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Zihao Gong, Student Member, IEEE, Nathaniel Rodriguez, Student Member, IEEE, Christos N. Gagatsos, Saikat

Guha, Senior Member, IEEE, and Boulat A. Bash, Member, IEEE

Abstract—We consider the problem of estimating unknown
transmittance θ of a target bathed in thermal background light.
As quantum estimation theory yields the fundamental limits, we
employ the lossy thermal-noise bosonic channel model, which
describes sensor-target interaction quantum mechanically in
many practical active-illumination systems (e.g., using emissions
at optical, microwave, or radio frequencies). We prove that
quantum illumination using two-mode squeezed vacuum (TMSV)
states asymptotically achieves minimal quantum Cramér-Rao
bound (CRB) over all quantum states (not necessarily Gaussian)
in the limit of low transmitted power. We characterize the optimal
receiver structure for TMSV input, and show its advantage over
other receivers using both analysis and Monte Carlo simulation.

I. INTRODUCTION

A precise measurement of power transmittance is a fun-
damental task in engineering. It translates to measuring both
target reflectance in active sensing systems, such as RADAR
and LIDAR, and signal distortion from attenuation in commu-
nications systems. Transmittance is also critical to quantum-
system design. It determines the precision of quantum methods
for phase estimation [2], [3], the point-to-point quantum-
communication capacity [4], and whether a quantum channel
preserves the entanglement [5].

The importance of measuring transmittance led to the de-
velopment of classical signal processing methods covering
many practical scenarios [6], [7]. However, the fundamental
precision limits for all sensing tasks as well as the approaches
to achieve these limits are governed by quantum information
theory [8]–[11]. As we briefly discuss in Section II-C, this is
because quantum information methods optimize the underly-
ing physical measurement process that generates the data for
the estimator, as well as the estimator itself. Indeed, quantum-
enhanced sensing systems can significantly outperform those
limited by classical methodology [12], [13].

Consider active sensing of target reflectance, using optical,
microwave, or radio-frequency emissions in the presence of
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background Gaussian noise. This task is modeled quantum
mechanically by the measurement of power transmittance of a
lossy thermal-noise bosonic channel. Despite the progress in
quantum transmittance sensing [14]–[20], outlined briefly in
Section II-D, a design of a sensor transceiver that attains the
quantum limit in the presence of environmental thermal noise,
has been elusive. In fact, the authors of [18], upon establishing
the fundamental lower bound on the mean squared error
(MSE) of quantum transmittance estimation, question whether
a thermal-noise scenario even exists where this bound is sat-
urated. Here, we answer this question affirmatively: the lower
bound is achievable for probes with low transmitted power.
Furthermore, we characterize the corresponding transceiver
and provide analysis, and simulations supporting its near-term
physical implementation.

We begin by describing in Section II our notation and the
lossy thermal-noise bosonic-channel model. We then cover the
basics of quantum estimation theory. This allows us to in-
troduce the quantum perspective on the transmittance-sensing
problem and to consider the use of quantum illumination
(QI) [18], [21]–[26], which, in general, improves precision
by using entanglement between the transmitted probe and
a reference state retained in the transceiver. In Section III
we prove that probes constructed from two-mode squeezed
vacuum (TMSV) states can achieve the ultimate bound in
the limit of low transmitted power. As was done previously
for quantum-enhanced target detection [18], [21]–[24], [26],
our transmitter generates n TMSV states, and probes the
target’s transmittance with one mode of each TMSV state,
while retaining the other mode as a reference. In Section IV,
we characterize a matching quantum receiver, that measures
the n returned probes and corresponding entangled reference
signals, and applies maximum likelihood estimation (MLE)
on the resulting classical measurements. In the limit of low
transmitted power and large n this transceiver achieves the
fundamental lower bound on MSE from [18]. Although they
are not classical, the components used in our receiver are
well-known to the optics community: a two-mode squeezer
followed by a photon-number-resolving (PNR) measurement.
However, despite this convenience, our receiver’s existence is
limited to certain ranges of system parameters: transmittance,
signal power, and thermal noise power. Thus, in Section V,
we compare its theoretical limits to those of other well-known
receivers, and show significant advantage derived from using
TMSV input and our receiver.

The MSE of our sensing system converges to the quantum
lower bound as the number of probes n → ∞. However,
practical sensing is limited to a finite number of probes:
n < ∞. This motivates evaluating the speed of convergence
to the limit. Further complicating the analysis is the depen-
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dence of our receiver’s structure on the parameter of interest,
transmittance. This is common in quantum estimation, and
is addressed using the two-stage method from [11, Ch. 6.4],
[27], [28]. Unfortunately, this complicates the analysis. In
Section VI we use Monte Carlo simulation to study the
performance of transmittance sensing using our sensor, and
two other receivers, when the number of probes is finite. We
show that the MSEs for these systems converge rapidly to
their corresponding quantum limits, even when the two-stage
method is used.

The transceiver derived here is optimal in the low-
transmitted-power regime. This corresponds to previous QI
results, which demonstrated quantum advantage in this regime
[18], [21]–[23], [25], [26]. Nevertheless, this has significant
practical applications to sensors operating under total transmit-
ted power constraints. These can be imposed by, e.g., covert-
ness/low probability of detection (LPD) [29]–[36], battery size,
or the need to limit exposure of a biological sample to light.
Although technically challenging, an experimental validation
of our design is feasible in the near term, as the required
squeezing and PNR measurement have been demonstrated. We
conclude with a discussion of future work in Section VII.

Note: The fundamental limits of transmittance estimation
using TMSV in Section III and the preliminary comparison
to other systems in Section V were presented at the 2021
International Symposium on Information Theory (ISIT 2021)
and published in its proceedings [1]. Receiver design and
simulations in Sections IV and VI are new, while Section V
is significantly expanded from [1].

II. PREREQUISITES

A. Notation

As is customary in quantum information theory, we indicate
operators with hats, e.g., â and ρ̂. Conjugate transpose and
trace of â are indicated by â† and Tr {â}. Density operators,
which describe quantum states, are denoted using Greek
letters, e.g., ρ̂ and σ̂. We employ ket |x〉 and bra 〈x| ≡ |x〉†
notation for pure quantum states. A particularly useful pure
state is a Fock, or photon number, state |n〉 which represents
exactly n photons. We employ caret to indicate classical
estimators that input measured data and output an estimate,
e.g., θ̌ is an estimator for θ. We denote mean quantities with
an overbar, e.g., n̄ often indicates mean photon number.

B. Channel Model

A classical linear channel relates the complex-valued input
and output amplitude mode functions a and b by b =

√
θa+z,

where θ is power transmittance and z is additive noise. Using
an independent Gaussian random variable to represent noise,
z, yields an additive white Gaussian noise (AWGN) channel,
and simplifies estimation of transmittance θ [6], [7]. However,
optical, microwave, and radio-frequency (RF) light used for
communications and sensing is fundamentally an electromag-
netic wave described quantum mechanically by a boson field.
Noises of quantum-mechanical origin limit the performance
of advanced high-sensitivity photodetection systems [37]–[39].
Therefore, achieving the ultimate limits of estimation generally

requires tools from quantum-information processing [8]–[11]
and quantum optics [40]–[42].

Formally, a single-mode lossy thermal-noise bosonic chan-
nel E n̄T,θ

S→R in Fig. 2 describes quantum mechanically the
transmission of a single (spatio-temporal-polarization) mode
of the electromagnetic field at a given transmission wavelength
(such as optical, microwave, RF) over linear loss and additive
Gaussian noise (such as noise stemming from blackbody radi-
ation). A beamsplitter with transmittance θ models power loss.
In contrast to the classical linear model, here the input-output
relationship b̂ =

√
θâ +

√
1− θê between the bosonic modal

annihilation operators of the single-mode channel requires the
environment mode ê to preserve the unitarity by ensuring that
commutator

[
b̂, b̂†

]
= Î , where Î is the identity operator. Ex-

cess noise is modeled by mode ê being in a zero-mean thermal
state τ̂n̄T , where n̄T is the mean photon number per mode
injected by the environment. Thermal state is represented in
Fock (photon number) basis as τ̂n̄T

=
∑∞
k=0 q (k; n̄T) |k〉 〈k|,

where the Bose-Einstein probability mass function

q(k; n̄) =
n̄k

(1 + n̄)k+1
(1)

is a variant of a geometric distribution. In this paper, we are
interested in estimating unknown transmittance θ. Before we
state our problem formally in Section II-D, we review the
concepts from quantum estimation theory that we require.

Fig. 1. Single-mode thermal-noise lossy bosonic channel E(n̄T,θ) modeled
by a beamsplitter with transmittance θ. The sensor injects a probe in one of
the input ports, while an environment injects a thermal state τ̂n̄T with mean
photon number n̄T in the other input port. The sensor has access to one of
the output ports while the other output is absorbed by the environment. â, ê,
b̂, and ĉ label the corresponding input/output modal annihilation operators.

C. Introduction to Quantum Estimation

Suppose a quantum state σ̂(θ) physically encodes infor-
mation about an unknown parameter θ (transmittance in this
paper). We are interested in estimating θ from σ̂(θ). A physical
device that extracts information about θ from σ̂(θ) is described
by a positive operator-valued measure (POVM)

{
Γ̂x

}
that

satisfies the non-negativity and completeness conditions:

∀x : Γ̂x ≥ 0,
∑
x

Γ̂x = Î , (2)

where Î is the identity operator. For example, an ideal
photon-number-resolving (PNR) measurement is described by
{|x〉 〈x|}, where |x〉 is the Fock (photon number) state. Classi-
cal statistics of an output of a device characterized by POVM
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{
Γ̂x

}
are described by a random variable X with probability

mass function pX(x; θ) = Tr
{

Γ̂xσ̂(θ)
}

[8, Ch. III].

An estimator θ̌(x), is a function of the observation x,
which is an instance of X . We desire an unbiased θ̌(x), i.e.,
EX

[
θ̌(X)

]
= θ0, that minimizes the mean square error (MSE)

Vθ0
(
θ̌
)

= EX

[(
θ̌(X)− θ0

)2]
, where θ0 is the true value of

θ and EX [f(X)] is the expected value of f(X). The classical
Cramér-Rao bound (CRB) lower bounds the MSE:

Vθ0
(
θ̌
)
≥ 1

Iθ(X)
, (3)

where Iθ(X) = EX

[
(∂ log pX(X; θ)/∂θ)

2
]

is the classical
Fisher information (FI) associated with θ for random variable
X . By additivity of classical FI, for a sequence of n inde-
pendent and identically distributed (i.i.d.) random variables
{Xk}nk=1, Iθ ({Xk}nk=1) = nIθ (X1). Estimators that achieve
the classical CRB in (3) with equality are called efficient.
For observations described by an i.i.d. sequence of random
variables {Xk}nk=1, maximum likelihood estimator (MLE) is
asymptotically unbiased and efficient as n → ∞, up to mild
regularity conditions [6], [7].

However, classical estimation theory implicitly assumes that
the measurement device (described by POVM

{
Γ̂x

}
) is fixed.

Quantum methodology enriches estimation theory by allowing
analysis and optimization of

{
Γ̂x

}
[8, Ch. VIII]. The quantum

CRB lower bounds the classical CRB since it assumes an
optimal measurement:

Vθ0
(
θ̌
)
≥ 1

Jθ (σ̂(θ))
, (4)

where Jθ (σ̂(θ)) = Tr
{

Λ̂2
θσ̂(θ)

}
is the quantum FI associated

with θ for state σ̂(θ). Λ̂θ is the symmetric logarithm derivative
(SLD) operator that is Hermitian but not necessarily positive.
It is defined implicitly by [8, Ch. VIII.4(b)]:

∂σ̂(θ)

∂θ
=

1

2

(
Λ̂θσ̂(θ) + σ̂(θ)Λ̂θ

)
. (5)

Analogous to classical FI, by the additivity of quantum FI,
for a tensor product of n states σ̂⊗n(θ), Jθ (σ̂⊗n(θ)) =
nJθ (σ̂(θ)). We call a combination of a quantum measurement
and a classical estimator on the corresponding output quantum
efficient, if it achieves the quantum CRB in (4) with equality.

