
of the relative scattering length a11 − a22. Mahmud, Tiesinga,
and Johnson (2014) described a strategy of dynamical
decoupling to suppress the second-order terms in the
Hamiltonian and thus make dominant three-body interactions,
giving a sensitivity scaling of N−5=2 for measurements of
three-body collision strengths.

3. Nanomechanical oscillators

Woolley, Milburn, and Caves (2008) proposed a nonlinear
interferometer using two modes of a nanomechanical oscil-
lator, with amplitudes xa and xb, experiencing the nonlinear
Hamiltonian

Heff ¼ HðaÞ
SHO þHðbÞ

SHO þ 1
4
χamω2x4a þ 1

4
χbmω2x4b þ CðtÞ;

ð76Þ
where HSHO indicates the simple harmonic oscillator
Hamiltonian (SHO), χ is the Duffing nonlinearity coefficient,
ω is the low-amplitude resonance frequency, and C is an
externally controlled coupling between modes a and b that
produces a beam-splitter interaction. With an interferometric
sequence resembling a Mach-Zehnder interferometer, the
Duffing nonlinearity can be estimated with uncertainty scaling
as N−3=2, where N is the number of excitations.

4. Nonlinear Faraday rotation

Whereas Luis and co-workers considered phenomenologi-
cal models of optical nonlinearities, Napolitano and Mitchell
(2010) described an ab initio calculation of the optical
nonlinearity produced on a particular atomic transition, using
degenerate perturbation theory and a collective quantum

variable description. This gives an effective Hamiltonian
for the interaction of polarized light, described by the
Stokes operators S, with the collective orientation and align-
ment spin variables J of an atomic ensemble:

Heff ¼ Hð2Þ
eff þHð4Þ

eff þOðS3Þ; ð77Þ

Hð2Þ
eff ¼ αð1ÞSzJz þ αð2ÞðSxJx þ SyJyÞ; ð78Þ

Hð4Þ
eff ¼ βð0ÞJ Sz2J0 þ βð0ÞN Sz2NA þ βð1ÞS0SzJz

þ βð2ÞS0ðSxJx þ SyJyÞ; ð79Þ

where the α and β coefficients are linear and nonlinear
polarizabilities that depend on the detuning of the probe
photons from the atomic resonance. By proper choice of
detuning and initial atomic polarization J, the term βð1ÞS0SzJz
can be made dominant, making the Hamiltonian formally
equivalent to that of Eq. (69). Note that βð1ÞJz, proportional to
the atomic polarization Jz, plays the role of the unknown
interaction energy ℏΩ. The photons are thus made to interact,
mediated by and proportional to the atomic polarization Jz.
For a different detuning, the term αð1ÞSzJz becomes dominant,
allowing a linear measurement of the same quantity Jz with
the same atomic system.
The experimental realization using a cold, optically trapped

87Rb atomic ensemble is described by Napolitano et al.
(2011). The experiment observed the predicted scaling of
VarðJzÞ ∝ N−3 over a range of photon numbers from N ¼
5 × 105 to 5 × 107. For larger photon numbers the scaling
worsened, i.e., Var(JzðNÞ) had a logarithmic derivative> −3.
Because of this limited range of the N−3 scaling, and the
difference in prefactors βð1Þ vs αð1Þ, the nonlinear estimation
never surpassed the sensitivity VarðJzÞ of the linear meas-
urement for the same number of photons. Nonetheless, due to
a shorter measurement time τ, the nonlinear measurement did
surpass the linear measurement in spectral noise density
VarðJzÞτ, a common figure of merit for time- or frequency-
resolved measurements.

C. Observations and commentary

Several differences between linear and nonlinear strategies,
perhaps surprising, deserve comment. First, it should be
obvious that there is no conflict with the Heisenberg uncer-
tainty principle. θ and Θ are parameters, not observables, and
as such are not subject to operator-based uncertainty relations,
neither the Heisenberg uncertainty principle nor generaliza-
tions such as the Robertson uncertainty relation (Robertson,
1929). Moreover, the advantageous scaling in δΘ is the result
of a rapidly growing signal, rather than a rapidly decreasing
statistical noise. A nonlinear Hamiltonian immediately leads
to a strong change in the scaling of the signal: even the
simplest k ¼ 2 nonlinearity gives signal growing as ω ∝ N2

and thus standard quantum limit uncertainty ðδΘÞSQL ∝
N−3=2, which scales faster with N than does ðδθÞHL ∝ N−1.
Second, the estimated phases θ and Θ necessarily reflect

different physical quantities. ℏω describes a single-particle
energy such as that due to an external field, whereas ℏΩ
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describes a pairwise interaction energy. As such, the uncer-
tainties δθ and δΘ are not directly comparable. Any com-
parison of the efficacy of the measurements must introduce
another element, a connection between a third physical
quantity θ and Θ. This we have seen in Sec. IV.B.4, where
the unknown Jz appears in both the linear and nonlinear
Hamiltonians. In what follows, a comparison of optimized
linear and nonlinear metrology is described.

D. Nonlinear measurement under number-optimized conditions

A more extensive study of nonlinear spin measurements
using the same system as Napolitano et al. (2011) was
reported by Sewell et al. (2014). This work compared two
estimation strategies, one linear and one nonlinear, for
measuring the collective variable Jy, which describes a
component of the spin alignment tensor used in a style of
optical magnetometry known as alignment-to-orientation
conversion (Budker et al., 2000; Pustelny et al., 2008;
Sewell et al., 2012). The linear estimation used the term
αð2ÞSyJy, which appears in Eq. (78) and produces a rotation
from linearly polarized light toward elliptically polarized
light. The nonlinear estimation in contrast used Eq. (78) in
second order: in the first step, due to the αð2ÞSxJx term and the
input Sx optical polarization, an initial Jy atomic polarization
is rotated toward Jz by an angle ϕ ∝ hSxi, and thus ∝ N,
where N is the number of photons. In the second step, the term
αð1ÞSzJz produces a Faraday rotation, i.e., from Sx toward Sy,
by an angle proportional to the Jz polarization produced in the
first step. The resulting Sy polarization is Sy ∝ JyN2, while the
statistical noise is σðSyÞ ∝ N1=2, giving sensitivity scaling
σðJyÞ ∝ N−3=2. Importantly, the two estimation strategies use
the same Sx-polarized input and thus have identical statistical
noise and cause identical damage in the form of spontaneous
scattering, which adds noise to the atomic polarization.
The experimentally observed nonlinear sensitivity was

compared against the calculated ideal sensitivity of the linear
measurement. Owing to its faster scaling, and more favorable
prefactors than in Napolitano et al. (2011), the nonlinear
measurement’s sensitivity surpassed that of the ideal linear
measurement at about 2 × 107 photons. A comparison was
also made when each measurement was independently opti-
mized for number N and detuning, which affects both the
prefactors α and the scattering. The ability to produce
measurement-induced spin squeezing was taken as the figure
of merit, and the fully optimized nonlinear measurement gave
more squeezing than the fully optimized linear measurement.
This shows that, for some quantities of practical interest, a
nonlinear measurement can outperform the best possible
linear measurement. Similar conclusions have been drawn
for the case of number-optimized saturable spectroscopy
(Mitchell, 2017).

E. Signal amplification with nonlinear Hamiltonians

The single-axis twisting Hamiltonian Htwist ¼ χS2z , in
addition to producing spin squeezed states, has been proposed
as a nonlinear amplifier to facilitate state readout in atom
interferometry (Davis, Bentsen, and Schleier-Smith, 2016).

Starting from an x-polarized coherent spin state jxi, and
defining the unitary U ≡ exp½−iHtwistτ=ℏ�, the Wigner dis-
tribution of the squeezed state Ujxi is thin in the z direction,
and is thus sensitive to rotations RyðϕÞ about the y axis, so
that states of the form RyðϕÞUjxi have large quantum Fisher
information with respect to ϕ. Exploitation of this in-principle
sensitivity is challenging, however, because it requires low-
noise readout, detecting Sz at the single-atom level if the
Heisenberg limit is to be approached. In contrast, a sequence
that applies Htwist, waits for rotation about the y axis, and then
applies −Htwist for an equal time generates the state
U†RyðϕÞUjxi. Because U† is unitary, the quantum Fisher
information is unchanged, but the perturbation implied by
RyðϕÞ nowmanifests itself at the scale of the original coherent
spin state, which is to say it is amplified from the Heisenberg-
limit scale up to the standard quantum limit scale, greatly
facilitating detection. Implementations include a cold-atom
cavity QED system (Hosten et al., 2016) and Bose-Einstein
condensates (Linnemann et al., 2016). While this strategy
clearly uses entanglement, it is nonetheless striking that
undoing the entanglement-generation step provides an impor-
tant benefit.

F. Other modifications of the Hamiltonian

The assumption of a Hamiltonian H ¼ P
N
k¼1 hk considered

for the derivation of Eq. (1), where Λ and λ are the largest and
smallest eigenvalues of hk, respectively, not only implies
distinguishable subsystems, it is also restrictive in two other
important regards: (a) The existence of such bounds on the
spectrum of hk may not be warranted, and (b) interactions
between the subsystems are excluded. In this section we
explore the consequences of lifting these restrictions.

1. Lifting spectral limitations

A large portion of the work on quantum-enhanced mea-
surements stems from quantum optics, where the basic
dynamical objects are modes of the electromagnetic (e.m.)
field, corresponding to simple harmonic oscillators hk ¼
ℏωkðnk þ 1=2Þ. A phase shift in mode k can be implemented
by U ¼ expðinkθÞ. For the relevant Hamiltonian hk ¼ nk
acting as a generator of the phase shift, Λ ¼ ∞ and λ ¼ 0.
Hence, Eq. (1) implies a minimal uncertainty VarðθestÞ ¼ 0.
Of course, one may argue that in reality one can never use
states of infinite energy, such that there is effectively a
maximum energy. However, it need not be that the maximum
energy sustainable by the system must be distributed over N
modes. Indeed, what is typically counted in quantum optics in
terms of resources is not the number of modes N, but the total
number of photons n, directly linked to the total energy. It
turns out that the total number of modes (or subsystems, in
general) is completely irrelevant for achieving optimal sensi-
tivity, even if the parameter is coded in several modes or
subsystems, e.g., with a general unitary transformation of the
form U ¼ expðiθPN

k¼1 hkÞ, if one can stock the same amount
of energy in a single system as in the total system. Note that
this is often the case in quantum optics, where different modes
can be spatially confined or parametrically influenced by the
same optical elements such as mirrors, beam splitters, and
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phase shifters whose material properties ultimately determine
the maximum amount of energy that can be used.
To see the liberating effect of unbound spectra, recall that

for any initial pure state jψi propagated by a Hamiltonian of
the form H ¼ θG with a Hermitian generator G for a time T
the quantum Fisher information is given by (Braunstein and
Caves, 1994; Braunstein, Caves, and Milburn, 1996)

Iθ ¼ 4VarðGÞT2 ≡ 4ðhG2i − hGi2ÞT2: ð80Þ

Let G ¼ P
ieijiijhij be the spectral decomposition of G, and

jψi ¼ P
L
i¼1 cijii, where we assume that j1i (jLi) are the

states of lowest (largest) energy available. Then VarðGÞ ¼P
L
i¼1 pie2i − ðPL

i¼1 pieiÞ2 with pi ¼ jcij2 and
P

L
i¼1 pi ¼ 1.

The Popoviciu (1935) inequality states VarðGÞ ≤
ðeL − e1Þ2=4. It is saturated for p1 ¼ pL ¼ 1=2, pi ¼ 0 else.
The state jψi ¼ ðj1i þ eiφjLiÞ= ffiffiffi

2
p

with an arbitrary phase φ
saturates the inequality and thus maximizes Iθ. If eL or e1 is
degenerate, only the total probability for the degenerate
energy levels is fixed to 1=2, and arbitrary linear combinations
in the degenerate subspace are allowed. But the value of
VarðGÞ remains unchanged under such redistributions, and we
may still choose just two nonvanishing probabilities p1 ¼
pL ¼ 1=2. The derivation did not make use of a multimode
structure of the energy eigenstates. Hence, exactly the same
minimal uncertainty of θest can be obtained by superposing the
ground state of a single mode with a Fock state of given
maximum allowed energy as with an arbitrarily entangled
multimode state containing components of up to the same
maximum energy. For a specific example, consider phase
estimation in a Mach-Zehnder interferometer. It has N ¼ 2

modes, and a phase shift just in one of them, i.e., the relevant
Hamiltonian is H ¼ θn1. Adding energy conservation of the
two modes at the beam splitters (i.e., the fact that the
accessible states are two-mode Fock states of the form
jn − n2; n2i, where n2 with 0 ≤ n2 ≤ n is the number of
photons in the second mode), one immediately finds that the
optimal two-mode state is ðjn; 0i þ j0; niÞ= ffiffiffi

2
p

, i.e., the highly
entangled N00N state (Boto et al., 2000). However, we can
achieve exactly the same variance of G and hence sensitivity
with the single-mode state ðjni þ j0iÞ= ffiffiffi

2
p

⊗ ρ2, i.e., a
product state where we keep the second mode in any state
ρ2. In both cases the maximum energy of the first mode is nℏω
(assuming ω1 ¼ ω2 ¼ ω), and the average energy in the
interferometer nℏω=2 (neglecting the vacuum energy
ℏω=2). Hence, also from the perspective of maximum energy
deposit in the optical components, there is no advantage in
using two entangled modes. If the Mach-Zehnder interfer-
ometer is realized abstractly via Ramsey pulses on N two-
level systems (states j0i; j1i) for the beam splitters, and a

phase shift expðiθJzÞ, Jz ¼
P

N
i¼1 σ

ðiÞ
z =2, the state that max-

imizes VarðJzÞ is the (maximally entangled) GHZ state
ðj0 � � � 0i þ j1 � � � 1iÞ= ffiffiffi

2
p

. But exactly the same uncertainty
can be obtained with a single spin j (j ¼ N=2) in the state
ðjj; ji þ jj;−jiÞ= ffiffiffi

2
p

(in the usual jj; mi notation, where j is
the total angular momentum and m its z component). Clearly,
allowing as large a spectrum for a single system as for the

combined systems makes entanglement entirely unneces-
sary here.
These considerations teach us that the relevant quantity to

be maximized is the quantum uncertainty of the generator G.
This can be understood in terms of generalized Heisenberg
uncertainty relations, in which the generator G plays the
quantity complementary to θ as was found early on
(Braunstein, Caves, and Milburn, 1996). In a multicomponent
system maximizing VarðGÞ may be achieved with highly
entangled states, but if the spectral range of a single system
admits the same VarðGÞ, there is no need for entanglement. If
unbound spectra are permitted, one can in fact do much better
than the Heisenberg limit: Berry et al. (2015) pointed out that
the single-mode state ð ffiffiffi

