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Abstract

Special quantum states are used in metrology to achieve sensitivities below the limits established 

by classically behaving states1,2. In bosonic interferometers, squeezed states3, number states4,5 and 

‘Schrödinger cat’ states5 have been implemented on various platforms and have demonstrated 

improved measurement precision over interferometers using coherent states6,7. Another 

metrologically useful state is an equal superposition of two eigenstates with maximally different 

energies; this state ideally reaches the full interferometric sensitivity allowed by quantum 

mechanics8,9. Here we demonstrate the enhanced sensitivity of these quantum states in the case of 

a harmonic oscillator. We extend an existing experimental technique10 to create number states of 

order up to n = 100 and to generate superpositions of a harmonic oscillator ground state and a 

number state of the form 1
2 ( 0 + n ) with n up to 18 in the motion of a single trapped ion. 

Although experimental imperfections prevent us from reaching the ideal Heisenberg limit, we 

observe enhanced sensitivity to changes in the frequency of the mechanical oscillator. This 

sensitivity initially increases linearly with n and reaches a maximum at n = 12, where we observe a 

metrological enhancement of 6.4(4) decibels (the uncertainty is one standard deviation of the 

mean) compared to an ideal measurement on a coherent state with the same average occupation 

number. Such measurements should provide improved characterization of motional decoherence, 

which is an important source of error in quantum information processing with trapped ions11,12. It 

should also be possible to use the quantum advantage from number-state superpositions to achieve 

precision measurements in other harmonic oscillator systems.
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A large variety of experimental systems—including optical and microwave5,13 resonators, 

micro-mechanical oscillators14 and the motion of trapped neutral atoms15 and ions16—can 

be modelled as harmonic oscillators and controlled in the quantum regime. This opens the 

possibility of designing and generating advantageous harmonic oscillator quantum states to 

increase sensitivity or speed when characterizing or controlling the properties of these 

oscillators. Precisely controlled harmonic oscillators are crucial for precision metrology17, 

fundamental quantum mechanical research5 and quantum information processing18.

The motion of a single atom in a typical trap constitutes a simple mechanical harmonic 

oscillator. This oscillator can be coupled to internal levels of the atom with electromagnetic 

fields to ‘cool’ its motion and transfer motional state information into electronic levels that 

can be read out by state-selective fluorescence16. Ion motional frequencies have been 

determined previously by resolved-sideband spectroscopy16 and by excitation with 

oscillating19 or pulsed20,21 electric fields. The sensitivity to excitation by an oscillating 

electric field (often called a ‘tickle’) can be enhanced by first cooling the motion to the 

ground state and then detecting small increases in motional energy by exciting red sideband 

transitions that are energetically forbidden when the ion is in the ground state22. Here we 

implement an alternative approach for characterizing motional frequencies that is based on 

the interference of non-classical number-state superpositions23. These techniques can be 

especially useful for quantum information processing with trapped-ion systems24, where 

qubits are coupled through shared modes of motion. The high fidelity required for fault-

tolerant processing makes the stability of the harmonic motion of trapped ions a ubiquitous 

concern11,12, particularly as experiments move towards miniaturized traps with smaller ion-

to-electrode distances, exposing the ions’ motion to larger stray electric fields and increased 

noise originating from the electrodes25.

The interferometric sensitivity of superpositions of eigenstates depends on the difference in 

energy between the two states—in the experiments presented here, where the first state of 

the superposition is the ground state this energy difference scales linearly with n. Here, the 

harmonic oscillator number operator acts on the number states |n〉, giving â†â |n〉 = n |n), 

where â is the annihilation ladder operator and n ≥ 0 is an integer. We consider a harmonic 

oscillator with an oscillation frequency of ω + δω(t), where δω(t) is a small, time-dependent 

correction due to noise and drift relative to the frequency ω of an ideal reference oscillator, 

which we call a local oscillator, in keeping with common terminology. We implement a 

Ramsey-type experiment, where the first effective π/2 pulse creates the state 

|Ψn = 1
2 ( 0 + n ), where n denotes the order of the state and the interferometer (in the 

following we omit normalization). In a frame rotating at the local oscillator frequency, |0〉 
and |n〉 will acquire a relative phase between the two states that is proportional to n and to 

the integral of the fluctuations δω(t) over time T. After a duration of T the state is

Ψn T = 0 + einϕ n

ϕ = − ∫
0

T
δω(t)dt

(1)
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Subsequently, a second effective π/2 pulse synchronous with the local oscillator recombines 

the number-state superposition to the ground state if nϕ = (2m + 1)π or to |n〉 if nϕ = 2mπ, 

with m an integer. For a general ϕ, the final state (up to a global phase) is 

|Ψn f = cos(nϕ/2) n − isin(nϕ/2) 0 , with the probability of being in the ground state given 

by

P0 = 1
2[1 − cos(nϕ)] (2)