Consider an eigendecomposition of SLD Λ̂θ =∑
x λx(θ) |λx(θ)〉 〈λx(θ)|, where {|λx(θ)〉} is a set of

orthonormal pure eigen-states of Λ̂θ and {λx(θ)} are
the corresponding eigenvalues. For a tensor-product state
σ̂⊗n(θ), a tensor-product measurement {|λx(θ)〉 〈λx(θ)|}⊗n
constructed from eigendecomposition of SLD Λ̂θ and followed
by an MLE on the corresponding classical i.i.d. random output
sequence {Xk}nk=1 is asymptotically unbiased and quantum
efficient. Thus, unlike in optimal decoders for general
classical-quantum channels [43], a complicated joint-
detection measurement that entangles the output of n probes
is unnecessary: {|λx(θ)〉 〈λx(θ)|} is applied separately to
each of n states σ̂(θ). However, it is important to note that
there is an infinite number of eigendecompositions of Λ̂θ, and

that their mathematical expressions are typically unavailable
in closed form. Even when they are found, translating these
expressions to physical devices can be extremely challenging.

Furthermore, the structure of a quantum CRB-achieving
measurement {|λx(θ)〉 〈λx(θ)|} often depends on the param-
eter of interest θ. This seeming paradox of needing to know
θ to build a device for its measurement is addressed by the
following two-stage approach [11, Ch. 6.4], [27], [28]. First,
one obtains a rough pre-estimate θ̌0 using nβ , β ∈

(
1
2 , 1
)
,

probes and a sub-optimal measurement that does not depend
in θ. Then, one employs θ̌0 to construct

{∣∣λx(θ̌0)
〉 〈
λx(θ̌0)

∣∣}
and refine θ̌ using the remaining n−nβ probes. This achieves
quantum CRB asymptotically as n → ∞, under conditions
outlined in [11, Ch. 6.4], [28].

We encourage the reader, interested in learning more about
the foundations of quantum sensing, to consult the classic
texts on quantum detection and estimation [8] and quantum
information theory [9], as well as more recent texts [10], [11]
covering these subjects in greater depth. We are now ready for
the formal treatment of quantum transmittance estimation.

Fig. 2. Sensing of unknown transmittance θ. Sensor transmits n-mode signal
systems S of bipartite state ρ̂InSn by using n times the single-mode thermal
noise lossy bosonic channel E(n̄T,θ) described in Fig. 1, where mean thermal
photon number n̄T ≡ n̄B

1−θ . Idler systems I are retained as a reference for
the measurement of output state σ̂InRn (θ), which yields the estimator θ̌n.

D. Quantum Transmittance Estimation

Fig. 2 depicts our system setup. Sensor’s goal is to esti-
mate unknown power transmittance θ. It prepares a bipartite
quantum state ρ̂InSn which occupies n signal systems S and
n idler systems I . Signal systems S interrogate the target
over n available modes of channel E n̄T,θ

S→R. Idler systems I
are retained losslessly and noiselessly as a reference. The

output state σ̂InRn(θ) =
(
II ⊗ E n̄T,θ

S→R

)⊗n
[ρ̂InSn ] carries

information about transmittance θ in the returned systems
R, where I is the identity channel. As described in Section
II-C, we seek an unbiased estimator θ̌n on a measurement
of σ̂InRn(θ) that minimizes the mean squared error Vθ0

(
θ̌n
)
.

Early work focused on the transmittance sensing in a pure-loss
bosonic channel E0,θ

S→R, with n̄T = 0 [14]–[16]. Notably, the
author of [16] proved that Fock (photon number) states are
optimal for transmittance sensing in this environment.

Unfortunately, the pure-loss bosonic channel model has
limited applications, due to the omnipresence of thermal noise
in practical scenarios. Quantum illumination (QI) improves
detection and estimation in thermal noise using entanglement
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between S and I . The quantum CRB for joint estimation of
unknown θ and n̄T using Gaussian subset of quantum states
[44] was derived in [17]. Although the two-mode squeezed
vacuum (TMSV) state was proved an optimal Gaussian state in
[17], the sensor was allowed to estimate θ from just the thermal
background – called “shadow effect” in [19]. QI literature [18],
[21]–[23], [25], [26] addresses arguably more practical settings
where the thermal background cannot aid the estimation. The
“shadow effect” is removed by setting:

n̄T ≡
n̄B

1− θ
, (6)

where n̄B is the mean number of thermal background photons
per mode that corrupt the sensor’s probes. When the back-
ground light does not help the estimation of θ, quantum CRB is
quantitatively different from results in [17]1, and the quantum
FI is upper-bounded by [18, Eq. (21)]:

Jθ (σ̂InRn(θ)) ≤ Jθ,ub (n̄S,tot) ≡
n̄S,tot

θ(n̄B + 1− θ)
, (7)

where n̄S,tot =
∑n
i=1 n̄S,i is the total mean photon number

transmitted over n modes, and the individual mode mean
photon numbers n̄S,i may be unequal. However, [18] leaves
open the structure of ρ̂InSn that saturates (7), and the design
of the corresponding quantum-CRB-achieving measurement.

Excited by the gap identified in [18] and using the pre-
scription for n̄T in (6), we analyze transmittance sensing
with the TMSV states. In the next section, we find that the
quantum FI of TMSV states saturates the ultimate bound
in (7) as per-mode transmitted photon number n̄S → 0.
In Section V, we report that, at n̄S > 0, the quantum FI
of TMSV states significantly exceeds the FI of other well-
known transmittance estimation schemes. This motivates the
derivation of the quantum-CRB-achieving receiver structure
for TMSV probes in Section IV, and the numerical analysis
of the convergence of its MSE to the optimal in Section VI.

Following the conference presentation [1] of our prelimi-
nary results, [19] investigated transmittance sensing with and
without noise aiding the estimation. Notably, [19] proved that
TMSV maximized the quantum FI within the class of Gaussian
quantum states [44] with and without the “shadow effect.”
While the treatment of quantum FI in [19] is comprehensive,
the receiver structures that achieve it are not considered.
Even more recently, [20] presented an experimental study of
estimating multiple transmittance parameters in Xanadu’s X8
integrated-photonic-quantum computer [45]. Unfortunately,
the limitations of Xanadu’s platform limit the study in [20]
to photon-number-resolving (PNR) measurements of TMSV
states. The same authors follow up by analyzing the limits of
transmittance sensing using coherent and Fock states in the
presence of detector dark counts [46], and report results that
are qualitatively similar to those in Section V.

1Reparameterizing [17, Eqs. (B8a)-(B8d)] to θ = e−γ shows that, even in
the absence of probes (n̄S = 0), quantum FI associated with θ is positive
due to the thermal background.

III. TMSV IS OPTIMAL FOR TRANSMITTANCE SENSING

The TMSV state is represented in the Fock (photon number)
basis as follows:

|ψ〉IS =

∞∑
k=0

√
q(k; n̄S) |k〉I |k〉S , (8)

where q (k; n̄) is defined in (1). TMSV is a zero-displacement
pure Gaussian state, which among all two-mode-Gaussian
states with mean photon number n̄S is maximally entangled
[44]. It is critical in quantum-information processing. Gener-
ating TMSV is a well-known (bordering on routine) process
in quantum optics. We show that TMSV becomes optimal
for transmittance estimation in thermal noise as transmitted
photon number per mode n̄S decays to zero:

Theorem 1. The following limit holds for the quantum Fisher
information Jθ (σ̂InRn(θ)):

lim
n̄S→0

Jθ (σ̂InRn(θ))

n̄S
=

n

θ(n̄B + 1− θ)
(9)

when n TMSV probes described by tensor-product state
ρ̂InSn = |ψ〉 〈ψ|⊗nIS are used and σ̂InRn(θ) is the quantum
state describing the returned probes and retained references.

We first note that the lossy thermal-noise bosonic channel
E n̄T,θ
S→R acts independently on each transmitted mode. There-

fore, for input tensor product of TMSV states |ψ〉 〈ψ|⊗nIS ,
the output state σ̂InRn(θ) = σ̂⊗nIR (θ) is a tensor product of
states σ̂IR(θ) =

(
II ⊗ E n̄T,θ

S→R

)
[|ψ〉 〈ψ|IS ]. By the additivity

of the quantum FI for tensor product states, Jθ (σ̂InRn(θ)) =
nJθ (σ̂IR(θ)). In Appendix I we employ the method from
[47], [48] to derive the quantum FI

Jθ,TMSV (n̄S) ≡ Jθ (σ̂IR(θ))

=
n̄S (n̄B + 1 + (1− θ)n̄S + n̄Bn̄S)

θ (n̄B + 1− θ) (n̄B + 1 + n̄S(2n̄B + 1− θ))
(10)

associated with the quantum state σ̂IR(θ) that describes the
returned probe and retained reference when a single TMSV
probe is used. Multiplying (10) by n

n̄S
and taking the limit in

(9) yields the proof.2

Theorem 1 proves that TMSV is optimal over all low-
input-power states, including the non-Gaussian ones. Although
it has been shown to be an optimal Gaussian state for all
values of θ, n̄B, and n̄S [19], characterization of a general
quantum input state that maximizes quantum FI associated
with θ is an open problem. That being said, as mentioned
in Section I, the low transmitted-photon-number per mode
regime is important for the design of sensors operating under
the total power constraints. Thus, we characterize and analyze
a receiver structure that achieves asymptotically the quantum
CRB for TMSV.

2Our expression for the quantum FI of TMSV in (10) is exact, unlike
[25, Eq. (6)] and [18, Eq. (23)]. In fact, all of the quantum FI expressions
in [25] are approximations at θa = 0, where θa =

√
θ is the amplitude

transmittance, and [18, Eq. (23)] is [25, Eq. (6)] reparametrized from θa to
θ. Reparametrizing (10) to θa and setting θa = 0 yields [25, Eq. (6)]. That a
crude approximation with a zero-order Taylor series term yields such a close
result is striking.
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IV. TRANSMITTANCE ESTIMATION USING TMSV PROBES

A. Optimal Receiver Structure

We determine the eigendecomposition of the symmetric
logarithmic derivative (SLD) operator Λ̂θ defined in (5) for
the quantum state σ̂IR(θ) describing the returned probe and
retained reference. Since σ̂IR(θ) is Gaussian, Λ̂θ is a degree-2
polynomial of creation and annihilation operators âI , âR, â†I ,
and â†R [49, Sec. III]. Thus, there are infinitely-many unitary
transformations Ûθ that represent the application of a finite
sequence of squeezing, displacement, phase rotation, and beam
splitter operators, that diagonalize Λ̂θ.

In Appendix II, we adapt the approach from [14] to
show that Λ̂θ = c1Ŝ(ω)

(
â†I âI + â†RâR

)
Ŝ†(ω) + c0Î , where

Ŝ(ω) = exp(ω∗âRâI − ωâ†Râ
†
I) is a two-mode squeez-

ing operator, Î is the identity operator, and c0, c1 are
scalars. Unitary Ŝ(ω) diagonalizes Λ̂θ in the two-mode Fock
(photon number) basis {|km〉} ≡ {|k〉 ⊗ |m〉}, k,m =
0, 1, . . . since this is an eigenbasis for â†I âI + â†RâR. Thus,{
Ŝ(ω) |km〉 : k,m = 0, 1, . . .