3
p

=2ÞP∞
n¼0 2

−nj2ni has diverging
VarðnÞ at the same time finite n̄. It therefore allows, at least in
principle and in an ideal setting, arbitrarily precise phase
measurements while using finite energy.
Braun (2011, 2012) found a state of the form ðj0i þ

j2niÞ= ffiffiffi
2

p
to be optimal for mass measurements with a

nanomechanical oscillator given a maximum allowed number
of excitation quanta 2n and times much larger than the
oscillation period (for shorter times there are contributions
also from the dependence on frequency of the energy
eigenfunctions). The same state of a single mode of the
e.m. field is optimal for measuring the speed of light (Braun,
Schneiter, and Fischer, 2017). In both cases the quantum
uncertainties scale as 1=n (quantum Fisher information
proportional to n2), and obviously no entanglement is needed.
Of course, a state of the form ðj0i þ j2niÞ= ffiffiffi

2
p

[called “half a
N00N” state by Braun (2011)] is still highly nonclassical [see
also De Pasquale et al. (2015)]. In fact, a single Fock state jni
is highly nonclassical as is witnessed by its highly oscillatory
Wigner function (Schleich, 2001) with substantial negative
parts. The superposition ðj0i þ j2niÞ= ffiffiffi

2
p

leads in addition to
2n lobes in the azimuthal direction that explain the sensitivity
of phase measurements ∝ n−1. Alternatively, one can use
superpositions of coherent states (Braginsky, Khalili, and
Thorne, 1995; Lund et al., 2004; Neergaard-Nielsen et al.,
2006; Suzuki et al., 2006; Wakui et al., 2007; Bimbard et al.,
2010; Yukawa et al., 2013), i.e., “Schrödinger-cat” type states
of the form ðjαi þ j − αiÞ= ffiffiffi

2
p

. They have been created in
quantum optics with values of α ¼ 0.79 in Ourjoumtsev et al.
(2006). Lund et al. (2004) proposed a “breeding method”
based on weak squeezing, beam mixing with an auxiliary
coherent field, and photon detecting with threshold detectors
to achieve values up to α ≤ 2.5, but the success probability
was found to be too low for a realistic iterated protocol. An
alternative based on homodyning was proposed by Laghaout
et al. (2013) and Etesse et al. (2014) and implemented by
Etesse et al. (2015), leading to α ≃ 1.63. The current record in
the optical domain for “large” α appears to be α ≃

ffiffiffi
3

p
,

achieved from two-mode squeezed vacuum and n-photon
detection on one of the modes (Huang et al., 2015). In the
microwave regime, superpositions of coherent states with α ¼ffiffiffi
7

p
have been generated, as well as superposition of coherent

states with smaller phase differences with up to 111 photons
(Vlastakis et al., 2013). Monroe et al. (1996) reported
superpositions of coherent states of the vibrational motion
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of a 9Beþ ion in a one-dimensional trap with α ≃ 3. Almost
arbitrary superpositions with a small number of photons can
be generated by using couplings of a mode with two-level
systems that can be tuned in and out of resonance, and a
plethora of methods for generating superpositions of coherent
states were proposed, but reviewing the entire literature of
nonclassical states in general and even all the proposals for
generating superpositions of coherent states is beyond the
scope of the present review [see, e.g., Gottesman, Kitaev, and
Preskill (2001), Deléglise et al. (2008), and Hofheinz et al.
(2009) and the Nobel Lectures of Haroche (2013) and
Wineland (2013) for historical accounts of the development
of these fields and many more references, as well as the
literature citing Montina and Arecchi (1998) where super-
positions of coherent states in a Mach-Zehnder interferometer
were studied with respect to the limitations arising from
imperfect photodetectors].
The use of superpositions of coherent states for metrology

was examined by Ralph (2002) and Gilchrist et al. (2004) and
it was found that the Heisenberg limit can be reached. Montina
and Arecchi (1998) discovered that superpositions of coherent
states in atom interferometers may even exhibit quantum-
enhanced sensitivity to parameters that have no classical
analog. For example, Riedel (2015) showed that monitoring
the decoherence rate of a superposition of atomic coherent
states may uncover clues about so-far undetected particles that
couple softly (i.e., via weak momentum transfer, but not
weakly) to the atoms. This is reminiscent of previous ideas of
using decoherence as a sensitive probe (Braun and Martin,
2011). The decoherence rate can be detected with sensitivity
that is limited only by the spatial size of the superposition, and
the situation is quite similar to the estimation of boson loss
discussed in Sec. II.E.

2. Decoherence-enhanced measurements

Decoherence is arguably the most fundamental issue that
plagues quantum enhancements of all kinds, and quantum-
enhanced measurements are no exception. However,
decoherence has interesting physical properties which imply
that it can also be useful for precision measurements. This
goes beyond the benefits of decoherence and open system
dynamics found as early as the late 1990s and the early 2000s,
when it was realized that entanglement can be created through
decay processes or more generally through coupling to
common environments (Plenio et al., 1999; Braun, 2002,
2005; Benatti, Floreanini, and Piani, 2003; Benatti, Liguori,
and Nagy, 2008; Benatti, Floreanini, and Marzolino, 2009,
2010b), and, paradoxically, that decoherence of quantum
computations can be reduced by rather strong dissipation
that confines the computation to a decoherence-free subspace
through a Zeno-type effect due to the rapid decay of states
outside the decoherence-free subspace (Beige, Braun, and
Knight, 2000; Beige et al., 2000). Recently such ideas have
found renewed interest, and meanwhile techniques have been
proposed to create steady state entanglement in driven open
quantum systems, such as cold Rydberg gases in the Rydberg-
blockade regime (Lee, Cho, and Choi, 2015). It remains to be
seen whether such stabilized entangled states are useful for
precision measurements.

Here, on the contrary, we focus on the dynamics created by
decoherence processes themselves. Decoherence arises from
an interaction with an environment described by a nontrivial
interaction Hamiltonian Hint ¼

P
iSiBi with a similar struc-

ture as the nonlinear Hamiltonians considered, where in Hint,
however, one distinguishes operators (Si) pertaining to the
system and others (Bi) pertaining to the environment. The
environment is typically considered as a heat bath with a large
number of degrees of freedom that may not be entirely
accessible (Weiss, 1999; Breuer and Petruccione, 2002;
Benatti and Floreanini, 2005). In addition, a system and a
heat bath have their own Hamiltonian, such that the total
Hamiltonian reads H ¼ HS þHB þHint. From simple model
systems it is known that decoherence tends to become
extremely fast for quantum superpositions of states that differ
macroscopically in terms of the eigenvalues of one of the Si.
For example, it was shown that superposing two Gaussian
wave packets of a free particle in one dimension that is
coupled through its position to a heat bath of harmonic
oscillators leads to decoherence times that scale as powers
of ℏ that depend on how the wave packets are localized in
phase space: The shortest decoherence time scaling as ℏ=jq1 −
q2j results from wave packets distinguished only by positions
q1, q2, the longest one ∼ℏ1=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1 − p2j
p

from wave packets
that differ only in their mean momenta p1, p2, and an
intermediate one scaling as ℏ2=3=jðq1 − q2Þðp1 − p2Þj1=3.
For systems of finite Hilbert-space dimensions such as angular
momenta, one can often identify an effective ℏ that scales as
the inverse Hilbert-space dimension which suggests that
monitoring the decoherence process can lead to highly
sensitive measurements, possibly surpassing the 1=

ffiffiffiffi
N

p
scal-

ing of the standard quantum limit.
That this intuition is correct was shown by Braun and

Martin (2011), where a method was proposed for measuring
the length of a cavity by monitoring the decoherence process
of N atoms inside the cavity. The atoms are initially prepared
in a highly excited dark state, in which destructive interference
prevents them from transferring their energy to a mode of the
cavity with which they are resonant. For example, if one has
two atoms coupling via an interaction ðg1σð1Þ− þ g2σð2Þ− Þ† þ
H:c: to a mode of the cavity with annihilation operator a, a
state ∝ ð1=g1Þj10i − ð1=g2Þj01i of the atoms (where j0i and
j1i are the ground and excited states of the atoms) is a dark
state, also known as a decoherence-free state: the amplitudes
of photon transfer from the two atoms to the cavity cancel.
However, the couplings gi depend on the position of the atoms
relative to the cavity due to the envelope of the e.m. field. If
the cavity changes its length L with the atoms at fixed
positions, the gi change, such that the original state becomes
slightly bright. This manifests itself through the transfer of
atomic excitations to the mode of the cavity, from where
photons can escape and be detected outside. Braun and Martin
(2011) showed that through this procedure the minimal
uncertainty with which L can be estimated (according to
the quantum Cramér-Rao bound) scales as 1=N even when
using an initial product state of N=2 pairs of atoms. This
scaling applies both for a perfect cavity and in the bad cavity
limit in which superradiance arises. Thus, at least in principle,
Heisenberg-limited scaling can arise here without the need for
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an entangled state and in spite of the inherently decoherent
nature of superradiance. However, the prefactor matters also
here: Superradiance leads to a rapid decay of all states that are
not dark, such that the available signal and with it the prefactor
of the 1=N scaling law deteriorates rapidly with time.
Given the delocalized nature of the cavity mode in this

example, it is possible in principle to make the number of
atoms that interact with the mode arbitrarily large, in contrast
to the nonlinear schemes, for which the interactions have to
decrease if the total energy is to remain an extensive quantity.
But if the volume is kept fixed, the atoms will start to interact
so that the simple independent atom model of superradiance
breaks down. For even larger N one has to increase the size of
the cavity in order to accommodate all atoms. When the
largest possible density is reached, the volume will have to
grow ∝ N, which implies coupling constants of the atoms to
the cavity that decay as 1=

ffiffiffiffi
N

p
and leads back to standard

quantum limit scaling. In addition, the number of atoms has to
be macroscopic in order to compete with the best classical
sensitivities reached with interferometers such as LIGO:
Assuming that the prefactor in the 1=N scaling is of the
order of 1, one needs ∼1021 atoms for a minimal uncertainty
of 10−21. A cubic optical lattice with one atom every μm, the
lattice would have to span 10 m in the x, y, z direction in order
to accommodate that many atoms. When using a diamond
with regularly arranged NV centers every 10 nm [such dense
samples have been fabricated (Acosta et al., 2009)], one
would still require a cubic diamond of edge length 10 cm.
These examples show that competing with the best classical
techniques is very challenging even if one can achieve
Heisenberg-limit scaling, as in classical protocols it is rela-
tively easy to scale up the number of photons, compensating
thus for a less favorable scaling with N.

3. Coherent averaging

There is nothing inherently quantum about the 1=
ffiffiffiffi
N

p
scaling of the standard quantum limit. Rather, this behavior
is a simple consequence of the central limit theorem applied to
N independently acquired measurement results that are
averaged as part of a classical noise-reduction procedure.
The idea of coherent averaging is to replace the averaging by a
coherent procedure, in which the N probes all interact with a
central quantum system (a “quantum bus”). In the end one
measures the quantum bus or the entire system.
A simple example shows how this can lead to Heisenberg-

limit sensitivity without needing any entanglement: Consider
N spins 1=2 interacting with a central spin 1=2 with the Ising

interaction Hint ¼
P

N
i¼1 giσ

ð0Þ
z ⊗ σðiÞz , where the index zero

indicates the central spin. The interaction commutes with the

free Hamiltonian of all spins Hs ¼ ℏ
P

N
i¼0 ωiσ

ðiÞ
z , and we can

solve the time evolution exactly, starting from the initial
product state

jψð0Þi ¼ 1ffiffiffi
2

p ðj0i0 þ j1i0Þ ⊗N
i¼1 j0ii.

At time t, the state has evolved to

jψðtÞi ¼ 1ffiffiffi
2

p ðeiðω0=2−NḡÞtj0i0 þ e−iðω0=2−NḡÞtj1i0Þ ⊗N
i¼1 j0ii;

up to an unimportant global phase factor. In particular, the

state remains a product state at all times. If we measure σð0Þx of

the central spin, we find hσð0Þx ðtÞi ¼ cos½ðω0 − 2NḡÞt�, i.e., the
oscillation frequency increases for large N proportional to N.
As the quantum fluctuations of the central spin are indepen-
dent ofN, this implies a standard deviation in the estimation of
the average coupling ḡ that scales as 1=N, which can be
confirmed by calculating the quantum Fisher information.
Clearly, this is not an effect of entanglement, but simply of a
phase accumulation. In this respect the approach is reminis-
cent of the sequential phase accumulation protocols in which
the precision of a phase shift φ measurement is enhanced by
sending the light several times through the same phase shifter
(Higgins et al., 2007). However, there the losses increase
exponentially with the number of passes, and the sequential
nature of the interaction leads to a bandwidth penalty that is
absent for the simultaneous interaction described by Hint.
Birchall et al. (2017) took into account the exponential loss of
photons with the number of passes, and quantum Fisher
information per scattered photon was optimized. It was found
that when both probe and reference beam are subject to photon
loss, the reduction of σðφestÞ by a nonclassical state compared
to an optimal classical multipass strategy is only at most
∼19.5%, and an optimal number of passes independent of the
initial photon number was found, resulting in a loss of about
80% of all input photons. For a single-mode lossy phase the
possible sensitivity gain is even smaller. Multipass micros-
copy was proposed by Juffmann, Klopfer et al. (2016) and it
was experimentally demonstrated that at a constant number of
photon sample interactions retardance and transmission mea-
surements with a sensitivity beyond the single-pass shot-noise
limit could be achieved. Similar ideas are being developed for
electron microscopy (Juffmann, Koppell et al., 2016).
The fact that an interaction with N probes and a central

quantum bus can lead to Heisenberg-limit scaling of the
sensitivity was first found by Braun and Martin (2011),
where a more general model was studied. Note that the total
Hamiltonian has exactly the same structure as for a decoherence
model, with theN probes playing the role of the original system,
and the bus the role of an environment. However, in contrast to
the standard scenario in decoherence, it is assumed here that at
least part of the “environment” is accessible. This example
shows that the environment can be as simple as a single
spin 1=2. One can also extend the model to include additional
decoherence processes. Braun and Martin (2011) considered a
phase-flip channel with rate Γ on all spins. It was found that
phase flips on any of theN probes have no effect, whereas phase
flip of the central spin introduces a prefactor that decays

exponentially as expð−2ΓtÞ with time in hσð0Þx ðtÞi. Since the
prefactor is independent of N the power-law scaling of the
sensitivity with N is unchanged, but it is clear that the prefactor
matters and leads to a sensitivity that deteriorates exponentially
with time.
The fact that the parameter estimated in the example is the

interaction strength between the bus and theN probes prevents
a comparison with other schemes that do not use interactions.
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Fraïsse and Braun (2015) undertook a more comprehensive
study of two different spin systems where also parameters
describing the probes themselves and the bus were examined.
Regimes of strong and weak interaction were analyzed, and
different initial states considered. The two models, called
ZZZZ and ZZXX are, respectively, given by the Hamiltonians