To characterize the harmonic oscillator using interferometric measurements, we want to 

determine small deviations of ϕ around a nominal value with maximal sensitivity. This 

occurs when the slope |∂P0/∂ϕ| = |(n/2)sin(nϕ)| = n/2, namely, when nϕ ≈ mπ/2, with m an 

odd integer (m = ±1 in the tracking experiments described below). We want to minimize

δϕ =
ΔP0

∂P0/ ∂ϕ (3)

where ΔP0 = P0
2 − P0

2 is the standard deviation of a population measurement that can 

discriminate between |0〉 and |n〉. Ideally, the measurement is projection noise limited26, 

which implies ΔP0 = P0 1 − P0 . In this case, ΔP0 = 1/2 and δϕ = 1/n, which is the 

Heisenberg limit and can only be reached with non-classical oscillator states. In fact, the 

state |0〉 + |n〉 satisfies the Margolus–Levitin bound for the maximal rate of evolution8, 

implying that no other combination of states with quantum numbers between 0 and n can 

produce interference fringes with higher sensitivity to motional frequency changes. (Without 

the restriction of using quantum numbers only up to n, a Schrödinger cat state with an 

average occupation of n would also allow sensing with the same scaling as the |0〉 + |n〉 
superposition. This sensitivity is demonstrated approximately in a different form of 

interferometer, in which the motional states are entangled with the internal states, as 

described in ref. 27). The phase uncertainty of classically behaving interferometers, which 

we define as those that use coherent oscillator states of the same average excitation number 

n = n/2 and measurements of the oscillator energy (equivalent to the mean occupation 

number), will reduce only as δϕclass  = 1/n (see Methods).

In practice, the effective π/2 pulses will not have perfect fidelity and there will be added 

noise above the fundamental projection noise. Such imperfections reduce the contrast C (0 ≤ 

C ≤ 1) from the ideal value of C = 1, which can be incorporated as P0 = (C/2)[1−cos(nϕ)]. In 

our experiments, C decreases as the complexity of preparing superpositions increases with 

larger n. Additionally, because a single experiment gives us only one bit of information (the 

ion is determined to be in either |0〉 or |n〉), we need to perform multiple experiments to 

accumulate statistics to determine a phase shift. If the mode-frequency noise is not stable 

over the time period required to acquire statistics, then the contrast of our interferometer is 

reduced. This becomes more of a problem with higher-order interferometers because the 

susceptibility to mode-frequency noise increases with n. This limits the measurable gains in 

sensitivity to n ≤ 12 in our experimental setting (see below).
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Experiments were performed with a single 9Be+ ion trapped 40 μm above a cryogenic (about 

4 K) linear surface-electrode trap described elsewhere28. Improvements made to the 

experimental setup since the technique was initially demonstrated in ref. 10 are described in 

Methods. We use three levels within the electronic 2S1/2 ground-state hyperfine manifold, |F 
= 1, mF = −1) = |↑〉, |F = 2, mF = −2) = |↓〉 and |F = 2, mF = 0) = |aux), to prepare 

approximate pure number states and number-state superpositions. Here, F is the total angular 

momentum and mF is its component along the quantization axis, defined by a 1.43-mT static 

magnetic field. The states |↓〉 and |aux〉 are shifted from |↑〉 by ω0 ≈ 2π × (−1.281 GHz) and 

ωaux ≈ 2π × (−1.261 GHz), respectively (Fig. 1a). The non-classical motional states are 

created on the lowest-frequency (axial) mode of the three orthogonal harmonic oscillator 

modes of the ion, with frequency ω ≈ 2π × (7.2 MHz). The ion is prepared in |↓〉 |0〉 with a 

fidelity exceeding 0.99 by Doppler laser cooling, followed by ground-state cooling16,29 (the 

two transverse modes are only Doppler cooled to n < 1. Sideband transitions from 

intermediate number state k |↓〉 |k〉 ↔ |↑〉 |k ± 1〉 are implemented with stimulated Raman 

transitions from two photons that are detuned from the 2S1/2 → 2P1/2 transition (wavelength 

λ ≈ 313 nm) by approximately +80 GHz (ref. 29). Carrier transitions |↓〉 |k〉 ↔ |↑〉 |k〉 and |

↓〉 |k〉 ↔ |aux) |k〉 are driven by microwave fields induced by a current through one of the 

surface-trap electrodes.

We can distinguish measurements of the |↑〉 and |↓〉 states with state-selective fluorescence16. 

When scattering light from a laser beam resonant with the |↓〉 ↔ |P3/2, F = 3, mF = −3) 

cycling transition, 14 to 16 photons are detected on average over 400 μs with a 

photomultiplier if the ion is in |↓〉, whereas only 0.1 to 0.3 photons (dark counts and stray 

light) are detected on average if the ion is projected into |↑〉. We identify outcomes of three 

or more counts with a measurement outcome of |↓〉. Despite deviations from ideal Poisson 

statistics due to pumping into other hyperfine levels, histograms composed of many 

detections on an ion prepared in either |↓〉 or |↑〉 reveal discrimination errors below 0.02. 