}
is an eigendecomposition of

Λ̂θ. Hence, a receiver for TMSV transmitter that achieves
the quantum Cramér-Rao bound (CRB) asymptotically is a
two-mode squeezer followed by the photon-number-resolving
(PNR) measurements of each output mode. Fig. 3 depicts
transmittance sensing using TMSV and this receiver. For-
mally, it is the positive operator-valued measurement (POVM)
M = {|skm〉 〈skm|}, where |skm〉 = Ŝ(ω) |km〉. POVM M
followed by the maximum likelihood estimation (MLE) of θ
from the classical outcome of PNR measurements achieves
the quantum CRB as n → ∞. The squeezing parameter is
ω = λ − ζ, where ζ and λ are functions of θ, n̄B, and n̄S

defined in (56) and (123), respectively. We emphasize that,
although our measurement is convenient, in that it can be
physically implemented using well-known optical elements
(squeezer and PNR receivers), it is only one of the infinitely-
many measurements that achieve the quantum CRB asymptot-
ically.

Fig. 3. Sensing the unknown transmittance θ using n two-mode squeezed
vacuum (TMSV) states |ψ〉IS . When |ψ〉IS is transmitted, a bipartite output
state σ̂IR occupies a retained idler system I and a corresponding returned
probe system R. The receiver achieves the quantum CRB by applying a
two-mode squeezer (TMS) separately to each of the n output states σ̂IR,
followed by independent photon-number-resolving (PNR) measurement of
each output mode. Maximum likelihood estimator (MLE) is applied to the
resulting classical output to obtain the estimate θ̌n. As in Fig. 2, n̄T ≡ n̄B

1−θ .

B. Remarks and Caveats

The structure of our receiver is remarkable in that it achieves
the quantum CRB using well-known optical components:

• Optical elements implementing a two-mode squeezer
required for the receiver have been demonstrated in the
laboratory [50].

• Our Monte Carlo simulation described in Section VI
shows that, at a moderate amount of thermal noise
(n̄B ≈ 1 photons per mode), and with a low transmitted
photon number (n̄S ≈ 0.01), nine photons is the sufficient
resolution for PNR measurements. Such measurements,
while technically complex, have been demonstrated [51].

However, two caveats are in order:
1) Value of ω depends on θ: As mentioned in Section

II-C, the dependence of the structure of a quantum CRB-
achieving measurement on the parameter of interest is a
common occurrence in quantum estimation theory. In our
Monte Carlo simulation detailed in Section VI we employ
the two-stage approach [11, Ch. 6.4], [27], [28] described in
Section II-C with coherent transceiver from Section V-A used
to construct a rough pre-estimate, θ̌0.

Fig. 4. Satisfaction of the condition in (11) for the existence of the receiver
employing two-mode squeezing, followed by photon counting at various
values of system parameters θ, n̄S, and n̄B. Red shading denotes the regions
where (11) is not satisfied and white the regions where (11) is satisfied.

2) Existence of ω depends on θ, n̄S, and n̄B: The eigenbasis
of the SLD Λ̂θ in the form

{
Ŝ(ω) |km〉 : k,m = 0, 1, . . .

}
requires the scalars λ, F ′, T1, T2 to be real (see Appendix
II-D). Thus, per (117)-(121), we must have:

(C +D)2 < 4E2, (11)

where C, D, and E are defined in (102)-(104). As Fig. 4
illustrates, (11) does not hold for a certain range of system
parameters: θ, n̄S, and n̄B. Therefore, another, likely more
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complicated, receiver structure is necessary to realize the full
quantum advantage that the TMSV states yield.3

Notwithstanding these caveats, the range of operating pa-
rameters where our proposed receiver exists, corresponds to
the low transmitted photon number regime (n̄S � 1) which
has significant practical applications, (e.g., in covert/low prob-
ability of detection (LPD) [29]–[36], battery-constrained, or
light-sensitive-sample scenarios). It is also the regime where
TMSV states are quantum optimal. Nevertheless, we ana-
lyze and compare alternative transmittance-sensing approaches
next.

V. COMPARISON WITH ALTERNATIVE
TRANSMITTANCE-SENSING METHODS: FUNDAMENTAL

LIMITS

We compare the classical and quantum Fisher information
(FI) associated with transmittance θ for several well-known
receivers with the quantum FI for TMSV state derived in
Section III and the ultimate upper bound (7) from [18].

A. Coherent Transceiver

Single-mode coherent state |α〉 with complex-valued ampli-
tude α ∈ C is an eigenstate of the annihilation operator â and
a quantum-mechanical description of laser light. There are two
types of coherent measurement: an optical homodyne receiver
implements a measurement that uses the eigendecomposition
of either p̂ = â−â†√

2
or q̂ = â+â†√

2
quadrature operators and

yields a single Gaussian random variable, while a heterodyne
receiver implements measurement that uses the eigendecom-
positions of both p̂ and q̂ and outputs a pair of independent
Gaussian random variables. A coherent transceiver employs
both coherent states and a receiver, and is called “classical” in
the literature. The quantum FI associated with transmittance θ
for a coherent state |α〉S probe is [18, Eq. (23)]:

Jθ,Coh (n̄S) ≡ Jθ
(
E n̄T,θ
S→R [|α〉 〈α|S ]

)
=

n̄S

θ(2n̄B + 1)
, (12)

where the transmitted mean photon number n̄S ≡ |α|2. Use
of a homodyne receiver as depicted in Fig. 5 achieves the
corresponding quantum CRB.

B. TMSV and Optical Parametric Amplifier (OPA) Receiver

Let’s use the TMSV probes as in Section III, but apply an
optical parametric amplifier (OPA) to the output state σ̂IR(θ)
instead of a two-mode squeezer, and discard one of the OPA
outputs. The remaining output of the OPA is then in a zero-
mean thermal state with average photon number [23, Sec. A]:

n̄OPA = Gn̄S + (G− 1)(n̄B + 1 + θn̄S)

+ 2
√
G(G− 1)θn̄S(n̄S + 1), (13)

where the OPA gain G > 1. PNR measurement then outputs
a random photon count K, distributed geometrically with
mass function qK(k; n̄OPA) from (1). The OPA receiver was

3In Appendix II we adapt the approach in [14], where the authors derive
a quantum CRB-achieving receiver for transmittance sensing when n̄T = 0.
That receiver similarly does not exist for certain ranges of n̄S and θ.

Fig. 5. Sensing the unknown transmittance θ using n coherent states |α〉S and
a homodyne receiver. The output state σ̂R is called a displaced thermal state.
A Gaussian random variable describes the output of homodyne measurement
[44], [52, Ch. 7.3.2]. A maximum likelihood estimator (MLE) that uses the
homodyne receiver’s output and the value of α as a classical reference achieves
the quantum CRB for σ̂⊗nR as n→∞, and is derived in Section VI-A1.

proposed for target detection with quantum illumination [23],
[24], however, it can also be used to estimate transmittance θ,
as depicted in Fig. 6. Classical FI associated with θ in K is:

Jθ,OPA (n̄S) = max
G>1

(
(G− 1)n̄S +

√
G(G−1)n̄S(n̄S+1)

θ

)2

n̄OPA(n̄OPA + 1)
.

(14)

For fixed n̄S > 0, the constrained maximization over gain G is
challenging analytically. Hence, we use numerical approaches
to plot classical FI for an OPA receiver in Fig. 9. The
dependence of optimal G on θ can be addressed using the
two-stage estimation approach described in Section IV-B; we
employ it in the Monte Carlo simulation described in Section
VI. Furthermore, when n̄S is small, we have:

Jθ,OPA (n̄S)

n̄S

∣∣∣∣
n̄S=0

= max
G>1

G

θ(n̄B + 1)(G(1 + n̄B)− n̄B)

(15)

=
1

θ(n̄B + 1)
, (16)

where (15) is maximized when G → 1. This shows that the
TMSV+OPA combination can perform close to the limit in (7)
in the low-transmitted-power low-transmittance regime.

Fig. 6. Sensing the unknown transmittance θ using n two-mode squeezed
vacuum (TMSV) states |ψ〉IS and an optical parametric amplifier (OPA)
receiver. Per [23], one of the outputs of the OPA is discarded, resulting in the
other being in a thermal state. A maximum likelihood estimator (MLE) that
uses the output of the photon-number-resolving (PNR) measurement achieves
the classical CRB asymptotically as n→∞, and is derived in Section VI-A2.
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C. Fock States

It is well-known that Fock state |m〉 is optimal for trans-
mittance sensing in a vacuum (n̄B = 0), achieving quantum
FI Jθ

(
E0,θ
S→R [|m〉 〈m|S ]

)
= m

θ(1−θ) [15]. Here we show
that this breaks down in thermal noise. The output state
ν̂R(θ,m) = E n̄T,θ

S→R [|m〉 〈m|S ] is diagonal in the Fock basis,
making PNR measurement in the sensor as depicted in Fig. 7
optimal. The mass function for random variable K describing
the photon count is derived in [52, Sec. 7.3.1]. Transformation
of [52, Eq. (7.37)] using [53, 9.131.1] yields:

pK(k;m) =

(
m+ k

k

)
(n̄B + 1− θ)m−kθk

(n̄B + 1)m+k+1

× 2F1

[
−k,−k
−(m+ k)

; z(θ, n̄B)

]
, (17)

where z(θ, n̄B) = (θ−n̄B)(n̄B+1)
θ and

2F1

[
a, b

c
; z

]
= 1 +

ab

c
z +

a(a+ 1)b(b+ 1)

c(c+ 1)2!
z2 + · · ·

(18)

is the hypergeometric series. The quantum FI associated with
θ is:

Jθ,Fock(|m〉) ≡ Jθ (ν̂R(θ,m))

= m

(
1− θ

(n̄B + 1− θ)2
+

1

θ

)
− n̄B

(
1

(n̄B + 1− θ)2
− 1

θ2

)
− 2n̄B(θm+ n̄B + 1)

(n̄B + 1− θ)θ2

−
2n̄2

B

(
2(θm+ n̄B + θmn̄B) + n̄2

B + 1
)

(n̄B + 1− θ)2θ2

− n̄2
Bm(m− 1)

(n̄B + 1− θ)2
+Rm(θ, n̄B), (19)

where

Rm(θ, n̄B) =

∞∑
k=0

(
m+ k

k

)
k4n̄2

B(n̄B + 1− θ)m−kθk−4

(m+ k)2(n̄B + 1)m+k−1

×
2F1

[
−(k − 1),−(k − 1)

−(m+ k − 1)
; z(θ, n̄B)

]2

2F1

[
−k,−k
−(m+ k)

; z(θ, n̄B)

] .

(20)

The ratio of the hypergeometric series in (20) makes both
the analysis and numerical evaluation of the quantum FI
Jθ,Fock(|m〉) for large m challenging. Furthermore, on-demand
generation of Fock states |m〉 for arbitrary m presents techni-
cal challenges that appear insurmountable in the near term.
However, such sources exist for single photons [54]–[56].
Setting m = 1 in (17) yields

pK(k; 1) = (n̄B(n̄B + 1) + θ(k − n̄B)) n̄k−1
B (n̄B + 1)−(k+2).

(21)

The corresponding quantum FI is

Jθ,Fock (|1〉) =

∞∑
k=0

(k − n̄B)2n̄k−1
B (n̄B + 1)−(k+2)

(n̄B(n̄B + 1) + θ(k − n̄B))
. (22)

We note that, for n̄B > 0, (22) is well approximated by the
first three terms of the sum. The contribution from terms cor-
responding to k > 2 decreases rapidly due to the exponential
decay of n̄k−1

B (n̄B + 1)−(k+2) with increasing k.