H1 ¼
ω0

2
σð0Þz þ ω1

2

XN
i¼1

σðiÞz þ g
2

XN
i¼1

σð0Þz σðiÞz ;

H2 ¼
ω0

2
σð0Þz þ ω1

2

XN
i¼1

σðiÞz þ g
2

XN
i¼1

σð0Þx σðiÞx ; ð81Þ

where ℏ ¼ 1. The ZZZZ model is an exactly solvable
dephasing model; the ZZXX model can be analyzed numeri-
cally and with perturbation theory. The analysis is simplified
when starting with a product state that is symmetric under
exchange of the probes, in which case the probes can be
considered as a single spin with total spin quantum number
j ¼ N=2. It was found that for ω1, Heisenberg-limit scaling
can be achieved in the ZZXX model when measuring the
entire system, but not when measuring only the quantum bus,
and not for the ZZZZ model. Heisenberg-limit scaling for the
uncertainty of ω0 is not possible in either model. For the
interaction strength g, Heisenberg-limit scaling is found for a
large set of initial states and range of interaction strengths
when measuring the entire system, but only for a small set of
initial states in the vicinity of the state considered in the simple
example above, when measuring only the quantum bus.
Interestingly, in the ZZZZ model Heisenberg-limit scaling
of the sensitivity for measuring g also arises with the probes in
a thermal state at any finite temperature, as long as the
quantum bus can be brought into an initially pure state. This is
reminiscent of the power of 1 qubit (Knill and Laflamme,
1998): With a set of qubits of which only a single one is
initially in a pure state, a quantum enhancement is already
possible in quantum computation, providing evidence for an
important role of quantum discord (Datta, Flammia, and
Caves, 2005; Lanyon et al., 2008) (see Sec. II.C). As detailed
in Sec. II.C, the DQC1 scheme can provide better-than-
standard quantum limit sensitivity as soon as the ancillas
have a finite purity. The control qubit plays the role of the
quantum bus, and the dipole-dipole interaction between the
Rydberg atoms implements the XX interaction considered by
Fraïsse and Braun (2015).
An important limitation of such schemes was proven by

Boixo et al. (2007) and Fraïsse and Braun (2016), where it
was shown very generally that with a Hamiltonian extension
to an ancilla system the sensitivity of a phase shift measure-
ment cannot be improved beyond the best sensitivity achiev-
able with the original system itself. Coherent averaging is
nevertheless interesting as it allows one to achieve without
injecting entanglement better-than-standard quantum limit
sensitivity for which the noninteracting phase shift measure-
ment would need a highly entangled state. Fraïsse and Braun
(2017) showed that for general parameter-dependent
Hamiltonians HðθÞ the largest sensitivity is achieved if the
eigenvectors of ðd=dθÞHðθÞ to the largest and smallest
eigenvalues are also eigenvectors ofHðθÞ. If these eigenvalues

are nondegenerate, the condition is also necessary. For a phase
shift Hamiltonian the condition is obviously satisfied. This
insight opens the way to Hamiltonian engineering techniques
by adding parameter-independent parts to the Hamiltonian
that remove or overwhelm parts that spoil the commutativity
of ðd=dθÞHðθÞ and HðθÞ in the subspace of the largest and
smallest eigenvalues of ðd=dθÞHðθÞ. These techniques were
called “Hamiltonian subtraction” and “signal flooding,”
respectively, and were proposed to improve magnetometry
with NV centers.
Another opportunity for Hamiltonian engineering arises if

the eigenvalues of HðθÞ do not depend on the parameter. Pang
and Brun (2014, 2016) showed that in such a case the quantum
Fisher information becomes periodic in time. This is particu-
larly pernicious for quantum-enhanced measurement schemes
that allow long measurement times, as under the condition of
quantum coherence the quantum Fisher information typically
increases quadratically with time if the eigenvalues of HðθÞ
depend on θ. Adding another parameter-independent
Hamiltonian might lead to parameter-dependent eigenvalues
and hence unlock an unbound increase of the quantum Fisher
information with time.
The existence of Heisenberg-limit scaling of sensitivities

for product states suggests that coherent averaging might even
be possible classically. This question was investigated by
Braun and Popescu (2014) in a purely classical model of
harmonic oscillators in which N “probe” oscillators interact
with a central oscillator. It was found that indeed for weak
interaction strengths a regime of Heisenberg-limit scaling of
the sensitivity exists, even though the scaling crosses over to
standard quantum limit scaling for sufficiently large N.
Nevertheless, it was proposed that this could be useful for
measuring very weak interactions, and notably improve
measurements of the gravitational constant.

4. Quantum feedback schemes

In the context of having probes interact with additional
(ancilla) systems, quantum feedback schemes should be
mentioned. This is an entire field by itself (D’Alessandro,
2007; Wiseman and Milburn, 2009; Serafini, 2012). Quantum
feedback generalizes classical feedback loops to the quantum
world: one tries to stabilize, or more generally dynamically
control, a desired state of or an operation on a quantum system
by obtaining information about its actual state or operation, and
feeding back corrective actions into the controls of the system
that bring it back to that desired state or operation if any
deviation occurs. As a consequence, the field can be broadly
classified according to two different categories: First, the object
to be controlled may be a quantum state or an entire operation.
And second, the type of information fed back can be classical or
quantum. By “classical information” is meant information that
is obtained from a measurement, and which is then typically
processed on a classical computer and used to readjust the
classical control knobs of the experiment. Such schemes are
called “measurement-based feedback.” In contrast to this,
“coherent feedback” schemes directly use quantum systems
that are then manipulated unitarily and fed back to the system.
Measurement-based feedback schemes in metrology are

also known as “adaptive measurements” (see also Sec. V.D for

Daniel Braun et al.: Quantum-enhanced measurements without …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035006-29



adaptive measurements in the context of phase transitions). An
adaptive scheme was proposed as early as 1988 by Nagaoka
for mending the problem that the optimal POVM obtained in
standard quantum parameter estimation depends on the
a priori unknown parameter (Nagaoka, 1988). One starts
with a random estimate, uses its value to determine the
corresponding optimal POVM, measures the POVM, updates
the estimate, uses that new value to determine a new optimal
POVM, and so on. The scheme was shown to be strongly
consistent (meaning unbiased for the number of iterations
going to infinity) and asymptotically efficient (i.e., saturates
the quantum Cramér-Rao bound in that limit) by Fujiwara
(2006). It was experimentally implemented by Okamoto et al.
(2012) as an adaptive quantum state estimation scheme for
measuring polarization of a light beam, but is in principle a
general purpose estimation scheme applicable to any quantum
statistical model using identical copies of an unknown
quantum state.
In the context of quantum optics, an adaptive homodyne

scheme was proposed by Wiseman (1995) for measuring the
phase of an optical mode in which the reference phase of the
local oscillator ΦðtÞ is adjusted in real time to ΦðtÞ≃
π=2þ φðtÞ, where φðtÞ is the latest estimate of the phase
carried by a continuous-wave, phase-squeezed light signal.
This reference phase corresponds to the highest sensitivity in a
homodyne scheme. Keeping the local oscillator phase through
feedback close to this optimal operating point can beat
nonadpative heterodyning in single shot phase decoding, as
experimentally demonstrated by Armen et al. (2002). Pope,
Wiseman, and Langford (2004) showed that adaptive mea-
surements have a finite factor advantage even in the limit of
arbitrarily weak coherent states. Phase estimation using feed-
back was also studied by Berry and Wiseman (2000, 2002,
2006) and Higgins et al. (2007). Berry and Wiseman (2002)
investigated how well a stochastically varying, white noise-
correlated phase can be estimated. The theoretical analysis
showed that the variance of the phase estimation could be
reduced by a factor

ffiffiffi
2

p
by a simple adaptive scheme compared

to a nonadaptive heterodyne scheme, resulting in the value of
n−1=2=

ffiffiffi
2

p
, where n is the number of photons per coherence

time. With a squeezed beam and a more accurate feedback, the
scaling can be improved to n−2=3. The latter result was also
found for a narrow-band squeezed beam (Berry and Wiseman,
2006, 2013). Yonezawa et al. (2012) reported a 15� 4%

reduction of a mean square error of the phase below the
coherent-state limit with this scheme in optical-phase tracking,
i.e., in a case without any a priori information about the value
of the signal phase. The broad support of the signal phase
implies that there is an optimal amount of squeezing, and the
sensitivity enhancement is directly given by the squeezing.
The scheme can therefore be seen as a generalization of
Caves’ idea of reducing the uncertainty with which a fixed
phase shift in one arm of an interferometer can be measured
(Caves, 1981). Instead of having a fixed phase reference by
the beam in the other arm of the interferometer, the feedback
allows one to continuously adjust the phase of the reference in
the homodyning scheme to the optimal operating point. Clark,
Stokes, and Beige (2016) proposed a feedback scheme based
on measured temporal correlations (gð2Þ correlation function)

for estimating the phase of a coherent state inside a cavity and
found that the uncertainty scales better than the standard
quantum limit, namely, as n−0.65, where n is the mean photon
number of the coherent state. Wheatley et al. (2010) exper-
imentally used an “adaptive quantum smoothing method” for
estimating a stochastically fluctuating phase on a coherent
beam. “Smoothing” refers to the fact that estimates are
obtained not only from data measured up to the time when
one wants to estimate the phase, but also on later data. This
implies, of course, that these smoothed estimates can be
calculated only after a sufficient delay or at the end of the
experiment, whereas feedback itself at time t can use data only
from times t0 ≤ t (or even t0 < t when considering finite
propagation times). Theory predicts a reduction of the mean
square error by a factor 2

ffiffiffi
2

p
compared to the standard

quantum limit (achievable by nonadaptive filtering, i.e.,
without feedback and using only previous data at any time),
and an experimental reduction of about 2.24� 0.14 was
achieved.
Quantum error correction for quantum-enhanced measure-

ments, recently introduced by Dür et al. (2014) and Kessler
et al. (2014), can also be seen in the context of quantum
feedback schemes (Ahn, Doherty, and Landahl, 2002).
Quantum error correction is one of the most important
ingredients of quantum computing (Shor, 1995; Gottesman,
1996; Steane, 1996). The general idea, for both quantum
computing and quantum-enhanced measurements, is that one
wants to apply recovery operations R to a state that after
encoding the desired information through an operation M
has been corrupted by a noise process E, such that
R∘E∘MðρÞ ∝ Mρ. Kessler et al. (2014) showed that this
can be achieved for the sensing of a single qubit subject to
dephasing noise if it is coupled to a pure ancilla bit. Syndrome
measurements (i.e., measurements of collective observables
which do not destroy the relevant phase information, a concept
developed in quantum error correction) of both qubits at a rate
faster than the dephasing rate allow one to detect whether a
phase flip has occurred and to correct it, extending in this way
the coherence time available for Ramsey interferometry to
much longer times and thus better maximum sensitivities.
When using N qubits in parallel, an ancilla is not necessary.
The method then operates directly on an initially entangled
state, such as the GHZ state, and measures error syndromes on
pairs of spins. Thus, the idea here is not so much to avoid
entanglement but rather to stabilize through rapid multispin
error-syndrome measurements the correct imprinting of
the information on the quantum state against unwanted
decoherence processes. For phase estimation on N qubits
evolving in parallel under individual and identical Pauli rank-
one noisy channels, fast control schemes based on quantum
error correction allow one to restore the Heisenberg limit by
completely eliminating the noise at the cost of slowing down
the unitary evolution by a constant factor, unless the noise is
dephasing noise that couples to the same Pauli operator as the
Hamiltonian generating the phase shift (Sekatski et al., 2017).
More generally, one can prove that sequential metrological

schemes involving an initial probe entangled with an ancilla,
with the probe undergoing N passes of a transformation
encoding the parameter of interest, interspersed by arbitrary
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feedback control operations acting on probe and ancilla,
and followed by a joint measurement on the two particles
at the output, can outperform any parallel metrological scheme
relying on an initial N-particle entangled state (Demkowicz-
Dobrzański and Maccone, 2014; Yuan and Fung, 2015;
Huang, Macchiavello, and Maccone, 2016; Yuan, 2016;
Sekatski et al., 2017). In particular, Yuan (2016) showed that
a sequential feedback scheme allows one to realize a joint
quantum-enhanced measurement of all three components
of a magnetic field on a single-qubit probe. As remarked
in Sec. II.A, the use of sequential schemes assisted by
suitable control reduces the input demand from multipartite
to bipartite entanglement, resulting in a notable technological
advantage.

V. THERMODYNAMICAL AND NONEQUILIBRIUM
STEADY STATES

This section concerns precision parameter estimations when
probes are thermal states or nonequilibrium steady states of
dissipative dynamics. These states have the advantage to be
stationary and describe mesoscopic systems. From measure-
ments on these probes, intensive parameters, such as temper-
ature, chemical potential, or couplings of Hamiltonians or of
dissipators, are inferredwith a sensitivity given by the inverse of
the quantum Fisher information. Thermal probes are crucial for
both fundamental issues and technological applications
(Benedict, 1984; Childs, 2001; Giazotto et al., 2006).
Estimations with dissipative dynamics (Bellomo et al., 2009,
2010a, 2010b; Alipour, Mehboudi, and Rezakhani, 2014;
Zhang and Sarovar, 2015) are also instances of process
tomography (Mohseni, Rezakhani, and Lidar, 2008;
Bendersky and Paz, 2013; Merkel et al., 2013; Baldwin,
Kalev, and Deutsch, 2014) with partial prior knowledge. The
identification of the quantum Fisher information with the Bures
metric clarifies the role of criticality as a resource for estimation
sensitivity. With extensive, i.e., linear in the system size,
interactions and away from critical behaviors, the Bures
distance between the probe state and its infinitesimal perturba-
tion is at most extensive. Critical behaviors, e.g., separation
between different states ofmatter or long-range correlations, are
thus characterized by a superextensive Bures metric and the
quantum Fisher information. Thus, the next sections are
dedicated to superextensivity of the quantumFisher information
as a signature of enhancements in precision measurements on
thermodynamical and nonequilibrium steady states. Emphasis
will be put on highly sensitive probes that do not need to be
entangled and in certain cases not even quantum.