After preparing |↓〉 → |↑〉 + |↓〉, we observe in |↓〉 an average population of 0.489(4) and a 

variance of 0.249(2), close to the ideal values of 1/2 and 1/4. All stated uncertainties and 

error bars in the figures represent one standard deviation of the mean.

Starting from |↓〉 |0〉, the generation of higher-number states is accomplished by first 

applying a microwave π pulse to transform the initial state to |↑〉 |0〉, followed by a series of 

alternating red (|↑〉 |k〉 → |↓〉 |k + 1〉 ; RSB) and blue (|↓〉 |k〉 → |↑〉 |k + 1〉 ; BSB) sideband 

π pulses at frequencies ω0 − ω and ω0 + ω, respectively, so that each pulse flips the spin of 

the internal state and adds a quantum of motion10 (Fig. 1a, b). In general, we can use 

sidebands of order l at frequencies ω0 − lω and ω0 + lω to add l quanta of motion with a 

single π pulse. Whereas the Rabi frequencies of higher-order sidebands on a mode with a 

Lamb–Dicke parameter of η < 1 are suppressed by ηl near the ground state, for higher-

number states, the Rabi frequencies can be much larger than that of the first-order 

sideband16 (see Fig. 2d).

We demonstrate control over the motional state of the ion by preparing it in different 

(approximately pure) number states and by Rabi-flopping on RSBs to determine the 

contrast, decay and n-dependent Rabi frequency16 (see Fig. 2a). With the use of only first-

order sidebands to create |↑〉 |n = 40), we achieve RSB flopping (|↑〉 |n = 40〉 ↔ |↓〉 |n = 41〉) 
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with contrast greater than 70%. If we use up to fourth-order sidebands to create the motional 

state, we observe approximately 50% contrast when we flop |n = 100〉 on the fourth-order 

RSB (Fig. 2 b). To verify that the population participating in the fourth-sideband flopping is 

in the desired number state, we also flop on the second- and third-order sidebands (Fig. 2c), 

which have distinctly different Rabi frequencies, and compare the Rabi frequencies of 

second- to fourth-order flopping to theory (coloured symbols in Fig. 2d). For the second 

sideband, we measure a Rabi frequency (in units of Ω0,1, the Rabi frequency of the |n = 0〉 
↔ |n = 1〉 transition) of 0.2183 ± 0.008 for n = 100, which agrees with theory within one 

standard deviation. The calculated Rabi frequencies in n = 99 and n = 101 are more than 

three standard deviations away from this measured value. Similar comparisons for other 

values of n further establish confidence that intermediate states are prepared as desired and 

that we can indeed transfer approximately 50% of the population to n = 100.

The motional superposition |↑〉 (|0〉 + |2〉) is straightforward to prepare by replacing the first 

RSB pulse by a π/2 pulse, |↑〉 |0〉 → |↑〉 |0〉 + |↓〉 |1〉, followed by a BSB π pulse, which 

transforms |↓〉 |1〉 → |↑〉 |2〉 while not affecting |↑〉 |0〉 (see Fig. 1a). To realize the effective 

π/2 pulse 10〉 → |0〉 + |n〉 when n > 2, after the initial RSB π/2 pulse the |↑〉 |0〉 component 

is ‘shelved’ with a microwave π pulse to |aux) |0); this state is unaltered by subsequent pairs 

of BSB and RSB π pulses that promote the |↓〉 |k〉 component to |↓〉 |k + 2〉. The preparation 

is finished by a final microwave π pulse, |aux) |0〉 → |↑) |0〉, and a BSB pulse, |↓〉 |n− 1) + |

↑〉 |0〉 → |↑〉 (|0〉 + |n〉), that promotes the |↓〉 |n − 1〉 component to |↑〉 |n〉 while leaving the |

↑〉 |0〉 component unaltered.

We characterize the enhanced sensitivity of each interferometer by inserting an effective 

‘spin-echo’-type π pulse between waiting periods of duration T and purposely induce trap-

frequency changes Δω with equal magnitude and opposite sign before and after the echo 

pulse (Fig. 1c). We use this echo technique because trap-frequency fluctuations or drifts that 

alter the mode frequency by approximately the same amount in both arms of the 

interferometer are suppressed. For the first waiting period this ideally results in an order-

dependent phase of ϕ = −nΔωT. The echo pulse is composed of the following steps: first, the 

pulses of the effective π/2 pulse are applied in reverse order to ideally give |↑〉 (|0〉 + eiϕ |n〉) 
→ |↑〉 |0〉 + eiϕ |↓〉 |1〉. Second, an RSB π pulse results in eiϕ |↑〉 |0〉 + |↓〉 |1〉, which is then 

walked up the number-state ladder as described for the first effective π/2 pulse. Ideally the 

effective echo π pulse accomplishes |0〉 + eiϕ |n〉 → eiϕ |0〉 + |n〉. In this way, the induced 

trap-frequency change of −Δω during the second waiting period constructively adds to the 

interferometer phase eiϕ |0〉 + |n〉 → eiϕ |0〉 + e−iϕ |n〉, which is transformed to – isinϕ |↓〉 |1〉 
+cosϕ |↑〉 |0〉 by the final effective π/2 pulse, so the induced interferometer phase ϕ can be 

read out by measuring the probability to find |↓〉.