Fig. 7. Sensing the unknown transmittance θ using m-photon Fock state
|m〉S . Photon-number-resolving (PNR) measurement is optimal. We can
employ a maximum likelihood estimator (MLE) that uses the output of the
PNR measurement and the value of m as a classical reference.

D. TMSV and Heralded PNR Measurement

TMSV states and PNR measurement can be used for prob-
abilistic generation of Fock states. Detection of m photons on
the idler mode heralds |m〉S state on the signal mode. Thus,
we consider transmittance sensing with TMSV using two PNR
measurements: one for the idler mode, and the other for the
returned signal port. This is depicted in Fig. 8. The classical
FI of this system is

Jθ,Her (n̄S) = EM [Jθ,Fock(|M〉)] , (23)

where the output photon number M mass function is in (1).

Fig. 8. Sensing the unknown transmittance θ using n two-mode squeezed
vacuum (TMSV) states |ψ〉IS . The photon-number-resolving (PNR) measure-
ment of the idler mode heralds the photon number of the transmitted Fock
state probe. This is used by a maximum likelihood estimator (MLE) along
with the output of the PNR measurement of the returned probe to achieve the
classical CRB asymptotically as n→∞.

E. Comparison

We ensure a fair comparison of the fundamental limits
for various transmittance-sensing methods by analyzing their
Fisher information attained per photon per (transmitted) mode.
That is, photon Fisher information efficiency (PFIE)  (n̄S) ≡
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Jθ(n̄S)
n̄S

is our figure of merit, where Jθ (n̄S) is classical or
quantum FI attainable with n̄S input mean signal photons per
mode. The ultimate upper bound for PFIE is derived from (7):

ub (n̄S) ≡ Jθ,ub (n̄S)

n̄S
=

1

θ(n̄B + 1− θ)
. (24)

The PFIE for TMSV source uses the quantum FI in (10):

TMSV (n̄S) ≡ Jθ,TMSV (n̄S)

n̄S

=
n̄B + 1 + (1− θ)n̄S + n̄Bn̄S

θ (n̄B + 1− θ) (n̄B + 1 + n̄S(2n̄B + 1− θ))
.

(25)

The PFIE for coherent and TMSV+OPA transceivers use
classical FI expressions (12) and (14), respectively:

Coh (n̄S) ≡ Jθ,Coh (n̄S)

n̄S
=

1

2θ(n̄B + 1)
(26)

OPA (n̄S) ≡ Jθ,OPA (n̄S)

n̄S

= max
G>1

(
(G− 1)n̄S +

√
G(G−1)n̄S(n̄S+1)

θ

)2

n̄Sn̄OPA(n̄OPA + 1)
.

(27)

The PFIE for Fock state and TMSV+Heralded PNR measure-
ment use quantum and classical FI expressions in (19) and
(23), respectively:

Fock (|m〉) ≡ Jθ,Fock (|m〉)
m

(28)

Her (n̄S) ≡ Jθ,Her (n̄S)

n̄S
. (29)

We evaluate (24)-(29) and plot the results versus thermal-
noise mean photon number n̄B in Fig. 9. While ub (n̄S) and
Coh (n̄S) are constant relative to transmitted mean photon
number n̄S, TMSV (n̄S), OPA (n̄S), and Her (n̄S) are not.
Thus, we include plots for various values of n̄S. We set θ = 0.5
and note that, for other values θ, the plots are qualitatively
similar. In plotting OPA (n̄S) we maximize (27) over G > 1
numerically. We include the plot of Fock (|m〉) for single-
photon Fock state |1〉 and a thirty-photon Fock state |30〉 on
all plots. The challenges associated with computing the hy-
pergeometric series 2F1 [57] precluded evaluating Fock (|m〉)
for m > 30. When evaluating Her (n̄S), we had to truncate
the sum in the expectation in (23) at m = 30. This accurately
approximates Her (n̄S) only up to n̄S ≈ 4. Thus, we did not
evaluate Her (n̄S)|n̄S=10 and Her (n̄S)|n̄S=100.

It is evident from Fig. 9 that PFIE of the TMSV input
combined with optimal measurement exceeds that of other
receivers we consider. While Fock state transmitters’ per-
formance rapidly decays with noise, they outperform the
TMSV+OPA transceiver when signal-to-noise ratio (SNR)
is high. Indeed, the TMSV+OPA transceiver performs very
poorly when the transmitted mean photon number is high.

On the other hand, the high PFIE of single-photon Fock
state |1〉 in low noise shows the promise of using the on-
demand single-photon sources and PNR measurement for
transmittance sensing. Furthermore, since the first three terms

of the summation in (22) approximate Jθ (ν̂R(θ, 1)) well for
n̄B < 1, a measurement that distinguishes zero, one, or more
photons suffices for accurate estimation of θ for these systems.
Such measurement is less complex than the full PNR one.

We also note that TMSV+heralded PNR performs as well
as the single-photon Fock state source in low-noise set-
ting. In fact, our calculations suggest that, for n̄S � 1,
TMSV+heralded PNR measurement matches PFIE of a single-
photon Fock state source while using a less-complex single-
photon detector (SPD) that distinguishes zero or more than
zero photons instead of a PNR measurement.

Nevertheless, many practical scenarios demand low-
transmitted-power operation. Even for moderate noise power,
this results in low SNR. Transmittance sensors that employ
TMSV+receiver derived in Section IV and TMSV+OPA re-
ceiver behave well in this setting. Thus, next we use Monte
Carlo simulation to evaluate these sensors and to compare their
performance to a simpler one based of a coherent transceiver.

VI. COMPARISON WITH ALTERNATIVE
TRANSMITTANCE-SENSING METHODS: SIMULATIONS

Maximum likelihood estimators (MLEs) have a number of
desirable properties, the first and foremost being the avail-
ability of “turn-the-crank” implementation in most practical
settings. Furthermore, MLEs are usually asymptotically con-
sistent and efficient, as the number of observations n→∞ [6],
[7]. Here we employ MLEs to estimate transmittance θ from
the outputs of coherent homodyne transceiver, TMSV+OPA
receiver, and TMSV+receiver derived in Section IV, analyzing
their convergence to CRB for increasing n.

A. Construction of MLEs

1) Coherent Homodyne Transceiver: Consider a transmit-
tance sensing scheme described in Section V-A that uses a
tensor product |α〉⊗nS of n coherent states |α〉S with α =

√
n̄S

as probes and a homodyne receiver. The corresponding output
is a sequence of n independent and identically distributed
(i.i.d.) Gaussian random variables {Xk}nk=1, each with mean√
θn̄S and variance n̄B + 1. The MLE for θ is:

θ̌Coh(n) =
1

n̄S

(
1

n

n∑
k=1

xk

)2

, (30)

where xk is an observed instance of Xk.
2) TMSV Input and OPA Receiver: Now consider a scheme

from Section V-B that uses a tensor product ρ̂InSn =
|ψ〉 〈ψ|⊗nIS of n TMSV states defined in (8) as probes and
an OPA receiver. The corresponding output is a sequence of
n i.i.d. geometric random variables {Yk}nk=1, each with mass
function qY (y; n̄OPA) defined in (1), where the n̄OPA is in
(13). The MLE for θ is:

θ̌OPA(n) =
ȳ(G∗ − 1)− 1− n̄B

(G∗ − 1)2n̄S

−
2
√
G∗(1 + ȳ + n̄B −G∗n̄S)(1 + n̄S)

(G∗ − 1)n̄S

+
G∗(G∗ + 2n̄B −G∗n̄B + (G∗ − 1)n̄S)

(G∗ − 1)2n̄S
, (31)
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(a) n̄S = 0.001 (b) n̄S = 0.01

(c) n̄S = 0.1 (d) n̄S = 1

(e) n̄S = 10 (f) n̄S = 100

Fig. 9. Photon Fisher information efficiency vs. thermal-noise mean number of photons per mode n̄B for various transmittance estimation methods and values
of transmitted mean number of photons per mode n̄S. We set θ = 0.5, results for other values of θ are qualitatively similar.
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where ȳ = 1
n

∑n
k=1 yk is the mean of the observed instances

of Yk, and G∗ is the OPA gain that maximizes classical FI in
(14). Thus, G∗ minimizes the CRB for the receiver, and hence,
the asymptotic MSE of θ̌OPA(n). However, G∗ depends on the
parameter of interest, θ. Thus, we follow a two-stage approach
[11, Ch. 6.4], [27], [28]. First

√
n probes are coherent states

from which we obtain a preliminary estimate θ̌0 = θ̌Coh (
√
n),

using the homodyne receiver described above. We compute G∗0
by maximizing (14) with θ̌0 substituted for θ. The remaining
n −
√
n probes are TMSV states, with output processed by

the OPA receiver, with gain set to G∗0, and the corresponding
MLE θ̌OPA (n−

√
n) in (31), with G∗ set to G∗0.

3) TMSV Input and Receiver Derived in Section IV: Finally,
we use a tensor product ρ̂InSn = |ψ〉 〈ψ|⊗nIS of n TMSV
states defined in (8) as probes, but we employ the receiver
derived in Section IV, that uses the two-mode squeezer Ŝ(ω),
followed by the PNR measurement of each mode. As noted
in Section IV-B, the squeezing parameter ω depends on the
parameter of interest θ. We follow a two-stage approach as in
the OPA-based scheme, with an identical first stage that uses
a coherent homodyne transceiver. We calculate the squeezing
parameter ω0 using the preliminary estimate θ̌0 that employs
the first

√
n probes. The remaining n−

√
n probes are TMSV

states, with each output state σ̂IR(θ). These are processed by
Ŝ (ω0) followed by a two-mode PNR measurement. Thus, the
corresponding output is a sequence of n i.i.d. pairs of random
variables {(Z0,k, Z1,k)}nk=1, each with mass function:

pZ0,Z1
(z0, z1) = 〈z0z1| Ŝ† (ω0) σ̂IR(θ)Ŝ (ω0) |z0z1〉 (32)

=

∞∑
s=0

∞∑
t=0

rst

∣∣∣〈st| Ŝ (ω0 + ζ) |z0z1〉
∣∣∣2 , (33)

where, in Appendix III, we derive

〈st|S (ω0 + ζ) |km〉
= (−τ0)s−k

√
s!t!k!m!δ(s− k, t−m)

×
um∑
u=ul

(−|τ0|2)uν−k−m+2u−1
0

(s− k + u)!u!(k − u)!(m− u)!
(34)

with ul = max(k − s, 0), um = min(k,m), τ0 =
ω0+ζ
|ω0+ζ| tanh |ω0 + ζ|, ν0 = cosh |ω0 + ζ|, the Kronecker delta
function δ(x, y) = {1 if x = y; 0 if x 6= y}, and ζ and rst
defined in (56) and (62), respectively. Another form of (34) is
in [58, Eq. (22)]. Since we multiply by δ(s− k, t−m), (34)
is not zero only if s− k = t−m. Thus, (33) simplifies to:

pZ0,Z1
(z0, z1) =

∞∑
s=0

rst′
∣∣∣〈st′| Ŝ (ω0 + ζ) |z0z1〉

∣∣∣2 , (35)

where t′ = s − k + m. As there is no known closed-form
solution for MLE, we construct it using numerical optimization
of (35) recast as a likelihood function for θ.

B. Results

While it is well-known that MLE is asymptotically consis-
tent and efficient, as number of observations n → ∞ [6],
[7], numerical approaches are needed for its finite-sample
performance analysis at fixed n < ∞. Furthermore, although

the two-stage approach [11, Ch. 6.4], [27], [28] is consistent
and quantum efficient as n→∞, the convergence conditions
in [11, Ch. 6.4], [28] are onerous to prove mathematically for
many estimators (including ours) and, to our knowledge, its
finite sample analysis is missing from the literature.