A. Thermodynamical states and thermal phase transitions

Thermodynamic states at equilibrium are derived by the
maximization of information-theoretic Shannon’s entropy
(Jaynes, 1957a, 1957b), equivalent to the maximization of
the number of microscopic configurations compatible with
physical constraints. Given the probability distribution fpjgj
of a set of configurations fjgj, the constraints are the
normalization

P
jpj ¼ 1 and the averages of certain quan-

tities hFðkÞi ¼ P
jpjf

ðkÞ
j , fðkÞj being the values of the quantity

FðkÞ corresponding to the jth configuration. The solution of
the maximization is the well-known Boltzmann-Gibbs dis-
tribution

pj ¼
e−
P

k
θkf

ðkÞ
j

Z
; Z ¼

X
j

e−
P

k
θkf

ðkÞ
j ; ð82Þ

where Z is the partition function, and θk is the Lagrange
multiplier corresponding to the quantity FðkÞ fixed on average.
This formalism is equally adequate for both classical and

quantum thermodynamic systems. In the quantum case all the
quantities FðkÞ are commuting operators, the configurations
are labeled by the set of eigenvalues of these operators and
possibly additional quantum numbers in the case of degen-
eracy, and the thermal state is the density matrix ρ diagonal in
the common eigenbasis of the FðkÞ with eigenvalues pj:

ρ ¼
X
j

pjjjihjj; FðkÞjji ¼ fðkÞj jji: ð83Þ

Lagrange multipliers are the thermodynamic parameters to
be estimated. Since the density matrix in Eq. (83) depends on
them only through its eigenvalues pj, the quantum Fisher
matrix I ¼ ½Iθk;θk0 �k;k0 coincides with the classical Fisher
matrix of the probability distribution fpjgj. A straightforward
computation shows

Iθk;θk0 ¼
∂2 lnZ
∂θk∂θk0 ¼ CovðFðkÞ; Fðk0ÞÞ: ð84Þ

See also Jiang (2014) for the computation of the quantum
Fisher information with density matrices in exponential form.
The diagonal element Iθk;θk is the largest inverse sensitivity for
a single estimation of the parameter θk, while the Fisher matrix
I bounds the inverse covariance matrix of the multiparameter
estimation; see Eq. (17). The Cramér-Rao bound hence reads

½Covðθk;est; θk0;estÞ�½CovðFðkÞ; Fðk0ÞÞ� ≥ 1

M
; ð85Þ

which is the uncertainty relation for conjugate variables in
statistical mechanics (Gilmore, 1985; Davis and Gutiérrez,
2012).
The computation of the Fisher matrix (84), together with the

Cramér-Rao bound (85), implies that the best sensitivity of
Lagrange multipliers fθkgk is inversely proportional to
squared thermal fluctuations and thus susceptibilities; see,
e.g., Reichl (1998). For connections among the metric of
thermal states, Fisher information, and susceptibilities see
Weinhold (1975), Ruppeiner (1979, 1981, 1991, 1995), Diósi
et al. (1984), Mrugała (1984), Salamon, Nulton, and Ihrig
(1984), Nulton and Salamon (1985), Janyszek (1986b, 1990),
Janyszek and Mrugała (1989), Brody and Rivier (1995),
Dolan (1998), Janke, Johnston, and Malmini (2002), Brody
and Ritz (2003), Janke, Johnston, and Kenna (2003), Crooks
(2007), Prokopenko et al. (2011), and Davis and Gutiérrez
(2012) for classical systems and Janyszek (1986a), Janyszek
and Mrugała (1990), You, Li, and Gu (2007), Zanardi,
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Campos Venuti, and Giorda (2007), Paunković and Vieira
(2008), Zanardi, Paris, and Campos Venuti (2008), Quan and
Cucchietti (2009), and Marzolino and Braun (2013, 2015) for
quantum systems.
Because of the pairwise commutativity of the FðkÞ, the

estimations of the parameters fθkgk are reduced to parameter
estimations with the classical probability distribution fpjgj.
Thus, the maximum-likelihood estimator is asymptotically
unbiased and optimal, in the sense of achieving the Cramér-
Rao bound, in the limit of infinitely many measurements
(Helstrom, 1976; Holevo, 1982). This estimator consists of

measuring each FðkÞ with outcomes ffðkÞj gj¼1;…;M, and in
maximizing the average logarithmic likelihood l ¼
ð1=MÞ lnQjpj with respect to the parameters fθkgk.
Among the most common statistical ensembles for equi-

librium systems there are the canonical ensemble and the
grand canonical ensemble. The canonical ensemble describes
systems that exchange energy only with their surroundings:
the only quantity F1 ¼ H fixed on average is the Hamiltonian,
the Lagrange multiplier is θ1 ¼ β ¼ 1=kBT where kB is the
Boltzmann constant and T is the absolute temperature, and the
Fisher information is proportional to the heat capacity
CV ¼ ð∂hHi=∂TÞV ,

Iβ;β ¼ VarðHÞ ¼ kBT2CV: ð86Þ

The grand canonical ensemble describes systems that
exchange energy and particles with the surrounding: the
quantities fixed on average are the Hamiltonian F1 ¼ H
and the particle number F2 ¼ N, with Lagrange multipliers
being the inverse temperature θ1 ¼ β ¼ 1=kBT and θ2 ¼ −βμ
where μ is the chemical potential. The Fisher information of
temperature and the chemical potential are linked to thermal
fluctuations, i.e., heat capacity CV ¼ ð∂hHi=∂TÞV and iso-
thermal compressibility κT ¼ −ð1=VÞð∂V=∂PÞT, respec-
tively, where V is the volume and P is the pressure
(Marzolino and Braun, 2013, Marzolino and Braun, 2015):

Iβ;β ¼ VarðμN −HÞ ¼ ∂μhNi
∂β þ kBT2CV; ð87Þ

Iμ;μ ¼ β2VarðNÞ ¼ hNi2
βV

κT: ð88Þ

Another parameter that can be estimated within this
framework is the magnetic field. For certain classical magnetic
or spin systems, the interaction with a magnetic field B is
B ·M, with M being the total magnetization. This interaction
term can represent a contribution to the Hamiltonian as well as
additional “fixed-on-average quantities” B with Lagrange
multipliers βM. The magnetic field is also linked to magnetic
susceptibility χ ¼ ∂hMi=∂B (where for simplicity B and M
have only a single component, M ≡Mz, B≡ Bz):

IB;B ¼ β2VarðMÞ ¼ βχ. ð89Þ

This picture of the magnetic field as a Lagrange multiplier is
valid also for coupling constants whenever the Hamiltonian is
H ¼ P

jλjHj, where βλj is the Lagrange multiplier ofHj. For

general quantum systems, the noncommutativity of magneti-
zation or other Hamiltonian contributions Hj with the rest of
the Hamiltonians gives rise to quantum phase transitions that
occur also at zero temperature without thermal fluctuations.
These considerations also apply to the so-called generalized
Gibbs ensembles, i.e., with arbitrary fixed-on-average
quantities FðkÞ, for which estimations of parameters θk are
under experimental (Langen et al., 2015) and theoretical
(Foini et al., 2017) study.
Thermal susceptibilities are typically extensive except in

the presence of phase transitions. Thus, their connection with
Fisher information suggests that thermal states at critical
points (Baxter, 1982; Diósi et al., 1984; Janyszek and
Mrugała, 1989; Janyszek, 1990; Ruppeiner, 1991, 1995;
Brody and Rivier, 1995; Dolan, 1998; Reichl, 1998; Janke,
Johnston, and Malmini, 2002; Brody and Ritz, 2003; Janke,
Johnston, and Kenna, 2003; Prokopenko et al., 2011) with
divergent susceptibilities are probes for enhanced measure-
ments. Thermal susceptibility divergences occur also in
classical systems, proving precision measurements without
entanglement.

1. Role of quantum statistics

The estimation of Lagrange multipliers of quantum gases in
the grandcanonical ensemble and the role of quantum statistics
therein (Marzolino and Braun, 2013, 2015) are now discussed.
Consider ideal gases in a homogeneous or harmonic trap. Iβ;β
is always extensive in the average particle number hNi. The
corresponding relative error found in Marzolino and Braun
(2013, 2015) for temperature estimation is still 1 order of
magnitude smaller than the standard deviations obtained
experimentally via density measurements of bosons
(Leanhardt et al., 2003) and fermions (Müller et al., 2010;
Sanner et al., 2010).
Estimations of chemical potentials are more sensitive to

quantum statistics than estimations of temperature, because
the chemical potential is the conjugate Lagrange multiplier of
the particle number which in turn reveals clear signatures of
quantum statistics, such as bunching and antibunching.
Effects of quantum statistics are more evident in quantum
degenerate gases, i.e., at low temperatures.
In fermion gases, Iμ;μ is extensive but diverges at zero

temperature. A change in the chemical potential corresponds
to the addition or the subtraction of particles, thus achieving a
state orthogonal to the previous one. This sudden state change
makes the chemical potential estimation very sensitive.
A generalization of the Cramér-Rao bound called the
Hammerseley-Chapman-Robbins-Kshirsagar bound that is
suitable for nondifferentiable statistical models (Tsuda and
Matsumoto, 2005) must be applied. This may lead to super-
extensive Iμ;μ depending on the degree of rotational symmetry
breaking or confinement anisotropy and dimension [see
Appendix B in Marzolino and Braun (2013)].
Bose gases undergo a phase transition to a Bose-Einstein

condensate in three dimensions for homogeneous confinement,
and in two or three dimensions in a harmonic trap. Approaching
from above the critical temperature, or zero temperature with
large density when there is no phase transition, Iμ;μ is super-
extensive: for homogeneous and harmonic traps, respectively,
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Iμ;μ ≲

8>>><
>>>:

Oðβ2hNi4=3Þ in three dimensions;

O
�
β2 hNi2

loghNi

�
in two dimensions;

Oðβ2hNi2Þ in one dimension;

ð90Þ

Iμ;μ ≲

8>>><
>>>:

Oðβ2hNiÞ in three dimensions;

Oðβ2hNi loghNiÞ in two dimensions;

O
�
β2 hNi2

loghNi

�
in one dimension.

ð91Þ

Below the critical temperature, the Bose-Einstein conden-
sate phase depends on the anisotropy of the external potential.
If the gas is much less confined along certain directions, the
Bose-Einstein condensate is an effective low-dimensional gas
with excitations restricted to directions along the less confined
dimensions. A hierarchy of condensations to subsequent
lower-dimensional gases is possible. These Bose-Einstein
condensates have been studied both at finite size and in the
thermodynamic limit focusing on mathematical structures and
general properties (Girardeau, 1960, 1965; Casimir, 1968;
Krueger, 1968; Rehr, 1970; van den Berg and Lewis, 1982;
van den Berg, 1983; van den Berg, Lewis, and Munn, 1986;
van den Berg, Lewis, and Pulé, 1986; Ketterle and van Druten,
1996; Mullin, 1997; van Druten and Ketterle, 1997; Zobay
and Garraway, 2004; Beau and Zagrebnov, 2010; Mullin and
Sakhel, 2012), in connection with liquid helium in thin films
(Osborne, 1949; Mills, 1964; Douglass, Khorana, and Brij,
1965; Goble and Trainor, 1965, 1966, 1967; Khorana and
Douglass, 1965), magnetic flux of superconducting rings
(Sonin, 1969), and gravito-optical traps (Wallis, 1996).
Experimental realizations of effective low-dimensional
Bose-Einstein condensates with trapped atoms have been
reported by Görlitz et al. (2001), Greiner et al. (2001),
Esteve et al. (2006), van Amerongen (2008), van
Amerongen et al. (2008), Armijo et al. (2011), and
Bouchoule, van Druten, and Westbrook (2011). Iμ;μ in these
Bose-Einstein condensate phases is superextensive and inter-
polates between the scaling above the critical temperature and
Iμ;μ ¼ Oðβ2hNi2Þ for a standard Bose-Einstein condensate
consisting only of the ground state. The advantage of Bose-
Einstein condensate probes for precision estimations is that
Iμ;μ is superextensive in the entire Bose-Einstein condensate
phase and not only at critical points as for susceptibilities of
other thermal phase transition.
In a mean field model with interactions treated perturba-

tively, if the ideal system exhibits a superlinear scaling of the
Fisher information, the interaction strength λ has to go to zero
for N → ∞ for the perturbation theory to remain valid. In this
limit, the superlinear scaling disappears for any nonzero value
of λ, but at finite N there are values of λ which do not destroy
the sub-shot noise.
Moreover, superextensive quantum Fisher information in

one dimension at fixed volume Lx and small contact inter-
action coupling c=Lx results

Iμ;μ ≃
β2λ2ThNi3
2πL2

x
þ β2hNi − β2λ4ThNi4

8π2L4
x

ð1 − e−4π=λ
2
Tρ

2hNiÞ

þ c

�
3β3λ6ThNi7
16π3L7

x
ð1 − e−4π=λ

2
Tρ

2hNiÞ

−
β3λ4ThNi6
4π2L4

x
ð2þ e−4π=λ

2
Tρ

2hNiÞ
�
; ð92Þ

where λT is the thermal wavelength, in agreement with
experimental measurements on atom chips using 87Rb atoms
(Armijo et al., 2011). Superextensive grand canonical fluc-
tuations of particle number, and thus superextensive Iμ;μ, have
been observed in a photon Bose-Einstein condensate (Schmitt
et al., 2014), which can be realized at room temperature
(Klaers, 2014).

2. Interferometric thermometry

A protocol for precision thermometry proposed by Stace
(2010) utilizes a Mach-Zehnder interferometer coupled to an
ideal gas consisting of N two-level atoms in the canonical
ensemble. The gas Hamiltonian is H0 ¼

P
N
j¼1 ϵjϵijhϵj,

where jϵij is the jth particle excited state with single-
particle energy ϵ, while the single-particle lowest energy is
zero. The label j at the bra-vector in the projector is skipped
for brevity.
The interferometer is injected with K two-level atoms that

interact with the gas in one arm of the interferometer with the
interaction Hamiltonian HI ¼ α

P
K
j¼1

P
N
l¼1 jϵijhϵj ⊗ jϵilhϵj,

where the index j labels the atoms in the interferometer and l
refers to the atoms in the gas. In order for the interaction not to
sensitively perturb the gas, the interferometer should be much
smaller than the gas, thus K ≪ N. Each atom in the interfer-
ometers acquires a relative phase ϕ ¼ αmτ between the arms,
where τ is the interaction time and m is the number of excited
atoms in the gas whose expectation hmi ¼ N=ð1þ eβϵÞ
depends on the temperature.
The inverse temperature can be estimated from the inter-

ferometric phase measurement with the sensitivity

σðβÞ ¼ δϕ

jατðdhmi=dβÞj ¼
ð1þ eβϵÞ2
ϵeβϵN

δϕ

ατ
; ð93Þ

resulting from error propagation, where δϕ is the best
sensitivity of the phase estimation according to the quantum
Cramér-Rao bound. The scaling with the number K of probes
comes from δϕ. For distinguishable atoms, separable states
imply shot noise δϕ ¼ 1=K1=2, while sub-shot noise can be
achieved with separable states of identical atoms as discussed
in Sec. III, leading to δβ ∝ 1=K for ideal noninteracting
bosons, or δβ ∝ 1=Kpþ1=2 for ideal fermions with a dispersion
relation of the probe atoms as discussed after Eq. (67). Note
also that the scaling of the sensitivity (93) with respect to the
particle number N in the gas looks like a Heisenberg scaling
irrespectively of the probe state, and it is not possible to
achieve this scaling by direct measurement of the gas (i.e.,
without any probe) because the Fisher information is extensive
except at critical points. What is conventionally considered is,
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however, the scaling with the number of probes, in this caseK,
which can be controlled.
Optimal thermometry with a single quantum probe (and

hence by definition without entanglement) was discussed by
Correa et al. (2015). It was found that the quantum Cramér-
Rao bound for T of a thermalizing probe reproduces the well-
known relation of temperature fluctuations to specific heat
CVðTÞ, ½T=VarðTestÞ�2 ≤ CVðTÞ [with Boltzmann constant
kB ¼ 1, see also Jahnke, Lanéry, and Mahler (2011)]. The
level structure of the probe was then optimized to obtain
maximum heat capacity and it was found that the probe should
have only two different energy levels, with the highest one
maximally degenerate and a nontrivial dependence of the
optimal energy gap on temperature (Reeb and Wolf, 2015).
The sensitivity of the probe increases with the number of
levels, but the role of the quantumness of the initial state of the
probe on the sensitivity of thermometry is not fully understood
yet. Interferometric thermometry with a single probe was
realized experimentally in an NMR setup in Raitz et al. (2015)
and the role of quantum coherence emphasized. Experimental
simulations in quantum optical setups and investigations of
the role of quantum coherence were reported by Mancino
et al. (2016) and Tham et al. (2016). The theoretical study by
Jevtic et al. (2015) examined thermometry with two qubits.
Numerical evidence suggested that while initial quantum
coherences can improve the sensitivity, the optimal initial
state is not maximally entangled.