We find that as we increase n in the superposition for T = 100 μs, the phase accumulation 

increases linearly with n, as expected, but—owing to accumulated imperfect state 

preparation steps—the contrast of the interference fringes (and therefore the fringe slope) is 

reduced (see Fig. 3a), reducing the signal in equation (3) of higher-order interferometers. 

Given this effect, we observe the highest sensitivity with the |0〉 + |12〉 superposition state, 

which achieves a 17(4) dB improvement over a perfect |0〉 + |1〉 interferometer (Fig. 3b). The 

n = 12 interferometer also performs 6.4(4) dB better (where the increase in signal-tonoise 
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ratio has been squared, in keeping with convention) than an ideal classical interferometer 

(see Methods).

We can use this enhanced sensitivity to precisely track changes in the motional-mode 

frequency over time. We perform two Ramsey-type experiments with the phase of the final 

effective π/2 pulses equal to ±π/2 so that when the pulses are resonant with the mode 

frequency, the resulting |↓〉 population from each Ramsey experiment is ideally 1/2. A 

difference between the populations for the +π/2 and −π/2 cases provides an error signal that 

we feed back to the local oscillator to follow the fringe pattern as the mode-frequency drifts 

owing to changes in stray electric fields and the sources providing the electrode potentials.

This procedure is complicated by the fact that the sideband transition frequencies are shifted 

by the a.c. Stark effect from the Raman beams. These result in phases beyond those 

described by equation (1) that shift the interferometer fringes. To mitigate this effect, as well 

as to subtract non-zero phase accumulation during the creation of the superposition state, we 

use auto-balanced Ramsey spectroscopy30 (see Methods). Instead of using two Ramsey 

experiments that provide the error signal that is fed back to the pulse frequency, we 

interleave four Ramsey experiments with two different Ramsey times, Tshort and Tlong 

(typically 20 μs and 100 μs, respectively). The phase between the two π/2 pulses is adjusted 

to compensate for systematic phases according to the error signal obtained from the short-

pulse Ramsey experiments, and the frequency of the local oscillator is adjusted according to 

that from the long-pulse Ramsey experiments. These phase and frequency adjustments are 

applied equally to both the short- and long-pulse Ramsey experiments. This suppresses all 

contributions to phase accumulation other than the phase difference accumulated owing to 

the different free-precession times, which is unperturbed by laser beam couplings30.

When tracking the mode frequency in this way, we can record the frequency error versus 

time for different-n interferometers. We can then determine the overlapping Allan 

deviation31 as a function of the averaging interval and compare it for the different 

interferometers (Fig. 4a). The data shown in Fig. 4a were taken while interleaving 

experiments performed with the |0〉 + |2〉, |0〉 + |4〉, |0〉 + |6〉 and |0〉 + |8〉 interferometers to 

allow a direct comparison of their sensitivity under the same noise and drift conditions. For 

long averaging periods, trap-frequency drifts dominate the uncertainty. As expected, this 

gives the same asymptotic long-time slope of the Allan deviation for all interferometers. 

Importantly, the increased sensitivity of higher-n interferometers reduces the time interval 

required to average down to a certain level for n up to 8. For the n = 8 interferometer, we 

observe the minimum Allan standard deviation at approximately 23 s of averaging in this 

interleaved-experiment comparison. By running only the n = 8 interferometer sequences, we 

increase the measurement duty cycle, which accelerates the rate with which the Allan 

deviation approaches its minimum. Under these conditions, the minimal fractional frequency 

Allan deviation of 2.6(2) × 10−6 (about 19 Hz at 7.2 MHz) is reached at approximately 4 s of 

averaging (red triangles in Fig. 4b). To further increase the measurement rate, we record the 

population differences determined in all four Ramsey experiments comprising the auto-

balance sequence without feeding back on the local oscillator frequency. This eliminates the 

latency due to computer control of the frequency tracking. As long as the populations of the 

four Ramsey experiments determine the frequency change uniquely, we can run a series of n 
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= 8 interferometer experiments (each taking 4 ms) without feedback to shorten the time 

required to reach the minimum of 2.9(4) × 10−6 to approximately 0.5 s, before the 

uncompensated mode-frequency drift produces an increasing Allan deviation (Fig. 4b, blue 

circles). Although the minimum value of the Allan deviation is not lower when taking data 

in this fashion compared to when tracking the drift, this experiment gives an idea of how 

quickly we could average down to a few parts in 10−6 if the tracking latency is minimized.