Thus, we compare the simulated MSEs for the MLEs
developed in Section VI-A to their corresponding CRBs.
Our settings for n̄S = 0.01, n̄B = 1, and θ = 0.5 are
chosen because 1) they allow the simulations to complete in
reasonable time while ensuring the existence of the receiver
derived in Section IV; and, 2) n̄S � n̄B models transmittance
sensing in a low-SNR environment. The MSE is inversely
proportional to the number of probes n: MSEθ = cθ

n . For n̄S,
n̄B, and θ fixed, the scaling factor cθ ≡ n×MSEθ is a function
of n, however, the asymptotic efficiency of MLE suggests that,
for estimators described in Section VI-A, limn→∞ cθ = 1

Jθ ,
where 1

Jθ is a single-observation CRB.4 We are interested in
the speed of cθ’s convergence to 1

Jθ as n increases, and the
penalty (if any) of the two-stage approach.

Fig. 10. Scaling factor cθ = n×MSEθ vs. the number of probes n used to
estimate θ. We set n̄S = 0.01, n̄B = 1, and θ = 0.5. We evaluate cθ at 96
logarithmically-spaced values for n ∈ [1, 65536]. The limitations of machine
precision, computational run-time, and memory precluded evaluation of cθ
for n > 65536. Each data point is an average of 5×104 results from Monte
Carlo simulations. Approximate points when scaling factors converge to the
corresponding CRBs are marked with ⊗. The 95% confidence intervals are
negligibly small, and the fluctuations in the plots are due to machine-precision
limits rather than stochastic variations between experiments.

On the ordinate in Fig. 10 we plot the scaling factors
cθ,Coh, cθ,OPA, and cθ,TMSV for the MLEs that use the output of
a coherent homodyne transceiver, TMSV+OPA receiver, and
TMSV+receiver derived in Section IV, respectively. We also
plot the scaling factors c∗θ,OPA and c∗θ,TMSV for the correspond-
ing receivers, constructed with knowledge of θ. While such

4As n → ∞, MLE θ̌MLE(n) for θ is usually asymptotically efficient:
θ̌MLE(n) converges in probability to the true value θ0. It is also typically
asymptotically efficient as follows:

√
n
(
θ̌MLE(n)− θ0

)
converges in law to

a zero-mean Gaussian random variable with variance equal to CRB for a single
observation [6], [7]. However, proving limn→∞ cθ = 1

Jθ
mathematically

requires showing uniform integrability, which is challenging for MLEs (see,
e.g., remarks following Proposition IV.D.2 in [59, Sec. IV.D]).
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receivers cannot physically exist, this enables us to isolate the
impact of the two-stage method on the convergence of the
scaling factor.

Fig. 10 shows that cθ,TMSV converges to 1+etwo-stage

Jθ,TMSV(n̄S) at

approximately n = 3000 modes, cθ,OPA converges to 1+etwo-stage

Jθ,OPA(n̄S)

at approximately n = 5000 modes, and cθ,Coh converges to
1

Jθ,Coh(n̄S) at approximately n = 8000 modes. The penalty
from the use of the two-stage method is etwo-stage ≈ 0.05, and
appears to decay with n. We note that 1

Jθ,TMSV(n̄S) is negligibly
close to the ultimate lower bound 1

Jθ,ub(n̄S) .

C. Towards Experimental Validation

Our results support the feasibility of near-future experi-
mental validation of quantum-enhanced transmittance sens-
ing. Idler-mode storage and synchronization are technical
challenges that are similar to those the previous quantum
illumination experiments overcame, e.g., [24]. For n̄S = 0.01,
n̄B = 1, and θ = 0.5, the required squeezing parameter in
the receiver, that we derived in Section IV, is ω ≈ 0.1428.
This corresponds to the squeezing factor 10 log10 e

2ω ≈ 1.24
dB. Fig. 11 further explores the squeezing factor for our
receiver. We note that ω is a very-slowly-increasing function
of thermal noise photon number per mode n̄B.5 Hence, we
set n̄B = 1. We show that, unless transmittance θ is very
small, for low transmitted mean photon number per mode n̄S

(which is the regime where our sensor is optimal), substantially
less than 10 dB of squeezing is needed – a figure that has
been demonstrated at 1550 nm “telecom” wavelength [50].
Fig. 11 also illustrates how the existence of ω depends on the
parameters θ, n̄S, and n̄B: when n̄S = 0.1 and n̄B = 1, the
condition in (11) is not satisfied for θ < 0.2882. However, (11)
is satisfied for θ > 0.0385 and θ > 0.0040 when n̄S = 0.01
and n̄S = 0.001, respectively. Thus, at low transmitted power,
our sensor can estimate almost the entire range of θ.

In our simulations, we approximate the ideal PNR by
one that resolves up to 9 photons, which captures > 99%
of the probability mass in (32). Such resolution has been
demonstrated at 1550 nm using superconducting transition-
edge sensors (TES) [51]. Fig. 10 shows convergence to optimal
MSE requiring measurement of < 105 probes. The output
of a continuous-wave (cw) spontaneous parametric down-
conversion (SPDC) source of entangled photons typically has
an optical bandwidth of W ∼ 1 THz [60]. The quantum
description of a T -second cw SPDC output is a tensor product
of n ≈ WT two-mode squeezed vacuum (TMSV) states.
Due to the high modes-per-second output of the SPDC,
the duration of an experimental run will be governed by
the electronic bandwidth of the detector, which for TES is
dominated by its dead, or, reset time. The count rate of
the TES reported in [51] is ≈ 20 × 103 counts/s, which is
far slower than commercially-available (non-photon-number-
resolving) superconducting nanowire single-photon detectors
(e.g., [61]). However, even the TES rate allows a less-than-a-
second duration for each experimental run that we simulated.

5Numerical experiments suggest that ω grows sub-logarithmically with n̄B.

Fig. 11. Squeezing factor 10 log10 e
2ω vs. transmittance θ for various values

of transmitted mean photon number per mode n̄S. Thermal noise mean photon
number per mode n̄B = 1, results for other values are very similar, as ω grows
very slowly with n̄B. The squeezing factor is shown only over the regions
of θ where the condition (11) holds and a solution for ω exists. These are
0.2882 < θ < 1 for n̄S = 0.1, 0.0385 < θ < 1 for n̄S = 0.01, and
0.0040 < θ < 1 for n̄S = 0.001. The squeezing factor required when
n̄S = 0.01, n̄B = 1, and θ = 0.5 (Section VI-B settings) is marked with ⊗.

VII. CONCLUSION

We showed that the TMSV state asymptotically minimizes
the quantum CRB for transmittance estimation in thermal
noise and low-transmitted-power regime over all states (not
necessarily Gaussian). We derived a quantum CRB-achieving
receiver structure for TMSV source: a two-mode squeezer
followed by the PNR measurement. Although our design is
restricted to a certain range of parameters, the range corre-
sponds to the low transmitted photon number regime where
TMSV source achieves the ultimate quantum FI bound in (7).
Nevertheless, alternate receiver structures for TMSV input that
are not restricted to this range of parameters should be ex-
plored. The structure of our receiver depends on the parameter
of interest, as is typical in quantum-enhanced sensing. This
necessitates a two-stage estimation approach [11, Ch. 6.4],
[27], [28], however, our simulations suggest that its impact on
the MSE is negligible.

In our work, we assume thermal channel noise, availability
of perfect PNR measurement, error-free idler mode storage,
and its perfect synchronization with the returned probe mode.
These are also standard assumptions in theoretical investi-
gations of quantum-enhanced sensing (e.g., [17]–[19], [21]–
[23], [25], [26]). Strict enforcement of these assumptions in
a controlled laboratory environment allowed the experimental
demonstration of quantum advantage for target detection [24].
Our simulation results in Section VI suggest a high likelihood
of success for a similar experimental validation of quantum
advantage in transmittance sensing, with small transmitted
photon number (n̄S ≈ 0.01), and relatively large thermal noise
photon number (n̄B ≈ 1). However, our future work will
focus on extending both our analytic and numeric framework



12

to account for the limitations of practical systems. This will
allow exploration of trade-offs between their complexity and
performance and hasten the integration of quantum-enhanced
sensing protocols into practical systems.

APPENDIX I
PROOF OF THEOREM 1

The proof of Theorem 1 was presented at the International
Symposium on Information Theory (ISIT) 2021 and included
in its proceedings [1].

As explained in Section III, for input tensor product of
TMSV states |ψ〉 〈ψ|⊗nIS , the output is a tensor-product state
σ̂InRn(θ) = σ̂⊗nIR (θ) and quantum FI Jθ (σ̂InRn(θ)) =
nJθ (σ̂IR(θ)). Since the TMSV state and the bosonic channel
are Gaussian, the output state σ̂IR(θ) is also Gaussian. This
allows the use of the symplectic formalism [44]. We use
the q̂q̂p̂p̂ form for representing and evolving the covariance
matrices of Gaussian states in phase-space, where q̂ = â+â†√

2

and p̂ = â−â†√
2

are the quadrature operators. The input TMSV
state’s covariance matrix is:

Σρ̂IS =


u1 u2 0 0

u2 u1 0 0

0 0 u1 −u2

0 0 −u2 u1

 , (36)

where u1 = n̄S + 1
2 and u2 =

√
n̄S(n̄S + 1). The action of

the lossy thermal-noise bosonic channel E n̄T,θ
S→R on the signal

mode does not displace the state and results in the covariance
matrix of the output:

Σσ̂IR(θ) = XΣρ̂ISX
T + Y (37)

=


w11 w12 0 0

w12 w22 0 0

0 0 w11 −w12

0 0 −w12 w22

 , (38)

where Y = diag
(
0, n̄B + 1

2 −
θ
2 , 0, n̄B + 1

2 −
θ
2

)
, X =

diag
(

1,
√
θ, 1,
√
θ
)

, AT is a transpose of A, and

w11 = n̄S +
1

2
, (39)

w22 = n̄B + θn̄S +
1

2
, (40)

w12 =
√
θn̄S(n̄S + 1). (41)

We now derive the quantum FI using the method in [47],
[48]. First, the Uhlmann fidelity between zero-displacement
Gaussian states ρ̂1 and ρ̂2 with covariance matrices Σ1 and
Σ2 is [47]:

F (ρ̂1, ρ̂2) =
1√

√
Γ +
√

Λ−
√

(
√

Γ +
√

Λ)2 −∆

, (42)

where the symplectic invariants are:

∆ = det (Σ1 + Σ2) ≥ 1 (43)

Γ = 16 det

(
ΩΣ1ΩΣ2 −

I4×4

4

)
≥ ∆ (44)

Λ = 16 det

(
Σ1 +

j

2
Ω

)
det

(
Σ2 +

j

2
Ω

)
≥ 0, (45)

Ω =

[
02×2 I2×2

−I2×2 02×2

]
is the symplectic matrix, Im×m is

the m × m identity matrix, and j =
√
−1 is the imaginary

unit. The quantum FI is calculated using (42) as follows:

Jθ (σ̂IR(θ)) = −4
∂2F (σ̂IR(θ), σ̂IR(θ + δθ))

∂δ2
θ

∣∣∣∣
δθ=0

,(46)

where (46) is derived in [48]. Evaluating (46) yields (10).

APPENDIX II
DERIVATION OF A QUANTUM CRB-ACHIEVING RECEIVER

We obtain a quantum CRB-achieving receiver for trans-
mittance by adapting the approach from [14]. We derive
an eigendecomposion

{
Ŝ(ω) |km〉 : k,m = 0, 1, . . .

}
of Λ̂θ

in three steps: 1) we find an orthonormal basis {|ψkm〉},
k,m = 0, 1, . . . for the output state σ̂IR(θ); 2) we use {|ψkm〉}
to write Λ̂θ as a linear combination of creation and annihilation
operators âI , âR, â†I , and â†R of the return and idler modes;
and, 3) we recognize that the resulting linear combination is
produced by an action of a two-mode squeezing operator Ŝ(ω)
on a number operator, yielding an expression for ω.