B. Thermodynamical states and quantum phase transitions

Quantum phase transitions are sudden changes of the
ground state for varying Hamiltonian parameters. If the
Hamiltonian HðθÞ ¼ P

j≥0EjðθÞjEjðθÞihEjðθÞj with Ej ≤
Ejþ1 has a unique pure ground state jE0ðθÞi, the Fisher
matrix (Campos Venuti and Zanardi, 2007; You, Li, and Gu,
2007; Zanardi, Giorda, and Cozzini, 2007; Gu and Lin,
2009) is

Iθk;θk0 ¼ 4Re
X
j>0

hE0j∂θkHjEjihEjj∂θk0HjE0i
ðEj − E0Þ2

ð94Þ

which follows from the differentiation of the eigenvalue
equation HjEji ¼ EjjEji or from the standard time-
independent perturbation theory with respect to small varia-
tions dθ. The quantum Fisher information is also expressed in
terms of the imaginary time correlation function or dynamical
response function (Campos Venuti and Zanardi, 2007; You,
Li, and Gu, 2007; Gu and Lin, 2009; You and He, 2015) and
has been used to count avoided crossings (Wimberger, 2016).
Equation (94) tells us that the Fisher matrix can diverge

only for divergent Hamiltonian derivatives or for gapless
systems E1 − E0 → 0 in the thermodynamic limit. Thus, the
divergence or the superextensivity of the quantum Fisher
information reveals a quantum phase transition but the
converse does not hold; see Gu (2010) for a review. Finite
size scaling of the quantum Fisher information (Campos
Venuti and Zanardi, 2007; Zanardi, Paris, and Campos
Venuti, 2008; Gu and Lin, 2009) can be derived using finite

size scaling at criticality (Brankov, Danchev, and Tonchev,
2000; Continentino, 2001).
Superextensive quantum Fisher information was observed

at low order symmetry breaking quantum phase transitions,
topological quantum phase transitions, and gapless phases,
but this criterion may fail at high-order symmetry break-
ing quantum phase transitions (Tzeng et al., 2008) and
Berezinskii-Kosterlitz-Thouless (BKT) quantum phase tran-
sitions (Chen et al., 2008; Sun, Kolezhuk, and Vekua, 2015).
The following sections focus on quantum critical systems at
zero temperature exhibiting superextensive quantum Fisher
information of Hamiltonian parameters without entanglement.
The notation of existing literature is adapted and unified by
writing down a general parametrized Hamiltonian whose
different special cases are studied in the literature.

1. Quasifree fermion models

Consider noninteracting many-body Hamiltonians, i.e.,

HðθÞ ¼
X
j

ωjðθÞa†jðθÞajðθÞ; ð95Þ

where a†j (aj) creates (annihilates) a fermion in the jth

eigenmode. The dependence of the eigenmodes a†j ; aj on
the parameters corresponds in second quantization to the
dependence of the Hamiltonian eigenvectors on θ, as required
for the ground state to be sensitive to variations of θ. The
eigenstates of Eq. (95), and thus thermal probes including the
ground state, are not entangled in the eigenmodes. Therefore,
measurements on the ground state provide parameter estima-
tion without entanglement and with enhanced precision at
phase transitions, as shown by the following examples.
Under Bogoliubov transformations the Hamiltonian (95)

can be mapped into many models studied in the literature.
Bogoliubov transformations preserve neither mode entangle-
ment nor operation locality, as discussed in Sec. III. The
relativity of entanglement with respect to the basis of modes
provides complementary pictures of the Hamiltonian and of
estimation protocols of its parameters but does not change the
physics: either the probe state is entangled in one basis or it is
not in another and the enhanced estimation precision is
achieved by nonlocal measurements as a consequence of
long-range correlations at criticality. This situation is remi-
niscent of the case of interferometry with identical particles
discussed in Sec. III, for which rotations of modes redistribute
quantum resources between initial entanglement and nonlocal
interferometers. Moreover, Bogolibov transformations and
corresponding rotated modes are experimentally addressed
in several physical systems (Segovia et al., 1999; Vogels et al.,
2002; Moritz et al., 2003; Davis et al., 2006; Robillard et al.,
2008; Sattler, 2011; Inguscio and Fallani, 2013; Hu, Xianlong,
and Liu, 2014; Yan, Huang, and Wang, 2016), showing that
quasiparticles represent legitimate and experimentally relevant
subsystems.
Hamiltonians equivalent to Eq. (95) under Bogoliubov trans-

formations are quasifree fermion models (Cozzini, Giorda, and
Zanardi, 2007), i.e., quadratic Hamiltonians in the creation c†j
and annihilation cj operators of L fermionic modes:
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Hquasifree ¼
XL
j;l¼1

�
c†jAj;lcl þ

1

2
ðc†jBj;lc

†
l þ H:c:Þ

�
; ð96Þ

where L is a measure of the system volume. Translationally
invariant Hamiltonians (96) with periodic boundary conditions
and tunneling in the modes fcj; c†jgj of range r have

Aj;l ¼ ðJ− μÞδj;l − Jθðr− jj− ljÞ− Jθðjj− lj−Lþ rÞ;
Bj;l ¼ Jγsgnðj− lÞ½θðr− jj− ljÞ− θðjj− lj−Lþ rÞ�; ð97Þ

where J > 0, sgnð0Þ ¼ 0, and θð·Þ is the unit step function with
θð0Þ ¼ 1. Here J corresponds to a tunneling energy between
different sites, and Jγ to an effective interaction; μmultiplies the
total particle number and hence corresponds to a chemical
potential. This Hamiltonian can be analytically diagonalized
(Cozzini, Giorda, and Zanardi, 2007). For large L and a fully
connected system, r ¼ bL=2c with periodic boundary condi-
tions, the Fisher matrix with respect to ðμ; γÞ is

Iμ;μ ¼ γ2S; Iγ;γ ¼ ðμ − JÞ2S; Iμ;γ ¼ −ðμ − JÞγS;
ð98Þ

with

S ≃

8>>>>><
>>>>>:

L
2




 J
ðμ−JÞγ




 1
ðjμ−JjþjJγjÞ2 if ðμ ≠ J; γ ≠ 0Þ;

L2

3J2γ4 if ðμ ¼ J; γ ≠ 0Þ;
L2J2

ðμ−JÞ4 if ðμ ≠ J; γ ¼ 0Þ.
ð99Þ

The lines ðμ ¼ J; γ ≠ 0Þ and ðμ ≠ J; γ ¼ 0Þ reveal second-
order quantum phase transitions, as well as superextensivity of
the Fisher matrix in the volume L. At the critical line γ ¼ 0, the
ground state is unentangled not only in the eigenmodes but also
in the original modes fcj; c†jgj.
The fully connected translationally invariant Hamiltonian

with open boundary conditions reads

Aj;l ¼ ðμ − JÞδj;l þ J; Bj;l ¼ Jγsgnðl − jÞ; ð100Þ

with second-order quantum phase transitions at lines μ ¼ J
and γ ¼ 0, and a superextensive Fisher matrix as for periodic
boundary conditions with different prefactors (Cozzini,
Giorda, and Zanardi, 2007; Zanardi, Cozzini, and Giorda,
2007). For instance, at ðμ > J; γ ¼ 0Þ

Iμ;μ ¼ 0; Iγ;γ ¼
L2J2

3ðμ − JÞ2 ; Iμ;γ ¼ 0: ð101Þ

Another interesting case is the Hamiltonian with nearest
neighbor tunneling in the modes fcj; c†jgj, periodic boundary
conditions, and J > 0:

Aj;l ¼ ðJ − μÞδj;l − Jθð1 − jj − ljÞ;
Bj;l ¼ Jγsgnðl − jÞθð1 − jj − ljÞ. ð102Þ

Such a Hamiltonian (Zanardi, Paris, and Campos Venuti,
2008) is also equal to

Hquasispin ¼
XbL=2c
n¼1

ð−ϵnσzn þ Δnσ
y
nÞ; ð103Þ

with ϵn ¼ −J cos ð2πn=LÞ − μ=2, Δn ¼ −Jγ sin ð2πn=LÞ,
and fσy;zn gn are Pauli matrices on n orthogonal C2 subspaces.
Equation (103) provides an alternative representation of the
Hamiltonian in terms of noninteracting quasispins, and its
eigenstates are separable with respect to both the eigenmodes
and the quasispins. The same quantum Fisher information
scaling holds in both representations as theoretical indepen-
dent models.
The quantum Fisher information is linear in L away from

the critical points, but superextensive at criticality in the
leading order for large L (Zanardi and Paunković, 2006;
Zanardi, Paris, and Campos Venuti, 2008):

IJ;Jðjμj ¼ 2J; γÞ ¼ O
�

L2

J2γ2

�
; ð104Þ

Iγ;γðjμj ≤ 2J; γ ¼ 0Þ ¼ OðL2Þ: ð105Þ

The origin of the superextensivity of IJ;J stems from the fact
that the symmetric logarithmic derivative, and thus the optimal
estimation of J, is close to a single-particle operator in the
fermion representation away from the critical point, but is a
genuine multiparticle operator close to the critical point. In the
canonical ensemble, at jμ=2 − Jj≲ 1=β, the quantum Fisher
information has a divergence around zero temperature
IJ;J ¼ OðLβ=jJγjÞ. The superextensivity of IJ;J, together with
the divergence of the derivative of the geometric phase, is also
a universal feature depending only on the slope for the closing
of the energy gap between one and zero fermion occupations
of certain eigenmodes (Cheng et al., 2017).
Superextensive quantum Fisher information is observed

also for tight-binding electrons on the triangular lattice with
magnetic flux ϕ=2 within each triangle, hopping constants ta
(tb) at edge along the x (y) direction and tc at the third edge
(Gong and Tong, 2008). Assuming zero momentum in the y
direction (Ino and Kohmoto, 2006), the Hamiltonian can be
transformed into Eq. (96), with Bj;l ¼ 0 and

Aj;l ¼ −2tb cos ð2πϕjÞδl;j − ðta þ tce−2πiϕðj−1=2ÞÞδl;j−1
− ðta þ tce2πiϕðjþ1=2ÞÞδl;jþ1; ð106Þ

with j and l labeling the sites in the x direction. Consider
L ¼ Fm, the mth Fibonacci number, and

ϕ ¼ Fm−1

Fm
!

m→∞

ffiffiffi
5

p
− 1

2
;

the inverse of the golden ratio in the thermodynamic limit. At
the critical line tc ¼ ta, numerical computations result in
Itc=ta ¼ OðL4.9371Þ ifm ¼ 3Lþ 1, otherwise Itc=ta ¼ OðL2.0Þ.
Itb=ta has the same size dependence at the critical line 2tb ¼ ta.
A more complicated quasifree fermion Hamiltonian describes
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a superconductor with a magnetic impurity (Paunković et al.,
2008). A sudden increase of the Bures distance between two
reduced ground states of a few modes around the impurity
at very close exchange interaction with the impurity was
numerically observed, but it is unclear whether the quantum
Fisher information with respect to exchange interaction is
superextensive.

2. Hubbard models

Another class of fermionic systems is described by L-mode
Hubbard Hamiltonians

HHM ¼ −
X

j¼1;…;L
σ¼↑;↓

tσðc†j;σcjþ1;σ þ H:c:Þ

þ U
XL
j¼1

nj;↑nj;↓ − μ
X
j;σ

nj;σ; ð107Þ

with nj;σ ¼ c†j;σcj;σ , tσ the hopping constants, U the inter-
action strength, and μ the external potential. When t↑ ¼ t↓, the
system undergoes a BKT quantum phase transition at U ¼ 0
and half filling n ¼ ð1=LÞPj;σhnj;σi ¼ 1. IU is extensive, but
IU=L diverges as 1=n for n → 0 and U ¼ 0, and as 1=U4

around the BKT critical point only if the system size is much
larger than the correlation length (Campos Venuti et al., 2008).
At zero interaction Eq. (107) is a free fermion Hamiltonian,
and thus the ground state is not entangled in the eigenmodes.
In the large U limit and at n ¼ 2=3, a quantum phase

transition occurs with control parameter t↓=t↑. The quantum
Fisher information It↓=t↑ at critical points is superextensive
OðLαÞ, where the exponent was numerically computed
α ≃ 5.3 (Gu et al., 2008). In the large U limit, the eigenstates
of the Hamiltonian are perturbations of those of the interaction
term that are Fock states, thus with vanishingly small
entanglement with respect to the modes fcj;σ; c†j;σgj;σ .

3. Spin-1=2 systems

The next class of models consists of systems of N spins
1=2, which provide alternative representations of quasifree
models. Consider the following complete Hamiltonian, to be
specialized later on:

Hspin ¼ −J
XN−1

j¼1

�
1þ γ

2
σxjσ

x
jþ1 þ

1 − γ

2
σyjσ

y
jþ1 þ Δσzjσ

z
jþ1

�

þ d
XN−1

j¼1

ðσj ∧ σjþ1Þz −
XN
j¼1

ðh − gjÞσzj; ð108Þ

with anisotropies γ and Δ, Dzyaloshinskii-Moriya coupling d,
magnetic field with uniform value h and gradient g, and
σj ¼ ðσxj ; σyj ; σzjÞ.
For the moment, focus on the XY model with transverse

field, i.e., Δ ¼ d ¼ g ¼ 0, with J > 0 and periodic boundary
conditions. This Hamiltonian can be transformed into Eq. (96)
with (102), μ ¼ 2h, and L ¼ N using the Jordan-Wigner
transformation (Giamarchi, 2003). Thus, the XY Hamiltonian
provides an alternative physical setting to implement precision
metrology without entanglement in the fermionic eigenmodes.