In conclusion, we have demonstrated the preparation of approximate number states up to n = 

100 for the harmonic motion of a trapped ion, and characterized the quantum-enhanced 

sensitivity of number-state interferometers up to n = 18. We used this sensitivity to measure 

the mode frequency with a minimum fractional frequency uncertainty of 2.6(2) × 10−6. The 

quantum advantages of our method were limited by imperfections in state preparation and 

detection, as well as by uncontrolled mode-frequency changes, which are probably caused 

by time-varying stray fields and technical noise on the potentials applied to trap electrodes 

(see Methods). As an extension of the work presented here, it should be possible to observe 

such mode-frequency noise during free precession by refocusing with one or more effective 

π pulses. This would allow us to filter the response of the ion to certain spectral components 

of the motional mode-frequency noise, providing a quantum lock-in analyser, in analogy to 

characterizations of magnetic-field noise with a trapped ion32. By using number-state 

superpositions, we can transfer the quantum advantage reported here to achieve ‘quantum 

gain’ in such lock-in measurements.

More generally, we expect that the techniques demonstrated here, as well as alternative 

approaches33,34, can be applied to characterize other harmonic oscillators in the quantum 

regime (as in ref. 35) with increased precision and on timescales that were previously 

inaccessible. Such capabilities could support quantum metrology and improve the prospects 

of fault-tolerant quantum information processing, where some of the most advanced 

experimental platforms are limited by harmonic oscillator coherence.

METHODS

Precision limit of ‘classical’ measurements on ‘classical’ states.

There is almost general agreement in the literature that any ‘classical’ limit to measurement 

precision on the frequency of a harmonic oscillator will be proportional to n, where n is the 

average occupation number2. However, there is no general agreement on the pre-factor to 

that scaling, which is necessary to fully define a “standard quantum limit”2. The limit that 

we establish assumes an observer with classical resources (defined below) that are perfectly 

implemented.

To compare our experiments to a well defined classical reference experiment, we extend the 

notions of classical experiments with light fields given by R. J. Glauber7 to a general 

harmonic oscillator. For light fields, R. J. Glauber restricted classical sources to coherent 

light. In this spirit, we broaden the possible physical implementations of R. J. Glauber’s 

discussion to any system that can be described as a harmonic oscillator but limit the 

admissible operations to coherent displacements. Harmonic oscillator quantum observables 

are expressed with the ladder operators â and â†, and a coherent state is an eigenstate of the 
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annihilation operator with â |α〉 = α | α〉. The oscillator’s average number of quanta is then 

given by the expectation value n of the number operator n = α a†a α = |α|2. R. J. Glauber 

restricted classical measurements to measuring intensities for light fields (for example, the 

intensities arising on a screen owing to the interference of the two light fields from a double-

slit arrangement). We generalize light-field intensity to number expectation values n as the 

permitted classical measurements in a harmonic oscillator. The attainable signal-to-noise 

ratio of such measurements will be limited by shot noise, which is given by the standard 

deviation of a Poisson distribution with mean n, ΔPn = n, for an ideal measurement on a 

coherent state with unit quantum efficiency and no excess noise. To compare to number-state 

superpositions of the form |Ψη〉 = |0〉 + |n〉, we require that the classical interferometer uses 

no more energy than the competing number-state interferometer, n = Ψn a†a Ψn ≤ n. This 

definition of equal resources is somewhat arbitrary, for example, one could also argue for the 

same maximal energy. However, the coherent states have no well defined maximal energy, 

and it is always possible to rescale from our definition to another definition of equal 

resources. The scaling factor would probably be of order unity in most cases and, 

irrespective of its value, the ideal non-classical interferometer will eventually outperform its 

classical counterpart owing to its more favourable scaling in n.

With the definitions above, we can devise an interferometer experiment that has the salient 

features of a Ramsey experiment but is based on classical states and measurements. A 

Ramsey experiment consists of two excitations with known relative phase, separated by ‘free 

precession’ of duration T. An example of a classical-like Ramsey experiment could be to 

send an radiofrequency pulse from a reference oscillator with known frequency and phase 

into a near-resonant circuit. The pulse will drive oscillations in the circuit, which then 

evolves freely for T. A second pulse is then sent to the circuit and—depending on its phase 

relative to the first pulse, and the phase that the excitation has picked up in the resonant 

circuit during T—the two pulses interfere constructively to further build up the field in the 

circuit or interfere destructively, diminishing the circuit excitation. For a general harmonic 

oscillator, this can conveniently be described in phase space in a frame oscillating at the 

frequency of the reference oscillator. Starting in the ground state, the first excitation creates 

a coherent state |α1〉, where we can choose phase space coordinates that make α1 ≥ 0 real 

without losing generality. During the free-precession time T, the state picks up a phase of 

ϕT, which transforms it to |α1 T = |α1exp iϕT . In analogy to a Ramsey experiment, the 

second excitation is chosen to have the same magnitude with phase ϕ relative to the first 

excitation, α2 = α1 exp(iϕ). This transforms the state (up to a global phase that is of no 

consequence to this experiment) into |α1 T = |α1 1 + exp i ϕT − ϕ . Following R. J. 

Glauber’s definition of classical measurements, we measure the average occupation n

n = 4α1
2 1

2 + 1
2cos ϕ − ϕT (4)

For a fair comparison to a number-state superposition |0〉 + |n〉, we would like to restrict our 

resources to n ≤ n for all possible ϕ and ϕT, so we choose the maximum value, 4α1
2 = n. 