A. Orthonormal Basis for the Output State σ̂IR(θ)

Squeezing the two modes of σ̂IR(θ) yields σ̂d
IR(θ) =

Ŝ(ζ)σ̂IR(θ)Ŝ†(ζ) with the covariance matrix:

Σσ̂d
IR(θ) = ZΣσ̂IR(θ)Z

T (47)

=


wd

11 wd
12 0 0

wd
12 wd

22 0 0

0 0 wd
11 −wd

12

0 0 −wd
12 wd

22

 , (48)

where

Z =


cosh(ζ) sinh(ζ) 0 0

sinh(ζ) cosh(ζ) 0 0

0 0 cosh(ζ) − sinh(ζ)

0 0 − sinh(ζ) cosh(ζ)


(49)

wd
11 = w11 cosh2(ζ) + w22 sinh2(ζ) + w12 sinh(2ζ), (50)

wd
22 = w22 cosh2(ζ) + w11 sinh2(ζ) + w12 sinh(2ζ), (51)

wd
12 = w12 cosh(2ζ) + (w11 + w22) cosh(ζ) sinh(ζ). (52)

A value of ζ such that

wd
12 = 0 (53)

makes σ̂d
IR(θ) a thermal state that is diagonal in the Fock

basis. Note that in (52), w11 > 0, w22 > 0, w12 > 0 and
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cosh(ζ) > 0. Thus, sinh(ζ) < 0. Solution of (53) for ζ under
these constraints satisfies:

cosh(ζ) =

√
1 + n̄B + n̄S + θn̄S

2
√
a

+
1

2
≡ µ, (54)

sinh(ζ) = −

√
1 + n̄B + n̄S + θn̄S

2
√
a

− 1

2
≡ ν. (55)

This yields, in turn,

ζ = log

(√
1 + n̄B + n̄S + θn̄S

2
√
a

+
1

2

−

√
1 + n̄B + n̄S + θn̄S

2
√
a

− 1

2

)
, (56)

where

a = n̄2
B + (1 + n̄S(1− θ))2 + 2n̄B(1 + n̄S + θn̄S). (57)

The covariance matrix of σ̂d
IR(θ) can be expressed as

Σσ̂d
IR(θ) =


N1 + 1

2 0 0 0

0 N2 + 1
2 0 0

0 0 N1 + 1
2 0

0 0 0 N2 + 1
2

 ,
(58)

where the mean thermal photon numbers in each mode are:

N1 = wd
11 −

1

2
=

1

2

(√
a+ n̄B − 1− n̄S(1− θ)

)
(59)

N2 = wd
22 −

1

2
=

1

2

(√
a− n̄B − 1 + n̄S(1− θ)

)
. (60)

Hence, using two-mode Fock basis, we have:

σ̂d
IR(θ) =

∑
km

rkm |km〉 〈km| , (61)

where, using the definition of q(k, n̄) from (1),

rkm ≡ q(k,N1)q(m,N2) =
Nk

1N
m
2

(1 +N1)k+1(1 +N2)m+1
.

(62)

Therefore, the output state σ̂IR(θ) is diagonal in the two-mode
squeezed Fock basis {|ψkm〉}, k,m = 0, 1, . . .:

σ̂IR(θ) =Ŝ†(ζ)σ̂d
IR(θ)Ŝ(ζ) =

∑
km

rkm |ψkm〉 〈ψkm| , (63)

where |ψkm〉 = Ŝ†(ζ) |km〉 defines an orthonormal basis.

B. Actions of Modal Creation and Annihilation Operators on
Output State

Since the squeezing parameter ζ is real, we have [42,
Eq. (5.35)]

S(ζ)âRS
†(ζ) = µâR + νâ†I , (64)

S(ζ)â†RS
†(ζ) = µâ†R + νâI , (65)

where µ and ν are defined in (54) and (55), respectively.
These facts, the diagonalization of the output state σ̂IR(θ) in

(63), and the photon-number raising and lowering properties
of creation and annihilation operators allow us to derive the
following six expressions for use in Appendix II-C:

〈ψkm| 2âRσ̂IR(θ)â†R |ψst〉
= 〈km|S(ζ)2âRS

†(ζ)
∑
ul

rul |ul〉 〈ul|S(ζ)â†RS
†(ζ) |st〉

= 〈km| 2(µâR + νâ†I)
∑
ul

rul |ul〉 〈ul| (µâ†R + νâI) |st〉

= 〈km| 2(µâR + νâ†I)
∑
ul

rul |ul〉 〈ul| (µ
√
r + 1 |s+ 1, t〉

+ ν
√
t− 1 |s, t− 1〉)

= 〈km| 2(µâR + νâ†I)(µrs+1,t

√
r + 1 |s+ 1, t〉

+ νrs,t−1

√
t− 1 |s, t− 1〉)

= 〈km| 2(µâR + νâ†I)(µrs+1,tâ
†
R + νrs,t−1âI) |st〉 (66)

〈ψkm| â†RâRσ̂IR(θ) |ψst〉
= 〈km|S(ζ)â†RS

†(ζ)S(ζ)âRS
†(ζ)

∑
ul

rul |ul〉 〈ψul|ψst〉

= 〈km| (µâ†R + νâI)(µâR + νâ†I)rst |st〉 (67)

〈ψkm| σ̂IR(θ)â†RâR |ψst〉
= 〈ψkm|

∑
ul

rul |ψul〉 〈ul|S(ζ)â†RS
†(ζ)S(ζ)âRS

†(ζ) |st〉

= 〈km| rkm(µâ†R + νâI)(µâR + νâ†I) |st〉 (68)

〈ψkm| 2â†Rσ̂IR(θ)âR |ψst〉
= 〈km|S(ζ)2â†RS

†(ζ)
∑
ul

rul |ul〉 〈ul|S(ζ)âRS
†(ζ) |st〉

= 〈km| 2(µâ†R + νâI)
∑
ul

rul |ul〉 〈ul| (µâR + νâ†I) |st〉

= 〈km| 2(µâ†R + νâI)
∑
ul

rul |ul〉 〈ul| (µ
√
k |s− 1, t〉

+ ν
√
t+ 1 |s, t+ 1〉)

= 〈km| 2(µâ†R + νâI)(µrs−1,t

√
k |s− 1, t〉

+ νrs,t+1

√
t+ 1 |s, t+ 1〉)

= 〈km| 2(µâ†R + νâI)(µrs−1,tâR + νrs,t+1â
†
I) |st〉 (69)

〈ψkm| âRâ†Rσ̂IR(θ) |ψst〉
= 〈km|S(ζ)âRS

†(ζ)S(ζ)â†RS
†(ζ)

∑
ul

rul |ul〉 〈ψul|ψst〉

= 〈km| (µâR + νâ†I)(µâ
†
R + νâI)rst |st〉 (70)

〈ψkm| σ̂IR(θ)âRâ
†
R |ψst〉

= 〈ψkm|
∑
ul

rul |ψul〉 〈ul|S(ζ)âRS
†(ζ)S(ζ)â†RS

†(ζ) |st〉

= 〈km| rkm(µâR + νâ†I)(µâ
†
R + νâI) |st〉 (71)

C. Characterization of SLD Λ̂θ

First, we use (5) to relate the kmst-th term of the SLD
operator Λ̂θ in the basis {|ψkm〉} to the corresponding term
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of the derivative dσ̂IR(θ)
dθ :

〈ψkm|
dσ̂IR(θ)

dθ
|ψst〉 =

1

2
〈ψkm| σ̂IR(θ)Λ̂θ |ψst〉

+
1

2
〈ψkm| Λ̂θσ̂IR(θ) |ψst〉 (72)

=
rkm + rst

2
〈ψkm| Λ̂θ |ψst〉 . (73)

Thus, the SLD operator is expressed as follows:

Λ̂θ =
∑
kmst

〈ψkm|
2dσ̂IR(θ)

dθ

rkm + rst
|ψst〉 |ψkm〉 〈ψst| . (74)

The probe state evolving in a thermal bath is characterized
by the Lindblad Master equation [62, Ch. 4]:

dσ̂IR(θ)

dt
=
γ

2

[
(n̄B + 1)L̂R[â] + n̄BL̂R[â†]

]
σ̂IR(θ), (75)

where the superoperator L̂R[·] is defined as follows:

L̂R[â]σ̂IR(θ) = 2âRσ̂IR(θ)â†R − â
†
RâRσ̂IR(θ)

− σ̂IR(θ)â†RâR (76)

L̂R[â†]σ̂IR(θ) = 2â†Rσ̂IR(θ)âR − âRâ†Rσ̂IR(θ)

− σ̂IR(θ)âRâ
†
R. (77)

The dissipation rate γ satisfies exp
(
−γ2 t

)
=
√
θ, which, in

turn, implies:

dt

dθ
=

1

γθ
. (78)

Employing the chain rule in (75) using (78), and substituting
the result into (74) yields:

Λ̂θ =
∑
kmst

〈ψkm|
2dσ̂IR(θ)

dt
dt
dθ

rkm + rst
|ψst〉 |ψkm〉 〈ψst| (79)

=
(n̄B + 1)

θ

∑
kmst

〈ψkm| L̂R[â]σ̂IR(θ) |ψst〉
rkm + rst

|ψkm〉 〈ψst|

+
n̄B

θ

∑
kmst

〈ψkm| L̂R[â†]σ̂IR(θ) |ψst〉
rkm + rst

|ψkm〉 〈ψst|

(80)

We analyze the two summations in (80) separately. First,

〈ψkm| L̂R[â]σ̂IR(θ) |ψst〉
rkm + rst

=
〈ψkm| 2âRσ̂IR(θ)â†R |ψst〉

rkm + rst

−
〈ψkm| â†RâRσ̂IR(θ) |ψst〉

rkm + rst

−
〈ψkm| σ̂IR(θ)â†RâR |ψst〉

rkm + rst
(81)

=
〈km| 2(µâR + νâ†I)(µrs+1,tâ

†
R + νrs,t−1âI) |st〉

rkm + rst

−〈km| (µâ†R + νâI)(µâR + νâ†I) |st〉 (82)

= 〈km|
(

2rs+1,t

rkm + rst
− 1

)
µ2â†RâR |st〉

+ 〈km|
(

2rs+1,t

rkm + rst
− 1

)
νµâ†I â

†
R |st〉

+ 〈km|
(

2rs,t−1

rkm + rst
− 1

)
µνâRâI |st〉

+ 〈km|
(

2rs,t−1

rkm + rst
− 1

)
ν2â†I âI |st〉

+

(
2µ2rs+1,t

rkm + rst
− ν2

)
〈km|st〉 , (83)

where µ an ν are defined in (54) and (55), respectively, (82)
is derived using (66)-(71) in Appendix II-B, and (83) is due
to the commutation relation

[
â, â†

]
= Î (with Î denoting the

identity operator), and rearrangement of terms. Observe that
the first, fourth, and fifth terms in (83) are not zero only when
{k = s,m = t}, while the second and third terms are not zero
when {k = s + 1,m = t + 1} and {k = s − 1,m = t − 1},
respectively. Since

2rs+1,t

rkm + rst

∣∣∣∣
k=s,m=t

− 1 = − 1

1 +N1
(84)