At zero temperature Ih;h ¼ ðJ2=h2ÞIJ;J , since theground state
depends on h and J only via the ratio h=J. The Fisher matrix is
extensive with divergent prefactors around critical regions
(Zanardi, Giorda, and Cozzini, 2007; Cheng et al., 2017) and
is superextensive at criticality as in Eqs. (104) and (105).
In the Ising model, i.e., γ ¼ 1, corrections to the quantum

Fisher information around the critical points jhj ¼ J (Chen
et al., 2008; Zhou and Barjaktarevič, 2008; Zhou, Zhao, and Li,
2008; You and He, 2015) and at small temperature (Zanardi,
Campos Venuti, and Giorda, 2007; Invernizzi et al., 2008) are
also linear inN with divergent prefactors. Ih;h was also explicitly
computed by Damski (2013), Damski and Rams (2014), and
You and He (2015). A good estimator of the parameter J is the
value inferred by measurements of the total magnetization at
least at small system size (Invernizzi et al., 2008).
The divergence of Ih;h=N was numerically observed also in

the XX model, i.e., γ ¼ 0, approaching the critical field
jhj ¼ J, with the reduced state of spin blocks (Sacramento,
Paunković, and Vieira, 2011). This implies precision estima-
tions of the magnetic field looking only at a part of the system.
Divergent Ih;h=N at critical field jhj ¼ J was numeri-

cally computed also when an alternating magnetic fieldP
N
j¼1ð−Þjþ1δσzj is added to the XY Hamiltonian (You and

He, 2015). The corresponding quasifree fermion Hamiltonian
has the additional term

P
N
j¼1ð−Þjþ1δc†jcj.

The XY and the Ising models are also interesting because
the superextensivity of the Fisher matrix I ¼ ½Iθ;θ0 �θ;θ0¼h;γ is
robust against disorder, i.e., with Hamiltonian parameters
being Gaussian random variables (Garnerone, Jacobson et al.,
2009). In the presence of disorder, quantum phase transitions
are broadened to Griffiths phases (Griffiths, 1969; Fisher,
1992, 1995; Sachdev, 1999). Thus, the exponent of N on
average Ih;h and Iγ;γ is slightly reduced but the superexten-
sivity is broadened in the parameter range. Superextensivity of
Ih;h at the critical Ising point jhj ¼ J becomes a broad peak,
and the superextensive Iγ;γ at the γ ¼ 0 critical line is split into
two symmetric broad peaks around γ ¼ 0, where at γ ¼ 0 a
local minimum with extensive Iγ;γ arises. Furthermore, the
scaling of Ih;h of the XY model at the critical point jhj ¼ J is
preserved when a periodic time-oscillating transverse mag-
netic field is considered, and the state is the Floquet time
evolution of the ground state at t ¼ 0 up to times that scale
linearly with the system size for small time-dependent driving
(Lorenzo et al., 2017). These robustness features are suitable
for practical implementations of precision measurements.
Another interesting system is the XXZ model, i.e., γ ¼ 0

and J < 0, whose low-energy spectrum for jΔj < 1=2 is
equivalent to a quasifree boson Hamiltonian known as
Luttinger liquid (Giamarchi, 2003). Thus, superextensive
ground state quantum Fisher information implies precision
measurements without entanglement in the boson eigenmo-
des. Given the Luttinger liquid parameter

K ¼ π

2 arccosð−2Δ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2d=J

p Þ ;

superextensive quantum Fisher information Id is observed
with periodic boundary conditions at d ¼ h ¼ g ¼ 0,
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Id ¼

8>><
>>:

OðN lnN
J2 Þ if Δ ¼ 1þ ffiffi

5
p
8

;

OðN6–8K

J2 Þ if 1þ ffiffi
5

p
8

< Δ < 1
2
;

Oð N
J lnNÞ2 if Δ ¼ 1

2
;

ð109Þ

while, with open boundary conditions,

Id ¼ O
�

J2KN2

ðJ2 þ 4d2Þ2
�

at h ¼ g ¼ 0 and

Ig ¼ O
�
KN4

J2u2

�
;

with

u ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Δ2

p

2 arccosð2ΔÞ ;

at d ¼ h ¼ g ¼ 0 (Greschner, Kolezhuk, and Vekua, 2013).
Here the quantum Fisher information is superextensive mainly
because the system is gapless, while the quantum phase
transition affects only subleading in N, even though super-
extensive, orders of the quantum Fisher information. Id is also
equal to the quantum Fisher information Iϕ with respect to a
twist phaseϕ of spin operators σþj σ

−
jþ1 → σþj σ

−
jþ1e

iϕ (Thesberg
andSørensen, 2011).Via the Jordan-Wigner transformation, the
Δ ¼ γ ¼ 0 case in Eq. (108) is equivalent to a quasifree fermion
Hamiltonian with matrix elements given by Eq. (102) with γ ¼
μ ¼ 0 and with the Dzyaloshinskii-Moriya and the gradient
field terms −ðid=2ÞPN

j¼1 c
†
jcjþ1 þ H:c: and

P
N
j¼1 gjc

†
jcj,

respectively. Id and Ig have the same scaling in a generalization
of the latter model with spin-1=2 fermions (Greschner,
Kolezhuk, and Vekua, 2013), providing a further example of
precision measurements without fermion entanglement.
Another model, mapped to a quasifree fermionic Hamilto-

nian and exhibiting superextensive quantum Fisher informa-
tion, is the quantum compass chain with periodic boundary
conditions (Motamedifar et al., 2013)

HQCC ¼
XN=2

j¼1

�X
α¼x;y

Jασα2j−1σ
α
2j þ Jzσ

z
2jσ

z
2jþ1

�
− h

XN
j¼1

σyj :

ð110Þ

Quantum phase transitions occur at critical fields h1;2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JxðJy � JzÞ

p
=2 when these values are real. Numerical

computations show that Ih ¼ OðNαÞ is superextensive with

α ≃

8>>>>>><
>>>>>>:

1.80� 0.02 for Jx
Jz
> 0; Jy

Jz
> 1 and h ¼ h1;

1.98� 0.02 for Jx
Jz
> 0; Jy

Jz
> 1 and h ¼ h2;

1.94� 0.02 for Jx
Jz
< 0; Jy

Jz
< 1 and h ¼ h2;

2.02� 0.02 for Jx
Jz
> 0; Jy

Jz
< 1 and h ¼ h1.

ð111Þ

4. Topological quantum phase transitions

The quantum Fisher information is superextensive also in
the topological quantum phase transition which have nonlocal
order parameters (Zeng et al., 2015). Mosaic models defined
on two-dimensional lattices with trivalent vertices, i.e., each
vertex is the border among three polygons, and with three-
body interaction were numerically studied. The N-particle
Hamiltonian is

Hmosaic ¼ −
X
α¼x;y;z

ðj;lÞ∈SðαÞ

Jαj;lσ
α
jσ

α
l − K

X
j;l;k

σxjσ
y
l σ

z
k; ð112Þ

where SðαÞ is the set of edges in the α ∈ fx; y; zg direction.
Hmosaic can be mapped onto a free Majorana fermion
Hamiltonian, thus without entanglement in fermion eigenm-
odes. When the edge numbers of the three polygons are
(4,8,8), Jx;yj;l ¼ J, Jzj;l ¼ Jz, and K ¼ 0, the quantum Fisher

information is IJz ¼ OðN1.076 15�0.000 05Þ at the critical point

Jz ¼
ffiffiffi
2

p
J > 0 (Garnerone, Abasto et al., 2009). When the

edge numbers are (3,12,12), Jx;y;zj;l ¼ J for edges within
triangular elementary subcells (Yao and Kivelson, 2007),
Jx;y;zj;l ¼ J0 for other links, and K ¼ 0, the quantum Fisher

information is IJ0 ¼ OðN1.078�0.005Þ at the critical point J0 ¼ffiffiffi
3

p
J > 0 (Garnerone, Abasto et al., 2009). Hmosaic on the

honeycomb lattice with Jαj;l ¼ Jα has topological quantum
phase transition at the boundaries jJxj ¼ jJyj þ jJzj,
jJyj ¼ jJzj þ jJxj, and jJzj ¼ jJxj þ jJyj with superextensive
quantum Fisher information, e.g., IJx ¼ OðN lnNÞ for Jy ¼
Jz ¼ Jx=2 and K ¼ 0 (Zhao and Zhou, 2009), and IJz ¼
OðN1.086 75�0.000 05Þ for Jz ¼ J=2, Jx ¼ Jy ¼ J − Jz=2 and
K ¼ 1=15 (Garnerone, Abasto et al., 2009).
Topological quantum phase transition are particularly

relevant because of superextensive quantum Fisher informa-
tion in gapless phases and not only at critical points. In
the honeycomb lattice with K ¼ 0, Jx þ Jy þ Jz ¼ J, and
Jx ¼ Jy, the quantum Fisher information is IJz ¼
OðN1.2535�0.000 05Þ at the critical point Jz ¼ J=2 (Yang et al.,
2008), and IJz ¼ OðN lnNÞ in the gapless phase Jz < J=2
(Gu and Lin, 2009). Superextensivity in the gapless phase is
due to the algebraic decay of the correlation function of the
z edge, in contrast to exponential decay in the gapped phase
Jz > J=2 leading to extensive quantum Fisher information.

C. Nonequilibrium steady states

Consider now parameter estimation with probes in non-
equilibrium steady states of spin-1=2 chains with boundary
noise (Prosen, 2015; Marzolino and Prosen, 2016a; Zunkovic
and Prosen, 2010) described by the Markovian master
equation (Breuer and Petruccione, 2002; Benatti and
Floreanini, 2005)

∂ρt
∂t ¼ −i½HXYZ; ρt�

þ λ
X
α¼1;2
J¼1;N

�
Lα;jρtL

†
α;j −

1

2
fL†

α;jLα;j; ρtg
�
; ð113Þ
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with the XYZ Hamiltonian, i.e., Eq. (108) with d ¼ g ¼ 0,
and Lindblad operators L1ð2Þ;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� μÞ=2p
σ�j .

Superextensive quantum Fisher information of the non-
equilibrium steady states ρ∞ is observed at the nonequilibrium
phase transition and in phases with long-range correlations. In
the XY model Δ ¼ 0, superextensive quantum Fisher infor-
mation was computed at the critical lines h ¼ 0 [Ih;h ¼
OðN6Þ] and γ ¼ 0 with jhj < Jj1 − γ2j [Iγ;γ ¼ OðN2Þ], at
the critical points jhj ¼ Jj1 − γ2j [½Iθ;θ0 �θ;θ0¼h;γ ¼ OðN6Þ], and
in the phase with long-range correlations jhj < Jj1 − γ2j
[½Iθ;θ0 �θ;θ0¼h;γ ¼ OðN3Þ] (Banchi, Giorda, and Zanardi, 2014).
In the XXZ model γ ¼ 0, the quantum Fisher information

IΔ is superextensive in the limit of small λ=J and for jΔj ≤
1=2 at irrational ðarccosΔÞ=π (Marzolino and Prosen, 2014,
2016b, 2017). If ðarccosΔÞ=π is rational

IΔ ¼ λ2μ2

J2
ðξ̃N2 þ ξNÞ;

where ξ and ξ̃ are constants in N and for λ=J < 1=
ffiffiffiffi
N

p
, thus

the quantum Fisher information is not superextensive.
Nevertheless, after inserting the value of Δ in ðarccosΔÞ=π
and reducing the fraction to lowest term ðarccosΔÞ=π ¼ q=p
with coprime integers q and p, one realizes that the coefficient
ξ is unbounded when the denominator p grows. Therefore, IΔ,
as a function of Δ, exhibits a fractal-like structure with a
different size scaling at irrational ðarccosΔÞ=π. Moreover, the
limit of ðarccosΔÞ=π approaching irrational numbers from
rationals and the thermodynamic limit do not commute. If the
thermodynamic limit is first performed then

IΔ ¼ O
�
λ2μ2

J2
N∼5

�

with λ=J < 1=
ffiffiffiffi
N

p
. If the thermodynamic limit is postponed

after the limit to irrational ðarccosΔÞ=π then the quantum
Fisher information is still fitted by a superextensive power law
with exponent depending on the value of Δ, e.g.,

IΔ ¼ O
�
λ2μ2

J2
N2.327 88�0.0009

�

with λ=J < 1=
ffiffiffiffi
N

p
and ðarccosΔÞ=π being the golden ratio.

When Δ ¼ 1=2,

IΔ ¼ O
�
λ2μ2

J2
N4

�

with λ=J < 1=N in both cases.
In addition, the quantum Fisher information of the reduced

state of a single spin at position k scales superextensively also
for arbitrary dissipation strength λ but only at the critical points
jΔj ¼ 1, and with a power law depending on the position k of
the spin (Marzolino and Prosen, 2017): e.g., at λ ¼ 1, IΔ ¼
OðN∼2Þ for k ¼ 1, k ¼ bN=2c, or k ¼ N, and IΔ ¼ OðN∼4Þ for
k ¼ bN=4c or k ¼ b3N=4c. This proves that the anisotropy at
jΔj ¼ 1 can be precisely estimated measuring single spin
magnetizations along the z axis, or measuring the

magnetizations
P

j∈Phσzji for any noncentrosymmetric portion
P of the chain, or

P
j∈PfðhσzjiÞwith even functions fð·Þ for any

set P, even centrosymmetric ones.
For either small λ or small μ the steady states ρ∞ of these

models are perturbations of the completely mixed state and
thus not entangled (Bengtsson and Życzkowski, 2006). In the
XX model γ ¼ Δ ¼ 0, there is no nearest neighbor spin
entanglement for a wide range of parameters (Žnidarić,
2012). Nonequilibrium steady state probes are favorable
because the quantum Fisher information is superextensive
in a whole phase and not only at exceptional parameters.
Moreover, the distinguishability of nonequilibrium steady
states via Fisher information, thus detectability of nonequili-
brium criticality and metrological performances, are enhanced
compared to thermal equilibrium systems: e.g., the BKT
quantum phase transition at Δ ¼ 1=2 in the ground state of
the XXZ model does not correspond to superextensive
quantum Fisher information (Chen et al., 2008; Sun,
Kolezhuk, and Vekua, 2015).