Under this restriction, we recover a classical version of the Ramsey fringes described by 
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equation (2), where we measure n = 0 when ϕ − ϕT = (2m + 1)π and n = n when ϕ − ϕT = 

2mπ, with m an integer. We want to minimize the noise-to-signal ratio that equation (3) 

restricted to coherent excitations and to a small free-precession phase |ϕT| ≈ 0 ≪ π. This 

noise-to-signal ratio is

δϕc =
ΔPn

∂Pn/ ∂ϕT ϕT = 0
=

n 1
2 + 1

2cosϕ
n
2sinϕ

= 1
n

1 + 1
cos2ϕ
2 (5)

This occurs when ϕ = π, which describes two equal and opposite displacements that put the 

harmonic oscillator back to the vacuum state if the free-precession phase is ϕT = 0. Both the 

noise and the signal vanish for this interferometer in such a way that their ratio stays finite at 

δϕc = 1/ n.

This is the best one can do in the case of no excess noise in the system. In practice, when 

some added noise would be present, we would choose a value of ϕ that maximizes the 

signal, as we did for the case of the number-state interferometer. In this case (as was also 

true for the number-state interferometer), the point of maximal signal occurs for ϕ = π/2, so 

the practical noise-to-signal-ratio yields

δϕp =
n 1

2 + 1
2cosϕ

n
2sinϕ

ϕ = π/2

= 2
n (6)

This interferometer has no practical drawbacks, optimally suppresses additional noise and 

leads to an increase of the noise-to-signal over the optimal value by 2. This implies that the 

advantage of a number-state interferometer may increase by 2 over the ideal limit in a 

realistic setting, where excess noise (such as current noise or dark counts of a detector) is 

almost inevitable. This also is arguably a more direct comparison to the |0〉 + |n〉 
interferometer experiment, where we choose the same relative phase of ϕ = π/2 between the 

two pulses to maximize the signal. Despite the case to be made for using the more practical 

limit in our comparisons, we strictly use the more stringent ideal classical interferometer in 

all of our sensitivity comparisons of the number-state interferometers in the main text.

Experimental details.

Experimental improvements since initial demonstration.—The techniques used for 

producing non-classical states of motion were initially demonstrated in ref. 10. Since then, 

many improvements have been made to our apparatus to allow us to achieve high-fidelity 

production and control of number states with n > 16. The most notable of these changes for 

its contribution to this work has been stabilizing the intensity of the Raman beams on the 

ion. This has been achieved by replacing dye lasers with much less noisy fibre lasers that 

reduce intensity fluctuations of the beams36, the use of recently developed ultraviolet 

photonic crystal fibres37 to mitigate beam-pointing fluctuations, and rigid mechanical 

supports to better mechanically register the trap to the optical table, which additionally 

mitigates beam-pointing fluctuations on the ion. We have also reduced the heating rate of the 
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trap used in our experiments by one order of magnitude, to 17 quanta per second, compared 

to experiments in ref. 23, where this rate was approximately 170 quanta per second. This 

reduction in heating rate, while the ion is closer to the nearest electrode surface 

(approximately 40 μm, as opposed to 270 μm)23 is partially due to cooling of the electrode 

traps to 4 K inside a bath cryostat.

Timescales of experiments.—For all of the experiments described in this paper, the 

state preparation consists of Doppler cooling (about 120 μs) followed by ground-state 

cooling (about 110 μs) and a microwave carrier π pulse |↓〉 → |↑〉 (about 5 μs). At the end of 

each experiment, a 400-μs detection pulse on the cycling transition is applied. The duration 

of the Raman RSB |↑〉 |0〉 → |↓〉 |1〉 π pulse which sets the Rabi frequency Ω0,1, is 

approximately 13 μs, so the duration of individual experiments can be calculated by using 

Ω0,1 as a ‘base’ unit to calculate the times of sideband π pulses for higher n values according 

to16

Ωn, n + s
Ω0, 1

= η s − 1 n<!
n>!Ln<

s η2 (7)

where Ln
s  is the generalized Laguerre polynomial and n> (n<) is the greater (smaller) of n + s 

and n (see also Fig. 2d). We can then sum the durations of the individual sideband pulses 

(and, in the case of the superposition states, the durations of the ~5-μs microwave |↑〉 → |
aux〉 π pulses) used. Extended Data Table 1 lists the durations of the sequences used to 

generate pure number states and number-state superpositions. It is possible to substantially 

decrease these durations, as long as the sidebands are still resolved.

The sidebands in our interferometers rely on the same Raman laser coupling that is used in 

most two-qubit gates, so the timescale for a single BSB or RSB pulse is of the same order as 

a typical gate time. This limits the usefulness of the demonstrated frequency tracking 

method for improving gate fidelity, but interferometric tracking would certainly help with 

longer-term drifts and would reduce the time required to measure the trap frequency with a 

certain precision.