2rs+1,t

rkm + rst

∣∣∣∣
k=s+1,m=t+1

− 1 =
N1 −N2 − 1

2N1N2 +N1 +N2 + 1

(85)
2rs,t−1

rkm + rst

∣∣∣∣
k=s−1,m=t−1

− 1 =
N1 −N2 − 1

2N1N2 +N1 +N2 + 1

(86)
2rs,t−1

rkm + rst

∣∣∣∣
k=s,m=t

− 1 =
1

N2
, (87)

with N1 and N2 defined in (59) and (60), respectively, we
have:∑

kmst

〈ψkm| L̂R[â]σ̂IR(θ) |ψst〉
rkm + rst

|ψkm〉 〈ψst|

= Ŝ†(ζ)K̂1Ŝ(ζ), (88)

where

K̂1 =

(
N1 −N2 − 1

2N1N2 +N1 +N2 + 1

)
νµ
(
â†I â
†
R + âRâI

)
−
µ2â†RâR
1 +N1

+
ν2

N2
â†I âI +

(
µ2 N1

1 +N1
− ν2

)
Î . (89)

Now, the kmst-th term in the second summation in (80) is:

〈ψkm| L̂R[â†]σ̂IR(θ) |ψst〉
rkm + rst

=
〈ψkm| 2â†Rσ̂IR(θ)âR |ψst〉

rkm + rst

−
〈ψkm| âRâ†Rσ̂IR(θ) |ψst〉

rkm + rst

−
〈ψkm| σ̂IR(θ)âRâ

†
R |ψst〉

rkm + rst
(90)

=
〈km| 2(µâ†R + νâI)(µrs−1,tâR + νrs,t+1â

†
I) |st〉

rkm + rst

−〈km| (µâR + νâ†I)(µâ
†
R + νâI) |st〉 (91)

= 〈km|
(

2rs−1,t

rkm + rst
− 1

)
µ2â†RâR |st〉
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+ 〈km|
(

2rs−1,t

rkm + rst
− 1

)
νµâI âR |st〉

+ 〈km|
(

2rs,t+1

rkm + rst
− 1

)
µνâ†Râ

†
I |st〉

+ 〈km|
(

2rs,t+1

rkm + rst
− 1

)
ν2â†I âI |st〉

+

(
2ν2rs+1,t

rkm + rst
− µ2

)
〈km|st〉 , (92)

where µ an ν are defined in (54) and (55), respectively, (91)
is derived using (66)-(71) in Appendix II-B, and (92) is due
to the commutation relation

[
â, â†

]
= Î , and rearrangement

of terms. Observe that the first, fourth, and fifth terms in (92)
are not zero only when {k = s,m = t}, while the second and
third terms are not zero when {k = s − 1,m = t − 1} and
{k = s+ 1,m = t+ 1}, respectively. Since

2rs−1,t

rkm + rst

∣∣∣∣
k=s,m=t

− 1 =
1

N1
(93)

2rs−1,t

rkm + rst

∣∣∣∣
k=s−1,m=t−1

− 1 =
N2 −N1 − 1

2N1N2 +N1 +N2 + 1

(94)
2rs,t+1

rkm + rst

∣∣∣∣
k=s+1,m=t+1

− 1 =
N2 −N1 − 1

2N1N2 +N1 +N2 + 1

(95)
2rs,t+1

rkm + rst

∣∣∣∣
k=s,m=t

− 1 = − 1

1 +N2
, (96)

we have:∑
kmst

〈ψkm| L̂R[â†]σ̂IR(θ) |ψst〉
rkm + rst

|ψkm〉 〈ψst|

= Ŝ†(ζ)K̂2Ŝ(ζ), (97)

where

K̂2 =

(
N2 −N1 − 1

2N1N2 +N1 +N2 + 1

)
νµ
(
â†I â
†
R + âRâI

)
+
µ2â†RâR
N1

− ν2

1 +N2
â†I âI +

(
ν2 N2

1 +N2
− µ2

)
Î .

(98)

Combining (88) and (97) yields:

Λ̂θ =
1

θ
Ŝ†(ζ)K̂Ŝ(ζ), (99)

where

K̂ = (n̄B + 1)K̂1 + n̄BK̂2 (100)

= Câ†RâR +Dâ†I âI + E(â†I â
†
R + âRâI) + F Î, (101)

and real scalars

C = µ2 n̄B −N1

N1(1 +N1)
(102)

D = ν2

(
n̄B + 1 +N2

N2(1 +N2)

)
(103)

E = µν

(
N1 −N2 − 2n̄B − 1

2N1N2 +N1 +N2 + 1

)
(104)

F = µ2

(
N1 − n̄B

1 +N1

)
− ν2

(
n̄B + 1 +N2

1 +N2

)
, (105)

with µ, ν, N1, and N2 defined in (54), (55), (59), and (60),
respectively.

D. Eigenbasis of the SLD Λ̂θ

Application of a two-mode squeezing operator Ŝ
(
λejθλ

)
to

a photon number operator â†I âI results in:

Ŝ
(
λejθλ

)
â†RâRŜ

† (λejθλ)
= Ŝ

(
λejθλ

)
â†RŜ

† (λejθλ) Ŝ (λejθλ) âRŜ† (λejθλ)
= (κâ†R + ξe−jθλ âI)(κâR + ξejθλ â†I)

= κ2â†RâR + κξ(ejθλ âRâI + e−jθλ â†Râ
†
I) + ξ2âI â

†
I , (106)

where κ = coshλ and ξ = sinhλ. Similarly,

Ŝ
(
λejθλ

)
â†I âI Ŝ

† (λejθλ)
= κ2â†I âI + κξ(e−jθλ âI âR + ejθλ â†I â

†
R) + ξ2âRâ

†
R. (107)

Thus, provided scalars λ, F ′, T1, T2 exist, we can write:

K̂ = F ′Î + Ŝ(λ)(T1â
†
RâR + T2â

†
I âI)Ŝ

†(λ) (108)

= F ′Î + (T1κξ + T2κξ)(âRâI + â†Râ
†
I) + T1ξ

2 + T2ξ
2

+ (T1κ
2 + T2ξ

2)â†RâR + (T1ξ
2 + T2κ

2)â†I âI , (109)

where (109) is from substituting (106) and (107) in (108) and
rearranging terms. Note that it is necessary that θλ = 0, which
means that scalars λ, F ′, T1, T2 must be real and satisfy:

C = T1κ
2 + T2ξ

2 (110)

D = T1ξ
2 + T2κ

2 (111)

E = (T1 + T2)κξ = (T1 + T2)
sinh 2λ

2
, (112)

F = F ′ + T1ξ
2 + T2ξ

2 (113)

where scalars C, D, E, and F are given in (102)-(105). Now,

C −D = T1(κ2 − ξ2) + T2(ξ2 − κ2) = T1 − T2, (114)

C +D = T1(κ2 + ξ2) + T2(ξ2 + κ2) = (T1 + T2) cosh 2λ,
(115)

Furthermore,

(C +D)2 − 4E2 = (T1 + T2)2(cosh2 2λ− sinh2 2λ)

= (T1 + T2)2. (116)

Using (114)-(116), we obtain:

T1 =
1

2
(
√

(C +D)2 − 4E2 + C −D) (117)

T2 =
1

2
(
√

(C +D)2 − 4E2 − C +D) (118)

cosh 2λ =
C +D√

(C +D)2 − 4E2
(119)

sinh 2λ =
2E√

(C +D)2 − 4E2
(120)

F ′ = F − (T1 + T2) sinh2(λ). (121)
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Finally, we can show that

Λ̂θS
†(ζ)S(λ) |km〉

=
1

θ
S†(ζ)K̂S(ζ)S†(ζ)S(λ) |km〉

=
1

θ
S†(ζ)[F ′ + S(λ)(T1â

†
RâR + T2â

†
I âI)

†S(λ)†]S(λ) |km〉

=
1

θ
(F ′ + T1k + T2m)S†(ζ)S(λ) |km〉 , (122)

where

λ =
1

2
log

(
2E + |C +D|√
(C +D)2 − 4E2

)
. (123)

Thus, Ŝ(ω) |km〉, ω = λ−ζ is an eigenvector of the SLD Λ̂θ.

APPENDIX III
FOCK-BASIS REPRESENTATION OF TWO-MODE SQUEEZER

To derive the representation in (34) of the two-mode squeez-
ing operator Ŝ(ω1) in the two-mode Fock (photon number)
basis {|km〉 : k,m = 0, 1, . . .}, note that [63, Eq. (1.233)]:

S(ω1) = e−ω1â
†
Râ
†
I+ω∗1 âRâI (124)

= e−τ1â
†
Râ
†
Iν
−â†RâR−â

†
I âI−Î

1 eτ
∗
1 âRâI , (125)

where Î denotes identity operator, and

τ1 =
ω1

|ω1|
tanh |ω1| (126)

ν1 = cosh |ω1|. (127)

Now,

S(ω1) |km〉

= e−τ1â
†
Râ
†
Iν
−â†RâR−â

†
I âI−Î

1 eτ
∗
1 âRâI |km〉 (128)

= e−τ1â
†
Râ
†
Iν
−â†RâR−â

†
I âI−Î

1

×
∞∑
u=0

(τ∗1 )u

u!
(âRâI)

u |km〉 (129)

=

min(k,m)∑
u=0

e−τ1â
†
Râ
†
Iν
−â†RâR−â

†
I âI−Î

1

(τ∗1 )u

u!

×

√
k!m!

(k − u)!(m− u)!
|k − u,m− u〉 (130)

=

min(k,m)∑
u=0

e−τ1â
†
Râ
†
Iν−k−m+2u−1

1

(τ∗1 )u

u!

×

√
k!m!

(k − u)!(m− u)!
|k − u,m− u〉 (131)

=

min(m,n)∑
u=0

∞∑
l=0

(−τ1)l

l!
(â†Râ

†
I)
lν−k−m+2u−1

1

× (τ∗1 )u

u!

√
k!m!

(k − u)!(m− u)!
|k − u,m− u〉 (132)

=

min(k,m)∑
u=0

∞∑
l=0

(−τ1)l

l!
ν−k−m+2u−1

1

(τ∗1 )u

u!

×

√
(k − u+ l)!(m− u+ l)!

(k − u)!(m− u)!

×

√
k!m!

(k − u)!(m− u)!

× |k − u+ l,m− u+ l〉 , (133)

where (129) is the power series representation of the operator
exponential eτ

∗
1 âRâI and (130) is from applying annihilation

operators âRâI u times on the two-mode Fock state |km〉.
The upper limit on the sum in (130) is because â |0〉 = 0.
Furthermore, (131) follows from the power series of exponen-
tial and Fock states being eigenstates of the photon number
operator â†â, (132) is the power series representation of the
operator exponential e−τ1â

†
Râ
†
I , and (133) is from applying

creation operators u times. By orthonormality of the Fock
states, 〈st|S(ω1) |km〉 is not zero only when

s = k − u+ l and t = m− u+ l. (134)

We eliminate the summation over l in (133) by solving for l
in (134). Since (134) also implies that l−u = s− k = t−m,
rearranging the terms yields (34).
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sive Heisenberg limit in quantum-enhanced metrology,” Nat. Commun.,
vol. 3, no. 1, p. 1063, Sep. 2012.

[4] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental
limits of repeaterless quantum communications,” Nat. Commun., vol. 8,
Apr. 2017.

[5] R. Namiki, O. Gittsovich, S. Guha, and N. Lütkenhaus, “Gaussian-only
regenerative stations cannot act as quantum repeaters,” Phys. Rev. A,
vol. 90, p. 062316, Dec. 2014.

[6] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory, 1st ed. Upper Saddle River, NJ: Prentice Hall,
1993.

[7] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part
I: Detection, Estimation, and Linear Modulation Theory. New York:
John Wiley & Sons, Inc., 2001.

[8] C. W. Helstrom, Quantum Detection and Estimation Theory. New York,
NY, USA: Academic Press, Inc., 1976.

[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. New York, NY, USA: Cambridge University Press, 2000.