D. Adaptive measurements

Since critical points without critical phases are isolated
values, they should be known in advance in order to set the
system at criticality and the benefit of superextensive quantum
Fisher information. A partial solution is an adaptive approach
(Mehboudi, Correa, and Sanpera, 2016) that is here general-
ized to phase transitions under reasonable conditions. The idea
is to perform several estimates changing the thermal state or
the nonequilibrium steady state, in particular, the critical
point, at each step according to previous estimates, in order
to approach the phase transition ensuring enhanced sensitivity
of the control parameter estimation.
Consider any phase transition with control parameter θ to

be estimated and assume the quantum Fisher information

Iθ−θc ¼
ξN

jθ − θcjα

close to a critical point θc with α > 0 and a prefactor ξ. The
notation Iθ−θc is used to make clear that the quantum Fisher
information depends on the difference θ − θc rather than on θ
alone. Sub-shot-noise sensitivity is shown only at θ ¼ θc.
Assume also that θ is initially known within a fixed interval
θ ∈ ½θmin; θmax� enclosing the value θc which can be controlled
by other system parameters. First, set the critical point to

θð1Þc ¼ θmax, ensuring that θ < θð1Þc , i.e., one is on a well-

defined side of the phase transition. Find a first estimate θð1Þest
for the parameter θ, with an uncertainty that saturates the
quantum Cramér-Rao bound. Use therefore a number of
measurements M that ensures a small error compared to
the original confidence interval

σðθð1Þest Þ ¼
�

1

MI
θ−θð1Þc

�
1=2

≪ ðθmax − θminÞ;

where once more σðθð1Þest Þ ¼ Varðθð1Þest Þ1=2 is the standard
deviation of the estimate. Then, update the critical parameter
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to θð2Þc ¼ θð1Þest þ σðθð1Þest Þ. Since σðθð1Þest Þ ≪ ðθmax − θminÞ, the

new critical point θð2Þc is now much closer to the true value of θ

than θð1Þc , assuming that the obtained estimate θð1Þest (which is
random and only on average agrees for an unbiased estimator

with θ) is indeed within an interval of order σðθð1Þest Þ of the true
θ. Hence, in the next round, the quantum Fisher information
should be substantially larger. Perform then again sufficiently
many times a POVM that allows saturating the quantum

Cramér-Rao bound for a new estimate θð2Þest ,

σ2ðθð2Þest Þ ¼
1

MI
θ−θð2Þc

≃
�½σðθð1Þest Þ�α

ξMN

�
∝ ðMNÞ−ð2þαÞ=2.

After k iterations, the sensitivity of the estimate θðkÞ saturating
the quantum Cramér-Rao bound is

σ2ðθðkÞest Þ ¼
1

MI
θ−θðkÞc

∝ ðMNÞ−
P

k−1
j¼0

ðαj=2jÞ

¼ ðMNÞ½1−ðα=2Þk�=ðα=2−1Þ; ð114Þ

achieving sub-shot noise for α < 2 with the limiting scaling
σ2ðθestÞ ∝ ðMNÞ2=ðα−2Þ for k → ∞.
Within this adaptive scheme, control of Hamiltonian

parameters, estimations at each step, and rematerialization
or restabilization of states at each step are assumed to be
efficiently implementable. This adaptive measurement was
proposed to estimate the critical magnetic field h ¼ J of the
XX model at small nonzero temperature when the quantum
phase transition is smoothened to a phase crossover
(Mehboudi, Correa, and Sanpera, 2016), achieving the limit-
ing scaling σ2ðθestÞ ∝ ðMNÞ−4=3. The optimal estimate is
derived from measurements of the magnetization along the
z direction

P
jσ

z
j, since the magnetic field commutes with the

spin interaction restoring the classical picture of Lagrange
multipliers and quantities fixed on average. The same estimate
and that derived from measurements of the variance of

P
jσ

x
j

are nearly optimal for the XY model. It is remarkable that,
when the adaptive measurement is applied to the model (97)
approaching the critical lines in Eq. (99) from the noncritical
region, the critical scalings are consistently recovered.

VI. OUTLOOK

Most work on quantum-enhanced measurements has inves-
tigated the benefits of using quantum entanglement [see Paris
(2009), Giovannetti, Lloyd, and Maccone (2011), Pezzè and
Smerzi (2014), Tóth and Apellaniz (2014), and Pezzè et al.
(2016) for recent reviews]. Indeed, under certain restrictive
assumptions (see the Introduction), entanglement can be
shown to be necessary if one wants to improve over classical
sensitivity. However, going beyond these restrictive assump-
tions opens up a host of new possibilities of which we have
explored a large number in this review. Given the difficulty of
producing and maintaining entangled states of a large number
of subsystems, some of these may open up new roads to better
sensitivities than classically possible with a comparable
number of resources in actual experiments.

We conclude this review by challenging yet another
common mind-set in the field (which we could not quite
escape in this review either), namely, the hunt for faster
scaling of the sensitivity, in particular, the quest for a scaling
faster than 1=

ffiffiffiffi
N

p
with the number of subsystems N, and the

goal of reaching Heisenberg-limited scaling 1=N: It should be
clear [see also Sec. IV.C and the linear-nonlinear comparison
in Napolitano et al. (2011)] that scaling of the sensitivity is not
per se a desideratum. Any given instrument or measurement is
judged by its sensitivity, not the scaling thereof. When the
sensitivity is σðθestÞ ¼ αNd, it is sometimes argued that the
prefactor α is irrelevant, because a more rapid scaling
necessarily leads to better sensitivity for sufficiently large
N. While mathematically impeccable, this argument assumes
that the scaling persists to sufficiently large N where the
possibly small prefactor can be compensated, an assumption
that may not be valid in practice. Typically, at some point the
model breaks down, and systematic errors arise that scale with
a positive power of N and at some point become comparable
to the stochastic error quantified by the quantum Cramér-Rao
bound. And finally, some large-N catastrophe destroys the
instrument and its measurement capability. Such concerns are
of course relevant for real-life experiments, for which material
properties have to be taken into account. But they may also
determine fundamental bounds to achievable precision for
various physical quantities that are ultimately linked to the
fabric of spacetime at extremely small length and time scales.
Such ideas were advanced early on notably by Wigner, who
estimated the ultimate achievable precision of atomic clocks:
increasing the energy of the used clock states more and more
for improving its precision leads ultimately to the formation of
a black hole and hence renders reading off the clock
impossible (Wigner, 1957). Similar limitations of this kind
exist for measurements of lengths (Amelino-Camelia, 1999;
Ng and Dam, 2000) and have been recently explored in more
detail for the speed of light in vacuum (Braun, Schneiter, and
Fischer, 2017).
While current technology is still far from probing such

extreme conditions, we nevertheless arrive to the conclusion
that the importance of scaling is to give the functional form for
an extrapolation of the sensitivity, a prediction of how well
one could measure if one had a given large N. The validity of
this extrapolation is limited by the range over which the
scaling persists, an additional datum not described by the
scaling nor by the prefactor. Moreover, there is the possibility
of an optimum N, beyond which the sensitivity worsens
(Nichols et al., 2016). In such a case, the interesting questions
are “is the optimumNopt achievable given available resources”
and “what is the actual sensitivity at this optimum?” At such
an optimum the local scaling is flat, i.e., the smallest possible
uncertainty of an unbiased estimate of the parameter is
independent of N. Ironically, our discussion of advantageous
scaling leads to the conclusion that the best scaling may be no
scaling at all.
The relevance of the actually achievable smallest uncer-

tainty rather than its scaling with the number of resources
makes it particularly important that alternatives to the use of
massive entanglement be investigated as so far the number of
subsystems that could be entangled experimentally has
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remained relatively small. We hope that the present review
will stimulate further research in this direction.
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Asbóth, J. K., J. Calsamiglia, and H. Ritsch, 2005, Phys. Rev. Lett.
94, 173602.

Audenaert, K. M. R., J. Calsamiglia, R. Muñoz Tapia, E. Bagan, L.
Masanes, A. Acin, and F. Verstraete, 2007, Phys. Rev. Lett. 98,
160501.

Augusiak, R., J. Kołodyński, A. Streltsov, M. N. Bera, A. Acín, and
M. Lewenstein, 2016, Phys. Rev. A 94, 012339.

Bakr, W. S., J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, 2009,
Nature (London) 462, 74.

Balachandran, A., T. Govindarajan, A. de Queiroz, and A.
Reyes-Lega, 2013, Phys. Rev. Lett. 110, 080503.

Baldwin, C. H., A. Kalev, and I. H. Deutsch, 2014, Phys. Rev. A 90,
012110.

Banchi, L., S. L. Braunstein, and S. Pirandola, 2015, Phys. Rev. Lett.
115, 260501.

Banchi, L., P. Giorda, and P. Zanardi, 2014, Phys. Rev. E 89, 022102.
Banuls, M.-C., J. Cirac, and M. Wolf, 2007, Phys. Rev. A 76,
022311.

Barnett, S. M., C. Fabre, and A. Maître, 2003, Eur. Phys. J. D 22,
513.

Barnum, H., E. Knill, G. Ortiz, R. Somma, and L. Viola, 2004, Phys.
Rev. Lett. 92, 107902.

Barnum, H., G. Ortiz, R. Somma, and L. Viola, 2005, Int. J. Theor.
Phys. 44, 2127.

Barzanjeh, S., S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S.
Pirandola, 2015, Phys. Rev. Lett. 114, 080503.

Baumgratz, T., M. Cramer, and M. B. Plenio, 2014, Phys. Rev. Lett.
113, 140401.

Baxter, R. J., 1982, Exactly Solved Models in Statistical Mechanics
(Academic, New York).

Beau, M., and V. A. Zagrebnov, 2010, Condens. Matter Phys. 13,
23003.

Beenakker, C. W. J., 2006, “Quantum Computers, Algorithms and
Chaos,” in Proceedings of the International School of Physics
“Enrico Fermi” (Societa Italiana di fisica, Bologna, Italy).

Beige, A., D. Braun, and P. L. Knight, 2000, New J. Phys. 2, 22.
Beige, A., D. Braun, B. Tregenna, and P. L. Knight, 2000, Phys. Rev.
Lett. 85, 1762.

Bellomo, B., A. De Pasquale, G. Gualdi, and U. Marzolino, 2009,
Phys. Rev. A 80, 052108.

Bellomo, B., A. De Pasquale, G. Gualdi, and U. Marzolino, 2010a,
Phys. Rev. A 82, 062104.

Bellomo, B., A. De Pasquale, G. Gualdi, and U. Marzolino, 2010b,
J. Phys. A 43, 395303.

Beltrán, J., and A. Luis, 2005, Phys. Rev. A 72, 045801.
Benatti, F., and D. Braun, 2013, Phys. Rev. A 87, 012340.
Benatti, F., and R. Floreanini, 2005, Int. J. Mod. Phys. B 19, 3063.
Benatti, F., and R. Floreanini, 2014, Int. J. Quantum. Inform. 12,
1461002.

Benatti, F., and R. Floreanini, 2016, J. Phys. A 49, 305303.
Benatti, F., R. Floreanini, and U. Marzolino, 2009, Europhys. Lett.
88, 20011.

Benatti, F., R. Floreanini, and U. Marzolino, 2010a, Ann. Phys.
(Amsterdam) 325, 924.

Benatti, F., R. Floreanini, and U. Marzolino, 2010b, Phys. Rev. A 81,
012105.

Benatti, F., R. Floreanini, and U. Marzolino, 2011, J. Phys. B 44,
091001.

Benatti, F., R. Floreanini, and U. Marzolino, 2012a, Ann. Phys.
(Amsterdam) 327, 1304.

Benatti, F., R. Floreanini, and U. Marzolino, 2012b, Phys. Rev. A 85,
042329.

Benatti, F., R. Floreanini, and U. Marzolino, 2014, Phys. Rev. A 89,
032326.

Benatti, F., R. Floreanini, and M. Piani, 2003, Phys. Rev. Lett. 91,
070402.

Benatti, F., R. Floreanini, and K. Titimbo, 2014, Open Syst. Inf. Dyn.
21, 1440003.

Benatti, F., F. Franchini, R. Floreanini, and U. Marzolino, 2017,
Open Syst. Inf. Dyn. 24, 1740004.

Daniel Braun et al.: Quantum-enhanced measurements without …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035006-40

https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1103/PhysRevLett.87.177901
https://doi.org/10.1103/PhysRevB.80.115202
https://doi.org/10.1103/PhysRevA.90.022321
https://doi.org/10.1088/1751-8113/49/47/473001
https://doi.org/10.1088/1751-8113/49/47/473001
https://doi.org/10.1103/PhysRevA.79.040305
https://doi.org/10.1103/PhysRevA.65.042301
https://doi.org/10.1103/PhysRevA.65.042301
https://doi.org/10.1103/PhysRevLett.112.120405
https://doi.org/10.1103/PhysRevLett.112.120405
https://doi.org/10.1038/18377
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1007/s00220-003-0832-6
https://doi.org/10.1142/S0219749911008210
https://doi.org/10.1142/S0219749911008210
https://doi.org/10.1103/PhysRevLett.89.133602
https://doi.org/10.1103/PhysRevA.83.021605
https://doi.org/10.1103/PhysRevLett.94.173602
https://doi.org/10.1103/PhysRevLett.94.173602
https://doi.org/10.1103/PhysRevLett.98.160501
https://doi.org/10.1103/PhysRevLett.98.160501
https://doi.org/10.1103/PhysRevA.94.012339
https://doi.org/10.1038/nature08482
https://doi.org/10.1103/PhysRevLett.110.080503
https://doi.org/10.1103/PhysRevA.90.012110
https://doi.org/10.1103/PhysRevA.90.012110
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevE.89.022102
https://doi.org/10.1103/PhysRevA.76.022311
https://doi.org/10.1103/PhysRevA.76.022311
https://doi.org/10.1140/epjd/e2003-00003-3
https://doi.org/10.1140/epjd/e2003-00003-3
https://doi.org/10.1103/PhysRevLett.92.107902
https://doi.org/10.1103/PhysRevLett.92.107902
https://doi.org/10.1007/s10773-005-8009-z
https://doi.org/10.1007/s10773-005-8009-z
https://doi.org/10.1103/PhysRevLett.114.080503
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.5488/CMP.13.23003
https://doi.org/10.5488/CMP.13.23003
https://doi.org/10.1088/1367-2630/2/1/322
https://doi.org/10.1103/PhysRevLett.85.1762
https://doi.org/10.1103/PhysRevLett.85.1762
https://doi.org/10.1103/PhysRevA.80.052108
https://doi.org/10.1103/PhysRevA.82.062104
https://doi.org/10.1088/1751-8113/43/39/395303
https://doi.org/10.1103/PhysRevA.72.045801
https://doi.org/10.1103/PhysRevA.87.012340
https://doi.org/10.1142/S0217979205032097
https://doi.org/10.1142/S0219749914610024
https://doi.org/10.1142/S0219749914610024
https://doi.org/10.1088/1751-8113/49/30/305303
https://doi.org/10.1209/0295-5075/88/20011
https://doi.org/10.1209/0295-5075/88/20011
https://doi.org/10.1016/j.aop.2010.01.005
https://doi.org/10.1016/j.aop.2010.01.005
https://doi.org/10.1103/PhysRevA.81.012105
https://doi.org/10.1103/PhysRevA.81.012105
https://doi.org/10.1088/0953-4075/44/9/091001
https://doi.org/10.1088/0953-4075/44/9/091001
https://doi.org/10.1016/j.aop.2012.02.002
https://doi.org/10.1016/j.aop.2012.02.002
https://doi.org/10.1103/PhysRevA.85.042329
https://doi.org/10.1103/PhysRevA.85.042329
https://doi.org/10.1103/PhysRevA.89.032326
https://doi.org/10.1103/PhysRevA.89.032326
https://doi.org/10.1103/PhysRevLett.91.070402
https://doi.org/10.1103/PhysRevLett.91.070402
https://doi.org/10.1142/S1230161214400034
https://doi.org/10.1142/S1230161214400034
https://doi.org/10.1142/S1230161217400042


Benatti, F., A. M. Liguori, and A. Nagy, 2008, J. Math. Phys. (N.Y.)
49, 042103.