Sources of decoherence.—At the 7.2-MHz axial-mode frequency, the heating rate is 

relatively low, approximately 17 quanta per second. Consequently, the dominant source of 

decoherence in these experiments is dephasing due to fluctuations in the mode frequency. 

These fluctuations probably arise from technical noise from the voltage source, uncontrolled 

charging from stray light scattering off the dielectric material between the trap electrodes, 

and amplitude instabilities in the radiofrequency source that generates the pseudo-potential. 

We also attribute longer timescale drift (of the order of minutes to hours, and with a 

magnitude of about 1–10 Hz s−1) to uncontrolled charging and discharging. This charging 

affects mode-frequency-tracking experiments and leads to unpredictable deviations from the 

ideal white-noise 1/ τ scaling with averaging time τ during experimental runs to determine 

Allan variances. A more detailed investigation of this noise and of ways to further suppress 

it is currently in progress in our laboratory.
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Auto-balanced frequency-tracking experiments.—The auto-balanced sequence (see 

Extended Data Fig. 1) for mode-frequency tracking comprises four interleaved Ramsey 

experiments, two each with Ramsey times tshort and tlong, where the phase of the second 

effective π/2 pulse is +π/2 relative to the first π/2 pulse for one of the experiments and −π/2 

for the other. For a given Ramsey time, the two experiments with +π/2 and −π/2 relative 

phase interrogate the fringe close to its largest positive and negative slope, respectively. If 

the long-pulse Ramsey experiments are exactly on resonance, both should result in the same 

average population in |↓〉, so the signal difference is zero on average. If the Ramsey 

experiment is off-resonance, the signal difference provides a non-zero error signal plong, 

which is used to calculate the offset δω between the assumed mode frequency ωa and the 

actual mode frequency. The offset δω is fed back to the local oscillator (LO), which updates 

its frequency to ω = ωa + δω. This in turn updates the frequency of the BSB and RSB pulses 

to ωLO = ω0 + ωa + δω and δLO = ω0 – ωa − δω, respectively, where ħω0 is the energy 

difference between |↑〉 and |↓〉, as described in the main text (ħ, reduced Planck constant). 

The short-pulse Ramsey experiments provide an error signal of pshort, as described above, 

which is now used to compute a phase offset δϕ that is added to the relative phase between 

the two effective π pulses, ϕLO = ±π/2 + δϕ. Feedback on this phase reduces ‘frequency 

pulling’ due to non-zero phase accumulation during the pulses, which can be caused by 

slowly drifting, pulse-synchronous systematic errors such as a.c. Stark shifts30. For a more 

detailed description of the auto-balanced Ramsey technique, see ref. 30.

Anharmonic contributions.—We do not expect the anharmonicity of the trapping 

potential to be a considerable limitation or source of systematic error. Previous 

calculations22 for a similar trap and estimates based on a numerical simulation of our current 

trap predict an anharmonic component of a few parts in 10−7 per quantum on the axial-mode 

frequency. With a maximal superposition state of |0〉 + |8〉 used in the mode-tracking 

experiments, this would cause an offset of about 1 × 10−6, which is within the minimum 

measurement uncertainty.

Extended Data
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Extended Data Fig. 1 |. Schematic illustrating the auto-balanced feedback loop.
The feedback is applied to the LO, a frequency source used as a reference to compare to the 

ion’s oscillation frequency. The LO controls the phases and frequencies of the BSB and RSB 

laser pulses (see Fig. 1a) during the mode-frequency tracking experiments. The difference 

between the populations measured after a pair of Ramsey experiments with long waiting 

times provides an error signal, plong, which is used to feed back on the LO frequency, ωLO. 

Similarly, a second pair of Ramsey experiments with short waiting times provides and error 

signal, pshort, which is used to feed back on an additional LO phase offset ϕLO between the 

first and second effective π/2-pulses (“π/2”). The long- and short-waiting-time Ramsey 

experiments are interleaved, with ϕLO and ωLO applied equally to both. For more details on 

auto-balanced Ramsey experiments, see ref. 30.

Extended Data Table 1 |

Duration of pulse sequences used to produce number states and number-state superpositions

n T( |n ) (μs) T( 0 + n ) (μs)
2 22 16

4 38 41

6 51 54

8 63 66

12 86 89

16 109 112

20 133 –

40 196 –

80 293 –

100 335 –

These values are for a base Rabi frequency of Ω0,1 = π/(13 μs). Beyond n = 40, we use higher-order sidebands, which 
allows us to use transitions with higher Rabi frequencies and skip ‘rungs’ as we move the ion up the number-state ladder.
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Fig. 1 |. Generating number states and number-state superpositions.
a, Relevant energy levels and transitions for the creation of motional states. BSB pulses 

transfer population between |↓〉 |k〉 and |↑〉 |k + 1〉, whereas RSB pulses transfer population 

between |↑〉 |k〉 and |↓〉 |k + 1〉. The BSB does not couple to |↑〉 |0〉 (crossed-out, faded blue 

arrow) because there is no energy level below the ground state. Transitions between the 

states |↑〉 and |aux〉 are driven by a microwave field (indicated in green), which does not 

change k. b, Pulse sequence for generating a harmonic oscillator number state. Alternating 