[10] M. Wilde, Quantum Information Theory, 2nd ed. Cambridge University
Press, 2016, arXiv:1106.1445v7.

[11] M. Hayashi, Quantum Information Theory: Mathematical Foundation.
Springer-Verlag Berlin Heidelberg, 2017.

[12] C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev.
Mod. Phys., vol. 89, p. 035002, Jul 2017.

http://arxiv.org/abs/1106.1445


17

[13] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd,
“Advances in photonic quantum sensing,” Nat. Photon., vol. 12, no. 12,
pp. 724–733, Dec. 2018.

[14] A. Monras and M. G. A. Paris, “Optimal quantum estimation of loss in
bosonic channels,” Phys. Rev. Lett., vol. 98, p. 160401, Apr. 2007.

[15] G. Adesso, F. Dell’Anno, S. De Siena, F. Illuminati, and L. A. M. Souza,
“Optimal estimation of losses at the ultimate quantum limit with non-
gaussian states,” Phys. Rev. A, vol. 79, p. 040305, Apr 2009.

[16] R. Nair, “Quantum-limited loss sensing: Multiparameter estimation and
bures distance between loss channels,” Phys. Rev. Lett., vol. 121, p.
230801, Dec. 2018.

[17] A. Monras and F. Illuminati, “Measurement of damping and
temperature: Precision bounds in gaussian dissipative channels,”
Phys. Rev. A, vol. 83, p. 012315, Jan. 2011. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.83.012315

[18] R. Nair and M. Gu, “Fundamental limits of quantum illumination,”
Optica, vol. 7, no. 7, pp. 771–774, Jul. 2020.

[19] R. Jonsson and R. D. Candia, “Gaussian quantum estimation of the
lossy parameter in a thermal environment,” arXiv:2203.00052 [quant-
ph], 2022.

[20] A. Z. Goldberg and K. Heshami, “Multiparameter transmission estima-
tion at the quantum cramér-rao limit on a cloud quantum computer,”
arXiv:2208.00011 [quant-ph], 2022.

[21] S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumi-
nation,” Science, vol. 321, no. 5895, pp. 1463–1465, 2008.

[22] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone,
S. Pirandola, and J. H. Shapiro, “Quantum illumination with gaussian
states,” Phys. Rev. Lett., vol. 101, p. 253601, Dec. 2008.

[23] S. Guha and B. I. Erkmen, “Gaussian-state quantum-illumination re-
ceivers for target detection,” Phys. Rev. A, vol. 80, p. 052310, Nov.
2009.

[24] Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro,
“Entanglement-enhanced sensing in a lossy and noisy environment,”
Phys. Rev. Lett., vol. 114, p. 110506, Mar. 2015.

[25] M. Sanz, U. Las Heras, J. J. García-Ripoll, E. Solano, and R. Di Candia,
“Quantum estimation methods for quantum illumination,” Phys. Rev.
Lett., vol. 118, p. 070803, Feb. 2017.

[26] J. H. Shapiro, “The quantum illumination story,” IEEE Aerosp. Electron.
Syst. Mag., vol. 35, no. 4, pp. 8–20, 2020.

[27] R. D. Gill and S. Massar, “State estimation for large ensembles,” Phys.
Rev. A, vol. 61, p. 042312, Mar. 2000.

[28] M. Hayashi and K. Matsumoto, “Statistical model with measurement
degree of freedom and quantum physics,” in Asymptotic Theory of Quan-
tum Statistical Inference: Selected Papers, M. Hayashi, Ed. Singapore:
World Scientific Publishing Co. Pte. Ltd., 2005, pp. 162–169.

[29] B. A. Bash, D. Goeckel, and D. Towsley, “Square root law for commu-
nication with low probability of detection on AWGN channels,” in Proc.
IEEE Int. Symp. Inform. Theory (ISIT), Cambridge, MA, Jul. 2012.

[30] ——, “Limits of reliable communication with low probability of detec-
tion on AWGN channels,” IEEE J. Sel. Areas Commun., vol. 31, no. 9,
pp. 1921–1930, 2013.

[31] B. A. Bash, D. Goeckel, S. Guha, and D. Towsley, “Hiding information
in noise: Fundamental limits of covert wireless communication,” IEEE
Commun. Mag., vol. 53, no. 12, 2015.

[32] B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel,
D. Towsley, and S. Guha, “Quantum-secure covert communication on
bosonic channels,” Nat. Commun., vol. 6, Oct. 2015.

[33] B. A. Bash, C. N. Gagatsos, A. Datta, and S. Guha, “Fundamental limits
of quantum-secure covert optical sensing,” in Proc. IEEE Int. Symp. In-
form. Theory (ISIT), Aachen, Germany, Jun. 2017.

[34] C. N. Gagatsos, B. A. Bash, A. Datta, Z. Zhang, and S. Guha, “Covert
sensing using floodlight illumination,” Phys. Rev. A, vol. 99, p. 062321,
Jun. 2019.

[35] M. S. Bullock, C. N. Gagatsos, S. Guha, and B. A. Bash, “Fundamental
limits of quantum-secure covert communication over bosonic channels,”
IEEE J. Sel. Areas Commun., vol. 38, no. 3, pp. 471–482, Mar. 2020.

[36] C. N. Gagatsos, M. S. Bullock, and B. A. Bash, “Covert capacity of
bosonic channels,” IEEE J. Sel. Areas Inf. Theory, vol. 1, pp. 555–567,
Aug. 2020.

[37] A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D.
Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave
multiplexed readout of DC-biased superconducting nanowire detectors,”
IEEE Trans. Appl. Supercond., vol. 29, no. 5, Aug. 2019.

[38] A. N. McCaughan, D. M. Oh, and S. W. Nam, “A stochastic SPICE
model for superconducting nanowire single photon detectors and other
nanowire devices,” IEEE Trans. Appl. Supercond., vol. 29, no. 5, Aug
2019.

[39] J. Lee, L. Shen, A. Cerè, T. Gerrits, A. E. Lita, S. W. Nam, and
C. Kurtsiefer, “Multi-pulse fitting of transition edge sensor signals from
a near-infrared continuous-wave source,” Rev. Sci. Instrum., vol. 89,
no. 12, p. 123108, 2018.

[40] M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge, UK:
Cambridge University Press, 1997.

[41] G. S. Agarwal, Quantum Optics. Cambridge, UK: Cambridge Univer-
sity Press, 2012.

[42] M. Orszag, Quantum Optics, 3rd ed. Berlin, Germany: Springer, 2016.
[43] A. S. Holevo, “The capacity of the quantum channel with general signal

states,” IEEE Trans. Inf. Theory, vol. 44, pp. 269–273, Jan. 1998.
[44] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph,

J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod.
Phys., vol. 84, pp. 621–669, May 2012.

[45] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins,
I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal,
T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P.
Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison,
S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K.
Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan,
V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang, “Quantum circuits
with many photons on a programmable nanophotonic chip,” Nature, vol.
591, no. 7848, pp. 54–60, Mar. 2021.

[46] A. Z. Goldberg and K. Heshami, “Optimal transmission estimation with
dark counts,” arXiv:2208.12831 [quant-ph], 2022.

[47] P. Marian and T. A. Marian, “Uhlmann fidelity between two-mode
gaussian states,” Phys. Rev. A, vol. 86, p. 022340, Aug. 2012.

[48] L. Banchi, S. L. Braunstein, and S. Pirandola, “Quantum fidelity for
arbitrary gaussian states,” Phys. Rev. Lett., vol. 115, p. 260501, Dec.
2015.

[49] Z. Jiang, “Quantum fisher information for states in exponential form,”
Phys. Rev. A, vol. 89, p. 032128, Mar. 2014.

[50] T. Eberle, V. Händchen, and R. Schnabel, “Stable control of 10 db two-
mode squeezed vacuum states of light,” Opt. Express, vol. 21, no. 9, pp.
11 546–11 553, May 2013.

[51] A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demon-
stration of a low-noise near-infrared photon counter with multiphoton
discrimination,” Appl. Phys. Lett., vol. 83, no. 4, pp. 791–793, 2003.

[52] S. Guha, “Classical capacity of the free-space quantum-optical channel,”
Master’s thesis, Massachusetts Institute of Technology, 2004.

[53] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products,
7th ed., A. Jeffrey and D. Zwillinger, Eds. Elsevier Academic Press,
2007.

[54] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review
article: Single-photon sources and detectors,” Rev. Sci. Instrum., vol. 82,
no. 7, p. 071101, 2011.

[55] U. Sinha, S. N. Sahoo, A. Singh, K. Joarder, R. Chatterjee, and
S. Chakraborti, “Single-photon sources,” Opt. Photon. News, vol. 30,
no. 9, pp. 32–39, Sep. 2019.

[56] E. Meyer-Scott, C. Silberhorn, and A. Migdall, “Single-photon sources:
Approaching the ideal through multiplexing,” Rev. Sci. Instrum., vol. 91,
no. 4, p. 041101, 2020.

[57] J. W. Pearson, S. Olver, and M. A. Porter, “Numerical methods for
the computation of the confluent and gauss hypergeometric functions,”
Numer. Algorithms, vol. 74, no. 3, pp. 821–866, Mar. 2017.

[58] F. Hong-yi and F. Yue, “Representations of two-mode squeezing trans-
formations,” Phys. Rev. A, vol. 54, pp. 958–960, Jul. 1996.

[59] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
New York, NY: Springer-Verlag, 1994.

[60] F. Kaneda and P. G. Kwiat, “High-efficiency single-photon generation
via large-scale active time multiplexing,” Sci. Adv., vol. 5, no. 10, 2019.

[61] Photon Spot, Inc. website, https://www.photonspot.com/ (accessed
Sep. 22, 2022).

[62] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum
Information, ser. Napoli Series on physics and Astrophysics. Napoli,
Italy: Bibliopolis, 2005, https://arxiv.org/abs/quant-ph/0503237.

[63] P. Kok and B. W. Lovett, Introduction to Optical Quantum Information
Processing. Cambridge, UK: Cambridge University Press, 2010.

https://link.aps.org/doi/10.1103/PhysRevA.83.012315
http://arxiv.org/abs/2203.00052
http://arxiv.org/abs/2208.00011
http://arxiv.org/abs/2208.12831
https://www.photonspot.com/
https://arxiv.org/abs/quant-ph/0503237

	I Introduction
	II Prerequisites
	II-A Notation
	II-B Channel Model
	II-C Introduction to Quantum Estimation
	II-D Quantum Transmittance Estimation

	III TMSV is Optimal for Transmittance Sensing
	IV Transmittance Estimation Using TMSV Probes
	IV-A Optimal Receiver Structure
	IV-B Remarks and Caveats
	IV-B1 Value of  depends on 
	IV-B2 Existence of  depends on , S, and B


	V Comparison with Alternative Transmittance-Sensing Methods: Fundamental Limits
	V-A Coherent Transceiver
	V-B TMSV and Optical Parametric Amplifier (OPA) Receiver
	V-C Fock States
	V-D TMSV and Heralded PNR Measurement
	V-E Comparison

	VI Comparison with Alternative Transmittance-Sensing Methods: Simulations
	VI-A Construction of MLEs
	VI-A1 Coherent Homodyne Transceiver
	VI-A2 TMSV Input and OPA Receiver
	VI-A3 TMSV Input and Receiver Derived in Section IV

	VI-B Results
	VI-C Towards Experimental Validation

	VII Conclusion
	Appendix I: Proof of Theorem 1
	Appendix II: Derivation of a Quantum CRB-achieving Receiver
	II-A Orthonormal Basis for the Output State IR()
	II-B Actions of Modal Creation and Annihilation Operators on Output State
	II-C Characterization of SLD 
	II-D Eigenbasis of the SLD 

	Appendix III: Fock-basis Representation of Two-mode Squeezer
	References