Bendersky, A., and J. P. Paz, 2013, Phys. Rev. A 87, 012122.
Benedict, R. P., 1984, Fundamentals of temperature, pressure and
flow measurements (Wiley, New York).

Bengtsson, I., and K. Życzkowski, 2006, Geometry of Quantum
States: An Introduction to Quantum Entanglement (Cambridge
University Press, Cambridge, England).

Bennett, C. H., D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains,
P. W. Shor, J. A. Smolin, and W. K. Wootters, 1999, Phys. Rev. A
59, 1070.

Berrada, K., 2013, Phys. Rev. A 88, 013817.
Berry, D.W., M. Tsang, M. J. W. Hall, and H. M. Wiseman, 2015,
Phys. Rev. X 5, 031018.

Berry, D.W., and H. M. Wiseman, 2000, Phys. Rev. Lett. 85, 5098.
Berry, D.W., and H. M. Wiseman, 2002, Phys. Rev. A 65, 043803.
Berry, D.W., and H. M. Wiseman, 2006, Phys. Rev. A 73, 063824.
Berry, D.W., and H. M. Wiseman, 2013, Phys. Rev. A 87, 019901.
Bimbard, E., N. Jain, A. MacRae, and A. I. Lvovsky, 2010,
Nat. Photonics 4, 243.

Birchall, P. M., J. L. O’Brien, J. C. F. Matthews, and H. Cable, 2017,
Phys. Rev. A 96, 062109.

Bloch, I., J. Dalibard, and W. Zwerger, 2008, Rev. Mod. Phys. 80,
885.

Boixo, S., A. Datta, M. J. Davis, S. T. Flammia, A. Shaji, and C. M.
Caves, 2008, Phys. Rev. Lett. 101, 040403.

Boixo, S., A. Datta, M. J. Davis, A. Shaji, A. B. Tacla, and C. M.
Caves, 2009, Phys. Rev. A 80, 032103.

Boixo, S., A. Datta, S. T. Flammia, A. Shaji, E. Bagan, and C. M.
Caves, 2008, Phys. Rev. A 77, 012317.

Boixo, S., S. T. Flammia, C. M. Caves, and J. M. Geremia, 2007,
Phys. Rev. Lett. 98, 090401.

Boixo, S., and C. Heunen, 2012, Phys. Rev. Lett. 108, 120402.
Boixo, S., and R. D. Somma, 2008, Phys. Rev. A 77, 052320.
Bollinger, J. J., W. M. Itano, D. J. Wineland, and D. J. Heinzen, 1996,
Phys. Rev. A 54, R4649.

Boto, A. N., P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams,
and J. P. Dowling, 2000, Phys. Rev. Lett. 85, 2733.

Bouchoule, I., N. J. van Druten, and C. I. Westbrook, 2011, in Atom
Chips, edited by J. Reichel and V. Vuletić (Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, Germany).

Bouyer, P., and M. Kasevich, 1997, Phys. Rev. A 56, R1083.
Bradshaw, M., S. M. Assad, J. Y. Haw, S.-H. Tan, P. K. Lam, and M.
Gu, 2016, “The overarching framework between Gaussian quan-
tum discord and Gaussian quantum illumination,” arXiv:1611
.10020v1.

Braginsky, V. B., F. Y. Khalili, and K. S. Thorne, 1995, Quantum
Measurement (Cambridge University Press, Cambridge), 1st ed.

Brandão, F. G. S. L., and G. Gour, 2015, Phys. Rev. Lett. 115,
070503.

Brankov, J. G., D. M. Danchev, and N. S. Tonchev, 2000, Theory of
Critical Phenomena in Finite-Size Systems (World Scientific,
Singapore).

Bratteli, O., and D. Robinson, 1987, Operator Algebras and
Quantum Statistical Mechanics (Springer, Heidelberg).

Braun, D., 2002, Phys. Rev. Lett. 89, 277901.
Braun, D., 2005, Phys. Rev. A 72, 062324.
Braun, D., 2010, Eur. Phys. J. D 59, 521.
Braun, D., 2011, Europhys. Lett. 94, 68007.
Braun, D., 2012, Europhys. Lett. 99, 49901.
Braun, D., and J. Martin, 2011, Nat. Commun. 2, 223.
Braun, D., and S. Popescu, 2014, Quantum Measurements and
Quantum Metrology 2, 44.

Braun, D., F. Schneiter, and U. R. Fischer, 2017, Classical Quantum
Gravity 34, 175009.

Braunstein, S. L., and C. M. Caves, 1994, Phys. Rev. Lett. 72, 3439.
Braunstein, S. L., C. M. Caves, and G. J. Milburn, 1996, Ann. Phys.
(N.Y.) 247, 135.

Breuer, H.-P., and F. Petruccione, 2002, The Theory of Open
Quantum Systems (Oxford University Press, New York).

Brody, D., and N. Rivier, 1995, Phys. Rev. E 51, 1006.
Brody, D. C., and A. Ritz, 2003, J. Geom. Phys. 47, 207.
Bromley, T. R., I. A. Silva, C. O. Oncebay-Segura, D. O. Soares-
Pinto, E. R. deAzevedo, T. Tufarelli, and G. Adesso, 2017, Phys.
Rev. A 95, 052313.

Budker, D., D. F. Kimball, S. M. Rochester, and V. V. Yashchuk,
2000, Phys. Rev. Lett. 85, 2088.

Cable, H., M. Gu, and K. Modi, 2016, Phys. Rev. A 93, 040304.
Calabrese, P., M. Mintchev, and E. Vicari, 2012, Europhys. Lett. 98,
20003.

Campos Venuti, L., M. Cozzini, P. Buonsante, F. Massel, N.
Bray-Ali, and P. Zanardi, 2008, Phys. Rev. B 78, 115410.

Campos Venuti, L., and P. Zanardi, 2007, Phys. Rev. Lett. 99,
095701.

Casimir, H. B. G., 1968, in Fundamental Problems in Statistical
Mechanics II, edited by E. G. D. Cohen (American Elsevier
Publishing Company, New York), p. 188.

Caves, C. M., 1980, Rev. Mod. Phys. 52, 341.
Caves, C. M., 1981, Phys. Rev. D 23, 1693.
Chapeau-Blondeau, F., 2015, Phys. Rev. A 91, 052310.
Chen, S., L. Wang, Y. Hao, and Y. Wang, 2008, Phys. Rev. A 77,
032111.

Cheng, J.-M., M. Gong, G.-C. Guo, and Z.-W. Zhou, 2017, Phys.
Rev. A 95, 062117.

Childs, A., J. Preskill, and J. Renes, 2000, J. Mod. Opt. 47, 155.
Childs, P. R. N., 2001, Practical Temperature Measurement (Butter-
worth-Heinemann, Stone, MA).

Chin, A. W., S. F. Huelga, and M. B. Plenio, 2012, Phys. Rev. Lett.
109, 233601.

Chua, S. S. Y., 2015, Quantum Enhancement of a 4 km Laser
Interferometer Gravitational-Wave Detector (Springer, New York).

Clark, L. A., A. Stokes, and A. Beige, 2016, Phys. Rev. A 94,
023840.

Clifton, R., and H. Halvorson, 2001, Stud. Hist. Phil. Mod. Phys.
32, 1.

Continentino, M. A., 2001, Quantum Scaling in Many-Body Systems
(World Scientific, Singapore).

Cooper, J. J., D. W. Hallwood, and J. A. Dunningham, 2009, J. Phys.
B 42, 105301.

Cooper, J. J., D. W. Hallwood, J. A. Dunningham, and J. Brand,
2012, Phys. Rev. Lett. 108, 130402.

Correa, L. A., M. Mehboudi, G. Adesso, and A. Sanpera, 2015, Phys.
Rev. Lett. 114, 220405.

Cozzini, M., P. Giorda, and P. Zanardi, 2007, Phys. Rev. B 75,
014439.

Cronin, A., J. Schmiedmayer, and D. Pritchard, 2009, Rev. Mod.
Phys. 81, 1051.

Crooks, G. E., 2007, Phys. Rev. Lett. 99, 100602.
D’Alessandro, D., 2007, Introduction to Quantum Control and
Dynamics (Chapman and Hall/CRC, Boca Raton), 1st ed.

Damanet, F., D. Braun, and J. Martin, 2016, Phys. Rev. A 94,
033838.

Damski, B., 2013, Phys. Rev. E 87, 052131.
Damski, B., and M. Rams, 2014, J. Phys. A 47, 025303.
Dang, H. B., A. C. Maloof, and M. V. Romalis, 2010, Appl. Phys.
Lett. 97, 151110.

Daniel Braun et al.: Quantum-enhanced measurements without …

Rev. Mod. Phys., Vol. 90, No. 3, July–September 2018 035006-41

https://doi.org/10.1063/1.2889716
https://doi.org/10.1063/1.2889716
https://doi.org/10.1103/PhysRevA.87.012122
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1103/PhysRevA.88.013817
https://doi.org/10.1103/PhysRevX.5.031018
https://doi.org/10.1103/PhysRevLett.85.5098
https://doi.org/10.1103/PhysRevA.65.043803
https://doi.org/10.1103/PhysRevA.73.063824
https://doi.org/10.1103/PhysRevA.87.019901
https://doi.org/10.1038/nphoton.2010.6
https://doi.org/10.1103/PhysRevA.96.062109
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevLett.101.040403
https://doi.org/10.1103/PhysRevA.80.032103
https://doi.org/10.1103/PhysRevA.77.012317
https://doi.org/10.1103/PhysRevLett.98.090401
https://doi.org/10.1103/PhysRevLett.108.120402
https://doi.org/10.1103/PhysRevA.77.052320
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevLett.85.2733
https://doi.org/10.1103/PhysRevA.56.R1083
http://arXiv.org/abs/1611.10020v1
http://arXiv.org/abs/1611.10020v1
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.89.277901
https://doi.org/10.1103/PhysRevA.72.062324
https://doi.org/10.1140/epjd/e2010-00195-3
https://doi.org/10.1209/0295-5075/94/68007
https://doi.org/10.1209/0295-5075/99/49901
https://doi.org/10.1038/ncomms1220
https://doi.org/10.1088/1361-6382/aa8058
https://doi.org/10.1088/1361-6382/aa8058
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1103/PhysRevE.51.1006
https://doi.org/10.1016/S0393-0440(02)00190-0
https://doi.org/10.1103/PhysRevA.95.052313
https://doi.org/10.1103/PhysRevA.95.052313
https://doi.org/10.1103/PhysRevLett.85.2088
https://doi.org/10.1103/PhysRevA.93.040304
https://doi.org/10.1209/0295-5075/98/20003
https://doi.org/10.1209/0295-5075/98/20003
https://doi.org/10.1103/PhysRevB.78.115410
https://doi.org/10.1103/PhysRevLett.99.095701
https://doi.org/10.1103/PhysRevLett.99.095701
https://doi.org/10.1103/RevModPhys.52.341
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevA.91.052310
https://doi.org/10.1103/PhysRevA.77.032111
https://doi.org/10.1103/PhysRevA.77.032111
https://doi.org/10.1103/PhysRevA.95.062117
https://doi.org/10.1103/PhysRevA.95.062117
https://doi.org/10.1080/09500340008244034
https://doi.org/10.1103/PhysRevLett.109.233601
https://doi.org/10.1103/PhysRevLett.109.233601
https://doi.org/10.1103/PhysRevA.94.023840
https://doi.org/10.1103/PhysRevA.94.023840
https://doi.org/10.1016/S1355-2198(00)00033-2
https://doi.org/10.1016/S1355-2198(00)00033-2
https://doi.org/10.1088/0953-4075/42/10/105301
https://doi.org/10.1088/0953-4075/42/10/105301
https://doi.org/10.1103/PhysRevLett.108.130402
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevB.75.014439
https://doi.org/10.1103/PhysRevB.75.014439
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/PhysRevLett.99.100602
https://doi.org/10.1103/PhysRevA.94.033838
https://doi.org/10.1103/PhysRevA.94.033838
https://doi.org/10.1103/PhysRevE.87.052131
https://doi.org/10.1088/1751-8113/47/2/025303
https://doi.org/10.1063/1.3491215
https://doi.org/10.1063/1.3491215


D’Ariano, G., C. Macchiavello, and M. Sacchi, 1998, Phys. Lett. A
248, 103.

D’Ariano, G., and M. Paris, 1997, Phys. Rev. A 55, 2267.
Datta, A., S. T. Flammia, and C. M. Caves, 2005, Phys. Rev. A 72,
042316.

Datta, A., and A. Shaji, 2012, Mod. Phys. Lett. B 26, 1230010.
Davis, E., G. Bentsen, and M. Schleier-Smith, 2016, Phys. Rev. Lett.
116, 053601.

Davis, J. P., H. Choi, J. Pollanen, and W. P. Halperin, 2006, Phys.
Rev. Lett. 97, 115301.

Davis, S., and G. Gutiérrez, 2012, Phys. Rev. E 86, 051136.
Degen, C. L., F. Reinhard, and P. Cappellaro, 2016, “Quantum
sensing,” arXiv:1611.02427.

Deléglise, S., I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M.
Raimond, and S. Haroche, 2008, Nature (London) 455, 510.

Demkowicz-Dobrzański, R., M. Jarzyna, and J. Kołodiński, 2015,
Prog. Opt. 60, 345.

Demkowicz-Dobrzański, R., and L. Maccone, 2014, Phys. Rev. Lett.
113, 250801.

De Pasquale, A., P. Facchi, G. Florio, V. Giovannetti, K. Matsuoka,
and K. Yuasa, 2015, Phys. Rev. A 92, 042115.

Deutsch, C., F. Ramirez-Martinez, C. Lacroûte, F. Reinhard, T.
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