RSB and BSB π pulses are applied, with each pulse adding one quantum of motion (or more 

quanta on higher-order sidebands; see the main text) and flipping the spin of the state. To 

analyse the resulting state, an RSB pulse is applied for a variable duration (labelled ‘RSB 

flop’) and the final spin state is detected via state-selective fluorescence. c, Pulse sequences 

and trap frequencies for number-state interferometers. The first effective π/2 pulse creates |

0〉 + |n〉, followed by a free-precession period during which the mode frequency is increased 

by Δω. An effective π pulse swaps the phase of the superposition, |0〉 + eiϕ |n〉 → eiϕ |0〉 + |

n〉. After another free-precession period with the mode frequency reduced by Δω, a final 

effective π/2 pulse closes the interferometer. For the composition of effective pulses see the 

main text.
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Fig. 2 |. Sideband flopping on number states.
a, RSB flopping on the first-order sideband of an |↑〉 |n = 40〉 state prepared using first-order 

RSB and BSB pulses. The curve shows the probability of measuring |↓〉 as a function of 

pulse duration during first-order RSB flopping to |↓〉 |n = 41〉. Each point represents an 

average over 200 experiments. The error bars represent one standard deviation of the mean. 

Solid black lines show theory fits to the data, with the Rabi frequency, the initial contrast 

and an exponential decay constant as fit parameters. b, RSB flopping on the fourth-order 

sideband of |↑〉 |n = 100〉. The curve shows the probability of measuring |↓〉 as a function of 

pulse duration during fourth-order RSB flopping to |↓〉 |n = 104〉. Each point represents an 

average over 500 experiments. c, Same as b, but on the third-order sideband of |↑〉 |n = 100〉 
↔ |j〉 |n = 103〉. d, First- to fourth-order sideband Rabi frequencies. All first-order data 

points (blue triangles) are fitted to determine the Lamb–Dicke parameter η = 0.2632(2). 

Curves for higher-order sidebands are plotted for the same η. Measured Rabi frequencies for 

higher-order sidebands (symbols) are consistent with theory (solid lines) for all orders. The 

duration of the π pulse from |n = 0〉 to |n = 1〉 is approximately 13 μs; the pulse durations 

required to produce higher-number states can be calculated on the basis of this result and the 

plotted Rabi frequencies for higher-number states (see Methods).
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Fig. 3 |. Interference and sensitivity of different number-state superpositions.
a, Interference fringes for number-state interferometers with n = 2, 4, 8, 12. Each data point 

is averaged over 250 experiments and uses a waiting time of 100 μs before and after the 

effective π pulse. The error bars represent one standard deviation of the mean. The fringe 

spacing is reduced as 1/n, as expected for Heisenberg scaling. At the same time, the fringe 

contrast is reduced with increasing n owing to the larger number of imperfect pulses and the 

higher susceptibility to mode-frequency changes, which are not stable over all of the 250 

experiments for each data point. This reduces the fringe slopes for n > 12 below the maximal 

slope, which is reached for n = 12. Solid lines show theory fits using equation (2), with the 

fringe spacing, contrast and vertical offset as fit parameters. We attribute deviations from the 

expected sinusoidal behaviour (for example, near the centre of the |0〉 + |12〉 fringe) to 

changes in the Raman sideband Rabi frequencies by a few per cent, temporarily reducing the 

contrast for some points. b, Experimentally determined noise-to-signal ratio, δϕ, as defined 

by equation (3), as a function of order n (dots). Also shown are theoretical lines for a perfect 

classical interferometer at 1/ n and the 1/n Heisenberg limit; this limit is valid for ideal 

number-state interferometers.

McCormick et al. Page 17

Nature. Author manuscript; available in PMC 2020 February 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 4 |. Tracking of oscillator frequency using number-state interferometers.
a, Allan standard deviation of tracked fractional trap frequencies versus averaging time for 

interleaved experiments with n = 2, n = 4, n = 6 and n = 8 interferometers. The repetition 

rate of a single run, comprising long (100 μs Ramsey time) and short (20 μs Ramsey time) 

auto-balance sequences on both sides of the fringe was approximately 7 s−1. The n = 8 

interferometer produces the lowest Allan deviation of the fractional frequency. Trap-

frequency drifts begin to dominate the Allan deviation at tens of seconds. b, Uncertainty of 

the fractional mode frequency versus averaging time for two series of only n = 8 

interferometer runs performed to maximize the measurement duty cycle. We achieve a 

minimal fractional-frequency Allan deviation of 2.6(2) × 10−6 at approximately 4 s of 

averaging time with tracking activated (red triangles) and an experiment rate of 

approximately 43 s−1 as defined above. The Allan standard deviation for averaging times of 

up to 1 s, without tracking activated, is shown by the blue circles. The minimum is reached 

after 0.5 s, with the experiment rate increased to approximately 250 s−1. The error bars 

represent one standard deviation of the mean.
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